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This paper describes a method for 3D radiative transfer that could be computationally affordable 

enough to be used in high-resolution models. The idea of treating radiation more akin to dynamics  

is intriguing and as far as I know novel. The results presented are state-of-the-art in terms of speed-

accuracy tradeoff (at least for 3D solvers) and potentially very significant for the advancement of 

NWP models, which are already configured at resolutions where 3D radiative effects are notable yet 

are currently ignored in all operational models.

My major comments are provided below and relate mainly to the computational aspects, which 

deserve more attention. Some of my questions may be adequate to address in the review and not in 

the paper,  as  it's  already long (and concerned mainly with demonstrating the feasibility  of  the 

method - which it does excellently!), but a few clarifying sentences and providing absolute runtimes 

and/or measures of floating point operations in the paper would go a long way in informing the 

reader  how fast  dynamic tenStream potentially  is,  and whether  it  could be a  real  contender  to 

operational radiation schemes outside of LES.

Besides this, I think the paper would really benefit if the authors tried to make it more concise by 

avoiding repetition and removing unnecessary words and sentences. The results shown are relevant 

but they are sometimes described in a very wordy manner.

Finally,  the  code  does  not  seem to  be  actually  available  to  download at  current  time which  I 

understand is against GMD policy.

Other major comments:

1a. In general it's a bit difficult to fully understand the method (although Figure 3 does a good job at  

illustrating it) especially when it comes its implementation in code and its parallelism. The future  

tense used in L198-204 implies that the parallelism is not yet implemented. My understanding of 

dynamic TenStream would be something like this for a simplified 1D case:

! Downwelling flux; boundary condition

fd(1) = incsol

fd(2:nlev) = fd_prev_timestep(2:nlev) 

! Gauss seidel incomplete solves, not parallelizable

for jiter in 1,niter 



! Vectorization or other parallelism, array notation

fd(2:nlev) = T(1:nlev-1)*fd(1:nlev-1)

This would correspond to the radiative flows in individual grid boxes being computed concurrently 

i.e. in parallel within a single step of Fig 3, is this right? 

Yes, your simplified 1D case does indeed illustrate the concept of the dynamic TenStream solver, 

although you use the Jacobi method instead of the Gauß-Seidel method to update the outgoing 

fluxes of the grid boxes. In contrast to the Gauß-Seidel method, this Jacobi method always uses 

ingoing fluxes from the previous time step to calculate the updated outgoing fluxes of a grid box. It 

would  thus  also  allow  for  concurrent  calculation  of  these  outgoing  fluxes.  On  the  downside, 

information can only be propagated to the neighboring grid boxes in every single Jacobi iteration, 

leading to slow convergence despite high parallelizability.

This is why we have chosen to use the Gauß-Seidel method instead. In your simplified 1D case, this 

Gauß-Seidel method would look something like this:

for jiter in 1, niter

for iz in 2, nlev

fd(iz) = T(iz-1) * fd(iz-1)

In contrast to the Jacobi method you described, it uses updated ingoing fluxes wherever possible in 

the calculation of outgoing fluxes, leading to much faster convergence. When calculating fd(iz), for 

example,  we can already use  the  value  of  fd(iz-1)  determined in  the  very same iteration jiter. 

However, this implies that the Gauß-Seidel method does not allow for concurrent calculation of 

outgoing fluxes for all the grid boxes, as it would simply lead to the Jacobi method in that case: 

when doing the calculations for all the grid boxes in parallel, we would always have to use ingoing 

fluxes of the previous iteration instead of the current iteration. 

In order to parallelize the Gauß-Seidel method, our idea is thus – as it is described in l. 199 to 202 

of the preprint – to apply parallelization to subdomains of the full 3D domain that are larger than an 

individual grid box. Within every one of these subdomains, the use of the Gauß-Seidel method 

would ensure that already updated ingoing fluxes are used in the calculation of outgoing fluxes 

wherever possible, speeding up convergence. Updates between different subdomains would only 

happen in between different calls of the radiation scheme. This treatment would represent a balance 

between convergence speed and parallelizability.

But  as  you  correctly  noted,  parallelization  has  not  yet  been  implemented  into  the  dynamic 

TenStream solver by now.

1B. How should the reader interpret the reported speed numbers in terms of effective speed against 

operational radiation schemes? Is the 1D delta-Eddington reference based on efficient, vectorized 

code? It is unclear how efficient dynamic TenStream is or could be compared to widely used two-

stream codes such as ecRad, which expresses parallelism across g-points, or the RTE+RRTMGP 

scheme which vectorizes the column dimension instead. Comparison to other schemes could be 



greatly  facilitated by reporting absolute  runtimes,  or  you could run one of  the  aforementioned 

schemes. Potential lack of parallelism and optimization in its current stage can be stressed explicitly  

and of course, even if dynamic tenStream is currently much slower than operational schemes then 

it's not a bad result considering full 3D solvers have until now been many orders of magnitudes 

more expensive. Finally, it could be very useful to report the number of floating point operations 

(whether  absolute  or  relative  to  delta-Eddington)  but  may  require  a  library  such  as  GPTL to 

estimate, and is perhaps not necessary if the other aspects are clarified. 

The relative numbers in Table 1 can indeed not be used to compare the speed of these solvers with  

respect to those in operational radiation schemes. However, providing such numbers was never the 

intention of this paper, as the dynamic TenStream solver is still in an early stage of development.

The main point we wanted to make in terms of speed was that a solver using incomplete solves is  

pretty fast by its design, as it only updates the fluxes in the radiative field a limited amount of times, 

which is much closer to the way 1D independent column approximations work, where you only 

update the fluxes of every grid box once every time the radiation model is called. 

In order to provide a rough estimate of how fast the solver currently is, we performed this simple 

speed comparison to other solvers in libRadtran that are indeed not based on highly efficient code 

and not parallelized either. 

We think that simply providing absolute runtimes instead would not really add any value, as these 

runtimes are highly dependent on the environment the code is  executed in:  the retrieval of the 

TenStream coefficients from the corresponding look-up tables is for example highly dependent on 

where  these  coefficients  are  stored.  On  top  of  that,  the  dynamic  TenStream solver  is  not  yet 

parallelized,  making  comparisons  to  highly  efficiently  written  and  parallelized  solvers  not 

particularly useful.

2. Can you discuss whether you see dynamic TenStream to be a potentially viable scheme for global  

or regional NWP models as they approach kilometer scale resolution? And on cost again: as these 

models currently use a very coarse radiation time step compared to the ones reported in the paper, 

such as 15 minutes (AROME 2.5 km regional model) or 1 hour (IFS, but 9 km so not yet km-scale), 

does this mean that dynamic TenStream would in fact incur a much bigger cost increase for such 

models than those given in Table 1, or does the coarser spatial resolution compared to LES mean 

that dynamic TenStreams convergence would still be adequate with relatively coarse radiation time 

steps?

As the radiative field changes much less rapidly at the lower resolutions used in global or regional 

scale NWP models, we would assume that also a much coarser radiation time step is needed to 

achieve comparable results as for the high-resolution test case presented in this paper. On top of 

that, performing more Gauß-Seidel iterations per radiation call does in fact not scale linearly with 

computational time, as the computational time is mainly determined by overhead such as retrieving 

the  TenStream  coefficients  from  the  look-up  tables  when  performing  such  a  low  number  of 

iterations. For our test case, using 10 instead of 2 Gauß-Seidel iterations for example is less than 

two times more expensive. One could hence easily try to perform a bit more iterations per radiaton 

call if 2 Gauß-Seidel iterations would not be sufficient to run into proper convergence. 



However, this is just speculation at this point in time. To really figure out how incomplete solves  

perform on the NWP scale, we will have to adapt the model for kilometer-scale resolutions and  

thoroughly test it, which is beyond the scope of this paper.

To clarify that the paper focuses on subkilometer-scale models for now, we have changed to title to  

“A dynamic  approach  to  three-dimensional  radiative  transfer  in  subkilometer-scale  numerical 

weather prediction models: the dynamic TenStream solver v1.0”.  

Minor comments:

Section 2.1. For the direct radiation, what is the advantage of having 3 streams in the independent 

x,y,z directions rather than two streams to/from the direction of the sun?

Finite volume algorithms such as the TenStream solver require the calculation of radiative fluxes for 

at least all the surfaces of the underlying grid boxes – for cuboids, which is the type of grid boxes  

used in the libRadtran library, that would add up to a total of six streams. Since direct radiation 

propagates into just  one specific  direction at  every cuboid face,  the number of  streams can be 

further reduced to three.  That,  however,  is  the minimum amount of streams possible for direct 

radiation. 

L114: Does TenStreams use of an external linear algebra library mean that its implementation is  

computationally efficient and exploits parallelism but dynamic TenStream currently does not, if so 

can the speed-up reported in Table 1 be improved further in the future?

Indeed, the use of PETSc allows the original TenStream solver to use computationally efficient 

methods to solve its system of linear equations. In addition to that, it is also parallelized. However,  

one of  the  main aims in  the  development  of  the  dynamic TenStream solver  was  to  get  rid  of 

complex libraries such as PETSc to allow for easier integration into operational models.

Besides that, we do not assume that the numbers in Table 1 will improve when parallelizing the 

dynamic TenStream solver, as they all refer to the single core performances of the corresponding 

solvers. Regarding multi-core performance, the TenStream solver is usually much more memory 

bandwidth limited than 1D delta-Eddington solvers are. As shown in Jakub and Mayer (2016), this 

leads to the original TenStream solver actually scaling worse to more cores than traditional 1D 

solvers do.

L114: Does PETSc run on GPUs? Do you think GPU acceleration is  promising for  (dynamic) 

tenStream?

Yes,  PETSc  does  indeed  run  on  GPUs.  That  being  said,  the  Gauß-Seidel  method  used  in  the 

dynamic TenStream solver is a notoriously bad solver on GPU compute architectures. Other solvers  

such as the Jacobi method are better suited towards the high parallelization on GPUs and have been 

tested for the original TenStream solver using PETSc on GPUs. However, run times turned out to be 

only on par or just slightly better than when using CPUs.

In addition to that, the computing time of the dynamic TenStream solver is mainly determined by 

CPU-based overhead such as the retrieval of the TenStream coefficients and not so much by the 



actual Gauß-Seidel solve. Hence, we do not assume a notable increase in speed by just performing 

the Gauß-Seidel iterations on GPUs. 

L272.  Has  TenStream  been  evaluated  across  a  wider  range  of  solar  zenith  angles  and  is  its 

performance sensitive to it?

Yes,  the  TenStream solver  has  been  evaluated  at  a  wide  range  of  solar  zenith  angles  and  its 

performance  is  sensitive  to  it  (Jakub  and  Mayer,  2016).  Especially  when  considering  small 

(sub)domains combined with high zenith angles, information has to be transported over multiple 

subdomains  in  case  of  parallelization,  slowing  down  convergence  as  communication  between 

different cores is required.

L474-495. Interesting, what is the reason for tenStream having a worse surface irradiance bias than 

delta-Eddington?

As  Anonymous  Reviewer  #4  pointed  out,  the  solar  zenith  angle  that  we  have  used  in  our 

calculations is  very beneficial  for the 1D delta-Eddington solver,  as there are two different 3D 

radiative effects at the surface that cancel out for solar zenith angels around 45°. Initially, we have  

not  evaluated  the  time  series  for  different  zenith  angles,  which  is  why  we  did  not  give  an 

explanation for that in the paper.  For the revised version, we have changed that by adding the 

following part to Sect. 4.3:

“However,  it  should  be  noted  that  the  almost  non-existent  MBE  of  the  delta-Eddington 

approximation in the solar spectral range is primarily caused by two counteracting 3D radiative 

effects that happen to cancel each other out at almost exactly the solar zenith angle of 50° that we  

are using. 

Fig. 10: Mean bias error in the net surface irradiance as a function of the solar zenith angle for both  

the 1D delta-Eddington approximation (blue line) and the original TenStream solver (green line), 

evaluated at the first time step of the shallow cumulus cloud time series



To show that,  Fig.  10 visualizes the MBE for both the delta-Eddington approximation and the 

original TenStream solver as a function of the solar zenith angle for the first time step of our time  

series.  By  looking  at  the  blue  line,  we  can  see  that  the  delta-Eddington  approximation 

underestimates  the  mean  net  surface  irradiance  for  solar  zenith  angles  below  50°,  while  it 

overestimates it for angles above 50°. This is most likely because at low solar zenith angles, 1D 

solvers typically overestimate cloud shadows due to the lack of transport of diffuse radiation into 

these shadow regions, leading to an underestimation of the mean net surface irradiance. At high 

solar zenith angles on the other hand, i.e., when the Sun is close to the horizon, 1D solvers severely 

underestimate the size of these shadows, as they cast them directly underneath the clouds instead of 

at a slant angle, leading to an overestimation of the mean net surface irradiance. As we can see in  

Fig. 10, both of these effects cancel out at an angle of about 50°, which is the one we use, resulting 

in the almost perfect MBE of the delta-Eddington approximation in the solar spectral range in Fig. 

9.  Despite this coincidence,  however,  Fig.  10 also shows us that the original TenStream solver 

performs slightly worse than the delta-Eddington approximation for any zenith angle below about 

50°.  However,  the  difference  in  the  MBEs  between  the  two  solvers  is  quite  small,  and  the 

magnitude of their respective RMBEs does not get much larger than -1 % for any angle below 50° 

(not shown here).”

L540-544. This is an example of probably unnecessarily detail and wordiness (4 lines of text to 

introduce a plot similar to one already shown)

You are absolutely right that Fig. 11 is introduced far too detailed. For the revised version, we 

significantly shortened this part as follows: “Before making a closing statement, let us also have a 

look at the results in the thermal spectral range shown in Fig. 16.” Note that Fig. 11 is Fig. 16 in the 

revised version.

References:

Jakub, F. and Mayer, B.: 3-D radiative transfer in large-eddy simulations – experiences coupling the 

TenStream solver to the UCLA-LES, Geosci. Model Dev., 9, 1413–1422, 

https://doi.org/10.5194/gmd-9-1413-2016, 2016
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This  is  a  very  interesting  paper  on  speeding  up  three-dimensional  (3D)  radiative  transfer 

calculations toward potential use in numerical weather prediction (NWP).

I am very impressed by the paper. It is an important topic, as 3D radiative transfer will require  

attention as NWP models move to higher resolution.

The methodological advances are carefully designed and effective. I like that the basic ideas are 

simple and clever and intuitive (e.g., using time-stepping to update the radiative field, and using 

incomplete solves), while careful attention to details is also crucial to the success of the method 

(e.g., in the details of the Gauss-Seidel iterations).

The comparisons in the paper are also thorough and include comparisons to a 1D delta-Eddington 

solver, a 3D Monte Carlo solver, and the original TenStream solver. It is very valuable to have each 

one of these comparisons, since they span a range of options for speed and accuracy.

The limitations of different methods are also discussed. For instance, the new method is slightly 

slower than 1D delta-Eddington,  and not  as  accurate  3D Monte Carlo when operated at  lower 

calling frequencies. I appreciate the attention given to these limitations.

It  is  a  very  good  paper  in  all  aspects:  comprehensive,  careful,  well-written.  I  appreciated  the 

schematic illustrations, which are helpful for clarifying technical details and main ideas.

I think the paper could be accepted in its current form, but I will mention one specific comment that  

the authors may wish to address.

Specific comment:

The title  mentions  NWP as  the  aim.  Then the  paper  presents  results  for  hectometer-scale  grid 

spacings of large-eddy simulations. On the other hand, I would imagine that NWP will be operating 

at kilometer-scale horizontal grid spacings for quite some time into the future. If that is the case,  

then will  a  major  modification of  your  methods be  required in  order  to  work effectively  with 

kilometer-scale horizontal grid spacings, where propagation of radiation in horizontal directions is 

not well-resolved? I would think so.

While the main conceptual ideas of using a time-stepping scheme and incomplete solves will stay 

the  same  on  kilometer-scale  horizontal  resolutions,  we  will  certainly  have  to  make  some 

adjustments to the dynamic TenStream solver. Currently, we think that two main modifications will 

be needed, which we both addressed in the “Summary and Outlook” section of the paper: First, we 

will have to consider sub-grid scale inhomogeneities such as cloud fraction inside a certain grid 



box. Secondly, we will also have to parallelize the model in order to run efficiently on the large 

domain sizes that come with global or regional-scale NWP models.

If you agree that major modification of your methods will be required in order to work effectively 

with kilometer-scale horizontal grid spacings, then I would suggest a change to the title (and also  

possibly some changes in the Introduction section and Summary and outlook section). For instance, 

in the title, possibly change 'A dynamic approach to' to 'A dynamic approach toward', or change 'in  

NWP' to 'in LES' or 'in hectometer-scale NWP'. Then you could save the NWP emphasis for a later 

paper when you can address the difficulties that will arise in using dynamic TenStream on actual 

NWP models with kilometer-scale grid spacing.

Thank you for this suggestion. To clarify that the solver is currently only designed for the use on 

subkilometer-scale horizontal resolutions, we have changed the title to “A dynamic approach to 

three-dimensional radiative transfer in subkilometer-scale numerical weather prediction models: the 

dynamic TenStream solver v1.0”.

The revised  version  also  includes  minor  adjustments  in  the  “Introduction”  and “Summary and 

Outlook” sections of the paper to stress that this first version of the dynamic TenStream solver is 

only designed for the use on subkilometer-scale horizontal resolutions:

In the introduction, we have modified the penultimate paragraph as follows: “[…] To address this 

high  computational  cost  of  current  3D solvers,  this  paper  presents  a  first  step  towards  a  new, 

"dynamic"  3D  radiative  transfer  model.  Currently  designed  for  the  use  at  subkilometer-scale 

horizontal resolutions, where model grid boxes can be assumed to be homogeneous, this new, fully 

three-dimensional model is based on the TenStream solver. […]”.

A similar modification was applied in the “Summary and Outlook” section of the paper: “Based 

upon the TenStream solver, we presented a new radiative transfer model currently designed for the 

use at subkilometer-scale horizontal resolutions that allows us to calculate 3D radiative fluxes and 

heating rates at a significantly increased speed by utilizing two main concepts that both rely on the 

idea that the radiative field does not completely change in between two calls of the scheme: [...]”

This was the only issue I want to mention, and I otherwise was pleased and impressed by the careful 

comparisons and discussions of limitations.

Technical correction:

Line 505: "In here" should be just "Here"

We changed that as suggested.
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* General comments:

This is a welcome update of the TenStream 3D radiative transfer (RT) code that already fills a major 

gap in LES modeling capability, namely, to perform 3D RT broadband radiation budget estimation 

for  Large-Eddy  Simulation  (LES)  models.  LES  is  now  routinely  used  in  cloud-scale  process 

modeling  to  address  some of  predictive  climate  science's  most  stubborn  issues,  such  as  cloud 

feedbacks and aerosol-cloud interactions.

However, in spite of generating fully 3D (i.e., vertically-developed) clouds driven by convective 

dynamics, the RT parameterizations used in LES are still  too often heritage codes from Global  

Climate Models (GCMs) where nothing less than ~50 to 100 km in scale is resolved, hence all  

clouds and many cloud systems. A typical aspect ratio for a GCM cloudy column is therefore on the 

order of 1-to-10, thus, some form of 1D RT that captures the internal variability of the clouds (e.g., 

McICA) is justified since little radiation will be leaked through the horizontal boundaries anyway. 

In sharp contrast, a cloudy column in an LES has the opposite aspect ratio: say, 5 km by 50 m, 

hence about 100-to-1. Even cloud-resolving models (CRMs), say, at 5 km by 0.5 km are 10-to-1. 

NWP models  are  heading  into  that  kind  of  spatial  resolution  as  well.  So  there  is  plenty  of 

opportunity  for  net  horizontal  fluxes  to  develop  across  grid-cell  facets,  starting  with  direct 

shadowing of neighboring cells in the anti-solar direction. The TenStream model is purposefully 

designed to account for this 3D RT in terms of radiation energetics, hence fluxes, not radiances, as  

required for computing heating rates profiles and net fluxes through the top and bottom boundaries.

The new _dynamic_ TenStream model is designed to address the issue of computational efficiency 

that is in the way of the general acceptance of TenStream in the LES community for operational 

implementation. Specifically, it brings CPU time allocation down to ~3x the baseline cost of 1D RT, 

and does so by cutting a few corners, which could carry a cost in accuracy. Therefore, dynamic 

TenStream is benchmarked for accuracy against the original TenStream, as well as 1D RT (delta-

Eddington) and full 3D RT (MYSTIC). Its accuracy is at par with the original TenStream, which is  

already a vast improvement in accuracy for radiation budget estimation using standard 1D RT.

The paper is well written and illustrated. It should be published by GMD after a minor revision that  

addresses the following issues.

* Specific comments:

(1)  Careful  attention is  paid to the heating-rate profile  and surface irradiance/flux.  However,  it 

seems to me that  the outgoing TOA flux is  also important.  Maybe TenStream enforces radiant 



energy conservation is such a way that the TOA flux is as accurate as the rest, but that isn't obvious  

to this reviewer. At a minimum, some kind of statement on TOA flux accuracy is in order.

You are right that we focused our evaluation on heating rates and net surface irradiances, as they are 

the main drivers of the weather. For the revised version, we extended Sect. 4.3 to also account for 

the performance of the new solver in determining net irradiances at top of atmosphere (TOA):

“Finally coming to the upper boundary of our domain, Fig. 11 shows the temporal evolution of the 

MAE in the net irradiance at top of atmosphere (TOA) in an otherwise similar fashion as Fig. 8.  

Again, the incomplete solves in the dynamic TenStream solver lead to a slight divergence of the 

MAE of this solver (red lines) compared to the original TenStream solver (green lines) in both 

spectral ranges. However, this divergence remains small compared to the difference between the 3D 

TenStream solver and the 1D δ-Eddington approximation, even at the lowest investigated calling 

frequency of 60 s. This indicates that also at TOA, the dynamic TenStream solver is much better in 

capturing the spatial structure of the net irradiances than the traditional δ-Eddington solver is.”

Figure 11. Temporal evolution of the mean absolute error in the net irradiance at top of atmosphere 

for the different solvers with respect to the MYSTIC benchmark run at calling frequencies of 10 s,  

30 s and 60 s for both the solar (panel a) and thermal (panel b) spectral range. The MAE of the 

MYSTIC benchmark run itself is visualized by the dotted black line.

Similar  to  the  surface,  however,  this  does  not  fully  apply  in  terms  of  domain  averages.  The 

corresponding  temporal  evolution  of  the  MBE is  shown in  Fig.  12.  Starting  with  the  thermal 

spectral  range  displayed  in  panel  (b),  our  new solver  again  just  shows a  comparatively  small  

divergence from the original TenStream solver with time and performs significantly better than the 

δ-Eddington approximation throughout the entire time series, regardless of the calling frequency 

used. In the solar spectral range, however, the original TenStream solver already performs a bit 

worse than the δ-Eddington approximation does with time-average MBEs of about −4 W m−2 for the 

TenStream solver compared to −3 W m−2 for the 1D solver. More noticeably though, the incomplete 



solves in the dynamic TenStream solver lead to a fairly pronounced divergence in terms of the MBE 

from the original TenStream solver when compared to the difference between the 1D and original 

TenStream solvers.  However,  for  every  calling  frequency  investigated,  this  divergent  behavior 

peaks at  values that translate to RMBEs no larger than 1.25 % (not shown here).  Taking both 

domain boundaries into account, we can thus draw similar conclusions as for the heating rates:

1. On the grid box level,  our  new solver  determines far  better  net  irradiances at  both the  

surface and TOA than current 1D solvers do, even when operated at much lower calling 

frequencies.

2. Looking at domain averages, however, the incomplete solves within the dynamic TenStream 

solver lead to the build-up of a bias with time. In terms of magnitude relative to the original 

TenStream solver, this bias becomes larger the lower the calling frequency is and exceeds 

the bias of current 1D solvers, especially in the solar spectral range.”

Figure 12. Temporal evolution of the mean bias error in the net irradiance at top of atmosphere for 

the different solvers with respect to the MYSTIC benchmark run at calling frequencies of 10 s, 30 s 

and 60 s for both the solar (panel a) and thermal (panel b) spectral range. A run with no bias is 

indicated by the dotted black line.”

Apart from this large addition, net irradiance at TOA is now mentioned in various parts of the paper.

(2) The temporal down-sampling and the incomplete solves naturally cause the new model to drift  

away from the original counterpart. Would it not be beneficial to occasionally "reset" this drift to 

zero by calling the original TenStream? Of course there is a whole study to perform about when to  

do this operationally, without the benchmark information at hand.

This is a good idea, and one that we definitely had in mind when thinking about future couplings of  

our  new solver  to  LES or  NWP models.  The  implications  of  such  resets  would  be  relatively 

straightforward, as the error metrics would simply reduce to those of the original TenStream solver 



whenever such a reset was performed. For this paper, however, we wanted to focus on how our new 

solver performs when applied with the lowest computational cost possible – that is, with a low 

number of two Gauß-Seidel iterations per call and no intermediate resets of the new model.

In  the  future,  however,  it  would  certainly  be  interesting  to  investigate  the  trade-off  between 

increased accuracy due to occasional model resets on one side, and the additional computational 

cost that these resets introduce on the other side. We have included this thought in the outlook of the 

revised version of the paper:  “In this context, it would also be interesting to investigate whether 

occasional  full  solves  are  a  computationally  feasible  means  of  ensuring  that  the  results  of  the 

dynamic TenStream solver do not deviate too much from those of the original TenStream solver.”

(3) Although it should have been done when documenting the original TenStream model, it would 

be good to look into the past to find models with similar mathematical structure in terms of radical  

angular  simplification  compared  to  standard  3D  RT  solvers,  more  precisely  with  improved 

efficiency in mind. Can I suggest a few?

- an original "6-flux" model, applied to homogeneous plane-parallel media (but with potential for 

heterogeneous media):

Chu, C.M. and Churchill,  S.W., 1955. Numerical solution of problems in multiple scattering of 

electromagnetic radiation. The Journal of Physical Chemistry, 59(9), pp.855-863.

- a discrete-angle RT formalism predicated on regular tessellations of 2D and 3D spaces, seeking 

the minimal number of directions to capture 3D RT effects:

Lovejoy, S., Davis, A., Gabriel, P., Schertzer, D. and Austin, G.L., 1990. Discrete angle radiative 

transfer:  1.  Scaling and similarity,  universality and diffusion.  Journal  of  Geophysical  Research: 

Atmospheres, 95(D8), pp.11699-11715.

-  a  2D  (4-stream)  RT  model  in  a  deterministic  fractal  medium,  emphasizing  numerical 

implementation (successive over-relaxation scheme):

Davis, A., Gabriel, P., Lovejoy, S., Schertzer, D. and Austin, G.L., 1990. Discrete angle radiative 

transfer: 3. Numerical results and meteorological applications. Journal of Geophysical Research: 

Atmospheres, 95(D8), pp.11729-11742.

- the same 2D (4-stream) RT model but in a random multifractal medium, emphasizing numerical 

implementation (Monte Carlo scheme):

Davis, A.B., Lovejoy, S. and Schertzer, D., 1991, November. Discrete-angle radiative transfer in a 

multifractal medium. In Wave Propagation and Scattering in Varied Media II (Vol. 1558, pp. 37-59).  

SPIE.

- vastly faster solution of the 4-stream model using sparse matrix inversion:

Lovejoy, S., Watson, B.P., Grosdidier, Y. and Schertzer, D., 2009. Scattering in thick multifractal 

clouds, Part II: Multiple scattering. Physica A: Statistical Mechanics and its Applications, 388(18), 

pp.3711-3727.

Thank you  for  these  suggestions.  We also  think  that  these  papers  should  have  been  primarily 

mentioned in the documentation of the original TenStream solver. Nonetheless, we included some 

of them into the introduction of the revised version of our paper: 



“[...] On the other hand, a lot of work went into the speed-up of inter-column radiative transport at  

subkilometer-scale resolutions, where model grid boxes can be gradually treated homogeneously. A 

large  group  of  these  models  simplifies  the  expensive  angular  part  of  3D  radiative  transfer 

calculations by just using a discrete number of angles (e.g., Lovejoy et al., 1990; Gabriel et al.,  

1990; Davis et al., 1990). Most recently, the TenStream solver (Jakub and Mayer, 2015) built upon 

this idea. It is capable of calculating 3D radiative fluxes and heating rates in both the solar and the 

thermal  spectral  range.  To  do  so,  it  extends  the  1D two-stream formulation  to  ten  streams  to 

consider horizontal transport of energy. [...]”

* Technical corrections:

Title: The application to NWP models is both inspirational and aspirational. Here, however, the 

authors only get as far as LES, or CRM (100 m grid spacing). A more accurate title is in order.

You are certainly right with that. We changed the title to “A dynamic approach to three-dimensional 

radiative  transfer  in  subkilometer-scale  numerical  weather  prediction  models:  the  dynamic 

TenStream solver v1.0” for the revised version. 

l. 99: i.e., e.g., (need commas, I think)

We have changed the sentence containing this expression to clarify the next comment and added 

commas behind “i.e.” and “e.g.” elsewhere in the document.

l. 100: "n1" --> what is the "1" for?

We  have  clarified  the  meaning  of  the  “1”  by  adding  more  explanation  to  the  corresponding 

example:  “For example, the emissivity e0,i,j,k of grid box (i,j,k) in upward direction is equal to the 

fraction of the downward facing radiative flux Φ1,i,j,k+1 that is absorbed on the way through that grid 

box, which in turn is one minus the sum of all fractions an1,i,j,k of Φ1,i,j,k+1 exiting grid box (i,j,k), i.e., 

e0,i,j,k =1− Σ9
n=0 an1,i,j,k, where an1,i,j,k refers to the corresponding entries in the second column of matrix 

Ti,j,k.”

l. 104: first "out" --> not italics

We have changed that as suggested.

Fig. 3: For SZA near 45 deg, one could use a diagonal sweep through the grid? Same for ~45 deg in  

azimuth? Admittedly more tricky to code, but it would follow more closely the propagation of direct 

sunlight. No? [...]

 _____ _____ _____ _____ ___ etc.

|     |     |     |     |

|  1  |  2  |  6  |  7  |  15

|     |     |     |     |



 _____ _____ _____ _____ ___

|     |     |     |     |

|  3  |  5  |  8  |  14 |

|     |     |     |     |

 _____ _____ _____ _____ ___

|     |     |     |     |

|  4  |  9  |  13 |     |

|     |     |     |     |

etc.

Thank  you  for  this  suggestion.  Indeed,  one  could  think  about  more  sophisticated  patterns  of 

propagating through the model grid boxes in order to follow the propagation of direct radiation even 

more closely.  However,  it  would likely not improve convergence,  since direct  radiation is  only 

represented by three independent streams pointing in x, y and z direction in the dynamic TenStream 

solver.  By properly  sorting the  resulting three  loops  due to  solar  incidence angle,  one already 

ensures that the ingoing direct fluxes of any grid box are always updated before calculating the 

corresponding outgoing fluxes – even at 45° zenith and azimuth angle. To illustrate that, let us look 

at a simplified version of Fig. 3 showing only direct streams:

Similar  to  Fig.  3,  this  sketch  shows  the  first  four  steps  of  one  Gauß-Seidel  iteration  in  two 

dimensions  only.  In  every  step,  ingoing  fluxes  are  used  to  update  the  outgoing  fluxes  of  the 

corresponding grid box (highlighted in grey).  Grey arrows in contrast  to black arrows indicate 

fluxes that have not yet been updated in this Gauß-Seidel iteration. We consider a solar zenith angle  

of  45° with the Sun shining from the top-right.  We can clearly see that  even with our  not  as  

sophisticated way of iterating through the domain, we always use already updated ingoing fluxes to 

update the corresponding outgoing fluxes – except for fluxes at the borders of the domain, that are 

subject to boundary conditions. Due to the definition of the direct streams in the solver, a diagonal 

sweep through the grid boxes would actually even slow down convergence, as we would not always 

use already updated ingoing fluxes following such a pattern, although these diagonal sweeps seem 

to follow the propagation of solar incidence more closely at first. 



l. 190: "this direction" -->? horizontal scan

We actually reverse the iteration direction in all three dimensions in every following Gauß-Seidel 

iteration. To clarify that, we have adjusted the corresponding sentence: “Thus, every time we finish 

iterating through all the grid boxes, which completes a Gauß-Seidel iteration step,  we reverse the 

direction  of  iteration  in  all  three  dimensions  to  not  favor  propagation  of  information  in  one 

direction.”

S. 3.1 (beginning): specify domain size in cells _and_ km

We  have  changed  that  as  suggested:  “Originally,  the  data  set  features  both  a  high  temporal 

resolution of 10 s and 256 × 256 grid boxes with a high spatial resolution of 25 m in the horizontal.”

l. 262: specify domain height (in km too)

As we pointed out in the paper, the total domain is constructed using two different sources: For the 

first 220 layers, we use the high vertical resolution of 25 m provided by the LES runs. We clarified  

the domain height of that part referred to in l. 262 of the preprint:  “In the vertical, the modified 

cloud data set consists of 220 layers with a constant height of 25 m, thus reaching up to a height of 

5.5 km.”

Above this vertically highly resolved grid, we use atmospheric levels provided by the 1976 US 

standard atmosphere, as pointed out further down. To clarify the total domain height, we have thus 

also extended that part in l. 271 of the preprint: “Apart from the cloud field, the 1976 US standard 

atmosphere (Anderson et al., 1986) interpolated onto the vertical layers given by the cloud data grid 

serves as background atmosphere. Above the cloud data grid, the native US standard atmosphere 

levels as they are provided by libRadtran are used, so that the full grid features 264 vertical layers 

up to a height of 120 km.”.

Eqs. (6)-(7): why not look at TOA fluxes as well?

We have changed that as suggested.

l. 546: My first encounter with the notion of thermal "shadows". Is there a reference in the literture?

For  now,  we  have  not  found  a  reference  to  these  thermal  “shadows”  in  the  literature,  as 

investigations are often solely focused on cloudy regions. In addition to that, these thermal shadows  

are also very small in magnitude, as one has to keep in mind that we used a logarithmic color scale  

in order to visualize them, as we explicitly stated in the paper.

l. 575: Clarify "feedback effect". Are the LES dynamics driven by a 3D RT model? Or is this a 

purely (instantaneous) 3D RT effects? BTW, what radiation scheme was used in the LES runs? 

Should be specified in Section 3.1 (I'm assuming a standard 1D RT model, but may be wrong).



The term “feedback effects” is now explained in more detail: “The reason for these artifacts are the 

incomplete solves, which can delay lower-order 3D effects, such as feedback effects from other 

clouds or the surface. The term "feedback effects" thereby refers to the fact that the 3D radiative 

effects of a cloud can theoretically alter the conditions determining the 3D radiative effects of any 

other cloud in the domain. Because these feedback effects require multiple back and forth transports  

of information, they cannot be fully accounted for when solving radiation incompletely.”

We  also  clarified  how the  dynamics  were  driven  in  the  original  LES  data  set  by  adding  the 

following sentence to the beginning of Section 3.1: “Dynamics in this LES simulation were not  

driven by radiation, but by a constant net surface flux as described in the namelist input files.”



Response to Review Comment 5 (RC5)

Manuscript: egusphere-2023-2129
Title: A dynamic approach to three-dimensional radiative transfer in numerical weather

prediction models: the dynamic TenStream solver v1.0
Authors: Richard Maier, Fabian Jakub, Claudia Emde, Mihail Manev, Aiko Voigt, and 

Bernhard Mayer

We thank  Anonymous Referee  #4 for  his  or  her  comments  on our  manuscript,  which we will 
respond  to  below.  To  structure  our  response,  the  referee’s  comments  are  printed  on  a  gray 
background color, while our answers are displayed on ordinary white background.

Summary

This  paper  describes  an updated version of  the  TenStream solver,  which can be  used to  solve 

radiation in high-resolution numerical models such as atmospheric Large-Eddy Models. This new 

"dynamic" version represents an improvement in terms of computational speed compared to the 

original TenStream. It relies on the same radiative transfer model but its resolution is accelerated 

using two fundamental ideas. This first one is that previously computed radiation fields can be used 

as a first guess in the numerical resolution of the linear system corresponding to the TenStream 

model,  which is  refered to as a "dynamic" approach or "time-stepping" scheme because of the 

similarity with the resolution of advection in the dynamical core of atmospheric models. The second 

idea is that using an iterative method, namely, the Gauss-Seidel method, to solve the linear system 

starting from this first guess offers the possibility to stop the calculation after a few iterations, using 

the resulting field even if it has not converged toward the solution. This is refered to as "incomplete 

solve". After exposing these ideas and describing their implementation in the dynamical TenStream 

solver, the authors examine the errors introduced by the fact that infrequent calls to radiation will 

lead to starting from a "bad" first guess, increasing the error associated with incomplete solves  

compared to more frequent calls, for the same number of Gauss-Seidel iterations; as well as errors 

introduced  by  the  fact  that  the  solves  are  incomplete,  by  comparing  their  results  with  those 

predicted by the full TenStream solver given the same input fields. Their conclusions are that the 

dynamic  TenStream is  significantly  faster  than  the  original  TenStream,  while  being  mostly  as 

accurate even using as few as 2 Gauss-Seidel iterations at each radiation call.

General comments

I find the paper of great interest. It reports important advances in the field of 3D radiation modeling  

and its numerical resolution, working towards replacing overly simplified and strongly biased 1D 

radiation models by their 3D counterparts. I find the manuscript very clear and well organized, and 

the demonstration of the capabilities of the dynamical TenStream solver convincing. I appreciated 

the detailed explanations on the models and evaluation methods. I found the part where the results 

are discussed a little less satisfying but I understand that much more work might be needed to really  

understand the biases of the different models and that it probably falls out of scope of the present 

study.

In the following I list some questions and suggestions that I think would make the manuscript even 

clearer. They are given in a chronological manner rather than per importance. I trust the authors' 

judgement in the relevance of my suggestions and questions and would recommend publication 

even if not all my comments are addressed in the revised version.



Specific comments

- Mostly in the Abstract and Introduction but also elsewhere in the paper: the distinction between 

sub-grid and inter-column "3D effects" is not clear enough and I am afraid it might be confusing for  

a non-expert reader. For instance in the Introduction L.30-33, it is mentioned that NWP models still 

use 1D ICA RT schemes, by which I think you mean "solve radiation independently in each model 

column". Immediatly after this statement comes "such as the McICA" which is indeed a 1D RT 

solver but here the ICA refers to the neglect of *subgrid* 3D effects (that is, between stochastically 

generated 1D profiles or "subcolumns"). Later on, you describe SPARTACUS, which is of a very 

different nature from the TenStream and NCA models, and only there the distinction between inter-

column and sub-grid 3D effects is  mentioned. I  suggest you clarify since the beginning of the 

Introduction that this distinction exists and that your work relies to the resolution of inter-column 

horizontal transport. I also feel this distinction is lacking when you write that the 3D effects are  

becoming more important as the horizontal resolution of NWP models increases. I would rather say 

that the partition between subgrid and inter-column 3D effects depends on the host model horizontal 

resolution  and  that,  as  we  go  toward  higher  resolution,  it  becomes  more  important  to  solve 

horizontal transfers between columns and less so at the subgrid scale.

Thank you for  pointing this  out.  Subgrid and inter-column 3D effects  were indeed not  clearly 

separated in our paper. To account for this differentiation, we have modified the introduction as 

follows:

“Depending on scale, we can differentiate between two different regimes of 3D radiative transport: 

On the model grid scale, 3D radiative transfer allows for horizontal transport of energy between 

adjacent model columns, whereas on the subgrid scale, it refers to the three-dimensional transport of 

radiative energy within a heterogeneous model grid box. The calculation of both of these effects is 

computationally  expensive,  largely  preventing  their  representation  in  operational  weather 

forecasting. This is why up to this date, numerical weather prediction (NWP) models still use one-

dimensional (1D) independent column approximations (ICA), such as the Monte Carlo Independent 

Column Approximation  (McICA;  Pincus  et  al.  (2003))  currently  employed  at  both  DWD and 

ECMWF (DWD, 2021; Hogan and Bozzo, 2018). These models assume that radiative transport  

between grid boxes only takes place in the vertical and neglect any horizontal transport of energy –  

both in between different model columns and within individual model grid boxes.

However,  both of these effects have been shown to be important for the correct calculation of 

radiative  transfer  in  the  atmosphere.  While  subgrid-scale  3D  effects  primarily  act  at  coarser 

resolutions, where an individual grid box incorporates both cloudy and clear-sky regions and should 

thus  not  be  treated  homogeneously,  the  increasing  horizontal  resolution  of  numerical  weather 

prediction models makes inter-column radiative transfer more and more important (O’Hirok and 

Gautier, 2005). [...]” 

We also clarified that  our  new solver  is  specifically  designed for  considering inter-column 3D 

radiative effects on the subkilometer-scale:

“To address this high computational cost  of current 3D solvers,  this paper presents a first  step 

towards  a  new,  "dynamic"  3D  radiative  transfer  model.  Currently  designed  for  the  use  at 

subkilometer-scale  horizontal  resolutions,  where  model  grid  boxes  can  be  assumed  to  be 

homogeneous,  this  new,  fully  three-dimensional  model  is  based  on  the  TenStream  solver.  It  



accelerates inter-column 3D radiative transfer towards the speed of currently employed 1D solvers 

by utilizing two main concepts.”

Furthermore, we have clarified which 3D radiative effect we refer to in various parts of the paper.

- One condition for the Dynamic TenStream to work is that the radiation field does not change too 

much between two radiation calls, so that the field used as first guess is already close enough to the  

solution that only a few iterations of the Gauss-Seidel algorithm are needed. It made me wonder if 

the radiation field was advected with the rest of the atmospheric fields so that it still matched an  

advected cloud field and the largest errors were mostly limited to cloud birth and death between two 

radiation time steps?

We have not investigated that, but we would assume that the general structure of the radiative field 

is indeed to a large part advected with the rest of the atmospheric fields, if the time step does not get 

too large in a sense that cloud birth and death, but also major changes in the structure of the clouds  

dominate the differences in the radiative field in between two radiation time steps.

But that is actually a very interesting aspect to investigate in the future, as one could choose a more  

intelligent first guess that already considers advection as a starting point of the incomplete solves.  

This might speed up convergence even more.

We have added this into the outlook of the revised version of the paper: “Additionally, we could 

think about  an even more sophisticated first  guess  for  the  incomplete  solves  by  advecting the 

radiative field with the rest of the atmospheric fields. As we assume that the radiative field does not 

totally  change in  between two different  calls  of  the radiation model,  such a  first  guess  should 

already better account for the updated position of the clouds, so that the incomplete solves could  

primarily focus on correcting for the changed optical properties of the clouds, which could speed up  

convergence even more.”

- How are the thermal sources handled by the Gauss-Seidel method? I imagine they are calculated at 

the beginning of the iterations and somehow part of the first guess but could you explain how it  

works exactly? Maybe comment on the fact that B is absent from eq. (2)?

The thermal source terms are calculated right before starting with the Gauß-Seidel iterations. They 

are not part of the first guess, but calculated from scratch within the same routine that retrieves the 

TenStream coefficients from the corresponding look-up tables. Whenever this routine is called for a 

grid  box,  it  calculates  both  the  Planck  emission  and  emissivities  for  every  stream,  the  latter  

following the pattern lined out in l. 100 of the preprint. We added a sentence at the end of section 

2.2.1 to  clarify that:  “The thermal  source terms are  not  part  of  the first  guess  and have to  be 

calculated from scratch following the pattern outlined in Sect. 2.1 before starting with the  Gauß-

Seidel algorithm.”

In Eq. (2),  the thermal source term was indeed missing.  We fixed that for the revised version. 

Thanks for pointing this out!



-  In  Fig.  3,  I  don't  understand  how  the  fluxes  entering  the  domain  at  the  borders  would 

systematically  be  "updated  right  from the  beginning"?  From what  I  understand,  if  the  BC are 

periodic for instance, then the incoming flux at the left-side wall would be updated only after the 

outgoing fluxes at the right-side wall have been calculated? In a parallelized Dynamic TenStream, 

the fluxes at the subdomain boundaries would only be updated at the end of the calculation as  

mentioned at L.201 and hence the incoming fluxes at the borders used at a given time would be the 

ones from the calculations at the previous radiation call?

You are perfectly right, the boundary conditions were not properly visualized in Fig. 3. Hence, we 

have updated Fig. 3 and its caption as follows:

Figure 3: Two-dimensional schematic illustration of the first four steps of a Gauß-Seidel iteration, 

showing both diffuse and direct TenStream fluxes in case of Sun shining from the west or left-hand 

side. As one sequentially iterates through the grid boxes, ingoing fluxes are used to update the 

outgoing fluxes of the corresponding grid box (highlighted in grey). Grey arrows in contrast to 

black arrows indicate fluxes that have not yet been updated in this Gauß-Seidel iteration. Ingoing 

fluxes at  the domain borders  are  dependent  on the type of  boundary conditions used.  For  this 

schematic,  we  applied  periodic  boundary  conditions  in  the  horizontal  direction,  while  fluxes 

entering at the top of the domain are updated right from the beginning.

-  L.154-156,  solving  for  a  clear-sky  situation  does  not  automatically  imply  that  there  is  no 

horizontal variability in the model, e.g. specific humidity or surface albedo could still vary on the 

horizontal. In which case, shouldn't the spin-up be performed on the entire model grid? Would that 

still be manageable? Wouldn't it be cheaper to use the classical TenStream solver for initiating the 

Dynamic TenStream? At L.288, it is said that the classical TenStream is not used for initialization to  

avoid relying on PETSc library, could you elaborate a little more on that, and maybe mention it 

when the spin-up is first discussed in Sec. 2.2.2?

You are right, normally there can still be some horizontal variability in the background atmosphere 

in the absence of clouds. However, this background atmosphere is always one-dimensional in the 

libRadtran library, which allows us to perform the clear-sky spin-up for a single vertical column. 

We clarified that directly in Sect. 2.2.2 for the revised version of the paper: “Since there is no 

horizontal variability in the cloud field in a clear-sky situation and our model does not feature any 

horizontal variability in the background atmosphere, we can perform this calculation for a single  

vertical column at a dramatically increased speed compared to a calculation involving the entire 

model grid.”

In  case  the  background  atmosphere  is  not  horizontally  homogeneous,  this  1D  spin-up  would 

certainly be less accurate, but still resemble a better starting point of the Gauß-Seidel algorithm than 

starting with values of zero for all the radiative fluxes. We also added that to the revised version:  

“Assigned to the radiative fluxes of all vertical columns in the entire domain, these values then 



provide a first guess for all the TenStream variables that can be assumed to be much closer to the 

final  result  than  starting  with  values  of  zero  –  even  if  the  background  atmosphere  was  not  

horizontally homogeneous and we would have to take the average of that background first.” 

For  a  better  spin-up,  one could in  general  of  course also use a  full  TenStream solve.  You are 

absolutely right that the reason for not using it should be given directly in Sec. 2.2.2, which we have 

done for the revised version, alongside with adding more background to that decision: “However, 

for the very first call of the radiation scheme, we cannot use a previously calculated result.  In order  

to choose a reasonable starting point of the algorithm for this first call as well, though, we could use 

a full TenStream solve. However, such a solve would be computationally expensive and rely on 

numerical methods provided by the PETSc library, that we want to get rid of with our new solver to 

allow for easier integration into operational models.  So instead of performing a full  TenStream 

calculation, we decided to solve the TenStream linear equation system for a clear sky situation as a 

starting point.”

- L.254, "our solver does not yet take sub-grid scale cloud variability into account": any idea how 

you would do that? This is probably of great importance for NWP and without it the TenStream 

solver(s) might be restricted to LES where grid boxes might be considered homogeneous?

You are right, accounting for sub-grid scale cloud variability will possibly be the most important 

thing to consider when going to the NWP scale. To give a first idea of how we could do that, we  

extended the corresponding sentence in the outlook as follows: “Finally, going to the NWP scale, 

we will certainly need to consider sub-grid scale cloud variability, for example by extending the 

TenStream  look-up  tables  to  account  for  cloud  fraction.”  The  implementation  of  these  ideas 

however is beyond the scope of this paper. 

- L.257 "to avoid problems with artificially low LWC at cloud edges [...]" were you able to quantify 

the error in the radiative field induced by smoothing the cloud field vs. by subsampling it at a 

coarser resolution? Or could you cite a study demonstrating that one is better than the other?

No, we did actually not quantify this error. The motivation to just use every fourth grid box instead 

of averaging the cloud fields was exactly the one given in the paper: We thought that it might be  

more wisely to just use data coming directly out of the LES runs instead of producing averages,  

where artificially low liquid water contents could lead to an underestimation of 3D radiative effects 

at cloud edges. 

- L.426-428, I disagree with "the newly developed solver is able to almost perfectly reproduce the 

results of the original TenStream solver whenever called". Looking at Fig. 6b, after a few time steps 

it  seems that  the Dynamic TenStream for  dtrad=30s line is  always above the TenStream lines. 

Similarly, I disagree with "our new solver even performs better than the delta-Eddington solver at a 

calling frequency of 10 s when it is operated at a calling frequency of 30 s" at L.430-431. Looking  

at  Fig.6b again,  it  seems that the errors associated with the Dynamic TenStream for dtrad=30s 

become larger than those associated with the delta-Eddington for dtrad=10s after around 8200 s.



You are  right  that  the  dynamic TenStream solver  is  not  exactly  reproducing the  results  of  the 

original TenStream solver whenever called. We actually explicitly noted that in l. 424-426 of the 

preprint: “Looking closely, we can also see that for both lower calling frequencies, the MAE of the 

dynamic TenStream solver does not always match the errors obtained at a calling frequency of 10 s  

when  updated.”.  However,  the  phrase  “almost  perfectly”  is  certainly  not  appropriate.  We thus 

changed the statement to “the newly developed solver is almost able to reproduce the results of the 

original TenStream solver whenever called” for the revised version.

Apart from that, you are right that the maximum error caused by the dynamic TenStream solver at a  

calling frequency of 30 s exceeds the error of the delta-Eddington solver at a calling frequency of 

10 s in the thermal spectral range (as does the original TenStream solver, by the way). To correct 

that, we have changed the meaning of the sentence to account for time-averages: “Looking at Fig. 6, 

we  can  now  see  that  on  time-average,  dynamic  TenStream  even  performs  better  than  the  δ-

Eddington approximation at a calling frequency of 10 s (bold blue line) when it is operated at a 

calling frequency of 30 s (bold red dash-dotted line) and thus with a similar computational demand 

as the 1D solver – both in the solar, as well as in the thermal spectral range.”

- Looking at Fig. 7b, it is interesting that the dynamic TenStream solver bias in the thermal partially 

compensates the original TenStream bias and it might not be for good reasons e.g. the original 

TenStream is  not  diffusive  enough  in  the  thermal  and  the  incomplete  solving  in  the  dynamic 

approach adds numerical diffusion making the solution closer to the reference but for unphysical 

reasons?

Thank you for this suggestion that is definitely worth looking into. However, tests conducted with  

the  original  TenStream solver  involving  24  instead  of  10  diffuse  streams to  account  for  more 

diffusion did in general not reduce its bias. However, a sophisticated answer to this question would 

require a much deeper analysis of the two solvers that is beyond the scope of this paper.

- In Fig. 9a, it is also interesting that the mean bias is larger in the TenStream solvers than in the 

delta-Eddington. I think this might be very dependent on the solar zenith angle: 3D effects on the  

mean surface fluxes go from positive to negative as the sun goes from zenith to horizon and are  

usually close to zero for angles between 40 and 50 degrees from zenith in cumulus cloud fields 

(depending on cloud and surface properties). This is because the overestimation by 1D models of 

direct flux reaching the surface compensates the underestimation of diffuse almost perfectly at these 

angles. This solar angle dependence would not explain Fig. 9b though, but here the TenStream and 

delta-Eddington errors are of the same magnitude albeit of opposite sign.

Thanks for pointing this out. We actually had the same idea that the 3D effects in the domain-

average net surface flux probably cancel at the zenith angle of 50° we are investigating. Initially, we 

have not evaluated the time series for different zenith angles, which is why we did not give an 

explanation for that in the paper. For the revised version, we investigated that in more detail in Sect.  

4.3:

“However, it should be noted that the almost non-existent MBE of the δ-Eddington approximation 

in the solar spectral range is primarily caused by two counteracting 3D radiative effects that happen 

to cancel each other out at almost exactly the solar zenith angle of 50° that we are using.



To show that, Fig. 10 visualizes the MBE for both the δ-Eddington approximation and the original  

TenStream solver as a function of the solar zenith angle for the first time step of our time series. By 

looking at the blue line, we can see that the δ-Eddington approximation underestimates the mean 

net surface irradiance for solar zenith angles below 50°, while it overestimates it for angles above 

50°. This is most likely because at low solar zenith angles, 1D solvers typically overestimate cloud 

shadows due to the lack of transport of diffuse radiation into these shadow regions, leading to an 

underestimation of the mean net surface irradiance. At high solar zenith angles on the other hand, 

i.e.,  when the Sun is  close to the horizon, 1D solvers severely underestimate the size of these  

shadows, as they cast them directly underneath the clouds instead of at a slant angle, leading to an  

overestimation of the mean net surface irradiance. As we can see in Fig. 10, both of these effects 

cancel out at an angle of about 50°, which is the one we use, resulting in the almost perfect MBE of 

the  δ-Eddington  approximation  in  the  solar  spectral  range  in  Fig.  9.  Despite  this  coincidence, 

however, Fig. 10 also shows us that the original TenStream solver performs slightly worse than the 

δ-Eddington approximation for any zenith angle below about 50°. However, the difference in the 

MBEs between the two solvers is quite small, and the magnitude of their respective RMBEs does 

not get much larger than −1 % for any angle below 50° (not shown here).

Figure 10. Mean bias error in the net surface irradiance as a function of the solar zenith angle for 

both the 1D δ-Eddington approximation (blue line) and the original TenStream solver (green line),  

evaluated at the first time step of the shallow cumulus cloud time series.”

- Even if the TenStream solvers clearly perform radically better than delta-Eddington, it is difficult  

to imagine how the remaining errors with respect to MYSTIC might affect the simulation once it is  

used online. Do you have any insights on that, from the literature maybe? For instance it is not 

obvious to me if it would be preferable to have the right mean flux but with the wrong spatial  

structure, or the opposite?

Currently, we do not really have any insights on how the errors introduced by both TenStream and 

the incomplete solves would affect simulations driven by our new solver. And although this topic is 

highly interesting for the future, it is somehow beyond the scope of this paper that was mainly 



focused on exploring first steps on whether incomplete solves could be an option to consider inter-

column 3D radiative effects at much lower computational cost. 

As it is a very important topic, though, we have included it into the outlook of the paper: “Coupled 

to dynamics, it will also be very interesting to investigate how the incomplete solves in the dynamic 

TenStream solver influence the development of clouds.”

-  I  find  it  a  little  frustrating  that  all  simulations  have  been  performed  with  two  Gauss-Seidel 

iterations. No information on convergence speed is provided in the paper whereas from what I  

understand of the method there is a tradeoff to be found between frequency of radiation call and 

number of iterations of the Gauss-Seidel method?

The preprint version of the paper was indeed just presenting results for a very low number of two 

Gauß-Seidel iterations per call. We limited the results to this setup, as it serves as a kind of worst-

case setup for the new solver and already lead to promising results. You are however right that the 

implications  of  using  more  iterations  are  also  very  interesting  and  important.  For  the  revised 

version, we have thus included a new section exploring the effects of using more than just two 

Gauß-Seidel iterations per call:

“4.4 Dependence on the number of Gauß-Seidel iterations

So far, we have just looked into dynamic TenStream runs performed with only two Gauß-Seidel 

iterations whenever the solver is called. We focused on this computationally affordable setup as it  

already lead to promising results.  To investigate how the results  presented so far change when 

applying more than two Gauß-Seidel  iterations,  we have performed nine  additional  runs  using 

integer multiplies of two Gauß-Seidel iterations, i.e., up to 20 iterations per call. Following the 

explanation given in Sect. 3.2, we use integer multiples of two instead of one in order to ensure that 

information is not preferably transported into one specific direction of the domain.

Table 2. Computing time of dynamic TenStream runs with N Gauß-Seidel iterations per call relative 

to those with 2 Gauß-Seidel iterations, taken as an average over three runs performed on the same 

workstation for the very first time step of the LES cloud time series

In order to evaluate the improved performance of these additional runs, it is important to have a  

rough estimate of their additional computational cost. Therefore, we have measured the computing 

time of these runs exactly as we did it in Sect. 4.1 for all the other solvers. Table 2 shows these  

computing times relative to a calculation with two Gauß-Seidel iterations per call. As we can see, 

using  four  instead  of  two  iterations  does  not  double  the  computational  cost,  as  there  is  a  

considerable amount of overhead that always takes the same amount of time before even starting  

with  the  Gauß-Seidel  iterations,  such  as  retrieving  the  TenStream  coefficients  from  the 

corresponding  look-up  tables.  However,  apart  from this  offset,  computing  time  scales  roughly 

linearly with the number of Gauß-Seidel iterations, as two more iterations always add about 10 % to 



20 % of the baseline cost of a calculation with two Gauß-Seidel iterations to the computing time. 

This fraction is  smaller for the thermal spectral  range because of a larger overhead due to the 

additional calculation of thermal emission.

Figure 13. Time- and domain-average mean absolute error (panels a and b) and mean bias error 

(panels c and d) in heating rates with respect to the MYSTIC benchmark run as a function of the 

number of Gauß-Seidel iterations used in the dynamic TenStream solver for both the solar (left  

panels) and thermal spectral range (right panels). The three different colors show the errors for 

calling frequencies of 10 s (blue), 30 s (purple) and 60 s (orange). Solid lines connect the values for  

the  dynamic  TenStream  solver,  while  the  constant  dashed  lines  represent  the  errors  of  a  full  

TenStream solve at the corresponding calling frequency, towards which the dynamic TenStream 

values are converging to. In panels (a) and (b), the MAE of the MYSTIC benchmark run itself is  

visualized by the black dotted line.

Having this additional computational burden in mind, we can now have a look at Fig. 13. Panels (a) 

and (b) in this figure show the time- and domain-average MAE of the dynamic TenStream solver in 

heating rates for the shallow cumulus cloud time series as a function of the number N of Gauß-

Seidel iterations. Correspondingly, the values at the very left at N = 2 are the time-averages of the 

sawtooth curves in Fig. 6 for the corresponding calling frequencies. The dashed lines represent the 

temporal mean MAEs for the original TenStream solver. The MAEs of the dynamic TenStream 

solver converge towards these dashed lines in the limit of a large number of iterations. For lower  

calling frequencies, this limit the dynamic TenStream solver is converging to is larger than it is for 

higher calling frequencies, because the solver is called less often, leading to the build-up of a larger 

MAE with time until the solver is eventually called again, as we have seen in Fig. 6. Since the  



MAEs of the dynamic TenStream solver were already almost on par with the original TenStream 

solver when using just two Gauß-Seidel iterations, the MAE is already nearly converged at N = 2 

and does not greatly improve when using more iterations. It is only in the thermal spectral range and 

at lower calling frequencies that we see a slight improvement in the mean MAE when applying 

more iterations, especially by doubling the number of iterations from two to four.

In contrast  to the MAE, however,  we observed a noticeable build-up of bias with time for the 

dynamic TenStream solver that is larger the less the solver is called. Consequently, the MBE in 

panels  (c)  and  (d)  of  Fig.  13  starts  at  values  significantly  apart  from convergence  at  N  =  2,  

especially for the lowest two calling frequencies. The more Gauß-Seidel iterations we apply, the 

more this difference in bias compared to the original TenStream solver disappears. We can also see 

that the incidentally better bias of our new solver in the thermal spectral range at a calling frequency 

of 60 s quickly converges towards the bias of the original TenStream solver, as dynamic TenStream 

is simply based on this solver. To evaluate whether it is worth to decrease the magnitude of the 

MBE compared to the original TenStream solver by applying more iterations, let us have a look at 

the additional computational cost of these iterations in Table 2. Using four instead of two Gauß-

Seidel  iterations  only  adds  10  % to  20  % to  the  total  computational  time,  while  leading to  a  

noticeable decrease in the both the MAE and especially the MBE. In this regard, one could even 

think about calling dynamic TenStream less frequently, but with more Gauß-Seidel iterations. As we 

have seen in Sect. 4.1, using our new solver at a calling frequency of 30 s is about as expensive as  

calling a δ-Eddington approximation every 10 s. Taking Table 2 into account, we can see that using 

N = 20 instead of N = 2 iterations is a bit more than twice as expensive. Hence, we could argue that  

a dynamic TenStream configuration with N = 20 at a lower calling frequency of 60 s also imposes 

about the same computational cost as a δ-Eddington approximation at a calling frequency of 10 s. 

However, while such a setup would lead to a better time-average MBE than our configuration with 

N = 2 and a calling frequency of 30 s, it would also lead to a very noticeable increase in the mean 

MAE. To put it figuratively, using more iterations at a lower calling frequency reduces the bias, but 

at the expense of the spatially correct representation of the heating rates. In terms of these heating 

rates, we can thus draw two main conclusions:

1. Using more Gauß-Seidel iterations per call primarily counteracts the build-up of a bias with 

time, as the incomplete solves at two Gauß-Seidel iterations per call already resemble the  

spatial structure of the full TenStream results very accurately.

2. When using more Gauß-Seidel iterations, but a lower calling frequency in order to maintain 

the total  computational cost,  one improves the representation of domain averages at  the 

expense of the spatial structure of the results.

Especially at  the surface,  however,  one should definitely think about using more than just  two 

Gauß-Seidel iterations per call. To motivate that, Fig. 14 shows the same plots as Fig. 13, but for net  

surface irradiances instead of heating rates. As for the heating rates, we can see that the use of more  

than two Gauß-Seidel iterations per call primarily counteracts the build-up of the MBE with time. In 

contrast to the heating rates, however, lower calling frequencies do not impact the magnitude of the 

MAE as much. This indicates that even at lower calling frequencies, the dynamic TenStream solver 

is able to adequately capture the spatial structure of the net surface irradiances. Consequently, using 

our new solver with N = 20 iterations at a calling frequency of 60 s leads to better results than at N  

= 2 and a 30 s calling frequency here – both in the solar, as well as in the thermal spectral range.



We can thus conclude that even though the computationally most affordable runs using just two 

Gauß-Seidel iterations per call lead to promising results, it might be beneficial to use configurations 

involving slightly more iterations, as they add a comparatively small additional computational cost  

to the solver while significantly counteracting the build-up of a bias with time. The results for the 

net irradiance at top of atmosphere only underline the statements for the surface and are thus not 

shown in here.

Figure 14.  Time- and domain-average mean absolute error (panels a and b) and mean bias error 

(panels c and d) in the net surface irradiance with respect to the MYSTIC benchmark run as a  

function of the number of Gauß-Seidel iterations at calling frequencies of 10 s, 30 s and 60 s. Solid 

lines  connect  the  values  for  the  dynamic  TenStream  solver,  while  the  constant  dashed  lines 

represent the errors of a full TenStream solve at the corresponding calling frequency. In panels (a)  

and (b), the MAE of the MYSTIC benchmark run itself is visualized by the black dotted line.”

- L.559 I disagree with "almost perfectly". This formulation is not great anyway, as something that 

is not "entirely" perfect is by definition imperfect.

You are right that this formulation is not making much sense. We got rid of the word “perfectly” for 

the revised version: “Comparing these results to those of our newly developed dynamic TenStream 

solver, we can see that also in the thermal spectral range, it is almost able to reproduce the results of  

the original TenStream solver, even when operated at lower calling frequencies.”. 



-  L.570 I  disagree with "full  three-dimensional  radiative transport"  as  it  is  far  from being full 

considering the limited number of streams and other remaining approximations.

You  are  certainly  also  right  with  that.  For  the  revised  version,  we  have  thus  modified  the  

corresponding sentence as follows: “In contrast to these results, however, the dynamic TenStream 

result  features  horizontal  transport  of  radiative energy,  resulting  in  much  more  realistically 

distributed heating rates and net surface irradiance patterns.”

Technical corrections

- First paragraph of Introduction, I would also mention the importance of surface fluxes and not just 

heating rates.

Thanks for pointing this out. We have changed the corresponding sentence to: “They are quantified 

by heating rates and net  surface  irradiances and are calculated using  radiative transfer  models, 

which describe the transport of  radiative energy through Earth's atmosphere, ideally allowing for 

full three-dimensional (3D) transport of energy.”

- L.39-40, add "in the solar spectral range"?

We changed that as suggested.

- 2.1 title: I think you describe more than the TenStream "solver"; you describe the underlying  

radiative transfer "model". Would it be fair to say that this same model can either be solved as in the 

original TenStream solver, or as in the Dynamic TenStream?

Yes, that is certainly a good point. We have changed the title of Sect. 2.1 to “The original TenStream 

model”.

-L.88  I  was  bothered  by  the  use  of  "transmittance"  here  as  the  a-coefficient  also  account  for 

incoming  scattering  and  I  thought  that  transmittance  was  defined  as  the  complementary  to 

extinction along a given line sight; but I might be wrong.

You are probably right that transmittance just refers to the complementary of extinction along a 

given line of sight. Thus, we have changed the corresponding sentence as follows: “While the "a"-

coefficients describe the transport of diffuse radiation, the "b"-coefficients quantify the fraction of  

direct radiation that gets scattered, thus providing a source term for the ten diffuse streams.”

- In Fig. 3, it took me some time to understand that horizontal arrows between horizontally adjacent 

grid-boxes, as well as one of the two vertical downwelling arrows between vertically adjacent grid-

boxes, represent direct solar radiation propagation. It might be worth it to mention it in the caption  

or to distinguish them somehow or maybe remove them from the schematics?

We added additional information to the caption of Fig. 3 clarifying that it visualizes both direct and 

diffuse streams: “Two-dimensional schematic illustration of the first four steps of a  Gauß-Seidel 



iteration, showing both diffuse and direct TenStream fluxes in case of Sun shining from the west or 

left-hand side.”

Having these direct streams in Fig. 3 is crucial to understand the iteration direction through the 

domain, which is why we leave them in the figure. We also decided against distinguishing them 

colorwise, as we really want to focus on the information whether fluxes are updated or not and not 

distract the reader from that by adding another color.

- In Fig.5, consider using a more contrasted color palette for the various circles?

The color palette in Fig. 5 was chosen so that it matches the shade of blue used in various other 

plots such as Fig. 2. Using a darker blue as base color does not add significantly more contrast to 

the plot, which is why we decided to stay with that color scheme.

- Figs. 6-9 are impossible to read for color-blind people.

We invested a lot of time and tried a wide range of different color palettes to make Figs. 6-9 as 

accessible to color-blind people as possible. In the end, these colors achieved the best results in the 

Coblis color blindness simulator referred to at the GMD website, while still providing a pleasant 

experience for people without color deficiencies. In fact, the plots should be able to read even for 

people  with  a  monochromatic  color  blindness,  as  we use  different  line  styles  for  the  different  

solvers (solid for the delta-Eddington solver, dashed for the original TenStream solver and dash-

dotted lines for the dynamic TenStream solver) and different levels of brightness for the different 

radiation time steps, making every line in the plot unique. We are aware that the plots are certainly 

still not ideally suited for color-blind people, but in the end they offered the best trade-off between 

readability for people without major color deficiencies and color-blind people that we could find.

- L.448 "the dynamic TenStream solver overestimates thermal heating rates" is not very clear here, 

do you mean overestimates their  magnitude knowing that they are negative (i.e.  they are more 

negative than the classical TenStream)?

Exactly. For the revised version, we clarified that we refer the magnitude of the thermal heating 

rates here: “But in contrast to the solar spectral range, these heating rates get more negative the less 

the dynamic  TenStream solver is called, so that the dynamic  TenStream solver overestimates the 

magnitude of these thermal heating rates when compared to the original  TenStream solver it  is 

based on.”

- L.548 I was bothered by the use of "emission" here as I think it might be confusing; consider 

sticking to "flux" or "irradiance"?

That is a good point. We changed that for the revised version: “This also leads to a very distinct 

pattern of strongly negative and not so negative net surface irradiance areas at the ground in the 1D 

results, whereas the net surface irradiance is almost uniform in the MYSTIC benchmark result.”.



- Page 27, why not use the more precise term of quadrature point instead of bands?

Thank you for the suggestion. We used the term “spectral bands” instead of “quadrature points” as it 

seemed easier to understand for a general audience, but given that “quadrature points” is the usual 

term used in the literature, we have changed that for the revised version.



Response to Community Comment 1 (CC1)

Manuscript: egusphere-2023-2129

Title: A dynamic approach to three-dimensional radiative transfer in numerical weather

prediction models: the dynamic TenStream solver v1.0

Authors: Richard Maier, Fabian Jakub, Claudia Emde, Mihail Manev, Aiko Voigt, and 

Bernhard Mayer

We thank Chiel van Heerwaarden and his group for their comments on our manuscript, which we 

will  respond  to  below.  To  structure  our  response,  Chiel’s  comments  are  printed  on  a  gray 

background color, while our answers are displayed on ordinary white background.

I am writing this comment on behalf of our research group that works on understanding interactions 

between clouds, radiation, and the land surface. One of our main research topics is developing and 

using large-eddy simulations with coupled 3D radiation, and for that reason, we studied this paper 

together with great interest. Let me start by congratulating the authors with their paper. The Munich 

group has pioneered the coupling of large-eddy simulations with 3D radiation with their TenStream 

solver, and this method is a very interesting further development of the method. Based on our group 

discussion, we would like to share two suggestions that could help in improving the paper.

Suggestion 1: comparison to alternatives to n-stream methods

It  would  be  nice  if  the  authors  could  extend their  introduction  by  adding some discussion  on  

alternative  methods  to  the  TenStream  solver.  We  believe  that  in  recent  years,  there  has  been 

significant progress in ray tracing of large-eddy simulation fields of cloudy boundary layers, with 

the papers of Najda Villefranque and colleagues (JAMES, 2019) and Jake Gristey and colleagues 

(JAS, 2020, GRL 2020) as prominent examples. Also, in our group, we developed a GPU ray tracer, 

which we coupled to our large-eddy simulation code to study the evolution of shallow cumulus 

clouds (Veerman et al., 2022, GRL) inspired on earlier work by the Munich group. Then, the recent 

work of Du an Stechmann (JCP, 2023) on spectral element modeling looks rather promising as well, 

although coupling with cloud-resolving models remains future work there. To conclude, a more 

elaborate comparison of n-stream solvers to ray tracing and spectral elements methods could help 

the reader understand why the authors believe their method is the way to bring 3D radiation to  

operational weather prediction models.

Thank you for these suggestions. In the preprint version, we kept the introduction rather short. But 

you are certainly right that  we should probably summarize the current state of research on 3D 

radiative  transfer  more  thoroughly.  Therefore,  we  thankfully  used  the  papers  you  provided  to 

rewrite our introduction for the revised version, providing a more thorough coverage of the current 

state of research:

“To account for these increasingly important effects, a lot of effort in recent years was put into 

making 3D radiative transfer models computationally more feasible. Targeted towards subgrid-scale 

3D  effects,  the  Speedy  Algorithm for  Radiative  Transfer  through  Cloud  Sides  (SPARTACUS; 

Schäfer et al.  (2016); Hogan et al.  (2016)) for example provides a fast method to calculate 3D 

radiative effects at the resolutions of currently employed global atmospheric models. To this end, it  

introduces additional terms to the well-established two-stream scheme to account for the radiative 

transport between cloudy and clear regions inside an individual model column. On the other hand, a 

lot  of  work  went  into  the  speed-up  of  inter-column  radiative  transport  at  subkilometer-scale 



resolutions, where model grid boxes can be gradually treated homogeneously. A large group of 

these models simplifies the expensive angular part of 3D radiative transfer calculations by just using 

a discrete number of angles (e.g., Lovejoy et al., 1990; Gabriel et al., 1990; Davis et al., 1990).  

Most recently, the TenStream solver (Jakub and Mayer, 2015) built upon this idea. It is capable of  

calculating 3D radiative fluxes and heating rates in both the solar and the thermal spectral range. To 

do so, it extends the 1D two-stream formulation to ten streams to consider horizontal transport of 

energy. Besides the TenStream solver, the Neighboring Column Approximation (NCA; Klinger and 

Mayer (2016, 2020)) provides a fast analytical method for calculating inter-column 3D heating rates 

in the thermal spectral range. For that purpose, it estimates cloud side effects by taking just the 

direct neighbors of a specific grid box into account. Apart from these two approaches, significant 

progress has also been made in accelerating highly accurate 3D Monte Carlo solvers for the use in 

LES models, with Veerman et al. (2022) for example speeding up the method through the use of 

graphics processing units (GPUs). This allowed them to perform LES simulations driven by a full  

Monte Carlo solver for the first time ever. However, despite all these efforts, all of these solvers are 

still too slow to be used operationally. For example, the GPU-accelerated Monte Carlo solver of 

Veerman et al. (2022) is at least 6.4 times slower than the two-stream model they compare it to. And 

even while specifically designed for the use in NWP models, the SPARTACUS model is still 5.8 

times slower than the McICA paramerization currently used at ECMWF (Hogan and Bozzo, 2018).  

This high computational burden prohibits the use of all of these models in operational forecasting,  

especially given that radiation is already called far less often than the dynamical core of NWP 

models.”

Suggestion 2: discussion on memory usage of the solver

The authors present a very extensive performance analysis of their method, which shows that they 

can deliver an excellent speed up with respect to the original TenStream solver. This in itself is a  

great result, and the way this is achieved – keeping the fluxes in memory – is clever, because it  

removes the need for global communication and for a linear system solver. The description omits, 

however, a discussion on the most impactful consequence of keeping fluxes in memory, namely 

memory usage. We did a back of the envelope calculation: if every flux (10 diffuse, 3 direct, 10 

thermal) for every quadrature point needs to be kept in memory, and one uses a set of 54 (SW) and 

67 (LW) quadrature points, then the dynamic TenStream solver requires (10+3) * 54 + 10 * 67 = 

1372 permanent  three-dimensional  fields  for  the  solver.  While  the  authors  discuss  in  the  final 

sections the benefit of smaller quadrature-point sets, the exact memory footprint of the dynamic 

solver with respect to the original TenStream is not discussed.  We believe this number is  very 

relevant if the ultimate aim is to include this solver in an operational weather model.

You are absolutely right that we have to save these 1372 three-dimensional flux fields in order for  

the dynamic TenStream solver to work.  However, we do currently not keep these fluxes in memory 

all the time, but dump them to the hard drive after calculating a spectral band, so that we only have 

one three-dimensional field of fluxes in the memory at the same time.

Memory usage is thus currently not dominated by storing these 3D fields in memory, but rather by 

the look-up tables, which we keep in memory all the time in order to be able to quickly access the 

TenStream coefficients when performing the Gauß-Seidel iterations.



Nevertheless, introducing a time-stepping scheme in contrast to calculating radiation from scratch 

will always be more memory consuming on the downside. 

As  we  already  mentioned  in  the  response  to  Review Comment  1,  a  thorough  analysis  of  the 

computational demands of our new solver however was never within the scope of this paper. The 

only point we wanted to make in that regard is that by design incomplete solves lead to a noticeably 

increase in computational speed. The numbers in Sect.  3.1 were just supposed to give a rough 

estimation  of  how fast  the  new solver  is.  A detailed  investigation  of  computational  speed and 

memory usage would require a much more thorough analysis of the computational aspects of the 

solver,  whereas  the  paper  is  mainly  concerned  with  demonstrating  the  feasibility  of  our  new 

method. That is why we decided not to include more detailed computational aspects into the paper.



Response to Chief Editor Comment 1 (CEC1)

Manuscript: egusphere-2023-2129

Title: A dynamic approach to three-dimensional radiative transfer in numerical weather

prediction models: the dynamic TenStream solver v1.0

Authors: Richard Maier, Fabian Jakub, Claudia Emde, Mihail Manev, Aiko Voigt, and 

Bernhard Mayer

We thank Juan Antonio Añel for his comment on our manuscript, which we will respond to below. 

To structure our response, Juan’s comment is printed on a gray background color, while our answer 

is displayed on ordinary white background.

Dear authors,

After checking your manuscript, it has come to our attention that it does not comply with our Code 

and Data Policy.

https://www.geoscientific-model-development.net/policies/code_and_data_policy.html

You have archived your code in a web page (libtradtran.org) that does not comply with our trustable 

permanent archival policy. Therefore, you have to publish your code in one of the appropriate 

repositories according to our policy. In this way, you must reply to this comment with the link to the 

repository used in your manuscript, with its DOI. The reply and the repository should be available 

as soon as possible and before the Discussions stage is closed. Also, you must include in a 

potentially reviewed version of your manuscript the modified 'Code and Data Availability' section 

and the DOI of the code.

Please note that if you fail to comply with this request, we will have to reject your manuscript for 

publication. Actually, your manuscript should not have been accepted in Discussions, given this 

lack of compliance with our policy.

Juan A. Añel

Geosci. Model Dev. Executive Editor

Whilst the paper was still in discussion, we uploaded libRadtran version 2.0.5.1 including the new 

dynamic  TenStream  solver  to  Zenodo:  https://zenodo.org/records/10288179 (DOI: 

10.5281/zenodo.10288179). Furthermore, we changed the “Code and Data Availability” section of 

the paper as follows for the revised version:

“The newly developed dynamic TenStream solver presented in this paper was developed as part of 

the libRadtran library for radiative transfer (Emde et al., 2016) and can be accessed via Mayer et al.  

(2023). Its user manual can be found in the "doc" folder of the library. The shallow cumulus cloud  

time series used to evaluate the performance of the new solver has been published by Jakub and 

Gregor (2022), with the modifications and methods applied to it to reproduce the results of Sect. 4 

described in Sect. 3 of this paper.”

where Mayer et al. (2023) refers to:

Mayer, B., Emde, C., Gasteiger, J., Kylling, A., Jakub, F., and Maier, R.: libRadtran – library for 

radiative  transfer  –  version  2.0.5.1,  https://doi.org/10.5281/ZENODO.10288179,  Zenodo [code], 

2023.

https://www.geoscientific-model-development.net/policies/code_and_data_policy.html
https://zenodo.org/records/10288179

