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Abstract. Previous phases of the Coupled Model Intercomparison Project (CMIP) have primarily focused on simulations 

driven by atmospheric concentrations of greenhouse gases (GHGs), both for idealized model experiments, and for climate 35 

projections of different emissions scenarios.  We argue that although this approach was pragmatic to allow parallel 

development of Earth System Model simulations and detailed socioeconomic futures, carbon cycle uncertainty as represented 

by diverse, process-resolving Earth System Models (ESMs) is not manifested in the scenario outcomes, thus omitting a 

dominant source of uncertainty in meeting the Paris Agreement.  Mitigation policy is defined in terms of human activity 

(including emissions), with strategies varying in their timing of net-zero emissions, the balance of mitigation effort between 40 

short-lived and long-lived climate forcers, their reliance on land use strategy and the extent and timing of carbon removals. To 
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explore the response to these drivers, ESMs need to explicitly represent complete cycles of major GHGs, including natural 

processes and anthropogenic influences.  Carbon removal and sequestration strategies, which rely on proposed human 

management of natural systems, are currently calculated in IAMs during scenario development with only the net carbon 

emissions passed to the ESM. However, proper accounting of the coupled system impacts of and feedback on such 45 

interventions requires explicit process representation in ESMs to build self-consistent physical representations of their potential 

effectiveness and risks under climate change.  We propose that CMIP7 efforts prioritize simulations driven by CO2 emissions 

from fossil fuel use, projected deployment of carbon dioxide removal technologies, as well as land use and management, using 

the process resolution allowed by state-of-the-art ESMs to resolve carbon-climate feedbacks.  Post-CMIP7 ambitions should 

aim to incorporate modeling of non-CO2 GHGs (in particular, sources and sinks of methane and nitrous oxide) and process-50 

based representation of carbon removal options.  These developments will allow three primary benefits: (1) resources to be 

allocated to policy-relevant climate projections and better real-time information related to the detectability and verification of 

emissions reductions and their relationship to expected near-term climate impacts (2) scenario modeling of the range of 

possible future climate states including Earth system processes and feedbacks which are increasingly well-represented in ESMs 

and (3) optimal utilization of the strengths of ESMs in the wider context of climate modeling infrastructure (which includes 55 

simple climate models, machine learning approaches and km-scale climate models). 

 

1 Introduction 

Past	phases	of	the	Coupled	Model	Intercomparison	Project	(CMIP)(Meehl et al., 2007; Taylor et al., 2012; Eyring et al., 

2016)	 have	 been	 the	 principal	 source	 of	 process-based	 climate	 and	 Earth	 system	 modeling	 outcomes for	 IPCC	60 

Assessment Reports (Intergovernmental Panel on Climate Change, 2023).			The	vast	majority	of	CMIP	experiments	have	

considered	boundary	conditions	where	concentrations	of	greenhouse	gases	are	prescribed,	both	in	the	implementation	

of	idealized	simulations	and	in	future scenarios	which	inform	climate	policy (O’Neill et al., 2016; Arnell et al., 2004; van 

Vuuren et al., 2011; Gillett et al., 2016).		   

In the two most recent IPCC cycles, scenario experiments have been defined in terms of Representative Concentration 65 

Pathways, or RCPs (Moss et al., 2010), which define futures in terms of approximate end-of-century radiative forcing levels 

to provide a set of consistent scenarios to be used in climate research, and to provide multiple model-informed climate impact 

assessments at different warming levels.  In ScenarioMIP/CMIP6, scenarios were defined  in terms of SSPs representing broad 

socioeconomic background states combined with global mean end-of-century radiative forcing targets (O’Neill et al., 2016; 

Riahi et al., 2017).  IPCC AR6 (Intergovernmental Panel on Climate Change, 2023) adopted the notation of SSPX-Y, where 70 

X is one of  5 SSPs, and Y is the radiative forcing level used in the creation of scenarios for ScenarioMIP. 

The SSP design is concentration-driven, with scenarios defined by their climate response.  For example, SSP1-2.6 is a scenario 

which is designed to achieve a radiative forcing of 2.6 Wm-2 in 2100.  This is achieved by linking the Integrated Assessment 
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Model (IAM) with a simple climate model (SCM), to solve for a desired climate outcome (Riahi et al., 2017). To meet the 

predefined climate target, the IAM-SCM integration is iteratively solved with either carbon emissions constraints or carbon 75 

price trajectories until the climate target is met with sufficient accuracy (Calvin et al., 2019; van Vuuren et al., 2015; Baumstark 

et al., 2021).  For the SSP design, all IAMs used the same simple climate model (MAGICC6.8) to ensure they reached the 

same forcing level in 2100 (Riahi et al 2017).  In the CMIP pipeline, the resulting emissions from each IAM SSP scenario are 

harmonized to a common historical dataset, any missing emissions infilled(Kikstra et al., 2022; Gidden et al., 2019), and then 

multi-gas concentration pathways are estimated by a  common SCM (Meinshausen et al., 2020), to be used as boundary 80 

conditions for ESM simulations in future scenario projections, together with pre-computed spatial information on land use and 

aerosol emissions (Feng et al., 2020; Hurtt et al., 2020). 

Like the CMIP5-era RCPs which predated them (Moss et al., 2010), the SSPs use concentrations as a definitional anchor point. 

In this framework, Earth System uncertainties as a function of concentrations are estimated by climate models (in practice, by 

the CMIP ensemble, Figure 1). This has pragmatic advantages in terms of coordinating research across climate disciplines, but 85 

excludes uncertainties arising from feedbacks from the carbon cycle back onto atmospheric CO2.   The concentration-based 

framework has no structurally consistent mechanism for representing these uncertainties in a process-resolving fashion - the 

IPCC AR6 WG1 report relied on emulators which were informed indirectly by CMIP models, where climate and carbon 

uncertainties were independently calibrated [see cross chapter box 7.1 in (Forster et al., 2023)].  In some cases, climate 

assessments bypass the causality chain and express impacts as a function of global mean temperatures (Figure 1 and cross-90 

chapter box 7.1 in (Forster et al., 2023)].) 

 

 
 
Figure 1: A conceptual illustration (in the style of (Pfleiderer et al., 2023)) of the propagation of uncertainty using concentration and 95 
emissions-based anchor points 

To date, CMIP phases have primarily represented anthropogenic emissions as a residual in concentration-driven simulations 

(Friedlingstein et al., 2006; Jones et al., 2016), thereby computing compatible carbon emissions consistent with the prescribed 

concentrations.  This is achieved by assessing the residual flux of carbon which would be necessary to balance the internal 
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carbon budget of an ESM simulation which is run in concentration-driven mode.  However, in scenarios there are often 100 

significant differences between the carbon cycle representations in the original IAM structure and the ESM, such that the 

compatible emissions are conceptually distinct from the original scenario design (Koven et al., 2022) (and Figure 2). For 

ambitious mitigation scenarios such as SSP1-1.9, these differences account for a significant variation in the total cumulative 

emissions consistent with the prescribed concentration pathway (post-2014 cumulative emissions before net zero in SSP1-19 

range from 200 to 280GtC, see Figure A1) As the scenario literature increasingly focuses on mitigation strategy relevant to 105 

the Paris agreement (Rogelj et al., 2019; Sognnaes et al., 2021), it becomes increasingly necessary for ESM simulations to 

accurately represent both historical emissions and the outcomes of emissions scenarios which are consistent with the 

socioeconomic trajectories they are meant to represent. 

A second issue with compatible emissions is the model-dependent ambiguity in their computation.  Because compatible 

emissions are computed as a residual, after accounting for carbon in the land surface, ocean and atmosphere, it is necessary 110 

that all models output the needed fields to account for the complete carbon budget.  However, CMIP6 models remain 

inconsistent in their outputting, unit conventions and definitions of component-level carbon fluxes, which complicate analysis.  

Such issues must be better addressed in emissions-driven simulations where reconstruction of the carbon budget is of first 

order importance to understanding the model response.  In addition, there is inconsistency in the carbon pools and land use 

processes represented in different models - confusing the interpretation of the compatible emissions (Liddicoat et al., 2021). 115 

Furthermore, compatible emissions can only diagnose the fossil-fuel component (Jones et al., 2013). This meant for example 

that IPCC AR6 had to mix ESM output for diagnosed fossil fuel emissions and IAM-based scenario data on land-use emissions 

in creating synthesis figures such as WG1-SPM.7.  

In addition, ESMs calculate land use, land use change and forestry (LULUCF) emissions dynamically based on the changing 

land-use patterns which can markedly differ from the original LULUCF fluxes computed in IAMs (Quesada et al., 2018; 120 

Wilkenskjeld et al., 2014), and these differences are manifested in the compatible emissions which, in theory, should represent 

fossil fuel emissions.  This also means that compatible emissions calculated in SCMs are not comparable with ESM estimates, 

because aggregate LULUCF emissions are exogenously prescribed in most SCMs - creating discrepancies between SCM and 

ESM estimates of remaining carbon budgets for given warming levels (Millar et al., 2017). 
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 125 
Figure 2: Compatible fossil emissions for a range of  scenarios and Earth System Models in CMIP6, showing MAGICC calculated 
CO2 emissions from IAM scenarios (Meinshausen et al., 2020) (dotted black), and the compatible fossil emissions in CMIP6 
ScenarioMIP simulations (colored lines). Historical fossil emissions from the global carbon project (GCB2022 (Friedlingstein et al., 
2022b)) are shown for context. 

Assessing compatible emissions for CMIP6 scenarios underlines that there are significant differences in the simulated 130 

compatible emissions amongst ESMs (Figure 2). For example, in the concentration driven SSP1-2.6 scenario in CMIP6, ESM-

simulated net-zero dates measured in terms of compatible fossil fuel emissions ranged from 2076-2086, compared with the 

IAM estimate of 2076 (Gidden et al., 2019; van Vuuren et al., 2017) (Figure 2).  The fact that the IAM/MAGICC trajectory 

lies on the edge of the ESM compatible emissions distribution is worthy of further consideration, either indicating that 
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MAGICC carbon-climate dynamics are a slight outlier amongst the ESMs, or a methodological difference between the 135 

compatible emissions in the ESMs and the harmonized emissions trajectory produced in the IAM/MAGICC pipeline 

(Meinshausen et al., 2020). Differences between compatible emissions are also evident in the historical period, slightly 

exceeding the historical uncertainty in emissions.  For example, 2014 compatible carbon fossil fuel emissions span from 9.1 

to 10.9 GtC in CMIP6 concentration driven models (Figure 2), compared with historical estimate of 9.7±0.5 GtC 

(Friedlingstein et al., 2022b).   140 

The only emissions-driven scenarios in CMIP6 took place as part of C4MIP (Jones et al., 2016) , repeating high emissions 

scenarios (esm-SSP5-8.5) and an extreme overshoot scenario (esm-SSP5-3.4-over) with a small subset of models.  Notably, 

these scenarios were chosen to inform assessments of carbon feedbacks under high emissions (but they are not themselves 

considered to represent realistic near-term futures (Hausfather and Peters, 2020b)).  As a result, multi-model ESM results from 

the CMIP6 scenario effort as presented in IPCC-AR6-WG1 (e.g. AR6-WG1-Fig4.11) exclude an assessment of carbon cycle 145 

uncertainty (Tebaldi et al., 2021; IPCC 2021 WG1 Chapter 4).  Where carbon-climate feedbacks were considered in IPCC 

consideration of SSP projections (e.g. AR6-WG1-Fig4.35), this was achieved by probabilistic SCM ensembles informed by 

idealized ESM experiments to inform carbon feedback parameter uncertainty (Arora et al., 2020; Masson-Delmotte et al., 

2023).   

In this perspective, we argue that the increasing sophistication and stability of emissions-driven model configurations relevant 150 

for modelling greenhouse gas cycles means that this approach can now be reassessed.  The urgent need for process-based 

information on the mitigation effectiveness of fossil fuel emission reductions, carbon dioxide removal, and land use policies, 

requires a framework for the increased inclusion of emissions-driven experiments in upcoming CMIP cycles, in the presence 

of heterogeneous model complexity, timeline constraints and technological challenges.  

These dimensions increasingly dominate many of the most pressing questions in climate policy, and process resolving ESMs 155 

are in a unique position to provide self-consistent assessments of climate policies which have both regional, temporal, and 

species dimensions.  Constructing scenarios which fully explore these dimensions requires scenario definitions which go 

beyond end-of-century forcing or temperature level implied in a concentration pathway.  Rather, mitigation strategy needs to 

be defined in terms of activity and consequence: where human activities include fossil fuel and other industrial emissions, 

combined with regionally resolved descriptions of land use change and management. 160 

The ‘hybrid’ approach proposed in this study considers a set of headline experiments in CMIP7 which are preferentially driven 

by carbon and aerosol emissions, with prescribed values for other atmospheric components.  And, for those models capable, 

dedicated activities to assess process-resolving carbon removal activities, plus the coupled dynamical response of the Earth 

System to non-CO2 gases such as N2O and CH4 would provide critical groundwork for their eventual representation in 

following CMIP activities. 165 
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2 The need for emissions-driven ESM scenarios 

Climate policy is framed in terms of emissions - naturally focussing on the elements that can inform mitigation decisions, such 

as emission benchmarks, carbon budgets and the timing of net-zero. In addition, emissions-driven climate metrics (Arora et 

al., 2020) such as the transient climate response to cumulative emissions of carbon dioxide (TCRE, (Allen et al., 2009; Jones 

and Friedlingstein, 2020; Matthews et al., 2009) and the Zero Emissions Commitment (ZEC, (Jones et al., 2019) are important 170 

and policy-relevant summary quantifications of the Earth System response to climate mitigation efforts.   As of today, countries 

have committed to achieving climate targets, including net-zero targets, under the Paris Agreement, that constrain the future 

emissions space. Consistency of simulations with policy constraints is key to providing policy relevant information.  

However, the dominance of concentration-driven scenarios means that CMIP6 does not contain self-consistent simulations of 

mitigation strategy and their climate outcome in Earth System Models.  As a result, though IAM simulations already frame 175 

scenarios in terms of emissions pathways (Sognnaes et al., 2021), the simplified internal representation of climate and carbon 

processes does not allow for a comprehensive assessment of the underlying carbon cycle uncertainties associated with the 

scenario tradeoffs, generally relying on simple climate models to represent uncertainty in carbon-climate feedbacks  (Nauels 

et al., 2017; Bodman et al., 2016; Damon Matthews et al., 2021; Watson-Parris and Smith, 2022), where idealized ESM results 

may be indirectly used in the calibration of the simple climate model parameter distributions.  180 

Simple climate models are well suited to this application – with sufficient structural complexity to emulate more complex 

models, but sufficiently computationally lightweight to allow rapid sampling of a relatively low parameter space to find model 

variants which are consistent with observations (Smith et al., 2024; Meinshausen et al., 2011).  The increasing use of simple 

climate models in assessment (Nicholls et al., 2022) as the primary mechanism for representing uncertainty in global scale 

climate response allows Earth System Model simulations in CMIP to focus on coupled complex process representation.  A 185 

CMIP ensemble with a primary focus on emissions-driven scenarios, starting with CO2 emissions in CMIP7 but with a longer 

term objective to represent human activity through diverse emissions or land management, would allow ESM scenarios to 

represent real-world climate policy and its outcomes.  As emissions and activity-driven processes are improved in ESMs, it is 

essential that SCMs can emulate any new emergent global coupled dynamics which arise in the ESMs (e.g. nonlinear behavior 

or tipping points).  In short, the presence of a larger model ecosystem including ESMs, SCMs and km-scale models allows for 190 

each model class to excel in dimensions which are suited to the platform.  For ESMs, the computational efficiency and 

resolution must balance the need to represent coupled complex processes with the need to be able to calibrate and spin up the 

coupled system. 

2.1 Key science needs for emissions-driven models 

This emission-driven CMIP7 strategy would enable four key scientific benefits, which we outline in this section: 1) process-195 

resolved assessment of carbon removal assumptions which underpin the capacity for climate temperature overshoot, 2) trade-

offs between fossil fuel emissions, carbon removals, land use change, and short lived climate forcers on regional scales 
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including relevant feedbacks, 3) integrated process-resolution of system thresholds, nonlinearities, and risks which might 

exacerbate climate impacts and modify Earth System feedbacks in warmer climates and 4) relevant simulations to inform the 

verification of mitigation activity. 200 

Activity-driven representation of carbon removal 

The plausibility and effectiveness of the gigatonne-scale carbon dioxide removal implied by mid- to high-mitigation scenarios 

is a key uncertainty (Marcucci et al., 2019) for end-of-century warming outcomes, given that the majority of the world’s 

economy has pledged net-zero CO2 or GHG targets which are themselves conditional on significant amounts of carbon dioxide 

removal (Grant et al., 2021).   Increasingly, this assumed feasibility of net global removal of carbon extends to climate 205 

overshoot pathways, where the temperature limits of the Paris Agreement are temporarily exceeded.   High level 

communication of climate science often frames the possibility of a temperature overshoot as a given; for example headline 

statement B.7 of the IPCC AR6 synthesis report presents the option of temperature overshoot in certain terms: “If warming 

exceeds a specified level such as 1.5°C, it could gradually be reduced again by achieving and sustaining net negative global 

CO2 emissions.” .   210 

The plausibility of large scale CDR is subject to both geophysical and technological uncertainties, which vary by method, but  

are not captured in the current IAM and ESM modeling framework.  For example, large scale bioenergy production for BECCS 

would have potential biophysical and biogeochemical feedbacks on  the climate system that are not currently represented by 

the IAM-simple climate models used to define scenarios (Koch et al., 2021; Luyssaert et al., 2018; Melnikova et al., 2023).   

For land-based CDR approaches, the carbon sinks assumed within IAMs for a given land use transition are themselves subject 215 

to climate-induced risks due to warming (drought, wildfire, insect outbreaks (Anderegg et al., 2022; McDowell and Allen, 

2015; McDowell et al., 2020) which are not taken into account in IAM scenarios which rely on approaches such as Bioenergy 

Carbon Capture and Sequestration (BECCS) for large scale carbon removal (Kato and Yamagata 2014; Muri 2018).  In 

addition, carbon sink strengths themselves respond dynamically to emissions and removals of gases through carbon 

concentrations, aerosol forcing, and surface ozone (Sonntag et al., 2018; Mengis et al., 2019; O’Sullivan et al., 2021; Zhang 220 

et al., 2021) - dynamics which can only be represented in an emission-driven, process resolving model structure.  Ocean based 

CDR suggestions such as alkalinity enhancement (Fakhraee et al., 2023; Hartmann et al., 2023) or iron fertilization (Emerson, 

2019) are also conditional on the wider climate state and can have significant non-local effects on the wider biosphere (Keller 

et al., 2014). 

 225 

We can illustrate in Figure 3 the scale of these potential uncertainties in the feasibility of land-based CDR capacity using a 

pair of scenarios from CMIP6; the highest emission member of the ScenarioMIP ensemble (SSP5-8.5)  and the extreme 

overshoot scenario SSP5-3.4-overshoot (Kriegler et al., 2017; Riahi et al., 2017), which assumes a significant amount of 

BECCS is deployed in the latter half of the 21st century (with bioenergy crop production of 9PgC/yr  by 2100).  In CMIP6 

ScenarioMIP, both SSP5-8.5 and SSP5-3.4-over input datasets for CMIP were conducted by the REMIND-MAGPIE IAM, 230 
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but experiments were also mirrored in other IAMs.  Figure 3a illustrates that the IAMs are more in agreement on the carbon 

content of current total harvest, but they differ in future projections under the SSP5-3.4-over scenario.  Only a small subset of 

models conducted this simulation in CMIP6, but they are in significant disagreement about the current harvest level – 

highlighting a potential bias which would require further calibration if BECCS fluxes were calculated internally in ESMs. 

We can get some intuition for the ESM simulated additional bioenergy production required for the BECCS-based carbon 235 

removal in SSP5-3.4-over by assessing the difference between total harvest in SSP5-8.5 and SSP5-3.4-over (Figure 3b). 

The difference in harvest in REMIND-MAGPIE notably exceeds the difference between ESM simulated harvest flux in SSP5-

85 (where there is no deployed BECCS) and SSP5-3.4-over in all 3 of the models considered (difference between purple and 

red lines, Fig. 3), indicating that none of these models would be able to replicate the level of negative emissions assumed in 

REMIND-MAGPIE – despite being driven by land use transitions derived from that model.  Notably, other IAMs also vary 240 

significantly in their assumed harvest fluxes (indicating a varying reliance on BECCS for carbon capture).  Again, this 

highlights that if future climate simulations allowed BECCS fluxes to be calculated internally within the ESMs, there could be 

significant additional variance in the simulated forcing trajectory of large overshoot scenarios. 
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Figure 3: (a) An illustration of total harvest carbon flux as simulated in the SSP5-3.4-overshoot scenario as simulated by the the 
SSP5 marker model (REMIND-MAGPIE, solid black) and other integrated assessment models (dotted and dashed black lines), 
compared with estimates from 3 Earth System models (colored lines) which completed both simulations.  (b) colored lines show the 
simulated difference in ESMs (IAMs in black) between harvest carbon flux in SSP5-3.4-overshoot and SSP5-85. 

 250 

Issues over the feasibility of CDR at scale are compounded by uncertainties in the response of the Earth System to extended 

periods of net zero or net negative emissions.   Much of current understanding stems from highly idealized ESM experiments 

which have been conducted by only a subset of models (Jones et al., 2019; Keller et al., 2018).  Such experiments show that 

Earth System response to net negative emissions is complex and likely asymmetric, but the lack of extensive process-based 

ESM simulations of response to net negative emissions leaves significant uncertainties in cases in which SCMs and emulators 255 

have not been extensively tested or validated.  Such uncertainties have bearing on the feasibility of a temperature overshoot, 

both in terms of the level of mitigation needed to stabilize warming (Jenkins et al., 2022) and the relative timing of net-zero 

and peak warming (Koven et al., 2023).   

As such, concentration-driven mitigation scenarios created through the existing modeling chain may assume land-use and 

management carbon fluxes from the IAM which are impossible to achieve with the ESM (and perhaps reality) due to 260 

ecophysiological limitations of vegetation in a changing climate.  An activity-driven framework for removals would directly 

assess these risks associated with land-based carbon mitigation (such as through afforestation, reforestation, forest 

management, biochar, agricultural soils or BECCS), by providing a range of potential outcomes for the land and ocean-based 

removal strategies which are employed in the scenario which can contextualize and provide uncertainty bounds for the climate 

trajectory simulated internally within the IAM. 265 

An activity-driven framing is naturally suited to process representation of carbon dioxide removal methods (especially for 

those methods which rely on the manipulation of natural systems which are to some degree resolved within Earth System 

Models).  Some of these (such as afforestation) are already represented within most ESMs, while others (BECCS, soil carbon 

enhancement, terrestrial and marine alkalinity enhancement, blue carbon enhancement) are represented to a lesser degree or 

not at all.  A dedicated activity within CDRMIP could assess the effectiveness of different approaches in a semi-idealized 270 

context under different climate background states.  Such an activity could aid in the interpretation of emissions-driven scenario 

simulations in CMIP7 and provide a pathway to the inclusion of a wider range of CDR technologies in CMIP8 and beyond. 

 

Resolving compound tipping points and adaptation challenges as a function of emissions 

The potential for nonlinearities and tipping points in the climate system is frequently raised as a motivator for urgent emissions 275 

cuts (Lenton et al., 2019), and often framed in terms of temperature thresholds (for example, in discussion of whether rapid 

and irreversible changes might be triggered if 1.5°C of warming above pre-industrial levels is exceeded (Armstrong McKay 

et al., 2022)) - but introducing previously ignored nonlinearities can complicate how thresholds defined in terms of temperature 

map onto mitigation risks.  Some of these previously discussed system thresholds have the potential to alter global scale 
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carbon-climate feedbacks and dynamics e.g. the risk of crossing cryosphere thresholds (Kloenne et al., 2022), forests may be 280 

subject to dieback or changes in carbon sink efficacy (Chai et al., 2021) and increased stratification of the ocean may change 

its heat and carbon uptake dynamics (Bourgeois et al., 2022).    

As such, tipping points and emissions are intricately tied together and Earth System Models are natural tools for simulating 

how they might interact, with increasingly complete and sophisticated process resolution for ecosystem and cryosphere and 

ocean processes.  Understanding how these nonlinearities combine, and relate to a wider mitigation strategy requires the 285 

processes to be simulated in a self-consistent framework in the context of a emissions-driven mitigation scenario where carbon-

climate feedbacks are interactively resolved. 

This argument extends to adaptation planning, where ESM results from concentration-driven simulations are often currently 

framed in terms of expected impacts at given warming levels (Jevrejeva et al., 2018; Lwasa et al., 2018; Intergovernmental 

Panel on Climate Change (IPCC), 2022; Travis et al., 2018) rather than impacts under given emissions pathways (Drouet et 290 

al., 2021; Wiebe et al., 2015).  As such, adaptation planners have no simple means of assessing the range of plausible hazards 

consistent with a given level of climate policy. Emissions-driven simulations could help fill this gap, while still allowing 

impacts to be framed in terms of warming levels as they are with existing ensembles. 

Better assessment of ocean acidification 

The IPCC AR6 WG I report highlighted the limitations of concentration-driven experiments in CMIP6 for projecting future 295 

ocean acidification (Intergovernmental Panel on Climate Change, 2023).  Inter-model variance in surface pH is very low in a 

given scenario (Lovenduski et al., 2016), largely because all ocean models experience identical surface CO2 concentrations 

(Kwiatkowski et al., 2020).  Emissions-driven simulations would represent the full joint dynamics of ocean and atmosphere 

heat and carbon evolution(Terhaar et al., 2023).  Such factors would represent an improvement in the categorisation of 

uncertainty in any Earth System processes which are directly or indirectly dependant on atmospheric CO2 concentrations. 300 

Diagnosis of land use emissions 

There remains significant uncertainty in both the simulation and the assessment of observed emissions due to land use change 

(Friedlingstein et al., 2022b). In concentration-driven simulations in CMIP6, land use emissions calculated internally in each 

model, and were consequential in terms of derived compatible fossil emissions (Liddicoat et al., 2021), and land use emissions 

are assessed independently in LUMIP (Lawrence et al., 2016).   However, there remains significant uncertainty on the 305 

definition and quantification of land use fluxes.   In the Global Carbon Budget(Friedlingstein et al., 2022b), for example, best 

estimates of land use emissions are derived from bookkeeping models (Hansis et al., 2015; Houghton and Nassikas, 2017; 

Quilcaille et al., 2022) which use empirical growth curves to estimate the transient carbon stock response to land use changes. 

Meanwhile, national inventories use different accounting conventions to those used in IAMS, ESMs and bookkeeping models 

– including not just transitions in land use, but also including land sinks in some regions whose usage remains static, but which 310 

are designated as managed (Gidden et al., 2023; Grassi et al., 2021).    
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Verification of emissions reductions 

The 2028 Global Stocktake will be the next major global assessment of progress towards Paris Agreement goals.  This requires 

increasing understanding of how to quantify and verify national emissions reductions.   Existing approaches for the detection 

and attribution of observed climate changes to different historical anthropogenic activities rely predominantly on models in 315 

concentration driven mode (Hegerl and Zwiers, 2011).  However, with increasing focus on mitigation activity and the 

verification of reductions in terms of climatic variables (such as greenhouse gas concentrations, temperatures or heat 

uptake)(Peters et al., 2017), it makes sense to consider the detection problem in terms of emissions - when can the benefits of 

mitigation activity be observed?  

As climate mitigation ambition ramps up, there is a growing expectation that emissions will change their recent historical 320 

trend, initially with slower growth, then a peak, followed by a decline.   Already, global CO2 emissions have slowed from 3% 

per year growth in the 2000s to 1% per year growth in the 2010s (Friedlingstein et al., 2022a). An increasingly relevant question 

will then be to what degree any reductions will be detectable in terms of observed climate variables and near-term warming 

(McKenna et al., 2020; Samset et al., 2022)  and, potentially, climate impacts themselves (Mendez and Farazmand, 2021; 

Ciavarella et al., 2017).  These questions are of relevance for the justification of climate policy, both globally and at the country 325 

level, and for planning for potential near-term impacts and for assessments of liability for climate damages.  

Modeling to support such activity requires a joint assessment of land, ocean and atmospheric carbon pool and human activity 

in a self-consistent framework (Ilyina et al., 2021).  Land sinks are of particular relevance in the context of the Global Stocktake 

process which assesses national-level progress in the context of meeting obligations under the Paris Agreement.  In this process, 

many countries offset a fraction of their emissions using managed land within their borders which is currently assessed to act 330 

as a carbon sink (Grassi et al., 2021).  Understanding the robustness of these sinks in present and future divergent climates is 

thus critical in assessing the degree to which countries can rely on such sinks to substitute for emissions reductions on different 

timescales (Giebink et al., 2022).   

In the atmosphere, efforts to detect emissions reduction from globally averaged atmospheric concentrations have not yet 

succeeded. It was expected that a two percentage point change in the growth rate of CO2 emissions could be detected in the 335 

atmosphere with reasonable confidence after about 10 years (Peters et al., 2017). A possible explanation for the lack of signal 

is our inability to fully model and explain the inter-annual variability in climate-carbon feedbacks, which could be offsetting 

a part of the expected change in trend (Spring et al., 2020). In the years ahead, when emissions are hopefully declining, there 

will be a need to understand how the carbon cycle may respond with carbon-climate feedbacks potentially offsetting some of 

the expected declines in the atmospheric growth rate.  Such experiments have to date been idealized (Keller et al., 2018; Jones 340 

et al., 2019), but there remains a need for integrated simulation to explore the interaction of natural carbon feedbacks with 

process-resolving CDR and non-CO2 emission pathways. 

To date, attempts to verify emissions reductions as a function of atmospheric concentrations have been conducted in simple 

climate models (Abdulla et al., 2023), by adjustments computed from compatible emissions in Earth System Models (Spring 
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et al., 2020) or by using atmospheric inversion models to compute emissions consistent with prescribed concentrations (Deng 345 

et al., 2022).  These estimates would be well supported by fully self-consistent internally generated representations of the chain 

of causality from emissions to concentrations which could be achieved in emissions-driven ESM simulations.    

 Such questions could be addressed in DAMIP (Gillett et al., 2016)) or other activities using a combination of idealized and 

realistic simulations: (1) idealized experiments where CO2 emissions reduce at a fixed rate to detect timing of signal emergence, 

(2) emissions-driven single forcer experiments to assess the detectability and linearity of the historical climate response to 350 

different anthropogenic emissions.  As such, hybrid emissions-driven simulations would provide a critical complement to 

existing verification efforts, potentially including counterfactual scenarios which could illustrate when mitigation policy 

implementation becomes detectable in terms of atmospheric concentrations or climate impacts (Tebaldi and Friedlingstein, 

2013). 

3 Recommendations for emissions-driven experiments in CMIP7 355 

Past	CMIP	phases	 designed	 experiments	 to	 exploit	 the	 existing	modeling	 capacity	 in	major	Earth	 System	modeling	

centers	at	 the	 time	of	experimental	design,	motivated	by	dominant	uncertainties	and	pilot	studies	 in	 the	 literature	

(Meehl et al., 2007; Taylor et al., 2012; Eyring et al., 2016).	Early	climate	simulations	used	atmospheric-only	models	to	

diagnose	radiative	 feedbacks	 (Cess et al., 1989).	 	CMIP2	era	coupled	experiments	generally	exploited	radiative	 flux	

corrections	 to	 maintain	 a	 stable	 ocean	 temperature	 (Covey et al., 2003),	 and	 a	 parallel	 Atmospheric Model 360 

Intercomparison Project (AMIP)	process	remained	to	understand	atmospheric	feedbacks	without	the	added	complexities	

of	 ocean	 coupling	 (Lawrence Gates et al., 1999).	 	 The	 presence	 of	 an	 intercomparison	 project	 fostered	 rapid	

improvements	 in	 coupled	 simulation	 such that	 by	 the	 time	 of	 the	 CMIP3	 ensemble	 (Meehl et al., 2007),	 there	was	

increasing	 acceptance	 that	 resolving	 coupled	 ocean-atmosphere	 processes	 was	 key	 to	 understanding	 climate	

projections	(Frame et al., 2006),	and	models	were	rapidly	advanced so that they could 	maintain	stable	climates	without 365 

flux corrections.   

Over the last 20 years, the scope of process resolution in climate models has further expanded (Figure 3), and the increasing 

complexity of both atmospheric chemistry and aerosol treatment has increased the degree to which some emissions are already 

represented in many climate models and interact with climate feedbacks (Thornhill et al., 2021).  The evolution of aerosol 

treatment from CMIP3 to CMIP5 to CMIP6 has seen a non-uniform tendency for models to represent aerosol indirect effects 370 

on clouds, and emissions-driven aerosol processes (interactive treatment of aerosols have been included in some fraction of 

Earth System Models since CMIP5 (Eyring et al., 2016), and stratospheric aerosols have been included since CMIP3 (Meehl 

et al., 2007)).  CMIP6, in particular (Eyring et al., 2016) introduced an tiered experimental design which accommodated models 

with varying levels of aerosol and atmospheric chemistry implementation in scenario experiments, supported by dedicated 

sub-MIPs to assess processes (in AerChemMIP) and effects of different forcers (in RFMIP). 375 
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Figure 4: the evolving dominant paradigm in different generations of CMIP, including this study’s recommendations for CMIP7 
and CMIP8 

Past phases of CMIP have defaulted to concentration-driven scenarios, but models capable of running with a closed and 

interactive carbon cycle  have been developed by some centers for over two decades (Cox et al., 2000; Joos et al., 1999; Fung 380 

et al., 2005), with intercomparison efforts for coupled carbon Earth System Models coming soon after (Friedlingstein et al., 

2006; Jones, 2020).   These early studies established the significance of coupled carbon-climate processes in the wider 

evolution of the Earth System, with potential interactions between carbon balance and ocean circulation (Joos et al., 1999), 

feedbacks with the terrestrial biosphere (Cox et al., 2000) and weakening carbon sinks at higher warming levels (Fung et al., 

2005). 385 

However, despite increasing acknowledgment of the central role of coupled climate-carbon dynamics in determining the 

outcome of mitigation policies (Allen et al., 2009; Holden et al., 2018), only 19 out of 82 CMIP6 model configurations 

participated in the Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP) in CMIP6 (Jones et al., 2016), 

though these models vary in resolved processes (12 resolving carbon-climate interactive feedbacks, 5 resolving phytoplankton 
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biophysical interactions, 3 resolving biogenic aerosol-cloud feedbacks and no models representing  non-CO2 biogeochemical 390 

cycle feedbacks (Séférian et al., 2020)).    

Nonetheless, hybrid emissions-driven experiments in the ‘central’ DECK/Historical part of CMIP6 were limited to esm-

historical and esm-picontrol (Eyring et al., 2016).   Further, the DECK required independent picControl and esm-piControl 

simulations from an ESM, and highlighted the importance of large ensemble sampling for the historical simulation.  In practice, 

for models which conducted the ESM historical simulation esm-hist, it was generally without initial condition sampling - 395 

presenting an obstacle for the assessment of the role of internal variability in carbon cycle feedbacks, and for signal emergence 

of coupled Earth System processes (Li and Ilyina, 2018) and near-term initialized climate prediction systems (Li et al., 2023a) 

which enable near-term prediction of atmospheric CO2 concentrations,  air–sea and  air–land carbon fluxes.   

The limited ESM-DECK experiments in CMIP6 were supported by process understanding from idealized carbon cycle 

feedback experiments, including the globally aggregated effects of idealized carbon dioxide removal in CDRMIP (Keller et 400 

al., 2018), metrics of carbon cycle feedbacks in C4MIP (Jones et al., 2016and ZECMIP (Jones et al., 2019) and the physical  

and carbon effects of land use change in LUMIP (Lawrence et al., 2016)and LS3MIP (van den Hurk et al., 2016).  Although 

C4MIP included some hybrid emissions-driven scenarios - (esm-ssp585 and esm-ssp534-over), these represent very large near-

term emissions which are distant from contemporary policy discussions (Hausfather and Peters, 2020a).  

3.1 A coupled climate-carbon ESM representation for CMIP7 405 

As such, we argue that in order to provide robust information for both adaptation and mitigation, it is equally important to 

sample inter-model uncertainties in the wider carbon-climate system.  This requires a change in prioritization in the DECK, 

ScenarioMIP, and elsewhere in CMIP, with default control, historical, and projection simulations run in hybrid emissions-

driven configuration, with concentration driven options used as a fallback for models which cannot process emissions.  Such 

a reprioritization would enable modeling centers to more efficiently use resources to focus on Earth System uncertainties 410 

(including physical and carbon cycle elements), rather than splitting resources.  

We argue that carbon-climate interactions and feedbacks are central to how the coupled Earth system will evolve in the future 

and therefore need to be central to CMIP activities going forwards rather than an optional extra.  For CMIP7, this requires that 

carbon emissions and land activity driven simulations become the default for those models which are capable.  ESMs in this 

configuration require the ability to process anthropogenic carbon emissions from fossil fuels and land use change and 415 

management in the context of a closed and stable carbon cycle, which represents oceanic and land-based sinks.   For these 

models, CMIP7 historical and scenario experiments could be driven by fossil carbon emissions and land use transitions.   For 

ESMs without the capacity or desire to run in hybrid emissions-driven configuration, scenarios based on simple climate models 

could still be computed in the conventional ScenarioMIP structure, with guidance that the concentration pathway represented 

within ScenarioMIP is only one potential outcome of climate policies in terms of emissions, atmospheric concentrations, and 420 

climate and carbon cycle responses.  Alternatively, non-ESM AOGCMs could be driven by small ensembles of plausible 

concentration pathways, sampling a range of plausible carbon cycle uncertainty.   
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Participation in CMIP by models with heterogeneous complexity is not unprecedented.  In CMIP5 (Taylor et al., 2012)and 

CMIP6 (Eyring et al., 2016), only some models were capable of processing aerosol emissions (including aerosol-cloud 

interactions and feedbacks on natural aerosol emissions such as biomass burning, dust and sea spray) while those without 425 

interactive aerosol schemes were driven by predefined loadings (Stevens et al., 2017).  In CMIP3 (Meehl et al., 2007), there 

was a similar coexistence between models with a thermodynamic slab ocean and those with a fully dynamic ocean (though 

slab oceans were abandoned in CMIP5).  These periods of coexistence of model complexity proved a necessary and very 

successful compromise to allow this diversity on the path towards a successful transition to increased complexity across the 

CMIP ensemble. We argue that now is the right time for the next planned transition to emissions-driven modelling capability.  430 

 

3.2 Coordinated effort on activity-driven carbon cycle modeling 

The status quo which defined the default configurations in CMIP6 and earlier phases is now changing. Models can increasingly 

resolve vegetation and soil carbon dynamics including permafrost, as well as marine biogeochemical cycles.  For many ESMs, 

the capability to represent these processes now exists, but relatively little work has been done thus far to comprehensively 435 

understand how this complexity impacts the trajectory of climate, especially under deep mitigation scenarios, geoengineering 

proposals, and overshoots. 

ESMs can potentially add self-consistent process resolution to a wide range of carbon processes which are currently resolved 

in scenarios in an ad hoc and quasi-empirical fashion.  ESMs are already well placed to resolve natural land and ocean carbon 

sinks, and are operationally used to quantify these terms today (Friedlingstein et al., 2022a).  But in addition to this, they can 440 

directly inform the effectiveness and uncertainty associated with land use and management policy, and their coupled interaction 

with natural sinks (Lawrence et al., 2016).  Beyond this, many high ambition scenarios contain significant requirements for 

explicit representation of carbon dioxide removal (Fuss et al., 2014; Anderson and Peters, 2016) whose plausibility can 

potentially be assessed when represented in an Earth System Model (Muri, 2018).  Increasing understanding of how to map 

between national accounting systems and ESM/IAM output (Gidden et al., 2023; Grassi et al., 2021) can be strengthened with 445 

hybrid emissions-driven simulations (combined with well chosen counterfactual experiments in LUMIP), where ensembles 

can provide ranges of modelled direct and indirect anthropogenic fluxes from land use change. 

A hybrid emissions-driven scenario framework would allow for the explicit representation of different forms of human activity 

associated with carbon mitigation, and much of this has already been demonstrated using subsets of ESMs.  Carbon removal 

technologies (such as bioenergy carbon capture and storage) could largely use existing models combined with sub-annual 450 

harvest cycles, harvest-age for woody biomass, and a dedicated pool to represent underground carbon storage.  Others, such 

as cultivation and harvesting of oceanic algae (Wu et al., 2023) or ocean alkalinity enhancement (Keller et al., 2014; Ilyina et 

al., 2013; Burt et al., 2021; González et al., 2018), could be represented with explicit parameterisations (Wu et al., 2023).  And, 

as discussion of the ethics and risks of solar radiation management intensify (Reynolds, 2021; Sovacool, 2021), understanding 



18 
 

the interaction between geoengineering and ecosystem processes is of paramount importance (Zarnetske et al., 2021) where 455 

coupled ESMs are essential in any comprehensive cost-benefit assessment (Sonntag et al., 2018).  

Thus, although there is a large and growing body of work assessing mitigation strategy in the context of emission-driven 

models, much of this to date has been in the context of isolated ESM experiments which do not capture multi-model uncertainty 

(with the exception of the idealized adaptive mitigation pathways explored in (Silvy et al., 2024)).  By adopting a hybrid 

emissions-driven design, CMIP7 could directly inform the coupled system risks associated with the range of carbon removal 460 

and geoengineering strategies which increasingly play an outsized role in the mitigation debate. 

3.3 Diagnostic simulations in the CMIP7 fast track  

Here we discuss the likely implementation of emissions-driven simulations in CMIP7 at the time of writing.  As in CMIP6,  

CMIP7 will contain a “DECK” which (as in CMIP6) will request esm-picontrol as a starting point for emissions-driven 

simulations.  Current plans for CMIP7 will also consider historical and esm-historical as part of the DECK (CMIP phase 7 465 

(CMIP7), 2024).   In addition, the CMIP7 ‘fast-track’ is a set of high priority experiments which will be recommended for 

completion in time to inform assessment reports for the IPCC AR7 cycle (CMIP phase 7 (CMIP7), 2024), see Table 1.  With 

a higher focus on emissions-driven experiments, we are recommending (and it is currently planned) that the fast track will 

include both emissions-driven scenarios and diagnostic simulations which will help assess key aspects of emissions-driven 

response.   These idealized carbon emissions-driven experiments (which will be fully documented in a separate paper) will 470 

allow calculation of key carbon-climate metrics needed to inform climate policy tools such as the IPCC remaining carbon 

budget for climate stabilization, thus complementing existing concentration-driven metrics.  Figure 5 illustrates a proposal for 

a set of diagnostic emissions-driven experiments which would provide emissions-driven estimates of TCRE and ZEC in fast 

track.   

 475 

experiment Forcing (CO2) Forcing (other) branches from Relevance 

CMIP7 DECK 

esm-piControl 1850 constant 1850 constant esm-piControl-spinup Stable control climate for e-driven climate 

esm-piControl-

spinup 1850 constant 1850 constant - 

Pre-equilibrated spinup stage  for ESM 

configurations 

esm-historical 

historical fossil & 

industrial CO2 emissions 

plus land-based activities 

Historical 

concentrations 

for non-CO2 

forcers esm-piControl 

Provides historical climate assessment and 

initial states for e-driven scenarios 

esm-flat10 

fixed CO2 emission rate 

(10GtC/yr) for at least 

150 years to ensure 2x 1850 constant esm-piControl 

Emissions-driven estimate of TCRE, 

reaches exactly 1000PgC in 100 years 
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CO2 concentrations are 

reached 

CMIP7 fast track 

esm-flat10-zec 

zero emissions branching 

from flat10 in year 100 1850 constant flat10 

Idealized calculation of ZEC from flat10 

expt, branch in year 100 

esm-flat10-cdr 

Linearly declining 

emissions by 

(2GtC/yr)/decade from 

10GtC/yr (year 100) to -

10GtC/yr (year 200).  

Constant -10GtC/yr 

(years 200-300) 1850 constant flat10 

Idealized calculation of climate 

reversibility under negative emissions, 

branching from flat10 experiment. 

esm scenarios 

future fossil & industrial 

CO2 emissions plus land-

based activities 

future 

concentrations 

for non-CO2 

forcers esm-historical 

Policy-relevant future scenario 

simulations 

 Table 1: Current plans for the implementation of emissions-driven simulations in the CMIP7 DECK and fast track 

 

 

 

Figure 5: Illustrations of recommended idealized diagnostic experiments (Table 1) for the CMIP7 fast track, showing 480 

(a) emissions (b) cumulative emissions and (c) temperature as a function of time.  Shaded spread in (c) is defined 

assuming perfect cumulative emissions and the IPCC AR6 assessed range of TCRE (Masson-Delmotte et al., 2023).  Solid 

lines are recommendations for CMIP7 fast track, dashed lines are additional recommendations for C4MIP in CMIP7. 
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esm-flat10 – diagnostic simulation for transient response 485 

Esm-flat10 would consider a constant annual flux of 10PgC of carbon for 100 years (such that the warming after 100 years 

would correspond to 1000PgC of cumulative emissions - as such, a direct measure of TCRE).  Unlike for 1pctCO2, compatible 

emissions do not need to be computed and the TCRE can be easily calculated as a time average in the experiment, thus 

providing a clean experiment which can be branched to assess zero emissions commitment and climate reversibility.  Esm-

flat10 as a default diagnostic for TCRE would have a number of desirable properties: (1) emissions are constant for all models 490 

considered (rather than varying by model under 1pctCO2 - see Figure A1), (2) emissions are constant at approximately current 

rates throughout the simulation (rather than weighted towards the end of the simulation in 1pctCO2), (3) peak emission rates 

are more consistent with those of ambitious climate mitigation scenarios than the diagnosed peak emission rates in 1pctCO2 

at the point of reaching 1000PgC cumulative emissions are.  

esm-flat10-zec – diagnostic simulation for zero emissions commitment 495 

We propose a completely emissions-driven alternative derivation for Zero Emission Commitment: esm-flat10-zec. The zero 

emissions commitment is a measure of the path-dependence of the temperature to cumulative emissions relationship (Koven 

et al., 2023), an estimate of the subsequent global warming that would result after a period of anthropogenic emissions, once 

they are set to zero (Jones et al., 2019; MacDougall et al., 2020).  ZECMIP (Jones et al., 2019) contains a number of 

experiments to quantify this behavior, most predominantly with the esm-1pct-brch-1000PgC experiment, which branched 500 

from the concentration driven 1pctCO2 at the point at which 1000PgC of cumulative emissions had been emitted.  Esm-

flat10-zec allows for computation of temperature changes after an immediate cessation of emissions, similar to the ZEC 

concept assessed in (Jones et al., 2019).   

Esm-flat10-zec would convey a number of both practical and theoretical advantages over 1pctCO2 as a primary diagnostic of 

Zero Emissions Commitment. (1) The maximum rate of CO2 emissions in esm-flat10 (10 Pg C/yr, vs ~20 Pg C/yr for 1pctCO2) 505 

is closer to realistic values that are projected for ambitious policy scenarios, where emissions must peak and decline from their 

present values of ~10 Pg C/yr within decades to achieve Paris Agreement-compatible warming targets. (2) Because the 

experiment is emissions-driven from the outset, it would not require a change in configuration at the branch point, (3) The 

branch point is identical for all models (unlike in esm-1pct-brch-1000PgC, where the year in which 1000PgC of compatible 

cumulative emissions is exceeded must be calculated retrospectively to find the appropriate branch year).  (4) This common 510 

experimental setup would allow the easier automation of ensembles in the calculation of both TCRE and ZEC, without needing 

to calculate compatible emissions to find the appropriate branch point.  

esm-flat10-cdr – diagnostic simulation for climate reversibility  

An increasing feature of the discussion of future Paris-Compatible pathways is an assessment of the reversibility of the climate 

system, both in a global sense (Zickfeld et al., 2013; Wu et al., 2015) and in terms of regional and subsystem responses (Armour 515 



21 
 

et al., 2011; Martin et al., 2022).  In CMIP6, a number of idealized experiments were conducted under CDRMIP (Keller et al., 

2018) which included a concentration-driven extension of 1pctCO2 called 1pctCO2-cdr (see Figure 8), which prescribed a 1% 

rampdown in concentrations at the point at which 1pctCO2 reached quadruple pre-industrial levels.   This experiment 

undergoes a large discontinuity in compatible emissions at the transition from upwards to downwards branches, making it less 

useful as an indicator of realistic transitions to negative emissions (see Figure 8)  (Koven et al., 2023). 520 

Here we propose an emissions-driven extension to esm-flat10 to address this need: esm-flat10-cdr would serve as an emissions-

driven idealized experiment to assess the dynamics of climate reversibility under reducing emissions and net-negative 

emissions.  The experiment would allow for a number of simple idealized diagnostics which would be relevant to the net zero 

transition and the response of the system to net negative emissions.  esm-flat10-cdr would branch from esm-flat10 in year 100, 

after 1000PgC of emissions, ramping down emissions linearly over 100 years from +10PgC/yr to -10PgC/yr and then 525 

maintaining a negative flux of -10PgC/yr for an additional 100 years.   

This esm-flat10-cdr experiment would provide a number of advantages over 1pctCO2-cdr: (1) an emissions-driven metric of 

climate reversibility with a continuous emissions timeseries, (2) an idealized net-zero transition to measure  the lags in the 

climate system in the decades around net-zero as emissions pass from net positive to net negative, (3) characterization of 

asymmetries in the climate response relative to emissions rather than to concentrations, by using a symmetric and continuous 530 

reversal from positive to negative CO2 emissions, and (4) initial emissions and a decarbonisation rate which are comparable 

to an aggressive mitigation scenario.  These features are all also present in the gaussian cumulative emissions experiment 

described by (Koven et al., 2023), which also features an asymptotic rise in emissions at the start of the industrial period and 

an asymptotic tapering of negative emissions to zero as cumulative net zero emissions is achieved. The key advantage of esm-

flat10-cdr over esm-restoration for an ESM-DECK is that it allows computational savings by re-using the first common 100 535 

years of  esm-flat10 and esm-flat10-zec to form a coherent set of interrelated experiments and metrics.  

A final experiment – not recommended for fast track, but for possible inclusion in a CMIP7 satellite MIP such as C4MIP 

would be esm-flat10-nz, branching in year 150 from esm-flat10-cdr, allowing an assessment of zero-emissions response under 

an idealized gradual decline from current emissions rates to net zero.  This experiment would provide a companion experiment 

to esm-flat10-zec, assessing how zero emissions response differs between an instantaneous cessation and a gradual approach 540 

to net zero (Koven et al., 2023). 

3.4 IAMs and scenario development 

Emissions-driven simulations to date in CMIP have been highly idealized (e.g. ZECMIP(Jones et al., 2019)).  An emissions-

driven focus allows coupled system processes to be represented in policy relevant scenarios, but this requires a refinement in 

the way that scenarios have traditionally been framed and categorized (O’Neill et al., 2016).  In hybrid emissions-driven mode, 545 

ESM simulated concentrations, radiative forcing, and temperature will differ from that in the scenario definition (currently 

harmonised SCM simulations combining historical climatic trends and IAM driver data) (Figure 6c).   Furthermore – the ability 

to simulate different types of carbon removal processes and non-CO2 mitigation strategy within the ESM opens the door to 
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having multiple scenarios with comparable best estimate temperature outcomes in the IAM, but with different uncertainty 

ranges simulated in the ESM ensemble.  As such, the naming strategy for emissions-driven scenarios will ultimately need to 550 

represent a higher dimensional space, providing a shorthand for embedded characteristics on decarbonization rate, removal 

strategy and non-CO2 emissions.  This may be more easily achieved with qualitative identifiers than with continuous labels 

referring to radiative forcing or temperature targets. 

 In practice, the policy strategies implemented internally in IAMs would still be informed by a climate outcome (e.g., Paris 

compliant scenarios), perhaps assessed using a simple climate model - but process uncertainties represented within the 555 

downstream ESM ensemble simulation may illustrate that some policies targeted at a given warming level are more robust 

than others (e.g. scenarios which rely heavily on afforestation which may or may not achieve desired carbon outcomes in all 

ESMs) or may have different negative impacts on other aspects of the global environment (e.g. air quality or food production 

capacity). 

It is notable that some IAMs already contain process-based land surface models to inform land use emissions estimates 560 

(Stevanović et al., 2016).  A key distinction in the hybrid emissions-driven framework would be that land use transitions (in 

addition to fossil CO2 emissions), are provided by the IAM system - allowing a diversity of land use emissions to be simulated 

in the ESM ensemble (rather than the status quo where a single set of land use emissions are computed by the IAM)  thus 

modeling  the uncertainty in climate implications of land-use transitions. 

 565 
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Figure 6: Stylized illustrations of the historical (a,b) and proposed (c,d) information flow for CMIP. (a) shows concentration-driven 
modeling pipeline with prescribed aerosols common in CMIP3 (b) shows concentration-driven modeling pipeline with interactive 
aerosols common in CMIP5,6 (c)  a proposed scenario pipeline for hybrid emissions driven simulations in CMIP7 with carbon 
emissions but maintaining concentration definitions for non-CO2 greenhouse gases (d) a proposed CMIP8 pipeline, with emissions 570 
driven configuration for CO2, N2O and CH4 and process based implementation of CDR and SRM approaches 

 

4 Limitations and new challenges 

4.1 Coupled system biases  

A challenge with running models in hybrid emissions-driven mode is the additional degrees of freedom associated with 575 

calibrating the coupled climate-carbon cycle system to reproduce both the joint evolution in historical concentrations of climate 

forcers and the historical warming increases.  CMIP6 esm-historical simulations show most models (10 out of 13 models in 

C4MIP) fall within a range of CO2 concentration range of 40ppm – representing some 20 years of historical emissions.  This 

is significantly greater than the observational uncertainty (about 0.1ppmFriedlingstein et al., 2022a; IPCC 2021 WG1 Chapter 

4), and we suggest that the remaining outlier models may require greater attention to calibration of historical CO2 580 

concentrations if emissions-driven simulations are the only runs provided. This concentration uncertainty in the present day, 

however, is likely significantly smaller than the future uncertainty in CO2 concentrations.  This is evident from the significantly 

greater future spread in CO2 concentrations in those models which conducted esm-ssp585 in CMIP6 (200ppm in 2100 

compared with 20ppm in 2014 (Loughran et al., 2023; Masson-Delmotte et al., 2023)).   This is also supported by the growing 

spread in cumulative compatible emissions in different Earth System Models, with a multi-model range of 50GtC of cumulative 585 

emissions in 2020, compared with 100GtC in 2100 under ssp119 and a 280GtC range in 2100 in ssp245 [Supplemental Figure 

A1].  As such, the present day concentration uncertainty is not trivial, but is small compared with the future spread in 

concentrations which arise from the carbon-climate feedback uncertainty. 

 

The spread in present-day concentrations results in a modest increase in the model uncertainty in warming represented by the 590 

distribution of historical warming in CMIP6  simulations and their concentration-driven historical analogs for models which 

completed both experiments (Figure 7b,c) – and inter-quartile range of 0.45ºC for warming in 2005-2014 compared with an 

1850-1900 baseline in esm-historical, compared with 0.25ºC in the concentration driven historical experiment.  Notably, using 

a more recent baseline period (1970-1990), the ‘hot model’ issue of overestimated recent warming (Hausfather et al., 2022)  is 

apparent by considering the concentration driven historical recent distribution in the context of observations (figure 7d), but 595 

the higher variance of recent warming in the emissions-driven simulations result in the observed warming lying within the 

inter-quartile range of simulated warming.  Having only coupled simulations available would likely increase the difficulty of 

isolating the sources of bias in simulations (i.e. isolating biases in the ecosystem and physical systems). As such, fully coupled 
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simulations would be well complemented by concentration-driven simulations if sufficient computational time is available to 

assess the role of coupled processes in model bias.   600 

 

  
Figure 7: Carbon dioxide concentrations (a) and temperature anomalies (c,e) in emissions-driven historical simulations in CMIP6, 
and temperature anomalies concentration-driven historical simulations (b,d).  Middle and bottom  rows are relative to an 1850-1900 
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and 1970-1990  baseline respectively.  Observed temperature data is from (Cowtan and Way, 2014)  Boxplots show the inter-quartile 605 
range (boxes) and 10-90 percentiles (whiskers) of the  model simulated anomalies for the period 2005-2014. 

 

4.2 Implications for wider MIPs in hybrid emissions-driven simulations 

The ‘hybrid’ approach proposed in this study considers a set of headline experiments in CMIP7 which are preferentially 

driven by carbon and aerosol emissions, with prescribed values for other atmospheric components.  Such an approach 610 

would be supported by continued activities in RFMIP (Pincus et al., 2016) to provide diagnostics of global aerosol 

emissions-forcing-feedback dynamics, but also in AerChemMIP (Collins et al., 2017) which in CMIP6 assessed the role 

of aerosol forcing process uncertainty in future simulations.    

There are some activities which did not exist under the CMIP6 platform which could be highly valuable in the increased 

understanding of emissions-driven processes.  A dedicated activity to assess the role of regional aerosol emissions in this 615 

uncertainty (Wilcox et al., 2022) would address the growing consensus that shifts in regional emissions intensity has a 

large and detectable climatic impact (Samset et al., 2019; Liu et al., 2018).  Aerosol processes can also be intricately linked 

with carbon uptake (O’Sullivan et al., 2021; Zhang et al., 2021), impacting both the interpretation of past carbon cycle 

evolution and future carbon uptake in areas with large aerosol concentrations/surface ozone (e.g. S. Asia/Africa).  And, 

for those models capable, dedicated activities to assess the coupled dynamical response of the Earth System to non-CO2 620 

gases such as N2O and CH4 would provide critical groundwork for their eventual representation in following CMIP 

activities. 

Attribution studies in DAMIP (Gillett et al., 2016) and in general rely on a linking cause and effect; where the cause has 

historically been interpreted as the change in a climate forcer (concentrations of greenhouse gases, solar or volcanic 

activity etc), and the effect is some climate impact variable of interest (large scale or regional responses in climate impact 625 

variables(Hegerl and Zwiers, 2011), or the probability of some specific event (Naveau et al., 2020)).  Hybrid emissions-

driven simulations raise the potential for attribution to be defined in terms of actual emissions – arguably a more useful 

assessment of the linkage between anthropogenic activity and climate impacts.  As such, a perspective paper from the 

attribution community on the framing of attribution studies in emissions-driven simulations would be a valuable addition 

to the literature.   630 

4.2 Informing multiple lines of evidence 

Longer causal chains from emissions-driven simulations may accelerate a shift away from the use of ESM ensembles in 

assessment from being an ensemble of opportunity used as a proxy for climate uncertainty.  We would argue that this transition 

has already occurred.  IPCC reports up to AR5 relied heavily on ESM ensemble distributions as proxies for climate uncertainty. 

However, IPCC AR6 utilised some specific methodologies (Ribes et al., 2021; Brunner et al., 2020) to reweight ESM 635 

distributions of simulations conditional on their historical simulated climate change in the context of observations.  These 

methodologies considered primarily the physical response of the climate system to historical concentrations, and were used to 
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address the assessed ‘hot model’ bias (Hausfather et al., 2022) in which the CMIP6 distribution contained some models which 

notably simulated historical warming beyond that seen in observations.  A shift to hybrid emissions-driven simulations would 

introduce an additional source of potential bias in historical concentrations, which would need proper treatment during any 640 

assessment.  Any weighting scheme would need to properly represent both biases in physical and carbon cycle elements, 

together with interactions between those elements (multi-variate approaches exist for treating correlated errors(Sanderson et 

al., 2017b) (such as errors in CO2 concentrations and global mean temperature). 

 

As the length of the process chain increases, it will become increasingly unlikely that ESMs will simultaneously reproduce the 645 

joint historical evolution of emissions, concentrations, and climate response. As such, it might become more useful in 

assessment to consider ESM ensembles as  being sparse samples in a high dimensional complexity space which is illustrative 

of potential coupled interactions of the Earth System.  Such an interpretation pairs well with the use of meta-models (Nicholls 

et al., 2022) which can be used to interpolate in a higher dimensional response space and filter between global scale projections 

using observations(Smith et al., 2024).  650 

4.3 Increased computational demand 

The operational computational cost of modeling Earth System Processes is a factor in development priorities, but is not 

prohibitive.  The most notable increase in expense (relative to physics-only simulations) in simulating the carbon cycle arises 

due to the number of  tracers required in the biogeochemical models (Kwiatkowski et al. 2014).   As such, an ESM 

configuration requires some tradeoffs between horizontal and vertical resolution, number of tracers and the complexity of 655 

chemistry and aerosol representation- with the potential for multiple configurations with comparable computational costs with 

focus on Earth System processes or resolution respectively (Dunne et al. 2020).  However, because for most CMIP-class 

models, the atmospheric component is significantly more expensive (Danabasoglu et al. 2020; Dunne et al. 2020; Hedemann, 

Hohenegger, and Ilyina, n.d.), land and ocean biogeochemistry (BGC) can be run in parallel with the atmosphere - somewhat 

increasing the CPU requirements, but not the overall run-time of the simulation on parallel High Performance Computing 660 

(HPC) systems. 

Recent ESM development efforts have shown that spinning up oceanic carbon cycles can be achieved on the same timescale 

as for deep ocean heat content, which is necessary for any atmosphere-ocean coupled configuration (Lindsay et al. 2014; Yool 

et al. 2020)) (although the exact details of how spinup is achieved can impact residual trends (Séférian et al. 2016)).   Moreover, 

there are a number of promising efforts to accelerate the  spinup of the physical ocean (Lindsay 2017; Singh et al. 2022) and 665 

land (Lu et al. 2020; Sun et al. 2023), further lowering the technical barriers to contributing with stable interactive carbon 

configurations.  Other efforts have improved the parallelisation of BGC tracers (Linardakis et al. 2022) and grid coarsening 

(Berthet et al. 2019)- allowing for the better exploitation of HPC infrastructure to run more comprehensive carbon resolving 

simulations without increases in wallclock time. 
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Other demands on computation and improvements in model performance for next-generation Earth system models are 670 

documented elsewhere and address other key knowledge gaps: the need for kilometer-scale resolution of future climate impacts 

(Schär et al. 2020), the quantification of parametric uncertainty (Yamazaki et al. 2021), robust sampling of internal variability 

(Deser et al. 2020) and making best use of machine learning for computational efficiency and for reducing systematic errors 

in hybrid Earth system models (Eyring et al., 2024) 

Some groups have gone further to suggest that climate modeling efforts must pivot to centralized ‘digital twins’ (Li et al., 675 

2023b) conducted by a small number of modeling centers to provide global simulations at kilometer scale resolution(Bauer et 

al., 2021). However, such resolutions are not yet tractable in a hybrid emissions-driven configuration, where multi-century 

simulations are required to spin up the thermal and carbon states of the system.  Current highest resolution 3 km ‘convection 

permitting’ models achieve 1-10 simulated days per actual day on current High Performance Computing Architecture (Stevens 

et al., 2019) (forecast models such as IFS (Roberts et al., 2018) use approximations to achieve longer timesteps which allow 680 

an order of magnitude higher throughput, but these approximations are debated for climate applications). Hence, we argue that 

the current 50-100 km resolution ‘CMIP’ class of climate and Earth system models remain necessary for long term emissions-

driven climate projections and should continue as a pillar of climate information in parallel to high resolution activities.   

5 Towards comprehensive mitigation modeling in CMIP8 and beyond 

There are a number of highly informative model developments that are likely too ambitious for the CMIP7 timeline, but are 685 

necessary for a comprehensive process-driven representation of the outcomes of mitigation strategies. 

5.1 Closed cycles for water and other major greenhouse gases 

Non-CO2 forcers play a significant role in mitigation dynamics and carbon budget uncertainties, both in terms of forcing and 

scenario uncertainty (Rogelj et al., 2015).   However, the capacity of current generation Earth System Models to produce closed 

and stable cycles for non-CO2 greenhouse gases lag behind that of carbon dioxide (Séférian et al., 2020), which has been 690 

demonstrated in historical and scenario simulations in CMIP6 (Arora et al., 2020).    While interactive treatment methane 

(Heimann et al., 2020; Folberth et al., 2022) and nitrous oxide (Xu-Ri et al., 2012)  are being developed in Earth System 

Modeling platforms, no models in CMIP6 yet resolved closed cycles for these gases (Séférian et al., 2020).   As such - 

pragmatically, on a timescale of CMIP7, there will remain elements of historical and future simulations which will, for most 

models, remain exogenously defined but developments could be considered for CMIP8 and beyond (Figure 7d), though it 695 

remains likely that some concentration-driven elements will persist – given the large number of minor climate forcers currently 

handled by SCMs (CFCs, HFCs, PFCs, HCFCs, Halons etc) (Meinshausen et al., 2020). 

 Closing carbon and nitrogen budgets would require a dedicated joint effort in land and ocean model developments and 

calibration, and inclusion of potentially absent processes such as lateral transport of dissolved organic carbon and nitrogen 

(Lauerwald et al., 2017; Lacroix et al., 2021) representation of the coastal ocean dynamics (Mathis et al., 2022), and erosion 700 
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of coastal permafrost (Nielsen et al., 2022).  Similarly, models do not currently close the water cycle.  Ice sheets and inland 

glaciers are a dominant component of sea-level rise (itself perhaps the most critical long term climate adaptation challenge 

(Hauer et al., 2019)), and yet ESMs do not operationally represent them in coupled simulations.  Given this, a number of 

models have a prioritized focus on including ice sheets and glaciers to “close” the global water cycle (Smith et al., 2021; 

Lofverstrom et al., 2020). 705 

5.2 Assessment of uncertainty in historical and future land use emissions 

A more comprehensive, accurate, and consistently-diagnosed representation of historical land-use emissions and processes is 

necessary to address both the ensemble bias towards low historical land use emissions as compared to Global Carbon Project 

estimates in CMIP6 (Friedlingstein et al., 2022b) and the need for a counterfactual no-land-use scenario (Liddicoat et al., 

2021).  Better land use process representation in an emissions-driven framework, must therefore be supported by diagnostic 710 

simulations to map between these accounting systems. In a full transient historical or future simulation, it would be difficult 

to directly isolate the fraction net land-atmosphere carbon exchange which is associated with land use change and the fraction 

associated with natural carbon sinks evolving over time under changing climate background states.  As such, additional 

diagnostic counterfactual experiments such as those provided in LUMIP are essential. In CMIP6, these experiments were 

limited to a concentration-driven framework (e.g. LUMIP experiment hist-noLu, a variant of the concentration-driven 715 

historical simulation with no land use change).  

 In the hybrid emissions-driven model, such diagnostic experiments need to be expanded to include emissions-driven 

experiments to capture the contribution of land use changes to net transient land use fluxes in the coupled simulation.  An esm-

hist-noLU, for example, which followed the protocol of esm-historical with fixed land use change, would differ from esm-

historical both in terms of the effective land use emissions, but also in terms of any ensuing carbon-climate feedbacks which 720 

could modulate the natural emissions also.  As such, a full understanding of the role of land use in the transient land sinks in 

emissions-driven simulations will require a carefully designed set of complementary diagnostic experiments for both historical 

and future simulations, likely including both emissions-driven and concentration driven diagnostic experiments. 

5.3 Process-based representation of carbon removal and storage       

The objective to interactively resolve the processes associated with carbon removal within the structural framework of Earth 725 

System Models is a key requirement to providing process uncertainty in carbon dioxide removal (Psarras et al., 2017) .  

Although isolated ESMs have already been used to investigate the potential effectiveness of removals through Bioenergy 

Carbon Capture and Storage (Muri, 2018; Melnikova et al., 2022; Kato and Yamagata, 2014), or potential oceanic CDR 

approaches through ocean alkalinization (Fröb et al., 2020) or algal cultivation (Wu et al., 2023), these capacities remain 

experimental, and lack representations and accounting of sequestered carbon in hybrid emissions-driven simulations.   730 

In cases where ESMs resolve some relevant aspects of the carbon removal process (e.g. BECCS; ocean alkalinization), a 

pipeline must be created for representing how demand for carbon removal strategies  in an IAM scenario is translated into 
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appropriate boundary conditions for the ESM (see Figure 6c/d).  Such coupling infrastructure must be urgently defined in order 

to explore process-based uncertainty in carbon removals in CMIP7. 

5.4 Adaptive approaches  735 

The discussion throughout this study has focused on prescribed scenarios, both idealised and quasi-realistic as generated by 

Integrated Assessment Models in the CMIP ScenarioMIP exercise.  In this model, the ensemble of Earth System Models acts 

as a measure of uncertainty in the coupled carbon-climate response to the emissions pathway.  However, the emissions-driven 

approach opens the door to more interactive treatment of emissions reduction as a function of realised climate change.  Since 

the Paris Agreement, some literature has focussed more on adaptive approaches which allow for convergence of a climate 740 

model to a target.  Such approaches have been used extensively in simple climate models where it is computationally easy to 

solve for a given target (Sanderson et al., 2016; Avrutin et al., 2023), and in hybrid mode where simple climate models tuned 

to reproduce the coupled dynamics of an ESM are used to produce custom emissions pathways for an Earth System Model 

which are consistent with a given temperature target  (Goodwin et al., 2018; Sanderson et al., 2017a; Terhaar et al., 2022).   

A recent proposal “AERA-MIP” (Silvy et al., 2024) has proposed an interactive adaptive approach, where emissions are 745 

adjusted in an Earth System Model simulation using the relationship between cumulative emissions and temperature (Matthews 

et al., 2009) to interactively compute an emissions trajectory consistent with any prescribed global warming target.  Though 

this approach is a simplistic model for mitigation policy response to experienced climate change, it opens the door for more 

complex adaptive policy scenarios in the future in which there exist two way couplings between the societal/technological 

representation.  It also allows for emission-driven simulations that can stabilize temperature at various global warming levels, 750 

enabling the assessment of impacts at different degrees of warming. Such adaptive approaches are increasingly under 

consideration in the IAM literature (Gambhir et al., 2023) and some groups have succeeded in partial coupling of an ESM and 

IAM in an integrated framework.(Collins et al., 2015).  Future efforts could explore more fully the interactions between 

experienced climate impacts, mitigation ambition and capacity. 

6 Conclusions 755 

Future climate scenarios have been primarily framed in terms of concentrations (or in terms of metrics of global warming) 

since the Special Report on Emissions Scenarios (SRES) was introduced (Nakicenovic et al., 2000) at the turn of the 21st 

century.  More recently, a ‘parallel process’ (Moss et al., 2010) advocated defined concentration pathways, with climate effects 

conditional on concentration pathways assessed by Earth System Models while Integrated Assessment Models explore 

scenarios consistent with the pathways.  This approach was chosen pragmatically to allow the two communities to work 760 

concurrently, and because only a subset of Earth System Models have operationally incorporated interactive and closed carbon 

cycles.  However, this framing does not allow carbon cycle uncertainty as represented by diverse, process-resolving Earth 
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System Models to be manifested in the scenario outcomes, thus omitting a dominant source of uncertainty in meeting the Paris 

Agreement (Jones and Friedlingstein, 2020; Holden et al., 2018). 

In addition, a rapidly evolving policy landscape increasingly requires information to differentiate between scenarios which 765 

represent both different levels of mitigation ambition and different mitigation strategies.  A decade earlier in the timing of net-

zero CO2 represents a huge economic investment (Nieto, 2022), but at present we do not have scenario outcomes to clearly 

illustrate the associated climatic benefits in a way that accounts for all uncertainties. Thus, there is no direct and self-consistent 

simulation of the benefits of mitigation which can be associated with incremental reductions in emissions.    On the 

implementation side, national mitigation policies that (explicitly or implicitly) rely on land use and carbon dioxide removal 770 

(CDR) techniques introduce significant uncertainties which remain unsampled in the current ESM scenario framework. 

The utility of ESMs is to a large degree shaped by how they are deployed in model intercomparison projects.  For example, it 

has been argued that ESMs can be made more relevant to climate adaptation challenges by resolving and outputting relevant 

human and ecosystem climate impacts (Bonan and Doney, 2018).  Similarly, with the right experimental design, many existing 

ESMs already include components that can provide valuable insights into the uncertainty surrounding the timing and 775 

implementation of net-zero policies.   

A draft scenario design document for ScenarioMIP CMIP7 indicates a request for a higher fraction of emissions-driven 

scenarios (The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP7, 2024), and perspectives on the CMIP7 

scenario design have called for higher relevance to Paris Agreement objectives through ‘representative emissions pathways’, 

exploration of CDR risks, and potentially counterfactual scenarios (Meinshausen et al., 2023) while others have called for 780 

greater integration into the needs of multiple IPCC working groups and policy relevance (Pirani et al., 2024).   Many of these 

issues can be addressed in a framework enabling an operational assessment of emissions-based policies.  This would happen 

through the explicit representation of carbon dioxide emissions in the context of multiple plausible representations of natural 

climate system feedbacks. This framework will serve as a structure for incorporating the uncertainties associated with the 

effectiveness of land use and land and ocean-based CDR techniques as part of a mitigation portfolio, some of which are already 785 

implemented in current-generation Earth System Models, and some of which require further development beyond the timescale 

of CMIP7.  This framework needs to be flexible enough to accommodate different models at various stages of development, 

and different configurations focusing on different elements of the climate problem, necessitating a hybrid approach for CMIP7.  

We propose that the existing CMIP6 model for accommodating a range of aerosol complexity is extended to the simulation of 

an emissions and activity-driven carbon cycle.  Concentration pathways should still be available for models that require them 790 

(and for configurations where carbon cycle feedbacks are not the primary focus, such as high-resolution experiments and some 

perturbed parameter ensembles).  This will need careful communication in the ScenarioMIP framework, as only a subset of 

models will be subject to carbon cycle uncertainties (though this remains analogous to the CMIP6 treatment of aerosols, where 

only some models process aerosol emissions directly).  It is expected that some climate-relevant forcers such as nitrous oxides 

and methane will not be represented interactively by a large fraction of models on the timescale of CMIP7, thus exogenous 795 

concentrations will still be required in most cases.  
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Looking ahead to CMIP8 and beyond, ESMs will continue to occupy a critical niche, maximizing the representation of human 

actions involved in climate mitigation and adaptation in a risk framework which relies on deep and diverse process 

understanding which is uniquely represented in the collective historical and ongoing effort encapsulated in the CMIP ensemble.  

Future efforts (and their associated computational expense) should be focused on areas where they can add the most value to 800 

understanding the Earth system in an ever-widening ecosystem of simple and complex model configurations which are 

increasingly well adapted to different aspects of the climate problem.  

We argue that a better understanding and representation of emissions-driven dynamics remains one pillar of a wider effort 

needed to adapt Earth System Models to evolving climate challenges.   It has been documented already that there is a need for 

physically realistic, higher resolution model output (Schär et al., 2020; Bauer et al., 2021), but these must be supplemented by 805 

lower resolution operational configurations which are capable of simulating large initial conditional and parametric ensembles 

of century driven global response to diverse mitigation strategies.   Machine learning  may also change this tradeoff - 

approaches are currently being explored to improve the representation of key resolution-dependent physical processes in global 

climate models (Gentine et al., 2018), with encouraging results. Such approaches also hold great potential for better utilizing 

observations to inform future improvement of carbon cycle processes in ESMs (Forkel et al., 2019). Bringing together ML 810 

developments for both the physical and carbon-cycle components of future emission-driven ESMs offers the potential for a 

major advance in our ability to model the coupled global climate and carbon cycle (Eyring et al., 2021).  However, there remain 

conceptual problems with overreliance on machine learning for century scale projections where no training data is available 

(Watson-Parris, 2021).  

By requesting that capable centers submit primarily hybrid (i.e. carbon) emissions-driven simulations for CMIP7, the ESM 815 

ensemble would become a critically relevant part of the scenario assessment framework, providing the best available process-

based estimations of the distribution of potential outcomes resulting from proposed societal transformation pathways.  A 

scenario which achieved a set of policy goals based on the prior generation of models may not achieve those same outcomes 

with updated models.   A default emissions-driven scenario infrastructure would make such comparisons transparent, making 

it clear when developments in process understanding have measurable impacts on the projected risk associated with a given 820 

mitigation strategy.   

7 Appendix 
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Figure A1: cumulative compatible fossil emissions (relative to 2014) for a range of  scenarios and Earth System Models in CMIP6, 825 
showing MAGICC calculated CO2 emissions from IAM scenarios (Meinshausen et al., 2020) (dotted black), and the compatible fossil 
emissions in CMIP6 ScenarioMIP simulations (colored lines).  
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8 Code availability 830 

All code to reproduce Figures in this study is archived at https://zenodo.org/record/8349377.  The FaIR simple climate model 

used to simulate ESM-DECK experiments is available at https://github.com/OMS-NetZero/FAIR 

9 Data availability 

CMIP6 model output is available through the Earth System Grid Foundation (ESGF).  CMIP6 scenario data is available at 

https://greenhousegases.science.unimelb.edu.au/ and https://tntcat.iiasa.ac.at/SspDb/ .Global Carbon Budget data is available 835 

at https://www.icos-cp.eu/science-and-impact/global-carbon-budget/2022  
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