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We thank Anonymous Referee #1  for  his  or  her  comments  on our  manuscript,  which we will
respond  to  below.  To  structure  our  response,  the  referee’s  comments  are  printed  on  a  gray
background color, while our answers are displayed on ordinary white background.

This paper describes a method for 3D radiative transfer that could be computationally affordable
enough to be used in high-resolution models. The idea of treating radiation more akin to dynamics
is intriguing and as far as I know novel. The results presented are state-of-the-art in terms of speed-
accuracy tradeoff (at least for 3D solvers) and potentially very significant for the advancement of
NWP models, which are already configured at resolutions where 3D radiative effects are notable yet
are currently ignored in all operational models.

My major comments are provided below and relate mainly to the computational aspects, which
deserve more attention. Some of my questions may be adequate to address in the review and not in
the paper,  as  it's  already long (and concerned mainly with demonstrating the  feasibility  of  the
method - which it does excellently!), but a few clarifying sentences and providing absolute runtimes
and/or measures of floating point operations in the paper would go a long way in informing the
reader  how fast  dynamic  tenStream potentially  is,  and whether  it  could be  a  real  contender  to
operational radiation schemes outside of LES.

Besides this, I think the paper would really benefit if the authors tried to make it more concise by
avoiding repetition and removing unnecessary words and sentences. The results shown are relevant
but they are sometimes described in a very wordy manner.

Finally,  the  code does  not  seem to  be  actually  available  to  download at  current  time which  I
understand is against GMD policy.

Other major comments:

1a. In general it's a bit difficult to fully understand the method (although Figure 3 does a good job at
illustrating it) especially when it comes its implementation in code and its parallelism. The future
tense used in L198-204 implies that the parallelism is not yet implemented. My understanding of
dynamic TenStream would be something like this for a simplified 1D case:

! Downwelling flux; boundary condition

fd(1) = incsol

fd(2:nlev) = fd_prev_timestep(2:nlev) 

! Gauss seidel incomplete solves, not parallelizable

for jiter in 1,niter 



! Vectorization or other parallelism, array notation

fd(2:nlev) = T(1:nlev-1)*fd(1:nlev-1)

This would correspond to the radiative flows in individual grid boxes being computed concurrently 
i.e. in parallel within a single step of Fig 3, is this right? 

Yes, your simplified 1D case does indeed illustrate the concept of the dynamic TenStream solver,
although you use the Jacobi method instead of the Gauß-Seidel method to update the outgoing
fluxes of the grid boxes. In contrast to the Gauß-Seidel method, this Jacobi method always uses
ingoing fluxes from the previous time step to calculate the updated outgoing fluxes of a grid box. It
would  thus  also  allow  for  concurrent  calculation  of  these  outgoing  fluxes.  On  the  downside,
information can only be propagated to the neighboring grid boxes in every single Jacobi iteration,
leading to slow convergence despite high parallelizability.

This is why we have chosen to use the Gauß-Seidel method instead. In your simplified 1D case, this
Gauß-Seidel method would look something like this:

for jiter in 1, niter

for iz in 2, nlev

fd(iz) = T(iz-1) * fd(iz-1)

In contrast to the Jacobi method you described, it uses updated ingoing fluxes wherever possible in
the calculation of outgoing fluxes, leading to much faster convergence. When calculating fd(iz), for
example,  we can already use  the  value  of  fd(iz-1)  determined in the very same iteration jiter.
However, this implies that the Gauß-Seidel method does not allow for concurrent calculation of
outgoing fluxes for all the grid boxes, as it would simply lead to the Jacobi method in that case:
when doing the calculations for all the grid boxes in parallel, we would always have to use ingoing
fluxes of the previous iteration instead of the current iteration. 

In  order  to  parallelize  the  Gauß-Seidel  method,  our  idea  is  thus  to  apply  parallelization  to
subdomains of the full 3D domain that are larger than an individual grid box. Within every one of
these subdomains, the use of the Gauß-Seidel method would ensure that already updated ingoing
fluxes are used in the calculation of outgoing fluxes wherever possible, speeding up convergence.
Updates  between  different  subdomains  would  only  happen  in  between  different  calls  of  the
radiation  scheme.  This  treatment  would  represent  a  balance  between  convergence  speed  and
parallelizability.

But  as  you  correctly  noted,  parallelization  has  not  yet  been  implemented  into  the  dynamic
TenStream solver by now.

1B. How should the reader interpret the reported speed numbers in terms of effective speed against
operational radiation schemes? Is the 1D delta-Eddington reference based on efficient, vectorized
code? It is unclear how efficient dynamic TenStream is or could be compared to widely used two-
stream codes such as ecRad, which expresses parallelism across g-points, or the RTE+RRTMGP
scheme which vectorizes the column dimension instead. Comparison to other schemes could be



greatly  facilitated by reporting absolute  runtimes,  or  you could run one  of  the  aforementioned
schemes. Potential lack of parallelism and optimization in its current stage can be stressed explicitly
and of course, even if dynamic tenStream is currently much slower than operational schemes then
it's not a bad result considering full 3D solvers have until now been many orders of magnitudes
more expensive. Finally, it could be very useful to report the number of floating point operations
(whether  absolute  or  relative  to  delta-Eddington)  but  may  require  a  library  such  as  GPTL to
estimate, and is perhaps not necessary if the other aspects are clarified. 

The relative numbers in Table 1 can indeed not be used to compare the speed of these solvers with
respect to those in operational radiation schemes. However, providing such numbers was never the
intention of this paper, as the dynamic TenStream solver is still in an early stage of development.

The main point we wanted to make in terms of speed was that a solver using incomplete solves is
pretty fast by its design, as it only updates the fluxes in the radiative field a limited amount of times,
which is much closer to the way 1D independent column approximations work, where you only
update the fluxes of every grid box once every time the radiation model is called. 

In order to provide a rough estimate of how fast the solver currently is, we performed this simple
speed comparison to other solvers in libRadtran that are indeed not based on highly efficient code
and not parallelized either. 

We think that simply providing absolute runtimes instead would not really add any value, as these
runtimes are highly dependent on the environment the code is  executed in:  the retrieval of the
TenStream coefficients from the corresponding look-up tables is for example highly dependent on
where  these  coefficients  are  stored.  On  top  of  that,  the  dynamic  TenStream solver  is  not  yet
parallelized,  making  comparisons  to  highly  efficiently  written  and  parallelized  solvers  not
particularly useful.

2. Can you discuss whether you see dynamic TenStream to be a potentially viable scheme for global
or regional NWP models as they approach kilometer scale resolution? And on cost again: as these
models currently use a very coarse radiation time step compared to the ones reported in the paper,
such as 15 minutes (AROME 2.5 km regional model) or 1 hour (IFS, but 9 km so not yet km-scale),
does this mean that dynamic TenStream would in fact incur a much bigger cost increase for such
models than those given in Table 1, or does the coarser spatial resolution compared to LES mean
that dynamic TenStreams convergence would still be adequate with relatively coarse radiation time
steps?

As the radiative field changes much less rapidly at the lower resolutions used in global or regional
scale NWP models, we would assume that also a much coarser radiation time step is needed to
achieve comparable results as for the high-resolution test case presented in this paper. On top of
that, performing more Gauß-Seidel iterations per radiation call does in fact not scale linearly with
computational time, as the computational time is mainly determined by overhead such as retrieving
the  TenStream  coefficients  from  the  look-up  tables  when  performing  such  a  low  number  of
iterations. For our test case, using 10 instead of 2 Gauß-Seidel iterations for example is less than
two times more expensive. One could hence easily try to perform a bit more iterations per radiaton
call if 2 Gauß-Seidel iterations would not be sufficient to run into proper convergence. 



However, this is just speculation at this point in time. To really figure out how incomplete solves
perform on the NWP scale, we will have to adapt the model for kilometer-scale resolutions and
thoroughly test it, which is beyond the scope of this paper.

To clarify that the paper focuses on subkilometer-scale models for now, we have changed to title to
“A dynamic  approach  to  three-dimensional  radiative  transfer  in  subkilometer-scale  numerical
weather prediction models: the dynamic TenStream solver v1.0”.  

Minor comments:

Section 2.1. For the direct radiation, what is the advantage of having 3 streams in the independent
x,y,z directions rather than two streams to/from the direction of the sun?

Finite volume algorithms such as the TenStream solver require the calculation of radiative fluxes for
at least all the surfaces of the underlying grid boxes – for cuboids, which is the type of grid boxes
used in the libRadtran library, that would add up to a total of six streams. Since direct radiation
propagates into just  one specific direction at  every cuboid face,  the number of streams can be
further reduced to three.  That,  however,  is the minimum amount of streams possible for direct
radiation. 

L114: Does TenStreams use of an external linear algebra library mean that its implementation is
computationally efficient and exploits parallelism but dynamic TenStream currently does not, if so
can the speed-up reported in Table 1 be improved further in the future?

Indeed, the use of PETSc allows the original TenStream solver to use computationally efficient
methods to solve its system of linear equations. In addition to that, it is also parallelized. However,
one  of  the  main  aims  in  the  development  of  the dynamic  TenStream solver  was to  get  rid  of
complex libraries such as PETSc to allow for easier integration into operational models.

Besides that, we do not assume that the numbers in Table 1 will improve when parallelizing the
dynamic TenStream solver, as they all refer to the single core performances of the corresponding
solvers. Regarding multi-core performance, the TenStream solver is usually much more memory
bandwidth limited than 1D delta-Eddington solvers are. As shown in Jakub and Mayer (2016), this
leads to the original TenStream solver actually scaling worse to more cores than traditional 1D
solvers do.

L114:  Does PETSc run on GPUs? Do you think GPU acceleration is  promising for (dynamic)
tenStream?

Yes,  PETSc  does  indeed  run  on  GPUs.  That  being  said,  the  Gauß-Seidel  method  used  in  the
dynamic TenStream solver is a notoriously bad solver on GPU compute architectures. Other solvers
such as the Jacobi method are better suited towards the high parallelization on GPUs and have been
tested for the original TenStream solver using PETSc on GPUs. However, run times turned out to be
only on par or just slightly better than when using CPUs.

In addition to that, the computing time of the dynamic TenStream solver is mainly determined by
CPU-based overhead such as the retrieval of the TenStream coefficients and not so much by the



actual Gauß-Seidel solve. Hence, we do not assume a notable increase in speed by just performing
the Gauß-Seidel iterations on GPUs. 

L272.  Has  TenStream  been  evaluated  across  a  wider  range  of  solar  zenith  angles  and  is  its
performance sensitive to it?

Yes,  the  TenStream solver  has  been  evaluated  at  a  wide  range  of  solar  zenith  angles  and  its
performance  is  sensitive  to  it  (Jakub  and  Mayer,  2016).  Especially  when  considering  small
(sub)domains combined with high zenith angles, information has to be transported over multiple
subdomains  in  case  of  parallelization,  slowing  down  convergence  as  communication  between
different cores is required.

L474-495. Interesting, what is the reason for tenStream having a worse surface irradiance bias than
delta-Eddington?

As  Anonymous  Reviewer  #4  pointed  out,  the  solar  zenith  angle  that  we  have  used  in  our
calculations is  very beneficial  for the 1D delta-Eddington solver,  as there are two different 3D
radiative effects at the surface that cancel out for solar zenith angels around 45°. At large solar
zenith angles, i.e., when the Sun is close to the horizon, 1D radiative transfer overestimates the net
surface  irradiances  due  to  smaller  shadow  regions.  In  contrast  to  that,  the  lack  of  horizontal
transport of diffuse radiation leads to 1D radiative transfer underestimating net surface irradiances
at small zenith angles. Initially, we have not evaluated the time series for different zenith angles,
which is why we did not give an explanation for that in the paper. For the revised version, we
investigated that in more detail. The following figure shows the mean bias error in the net surface
irradiance as a function of the solar zenith angle for both the 1D delta-Eddington solver and the
original TenStream solver, evaluated for the very first time step in our time series:

It basically confirms that the surface irradiance bias at a solar zenith angle of 50° that we used in
our evaluation is very beneficial for the 1D solver, although the TenStream solver performs worse
than the 1D delta-Eddington solver at all solar zenith angles below 50°. However, the difference in
the MBE between the solvers is very small, as the absolute MBEs for solar zenith angles below 50°



shown in Fig. 3 both result in relative mean bias errors of about -1% (not shown here). For higher
solar zenith angles, we can however clearly see that the TenStream solver outperforms the 1D delta-
Eddington solver.

L540-544. This is an example of probably unnecessarily detail and wordiness (4 lines of text to
introduce a plot similar to one already shown)

You are absolutely right that Fig. 11 is introduced far too detailed. For the revised version, we
significantly shortened this part as follows: “Before making a closing statement, let us also have a
look at the results in the thermal spectral range shown in Fig. 11.”
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