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Abstract. Global The swift and ongoing rise of global temperatures exceeded pre-industrial conditions by 1.1°C during the 

decade 2011-2020 and further warming is projected by climate models. Anover the past decades led to an increasing number 15 

of climate variables exhibitshowing statistically significant changes compared to the past decades, even beyondtheir pre-

industrial state. Determining when these climate signals emerge from the noise of internal climate variability. To determine 

the year when climate change signals can be detected, the concept of time  (i.e., estimating the Time of emergence (Emergence, 

ToE) is well established. Additionally,crucial for climate risk assessments and adaptation planning. However, robustly 

disentangling the climate signal from internal variability represents a challenging task. While climate projections are 20 

communicated increasingly frequently through global warming levels (GWLs) rather than time ), ToE is usually still expressed 

in terms of time horizons. Yet, ToE and GWL have barely been combined so far. Here, we applypresent a framework to 

robustly derive global warming levels of emergence (GWLoE) using five Single Model Initial-condition Large Ensembles 

(SMILEs) to derive global warming levels of emergence (GWLoE) ofand apply it to four selected temperature and precipitation 

indices. We show that the concept of GWLoE is particularly promising to constrain temperature projections and proves a 25 

viable tool to communicate scientific results. We find that >7585% of the global population is exposed to emerged signals 

forof nighttime temperatures at a GWL of 1.5°C, increasing to >95% at 2.0°C. Daily maximum temperature follows a similar, 

yet less pronounced path. Emerged signals for mean and extreme precipitation start appearing at current GWLs and increase 

steadily with further warming (~2010% population exposed at 2.0°C). Related probability ratios for the occurrence of extremes 

indicate a strong increase where temperature extremes reachwith widespread saturation of temperature extremes (extremes 30 

relative to historical conditions occur every year) reached below 2.5°C warming particularly in (sub)tropical regions below 

2.5°C warming.. These results indicate that current timeswe are in a critical period for climate action as every fraction of 

additional warming substantially increases the adverse effects on human wellbeing. 

 

1 Introduction 35 

The sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) repeatedly confirmed that the recent 

global warming is unequivocally caused by anthropogenic activity (Masson-Delmotte et al. 2021). The latest decade (2011-

2020) saw 1.1°C higher global temperatures compared to pre-industrial times (1850-1900) and warming is projected to 

continue in the future under current climate policies (IPCC 2022). To prevent adverse and potentially catastrophic impacts of 

very high warming rates, the Paris Agreement urges to hold global warming “well below 2.0°C above pre-industrial levels”, 40 

ideally limiting it to 1.5°C (UNFCCC, 2015). However, a warming of 1.5°C will already impose negative impacts on 

ecosystems and human wellbeing (Masson-Delmotte et al. 2018), and a growing body of literature highlights the adverse 

consequences of even higher warming rates (e.g., Hoegh-Guldberg 2019, Schwingshackl et al. 2021). Many studies have 

elaborated on the benefits of limiting global warming to 1.5°C compared to 2°C, showing. These studies show, among others, 

https://www.ipcc.ch/assessment-report/ar6/
http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf
https://www.ipcc.ch/sr15/
https://www.science.org/doi/abs/10.1126/science.aaw6974
https://doi.org/10.1029/2020EF001885
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substantially less area affected by desertification (Park et al. 2018), less population exposed to extreme daily temperatures 45 

(Harrington 2021, King & Karoly 2017), a lower reduction in water availability and a smaller increase in dry spell length 

(Schleussner et al. 2016), as well as a less pronounced increase in drought risk and risk of consecutive drought years (Lehner 

et al. 2017a). Given the current warming rate and the expected severe impacts if exceeding 1.5°C of warming, it is essential to 

estimate the consequences of warming levels beyond political targets at incremental steps. Hence, it is important to analyze at 

which warming level we can expect a significant signal to emerge. Incremental steps of GWL are detrimental, since a 50 

discernable response to even strong and sustained mitigation can be delayed by decades due to the inertia and internal 

variability of the climate system (Samset et al. 2020). 

The time of emergence (ToE) is a well-established concept to estimate whether and when a climate change signal is detectable 

(e.g., Lehner et al. 2017b, Hawkins and Sutton 2012). ToE indicates the time when the considered climate variable changes 

into a new state. This is generally estimated by testing whether the distribution of this variable is statistically significantly 55 

different from the respective distribution that the variable should have in a world without climate change. While expressing 

ToE inas distinct years is illustrative and easy to communicate, uncertainties of climate projections make a precise estimation 

challenging (Hawkins et al. 2014). Climate projections are subject to three major sources of uncertainty: uncertainty due to 

internal variability of the climate system, structural uncertainty introduced by different model parameterizations, and scenario 

uncertainty reflecting differences in potential future socioeconomic and related emission pathways (Hawkins & Sutton, 2009; 60 

Lehner et al. 2020). Various methods have been developed to quantify, distinguish and constrain the different types of 

uncertainty (Lehner et al. 2023). 

To disentangle a robust climate change signal from the background noise of internal climate variability Single Model Initial-

condition Large Ensembles (SMILEs) are widely used Most ToE studies use multi-model ensembles, which mainly consist of 

single realizations of different models, thus accounting for structural uncertainty and scenario uncertainty (Giorgi and Bi 2009, 65 

King et al. 2015, Bador et al 2016, Douglas et al. 2022). However, these single realization ensembles can only partially account 

for the intrinsic uncertainty due to internal climate variability. Especially on regional-to-local scales, internal variability is 

large compared to the other sources of uncertainty, showing the largest fractional uncertainty (Lehner et al. 2020, Blanusa et 

al. 2023). Accounting for internal variability when estimating ToE, is relevant since it can advance or delay ToE by up to 

several decades (Hawkins et al 2014), and can contribute half to two-thirds to the total ToE uncertainty (Bador et al 2016). To 70 

account for the influence of internal variability in ToE studies, Single Model initial condition large ensembles (SMILEs) can 

be applied. SMILEs constitute numerous independent, yet equally probable,(e.g., Deser et al. 2020, Maher et al. 2021). SMILEs 

constitute numerous independent, yet equally probable climate simulations, created by running a single climate model multiple 

times under the same external forcing (e.g., same emission scenario) but with marginally changed initial conditions (Kay et al. 

2015, Maher et al. 2019). Due to the resulting large sample size, SMILEs allow for a robust assessment of extremes by 75 

extensively sampling the tails of the distribution (Suarez-Gutierrez et al. 2020, Wood et al. 2021). Moreover,It has been shown 

that SMILEs are ideal tools to estimate ToE due to their ability to provide both statistically robust forced signals and a 

https://doi.org/10.1088/1748-9326/aa8e2c
https://esd.copernicus.org/articles/7/327/2016/esd-7-327-2016.pdf
https://doi.org/10.1175/JCLI-D-16-0792.1
https://doi.org/10.1029/2011GL050087
https://doi.org/10.1175/2009BAMS2607.1
https://doi.org/10.5194/esd-11-491-2020
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quantificationaccurate quantifications of internal climate variability via the spread across ensemble members (Lehner et al. 

2017b, Schlunegger et al. 2019). This is particularly relevant as, 2020, Wood and Ludwig 2020). SMILEs are widely used and 

have been proven to effectively disentangle a robust forced response from internal climate variability (e.g., Deser et al. 2020, 80 

Maher et al. 2021). can advance or delayFurther, they represent a valuable tool for a robust assessment of extremes by 

extensively sampling the emergencetails of the forced signal by up to several decadesdistribution (Hawkins et al. 2014Suarez-

Gutierrez et al. 2020, Wood et al. 2021). The increasing number and availability of SMILEs over recent years (Deser et al. 

2020) makes it possible to additionally address structural uncertainty. Merging the information of multiple SMILEs to assess 

the corresponding joint time of emergence should thus allow for an even more robust detection of ToE, as internal variability 85 

and model uncertainty can both be assessed. 

In recent years, future climate projections have been expressed increasingly frequently through global warming levels (GWLs) 

instead of fixed time horizons (e.g., the period 2071-2100) (; Seneviratne et al. 2021). This approach constrains scenario 

uncertainty by the question of which GWL will be reached and expresses future climate projections in a more policy-relevant 

way. Recently, first studies combined GWL and ToE to provide global warming levels of emergence (GWLoE) instead of ToE 90 

in single realization multi-model ensembles (Abatzoglou et al. 2019, Seneviratne & Hauser 2020), reanalysis and observations 

(Raymond et al. 2020), and in two SMILEs (Kirchmeier-Young et al. 2019, Raymond et al. 2020).). Yet, GWLoE remains a 

rarely applied concept in general as well as in the context of, particularly an application using multiple SMILEs in particular. 

Wea joint emergence framework is lacking. In this study, we thus expand the current literature by presentingquantify the joint 

GWLoE of selected temperature and precipitation indices using multiple SMILEs from the Coupled Model Intercomparison 95 

Project Phase 6 (CMIP6) and further aim to promote the concept of GWLoE. We quantify the exposure of population and land 

area to emerged climate indices as a function of GWL.). By using an ensemble of multiple SMILEs, we are able to robustly 

determine the emergence as a function of GWL at the grid scale level, implicitly accounting for internal variability and 

structural uncertainty. Expressing emergence as GWLs instead of time thereby constrains the scenario uncertainty. Further, 

we relate incremental changes in GWL to changes in the exposure to temperature and precipitation extremes by estimating 100 

increases in their probability ratios for each 0.1°C warming to analyze the linear or non-linear response to warming. Lastly, 

we quantify the exposure of population and land area, on a global and regional scale, to emerged climate indices as a function 

of GWL. 

2 Materials and Methods 

2.1 SMILEs and climate indices 105 

We use five different SMILEs fromthat are part of the CMIP6 archive (ACCESS-ESM1-5, CanESM5, EC-Earth3, MIROC6, 

and MPI-ESM1-2LR; see Tab. 1) with a comparable ensemble size, and sufficient number of ensemble members (30-50) for 

representingto represent internal climate variability (Milinski et al. 2020, Tebaldi et al. 2021). A sufficiently large ensemble 

https://link.springer.com/article/10.1007/s00382-020-05263-w
https://link.springer.com/article/10.1007/s00382-020-05263-w
https://iopscience.iop.org/article/10.1088/1748-9326/ac10dd/meta#erlac10ddbib34
https://www.nature.com/articles/s41558-020-0731-2
https://www.nature.com/articles/s41558-020-0731-2
https://doi.org/10.5194/esd-12-1427-2021
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size is particularly relevant for precipitation variability, for whichwhere the ensemble should comprise at least 30 members 

(Wood et al. 2021). We selected four temperature and precipitation indices compiled by the Expert Team on Climate Change 110 

Detection and Indices (ETCCDI) that have been frequently applied in previous studies (e.g. Sillmann et al. 2013, Deng et al. 

2022):): yearly maximum of daily maximum temperature (TXx), yearly maximum of daily minimum temperature (TNx), total 

annual precipitation (PRCPtot), and yearly maximum 1-day precipitation (Rx1day). After calculating the indices, all models 

were remapped using a conservative remapping approach to match the spatial resolution of the coarsest grid (CanESM5, 

~2.8°x2.8°; Tab. 1).We selected those four indices as they are frequently applied (e.g. Sillmann et al. 2013, Deng et al. 2022) 115 

and allow for easy interpretability. We further aim to demonstrate the concept of GWLoE for a broad range of indices. The 

selected temperature and precipitation indices thus intentionally cover both, absolute (TXx, TNx and PRCPtot) and intensity 

(Rx1day) metrics. 

WeTo make the results comparable across SMILEs and to further calculate the joint emergence using multiple SMILEs, the 

grids of the five SMILEs must be harmonized. Typically, either the finest or coarsest grid is selected as target resolution. The 120 

selection of the finest grid exploits the potential of the high-resolution models. The coarser models, however, might not be 

capable of resolving the processes at the higher resolution for structural and parameterizational reasons (Prein et al. 2016). 

Using the finest grid would then also require the introduction of new data points (either through interpolation or downscaling). 

We thus opted to remap all data sets to the spatial resolution of the coarsest grid (CanESM5, ~2.8°x2.8°; Tab. 1) using a first 

order conservative remapping approach. 125 

We further aim at analyzing a wide range of potential future GWLs to identify the impact of incremental changes of global 

warming on selected indices and the related emerging risks. Hence, we selected SMILEs under the historical scenarioforcing 

and the high-end climate change scenario SSP5-8.5, which projects an increase in radiative forcing of 8.5 W/m2 by the end of 

the 21st century (Gidden et al. 2019). The choice of this rather extremehigh-end scenario allows us to analyze high warming 

levels (above 3.5°C) compared to pre-industrial conditions (1850-1900; Fig. 1). In contrast, some of the lower emission 130 

scenarios might not even reach GWLs of 1.5°C to 2°C by the end of the century despite an already observed global warming 

of already more than 1.1°C inover the recentlast decade (2011-2020; Fig. 1). Overall, the range of GWLs projected by the five 

selected SMILEs for the end of the 21st century (3.8°C – 7.1°C; Fig. 1) is in general agreement with the fullrespective spread 

of the currentfull CMIP6 ensemble (Tebaldi et al. 2021). 
Table 1: Overview of the five Single Model Initial-condition Large Ensembles (SMILEs) applied in this study. The CMIP6 historical 135 
and SSP5-8.5 scenarios (in total covering the period 1850-2100) were consideredused for all SMILEs. All models were conservatively 
remapped to the coarsest model grid (CanESM5) for further analysis. The values for Equilibrium Climate Sensitivity (ECS) stem 
from Meehl et al. (2020) and provide an estimate of the climate sensitivity of each SMILE. 

https://doi.org/10.1088/1748-9326/ac10dd
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/jgrd.50188
https://doi.org/10.1029/2021EF002645
https://gmd.copernicus.org/articles/12/1443/2019/
https://esd.copernicus.org/articles/12/253/2021/
https://doi.org/10.1126/sciadv.aba1981
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SMILE Ensemble size 
 
(n members) 

Original resolution 
(lat x lon grid) 

ECS (°C) Reference 

ACCESS-ESM1-5 40 ~1.3°x1.9° 3.9 Mackallah et al. 2022  

CanESM5 
 

50 ~2.8°x2.8° 5.6 Swart et al. 2019 

EC-Earth3 
 

50 ~0.7°x0.7° 4.3 Wyser et al. 2021 

MIROC6 
 

50 ~1.4°x1.4° 2.6 Tatebe et al. 2019 

MPI-ESM1-2LR 30 ~1.9°x1.9° 3.0 Mauritsen et al. 2019 

2.2 Time of Emergence (ToE) and Global Warming Level of Emergence (GWLoE) 

To calculate ToE, we extract 20-year moving windows for each year over the period 1901 to 2100 and test the resemblance to 140 

the reference climate state (pre-industrial period, 1850-1900) using a. A two-sided Kolmogorov-Smirnov test (KS-test) at 5% 

significance level (is then used to test the resemblance to the pre-industrial reference climate state (1850-1900; Mahlstein et al. 

2012, King et al. 2015). The climate signal is considered as emerged once the KS-test indicates that the testeda 20-year time 

series was drawn from a different distribution than the reference data. These differences may refer to distribution shifts (mean 

changes) and shape changes (variability). It is important to account for both changes, because they can either individually or 145 

collectively attribute to the changes in extremes (van der Wiel & Bintanja 2021, Wood 2023). For each ensemble member, we 

define ToE as the tenth year of the first 20-year window where the p-value of the KS-test determines significance in changes 

in the mean.. We further require that changes in the mean of the KS-test remains significant in all subsequent periods remain 

significant as well. The climate signal is considered as not emerged by the end of the 21st century if the KS-test for the last 20-

year window (2081-2100) does not yield significant differences. The calculations are carried out for each index and each 150 

SMILE member on the grid cell level. The ToE of a given SMILE is then assigned to the year when at least 90% of the 

ensemble members show emerged climate signals (similar to Martel et al. 2018). 

To estimate the sampling uncertainty in the calculation of the emergence, a bootstrapping approach is conducted. We sample 

n members (n = ensemble size) of each SMILE from the available members with replacement, applying 1000 repetitions. 

Thereby, all individual members were sampled approximately equal times. For each of these 1000 bootstrapped ensembles, 155 

we then assign ToE to the year when at least 90% of the drawn ensemble members show an emerged climate signal (e.g., 45 

of 50 members; similar to the approach by Martel et al. 2018). This method accounts for internal variability, expressed via the 

n SMILE members. As we require 90% of the members to be emerged, the approach yields a conservative yet robust estimate 

of ToE. The sampling uncertainty is presented as the 95% confidence interval derived from the 1000 ToE estimates. To transfer 

ToE into Global Warming Level of Emergence (GWLoE), we calculate GWL as the change in the area-weighted global 160 

average of annual surface air temperature (GSAT) in each moving 20-year window relative to the pre-industrial period 

https://gmd.copernicus.org/articles/12/4823/2019/
https://doi.org/10.5194/gmd-14-4781-2021
https://doi.org/10.5194/gmd-12-2727-2019
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2012GL053952
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2012GL053952
https://iopscience.iop.org/article/10.1088/1748-9326/10/9/094015
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following the approach by Hauser et al. (2019) as used in IPCC AR6 (Seneviratne et al. 2021). The GSAT changes are assigned 

to the tenth year of each 20-year period and define the GWL for that year in each member of each SMILE. The GWL of a 

SMILE is defined as the mean across all ensemble members (i.e., the forced response). To derive GWLoE, we assign the 

corresponding GWL to the previously calculated year of climate signal emergence (ToE), thus replacing the time axis with 165 

GWL) for each of the n members. Thus, replacing the time axis with GWL in all of the 1000 bootstrapped ensembles through 

their sampled members. The final GWLoE of a SMILE is then defined as the mean across all bootstrapped ensemble members 

(i.e., the forced response), and the confidence interval is obtained using the same methodology as for ToE. 

To further increase the robustness of the GWLoE estimates, we calculate the joint emergence of the climate signal across all 

five SMILEs, defined . We define this joint emergence as the median GWLoE of the five SMILEs, calculated for each index 170 

at the grid cell level. We additionally concludeclaim that SMILEs agree in the signal emergence if at least four out of the five 

SMILEs indicate an emergence within the 21st century. Finally, we cap the GWLoE at 4°C as not all SMILEs reach that 

warming level by 2100 (Fig. 1).1), any emergence after 4°C is considered not emerged. 

 

 175 
Figure 1: Changes in global average annual surface air temperature, i.e., Global Warming Level (GWL). GWL wasis calculated 
relative to pre-industrial conditions (1850-1900) under historical and SSP5-8.5 scenarios and is presented for the five SMILEs (colors 
indicate their respective equilibrium climate sensitivity (ECS) from low (blue) to high (red)) and the blended, observation-based 
reference data set HadCRUT5 (black; Morice et al. 2021). Solid lines indicate the ensemble mean and shaded areas represent the 
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range (minimum-to-maximum) of the individual members for each SMILE. Note that following our methodology, GWL was 180 
calculated based on 20-year moving windows. The GWL shown in this figure thus also reflects 20-year moving windows and not 
annual data. Accordingly, the presented ensemble spread does not represent inter-annual variability and is considerably narrower 
than for non-smoothed, annual data. Numbers in the legend indicate the ensemble size of each SMILE (n members). 

2.3 Exposure of Population and Land Area to Emerged Climate Signals 

For each of the four climate indices (TXx, TNx, PRCPtot, Rx1day),, we quantify the fraction of population and the land area 185 

fraction affected by emerged climate signals. We use historical population data from ISIMIP2b (Frieler et al., 2017) and future 

population scenarios according to the different SSPs (SSP1-SSP5; Jones & O'Neill, 2016, Samir & Lutz, 2017Samir & Lutz, 

2017). For each We opted to include a wide range of these datasets wepopulation projections despite a potential disagreement 

with the selected climate scenario (SSP5-8.5) to analyze the impact of different possible population trajectories on our results, 

as the usage of GWLs should make the estimated emergence largely independent of the underlying emission scenario (i.e., 190 

RCP 8.5 in our case). We calculate the population density for each population dataset and remap it to the coarsest common 

grid (CanESM5 grid; see Section 2.1) using first order conservative remapping. As the SSP population data are available in 

10-year intervals, we interpolate them linearly in time to obtain yearly resolution.annual data. To estimate the time-dependent 

population exposure to emerged climate signals, the population of all respective grid cells areis aggregated. globally or to 

larger regions. We express the result as percentage of (time-dependent) global and regional population. Similarly, we calculate 195 

the fraction of global (and regional) land area, on which a climate signal emerges, using the (time-invariant) land area fraction 

of CanESM5. The exposures of population and land area to emerged climate signals are finally expressed as a function of 

GWL. 

As population projections are time-dependent, the population emergence as a function of GWL can only be quantified by 

considering the temporal evolution of GWL. For each GWL, we use the population of the year in which the GWL is reached 200 

for the first time (see Section 2.2) and calculate the global (and regional) population exposure by considering all grid cells that 

have emerged at that GWL and the population in the respective year. Thus, population changes in a grid cell that have already 

emerged at a lower GWL continue to influence the total population exposure at higher GWLs. We further quantify the 

uncertainty due to internal variability by estimating the exposure of land area and population individually for each of the 1000 

bootstrapped ensembles and by calculating the 95% confidence interval across all members. 205 

2.4 Changes in Probability Ratio of Climate Index Extremes 

WeIn addition to considering the full probability distribution of climate indices when determining ToE and GWLoE (based on 

KS-test), we further quantify how the probability of their extreme values of the four climate indices changes with global 

warming. We define extremes the frequency of extreme years as the number of years exceeding the 95th percentile (equivalent 

to a return period of 20 years of high temperature and heavy precipitation events; conceptual Supplementary Fig. S1a) of the 210 

correspondingrespective climate index distribution in the reference period 1850-1900. To estimate how extremes alter with 

https://doi.org/10.5194/gmd-10-4321-2017
https://doi.org/10.1088/1748-9326/11/8/084003
https://www.sciencedirect.com/science/article/pii/S0959378014001095?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0959378014001095?via%3Dihub
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global warming, weWe calculate the change in probability ratio 𝑃𝑅 based on frequencies of extreme events for each 20-year 

period given byas 

(1) 𝑃𝑅  =  
!"#$

%"#$∙'"#$
!()"

%()"∙'()"

 

where 𝑛 is the event frequency during the reference (ref) and future (fut) periods pooled across all members, 𝑦 the period 215 

length (20 years for fut, 51 years for ref) and 𝑚 the number of ensemble members. Probability ratios above (below) 1 indicate 

an increase (decrease) in event occurrencefrequency relative to the reference period 1850-1900. By definition, the 

occurrenceevent probability equals 0.05 in the reference period when considering the 95th percentile threshold. This is 

equivalent to a return period of 20 years for annual maximum temperature and precipitation events (see Supplementary Fig. 

S1a for a conceptual illustration). Therefore, the theoretical maximum probability ratio, during any 20-year period, is PR=20 220 

and, which indicates that pre-industrial extreme thresholds are exceeded every year in everyall SMILE membermembers. We 

examinequantify the GWL ofat which this saturation effect occurs for each of the four selected extreme indices with respect 

to the defined 20-year return periods. .  

Furthermore, to derive the change in probability ratios of extreme years as a function of GWL, we linearly regress the 

probability ratio against GWL using the least-squares approach. We account for scaling that is not constantnon-linear changes 225 

in probability ratios across the considered GWL range (1°C to 4°C) by performing the linear regression piecewise for three 

global warming intervals: 1°C to 2°C, 2°C to 3°C, and 3°C to 4°C (see conceptual illustration in Supplementary Fig. S1b). 

The estimated regression coefficients indicate how strongly the magnitude of changes in probability ratios change with 

everyper tenth of a degree (0.1°C) of additional global warming. To account for inter-SMILE differences, we average the 

regression coefficients, weighted by the number of SMILE members, and mask out areas where lessfewer than four 230 

modelSMILEs agree in the direction of the PR change. 

 The 0.1°C GWL step we apply is finer than the steps used by other studies to investigate frequency changes at distinct 

GWL thresholds (e.g., GWLs of 1.5°C or 2.0°C related to the Paris Agreement). Those studies commonly employ distinct 

GWLs or increments of 0.5°C or 1°C to obtain statistically robust change signals (Perkins-Kirkpatrick & Gibson 2017; King 

et al. 2018; Fischer & Knutti 2015). However, our setup withusing five SMILEs, each based on with 30-50 ensemble members 235 

each (220 members in total), ensures robust assessments alsoand allows us to analyze frequency changes of extreme events at 

finer incremental GWLs. AnalyzingBy considering GWL steps of 0.1°C allows us, we are able to evaluate the contribution of 

incremental warming steps to increases in extreme event frequency with a particular focus on different warming intervals. This 

also allows to illustrate the potential consequences of overshooting policy-agreed GWL targets by even a small margin.  
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3 Results 240 

3.1 Global warming level of emergence for temperature and precipitation indices 

The joint emergenceemergences of the four considered indices (TXx, TNx, PRCPtot, and Rx1day) across all SMILEs 

showsshow distinct GWLoE patterns in terms of GWLoE (Fig. 2). In particular, the temperature indices show a widespread 

emergence at low GWLs, with substantial emergence occurring at present-day GWL, indicating (around 1.1°C). This indicates 

that many regions have already transitioned into a new climate state for the corresponding indexTXx and TNx. Emergences 245 

of TXx are particularly prevalent in the Southern Hemisphere, including large parts of Africa and South America, as well as 

Southern Europe, Central America, and the Arabian Peninsula (Fig. 2a). In all other regions, TXx is projected to emerge 

between a GWL of 1.0°C and 2.0°C except for a few small regions showing emergences with emergence only at higher GWLs. 

TNx shows an even more pronounced and widespread emergence at present-day warming with almost all regions showing 

emergence at 1°C (except for Antarctica), reflecting that climate change has already impacted the temperature indices across 250 

the globe (Fig. 2b). The model agreement for the emergence of the temperature indices is very high (no areas are hatched in 

Fig. 2a, b). While the joint emergence of all SMILEs provides an estimate of GWLoE based on the median GWLoE across the 

five SMILEs, individual models emerge at lower or higher GWLs. due to internal variability. Thus, the range of GWLoE 

across SMILEs provides additional information on the robustness of the results. The robustness is particularly high for TNx, 

as indicated by a narrow range of GWLoE across SMILEs (Supplementary Fig. S2). While the range yields a generally high 255 

agreement also for TXx, the patterns are more diverse, manifested by a larger range in eastern North America, eastern Europe, 

Central Africa and parts of South AmericaEast Asia (Supplementary Fig. S2).  

The precipitation indices generally emerge over smaller areasless widespread and at higher GWLs than the temperature indices 

(Fig. 2c, d). PRCPtot emerges at a GWL of around 2°C in the Northern high latitudes, central Asia, and parts of tropical Africa 

and South America (Fig. 2c). For most of these regions, (except for South America), a general increase in annual precipitation 260 

is projected, except for South America (IPCC, 2021). Rx1day is generally projected to increase over land due to dynamical 

and thermodynamical adjustments (Seneviratne et al. 2021). However, the Rx1day signal only emerges in parts of Africa and 

South America for GWL <2.0°C (Fig. 2d). For the rest of the globe, PRCPtot and Rx1day do not emerge until a GWL of 34°C 

or higher, with somelarge areas (particularly desertdry regions) showing no emergence in the data sets  at all. within the 

considered GWL range. In addition to high internal variability, (Supplementary Fig. S15), the inter-model range in GWLoE 265 

for precipitation indices is substantially larger than for temperature indices, partly explaining that the precipitation indices only 

emerge at higher GWLs (Supplementary Fig. S2). Regions with a narrower GWLoE range predominantly correspond to grid 

cells where the signals emerged in lessfewer than four SMILEs (North America, the Mediterranean, southern Africa and 

Australia).. The narrow range in these regions is thus based on a smaller SMILE sampledue to fewer SMILEs and does not 

necessarily indicate increased robustness. 270 
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Figure 2: Joint Global Warming Level of Emergence (GWLoE) of the considered indices. Maps show the joint emergence (multi-
model median) of the five applied bootstrapped SMILEs (see Methods) using historical and SSP5-8.5 scenarios for TXx (a), TNx (b), 275 
PRCPtot (c), and Rx1day (d). Red colors indicate an earlier emergence. Hatched areas indicate regions where emergence within the 
considered GWL range wasis detected in lessfewer than four of the five SMILEs. Grid cells that diddo not yield emergence at 
GWL<4°C are colored white. No data is shown in darkLight grey, indicates non-land grid cells in light grey. 

3.2. Exposure of land area and population to emerged climate signals 

To quantify how the spatial extent of the emerged climate signals changes over time, we next assess the percentage of land 280 

area exposed to emerged climate signals as a function of GWL (Fig. 3). Here, TXx has already emerged on 35-5541%-56% 

(range across all SMILEs) of the global land area under present-day climate (GWL = 1.1°C).. The emergence continues to 

increase linearly until stabilizing around 2°C when most of the land fraction (70-90%) shows emerged signals (78%-87%; Fig. 

3a). Africa and , West & South Asia, South America, and Southeast Asia can be identified as hotspots where TXx has emerged 

on most of the land already under present-day climate (Supplementary Fig. S3). TNx shows a similar path as TXx. However, 285 
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most, but with a larger fraction of the land area has already experiencedhaving emerged climate signals under present-day 

conditions (60-8053%-83%; Fig. 3b and Supplementary Fig. S3). At a GWL of 1.5°C, 80-9086%-94% of the land area will be 

exposed to a new climate state for TNx (Fig. 3b3b). All five SMILEs show similar changes for TXx and TNx globally and for 

most of the analysed regions, except for Southeast Asia and Australia, where the land area fraction with emerged signals varies 

strongly across the different SMILEs (Supplementary Fig. S3). 290 

The emergence of climate signals for the two precipitation indices occurs at higher GWLs than for the temperature indices 

and. Emergences are thus emergences only occurdetectable over a small portion of the land area under present-day climate (1-

7%-18%; Fig. 3c, d). The fraction of land exposed to emergences of PRCPtot emergence shows a linear increase from around 

1.05°C onwards, with roughly a fifth (15-2511%-37%) of the land area being exposed to a new climate state at a GWL of 

2.0°C (Fig. 3c). However, we find strong regional differences, with emerged signals at 2.0°C warming being more widespread 295 

in North & Central Asia, Africa, and South America, and Africa than on global average (Supplementary Fig. S3). Particularly 

in North & Central Asia, the estimated exposed land fraction also shows substantial differences across the five SMILEs. The 

fraction of land exposed to Rx1day emergences also increases linearly as well, starting at a GWL of around 1.0°C, but the rate 

of increase depends strongly on the considered SMILE. Three of the five SMILEs (MPI-ESM1-2-LR, MIROC6, and ACCESS-

ESM1-5) follow a similar path (around 11-138%-10% of exposed area at a GWL of 2.0°C), while EC-Earth3 shows a much 300 

higher exposed area (2243%) and CanESM5 a much lower exposed area (42%) at 2.0°C.  
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The related sampling uncertainty due to composition of the ensemble members at global scale (shaded area in Figure 3; 95% 

confidence interval from bootstrapped member sampling) is very low for all four climate indices. This is also the case on the 

regional scale (Supplementary Figure S3) except for Southeast Asia and Australia, where the sampling uncertainty plays a 305 

larger role than in the other regions. Nevertheless, the structural uncertainty, originating from differences across SMILEs, 

constitutes the dominating source of uncertainty, both globally and regionally. 
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Figure 3: Fraction of land area exposed to emerged climate indices in dependence of global warming level (GWL). The respective 
land area fraction is presented for emerged signals of TXx (a), TNx (b), PRCPtot (c), and Rx1day (d). Different colors represent the 310 
five applied SMILEs (with equilibrium climate sensitivity (ECS) increasing from blue to red) and shading indicates the sampling 
uncertainty (95% confidence interval estimated by bootstrapping, see Methods). 

 
We further estimate the percentage of global population that is exposed to emerged climate signals, considering the uncertainty 

due to different population projections according to the scenarios SSP1 to SSP5 (Fig. 4). In general, the patterns of population 315 

exposure are similar tofollow the patternspath of land area exposure, with large sharesfractions of the global population being 

affected by emergences of TXx and TNx already at low GWLs. In contrast, PRCPtot and Rx1day will emerge at higher GWLs 

and consequently affect fewer people. For TXx, the exposure under present-day climate shows a rather large spread (affecting 

35-6537%-56% of global population) but converges towards 100% under higher GWLsincreases to 68%-88% at a GWL of 

2.0°C (Fig. 4a). Regarding TNx, already 60-8572%-80% of the global population is exposed to emerged signals under present-320 

day climate, with model agreement being higher than for TXx (Fig. 4b). This percentage is projected to increase to 75-9586-

93% at 1.5°C, and at 2.0°C almost the entire populationvirtually everybody (more than 95% in four out of theall five SMILEs) 

will be exposed to a new climate state of TNx (Fig. 4b). Under present-day warming, the highest exposure to TNx emergence 

can be found in North America, Central &Africa, Southeast Asia, South America, Africa, and EuropeNorth & Central America 
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where more than four out of five people already experience an emerged climate signal for TNx (Supplementary Fig. S5). For 325 

PRCPtot, we find lower exposure where up to a GWL of 2.0°C only a small but steadily increasing fraction of the population 

(5-163%-13%) will experience a new climate state for PRCPtot (except for MPI-ESM1-2-LR, which yields larger fractions).. 

For Rx1day, the exposed population starts to steadily increase at a GWL of 1.0°C but remains below 2013% up to a GWL of 

2.0°C. in four out of the five SMILES (40% in EC-Earth3). The projections of the different SMILEs diverge at higher GWLs, 

with EC-Earth3 showing the largest, and CanESM5 the smallest increases. Particularly pronounced increases in exposure to 330 

Rx1day are found in Africa and South America and Africa , although with large uncertainties across SMILEs (Supplementary 

Fig. S5). 

The Again, the sampling uncertainty is rather low at global scale for all four climate indices (Figure 4). Regionally, however, 

it represents a substantial source of uncertainty (Supplementary Figure S3), for example in Southeast Asia and Australia for 

all four climate indices and, for PRCPtot and Rx1day, also in several other regions. For most indices and regions, the 335 

uncertainty due to different population scenarios of the SSPsprojections only playplays a secondaryminor role for the projected 

fraction of population exposed to emerged signals. and is even smaller than the sampling uncertainty. For TXx and TNx, the 

differences across models clearly dominate the uncertainty of the globally exposed population (Fig. 4a, b) to emerged climate 

signals. For PRCPtot and the population scenario only slightly influencesRx1day, the results. Similarly, for PRCPtot and 

Rx1day differences across models also dominate the overall uncertainty but the spread due to the population scenarios also 340 

partly influence the projected exposuresbecomes more prominent (Fig. 4c, d). In particular, a population development 

following SSP1 leads to substantially lower population exposure to emergences of PRCPtot and Rx1day compared to the other 

SSPs. This is evident for all SMILEs despite differences in the GWL range where this effect is most pronounced. 
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Figure 4: Percentage of global population exposed to emerged climate indices as a function of GWL. The respective exposed 
population fraction is presented for emerged signals of TXx (a), TNx (b), PRCPtot (c), and Rx1day (d). Different colors represent 
the five applied SMILEs (with equilibrium climate sensitivity (ECS) increasing from blue to red). Shading reflects the respective 
population scenario ranging from SSP1 (dark colors) to SSP5 (light colors).) and shading indicates the sampling uncertainty (95% 350 
confidence interval estimated by bootstrapping see Methods). The different lines indicate the exposure according to different 
population scenarios, with the thick line corresponding to a population development according to SSP5 and the thin lines to 
population developments according to SSP1-SSP4. 

3.3 Increase in probability ratios for different global warming levels 

Next, we investigate how the occurrencefrequency of extremes in the four climate indices changes in dependence ofwith GWL 355 

by examining differences in their probability ratios (PR) relative to pre-industrial conditions (see Methods). While for details). 

TheTXx and TNx, a widespread emergence of a climate change signal regarding the local full index distributions (based on a 

KS-test; Fig. 2) is detected for GWL < 1°C, the following analysis focuses on the tails of the distribution. Both temperature 

indices show a widespread increase in the frequency of extreme events (positive changes in the probability ratio) across all 
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continents in the GWL range 1-2°C (Fig. 5). The For TXx and TNx, the increase in the probability ratios of TXx and TNxPR 360 

is largest infor central North America, South America, the Mediterranean, and central Asia, withand more pronounced 

increases for TNx than for TXx. In these regions, the probability ratioPR increase per 0.1°C warming is larger than 1. Thus, 

every additional 0.1°C global warmingincrease in GSAT leads to an increase in the extreme event occurrencefrequency by at 

least the number of events in the pre-industrial reference period (see Methods).. Furthermore, the increase in probability ratios 

of TXx and TNx indicates a non-linear behavior. Largest increases in probability ratios are found in the GWL range of 1-2°C 365 

but, thus at a GWL at which TXx and TNx already show widespread emergence (Fig. 2). These increases get lowerless steep 

once the peak of the index distribution crosses the defined threshold for extreme events (95% percentile in 1850-1900) and 

they stabilize towards higher GWLs (at 3-4°C or even higher). The probability ratioPR patterns remain similar also for a more 

extreme threshold (99th percentile, corresponding to a 100-year return period), albeit yielding higher increase rates given the 

lower number of events in that case (Supplementary Fig. S7). 370 

The changes in probability ratio ofFor PRCPtot and Rx1day, changes in PR are generally less pronounced than for TXx and 

TNx (Fig. 5). They increase by 0.25 to 0.75 per 0.1°C (corresponding to a 25-%-75% higher probability of extreme events per 

0.1°C warming) in the northernNorthern high latitudes, Africa, the Himalaya region, and – for Rx1day – parts of South 

America. These regions also emerge as hotspots for evenunder a more extreme eventsthreshold (99th percentile; Supplementary 

Fig. S7).S7). With the precipitation indices showing emergence at rather high GWLs, or no emergence at all, low PR changes 375 

in most regions (aside from the Northern high latitudes and tropical Africa with GWLoE <= 2°C) originate from slow 

distribution shifts where the extremeness threshold has not been crossed yet. This is contrary to TNx and TXx. For PRCPtot, 

several regions show a decrease in the probability ratio of down to -0.25 per 0.1°C warming (Central and South America, 

southern Africa, the Mediterranean region, and parts of Australia), indicating a general decrease of precipitation in these 

regions, in line with findings of the recent IPCC assessment report 6 (IPCC, 2021). Regions with decreasing probability ratioPR 380 

show lower model agreement than regions with increasing probability ratio.PR. In contrast to the temperature indices, the 

change patterns of probability ratioPR for PRCPtot and Rx1day remain similar across GWL ranges, indicating that they are 

less dependent ona more linear response to changes in GSAT for the state of global warming.considered GWL range (1-4°C). 

In several regions probability ratios, PRs level off at high GWLs (Fig. 5), indicating5). If this occurs in regions with early 

GWLoE it indicates that the maximum possible exceedance probability is reached.: Each year surpasses the pre-industrial 385 

reference threshold. This GWL of saturation is generally much lower for TXx and TNx than for PRCPtot and Rx1day (Fig.6), 

with saturation being reached below 2°C in South and Southeast Asia, and large parts of Africa and tropical South America. 

Parts of North America and northern Australia reach saturation between 2°C and 3°C (Fig. 6). In contrast, the precipitation 

indices (PRCPtot and Rx1day) reach saturation in much fewer grid cells and at much higher GWLs, withexcept for the 

Mediterranean, and parts of South America being the only regions reaching saturation for PRCPtot. At locations and GWLs 390 

where saturation is reached, the projected index distributions show close to no overlap with pre-industrial conditions.  
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Figure 5: Probability ratio (PR) increase for extremes in TXx, TNx, PRCPtot, and Rx1day forin three ranges of global warming 
(1°C – 2°C, 2°C – 3°C, and 3°C – 4°C) per 0.1°C warming with respect to 1850-1900. PRs are calculated as the change in exceedance 
of the 95th percentile of the index distribution in 1850-1900. Yellow-to-red colors indicate increasing PRs, while blue colors indicate 395 
decreasing PRs. Hatched areas indicate regions with low model agreement (at least 1 SMILE disagreeing in the sign of PR). 
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Figure 6: Global warming level (GWL) of saturation for extremes of the selected indices. Saturation maps for TXx (a), TNx (b), 
PRCPtot (c), and Rx1day (d) based on values exceeding the 95th percentile of the index distribution in 1850-1900. Saturation is 
defined as the GWL where the maximum number of extreme events in the analyzedanalysed 20-year periods is reached (i.e., 20 out 400 
of 20 years),, i.e., each year is an extreme year relative to pre-industrial conditions. The values indicate the ensemble median across 
all SMILEs if at least 4 out of 5 SMILEs show saturation values. Grid cells that indicate joint saturation at GWLs higher GWL 
within the considered spectrum (Fig. 1)than 4°C are colored in white Areas, areas that show saturation in lessfewer than 4four of 
5five SMILEs are colored in dark grey, and non-land grid cells are colored in light grey. 

4 Discussion 405 

4.1 Adverse impacts of incremental GWL changes 

Our results highlight that incremental GWL changes (i.e., steps of 0.1°C) can strongly increase the emergence of new climate 

states for the investigated indices. This is particularly the case for temperature extremes (TXx and TNx), for which we find 

widespread emergence already under present-day GWL. This finding is in line with the increasingly frequently observed heat 

extremes throughout the world that can be attributed to climate change (Ciavarella et al. 2021Ciavarella et al. 2021, Philip et 410 

al. 2022Philip et al. 2022, Philip et al. 2023Philip et al. 2023). The widespread emergence of TNx under current climate 

https://doi.org/10.1007/s10584-021-03052-w
https://doi.org/10.5194/esd-13-1689-2022
https://doi.org/10.25561/103833
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conditions is of particular concern, as it corresponds to elevated nighttime temperatures, which. This can reduce people’s 

recovery potential and may thus weakenadversely impact their health conditions (Royé et al., 2021, Thompson et al., 2022). 

At the same time, the precipitation indices Rx1day and PRCPtot start to emerge in the GWL range 1-2°C. This indicates that 

we are currently in a crucial period, where every fraction of a degree of additional warming may cause further regions to 415 

transition into new climate states. Limiting global warming to 2.0°C would keep the population and land fraction exposed to 

emergences of Rx1day and PRCPtot below 20%. Beyond 2.0°C the exposure to emergences of these indices will rapidly 

increase. The current policies, which put the world on track to reach a warming of 2.8°C (Liu & Raftery, 2021Thompson et 

al., 2022). At the same time, the precipitation indices Rx1day and PRCPtot start to emerge in the GWL range 1-2°C. This 

indicates that we are currently in a crucial period, where every fraction of a degree of additional warming may cause further 420 

regions to transition into new climate states, in terms of both mean and the tails of the index distributions. Limiting global 

warming to 2.0°C would keep the population and land fraction exposed to emergences of Rx1day and PRCPtot below 20%. 

Beyond 2.0°C the exposure to emergences of these indices will rapidly increase. The current policies, which put the world on 

track to reach a warming of 2.8°C by 2100 (Liu & Raftery, 2021), would thus expose a considerable fraction of population 

and land to new precipitation regimes and most of the population and land area to new temperature regimes (Supplementary 425 

Fig. S3 & S5)), potentially outside the human climate niche (Lenton et al. 2023).Lenton et al. 2023). Additionally, the spatial 

patterns of exposure rates and the frequency of future extremes show a strong regional heterogeneity, which might lead to 

increased socioeconomic inequality, especially in poorer regions of the world (King & Harrington, 2018King & Harrington, 

2018). 

4.2 Non-linearities and saturation of probability ratios 430 

The responses of temperature and, to a lesser extent, precipitation and temperature extremes to global warming appear to 

follow a non-linear path (Fig. 3 & 4). However, this does not directly speak to the linear or non-linear growth of extremes. 

Rather, in each grid cell the majority of the distribution of a given variable crosses the extremeness threshold of emergence at 

a distinct GWL (see schematic illustration in Supplementary Fig. S1a). The contribution of this grid cell to the fraction of 

emerged land is zero before the crossing, and equal to the fractional area of the grid cell afterwards. This continues 435 

simultaneously across all grid cells, forming the distribution of emerged grid cells in dependence of the GWL. The increase in 

emerged land fraction (or population) is particularly steep until the majority of the grid cells passed the threshold and 

consequently flattens out afterwards. Once the thresholds are exceeded in all grid cells, the fraction of emerged grid cells 

reaches 100% and can no longer increase.  

Our results show a very rapid initial growth (i.e., a large fraction of grid cells emerge at similar GWLs) particularly for TNx 440 

and (slightly less pronounced) for TXx, in line with saturation patterns corresponding to the non-linear growth seen for CMIP5 

models (Fischer & Knutti, 2015). For precipitation, the fraction of emerged land increases more slowlyless steep, in line with 

a more linear growth as seen also in the CMIP5 results of Fischer & Knutti (2015). The respective trajectories of precipitation 

and temperature extremes are nevertheless alarming. First, the sharp increase of emerged temperature extremes will strongly 

https://doi.org/10.1097/EDE.0000000000001359
https://doi.org/10.3390/ijerph19106123
https://doi.org/10.3390/ijerph19106123
https://doi.org/10.3390/ijerph19106123
https://doi.org/10.3390/ijerph19106123
https://doi.org/10.3390/ijerph19106123
https://doi.org/10.3390/ijerph19106123
https://doi.org/10.3390/ijerph19106123
https://www.nature.com/articles/s43247-021-00097-8
https://www.nature.com/articles/s41893-023-01132-6
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increase the human exposure to extremely hot temperatures.extreme heat. Second, regional preparedness to future temperature 445 

eventsextremes might be insufficient in case offor unexpectedly rapid changes in the occurrence of extremes (King et al. 2018). 

The usage of small GWL increments (e.g., 0.1°C as used in this study) thus seems imperative, as an assessment across large 

increments (e.g., 0.5-1.0°C) might undersample the temperature axis and potentially mask changes in the slope of the 

underlying distribution. It also allows to demonstrate that implementing further policies to reduce global warming is not futile, 

even if they result in incremental reductions only – which would be impossible when employing larger increments. 450 

Probability ratios of the temperature indices increase considerably up to a GWL of 2.0°C with widespread saturation reached 

at a GWL of 2.0°C. This would imply unprecedented heat conditions in Southern Asia, northern Africa, and northern South 

America for most years even if the 2.0°C target of the Paris Agreement was met (Fig. 5). Precipitation indices reach saturation 

only at higher GWLs, which points towards more inert adjustments of precipitation to changing climate. It is important to 

emphasize that the interpretation of saturation levels (which are reached in widespread regions particularly for temperature 455 

indices) should not be overly generalized. They are subject to the considered index and the related distributionunderlying 

distributions and additionally dependdependent on the applied threshold (here 95th percentile; see Supplementary Figs. S8-S10 

for other percentiles) and the defined reference period (here pre-industrial conditions) (; Harrington & Otto, 2018). Considering 

this though, they can be used as a tool to indicate that events considered “extreme” under pre-industrial conditions occur on a 

yearly basis once saturation occurs and thus become the new normal state. Reaching the saturation level of exceedance, 460 

however, should not be confused with reaching a ’safe’ state and does not impede further changes in the magnitude and 

intensity of extremes (Harrington & Otto, 2018). Instead, the exceedance of greater extremes (i.e., higher percentile thresholds) 

likely continues to rise and even. Even hotter temperatures and heavier precipitation events are expected to occur at higher 

GWLs (Supplementary Fig. S1a). 

4.3. Dependence of climate signal emergence on remapping sequencing 465 

To combine and display climate data with different spatial resolution, remapping is essential. In this study, we 

remappedHowever, the order of operations may vary, targeted towards the specific scope of the study. Here, we remap the 

data to the grid of the coarsest model (CanESM5) after calculating the climate indices (TXx, TNx, PRCPtot, Rx1day).) on 

their native resolution. This sequencing takes advantage of model diversity by preserving the precipitation and temperature 

fields of the models with higher spatial resolution when calculating the indices. It yields a local representation of the considered 470 

extreme indices, similar to what observational data sets would deliver (de Vries et al. 2023). Alternatively, climate data can be 

remapped before calculating the climate indices. This sequencing would lead to more harmonized model results but removes 

the fine scale information provided by models with higher spatial resolution. For studies analyzing model performance and 

focusing on model comparison, the latter approach would be preferable.  

The impact of the processing order on the resulting fields is expected to be more substantial for daily precipitation extremes 475 

(such as Rx1day) than for temperature or total annual precipitation. When these precipitation extremes are calculated on the 

https://iopscience.iop.org/article/10.1088/1748-9326/aaf4cc/pdf
https://iopscience.iop.org/article/10.1088/1748-9326/aaf4cc/pdf
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individual grid cells of the finer grid, they might occur on different days and would then be aggregated to form the larger grid 

cells of the remapped data. RegriddingRemapping before the calculation of the extreme indices, would keep the timetemporal 

integrity but results in a dilution of the precipitation extremes that often occur more locally.  

For our study, the former approach (remapping after calculating the indices) is advantageous, as we aim to investigate local 480 

emergences of climate change signals and the related exposure of population. Moreover, we focus on relative changes in the 

indices (assessed via ToE, GWLoE, PR) rather than changes in their absolute values. We find only negligible difference 

between both remapping orders for TXx, TNx and PRCPtot for the land area fraction exposed to emerged signals 

(Supplementary Fig. S11 & S12). However, we identify a substantial divergence for the emergence of Rx1day. Focusing on 

local level extremes (remapping after calculating Rx1day) yields earlier Rx1day emergences compared to the approach that 485 

harmonizes model results (remapping before calculating Rx1day). Additionally, the latter approach reduces the model spread 

in case Rx1day emergences are expressed as function of GWL (Supplementary Fig S12), while the). This spread remains 

unchanged if emergences are expressed as a function of time (Supplementary Fig. S11). This indicates that most of the model 

spread for Rx1day emergences expressed as function of GWL can be explained by model resolution, whereas the different 

ECS seems to play a secondary role (Fig. 3d, Supplementary Fig. S12d, Tab. 1). The high sensitivity of ToE/GWLoE to the 490 

selected remapping order for Rx1day (and presumably also for similar precipitation indices) to the selected remapping order 

highlights that this sequencing is of great importance for quantifying related emergences. The decision on performing the 

remapping before or after the calculationcalculating the desired index should thus alwaysnot be tailored to the focus of the 

studyan arbitrary choice. Our results highlight that this is crucial not only for the investigation of changes in absolute values 

but also when ToE or GWLoE are of interest. 495 

4.4 The concept of GWLoE as a tool to communicate climate change impacts and related uncertainties 

Combining the concept of time of emergenceToE with global warming levels supports a more policy-relevant communication 

of the emergence of climate signals given thatas global policies are very muchmore frequently based on warming levels (e.g., 

1.5 or 2.0°C targets of the Paris Agreement). We find that GWLoE provides a feasible tool to constrain model uncertainty, 

particularly for temperature variables and temperature-related indices. We generally find a higher model agreement for TNx 500 

and TXx if emergence is expressed as a function of GWL (Supplementary Fig. S3, S5, S13) instead of time (Supplementary 

Fig. S4, S6, S14). However, regional differences remain. For PRCPtot and Rx1day, in contrast, we find better agreement across 

SMILEs when expressing emergence as a function of time. This indicates that precipitation changes are not only impacted by 

thermodynamics but also by other processes, such as aerosol forcing  (Lin et al. 2016(Lin et al. 2016; Lehner & Coats 

2021Lehner & Coats 2021), which are characterized as a function of time rather than GWL. In that regard, precipitation 505 

changes are more dependent on the scenario pathway and thus more prone to scenario uncertainties in some regions (Maher et 

al. 2019Maher et al. 2019). Additionally, precipitation changes are more affected by small-scale processes and thus model 

resolution, which contributes to the larger model spread for precipitation than temperature indices as discussed above.  

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016GL070869
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021GL095127
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019MS001639#jame20923-bib-0042
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In particularInternal climate variability represents a major source of uncertainty for the estimation of GWLoE and thus needs 

to be accounted for. Across indices, the spread originating from internal variability (Supplementary Fig. S15) is of similar 510 

magnitude as the inter-model range across SMILEs (Fig. 2). For the temperature indices, internal variability regionally even 

exceeds the across-model spread, particularly towards the poles (Supplementary Fig. S15). This becomes even more relevant 

for the assessment of impacts at low GWLs, i.e., projections offor the upcoming decades, where internal climate variability is 

a particularly large source of uncertainty (Hawkins and Sutton 2009, Lehner et al. 2020). Due to their increased sample size, 

SMILEs This makes SMILEs an essential tool to determine GWLoE as they allow forto quantify internal variability and thus 515 

derive a robust signal detection even at these low GWLs (Maher et al. 2020) and thus provide an essential tool to determine 

GWLoE.). To further increase the robustness of the GWLoE estimates, we apply a 90% emergence threshold across members 

(see Methods). This rather conservative estimate ensures internal variability is properly accounted for. Considering the joint 

emergence of multiple SMILEs allows for a robust assessmentthen further increases the robustness of GWLoE estimates and 

constrains both internal variability and model uncertainty across a wide range of GWLs.  520 

Further, the approach considering GWL rather than time to estimate emergence might be beneficial to overcome the "hot 

model problem” (Hausfather et al. 2022), i.e., the issue of selecting climate models that show a higher-than-average equilibrium 

climate sensitivity (ECS) to increasing CO2 levels (Suarez-Gutierrez et al. 2021). We find that a time-dependent approach will 

generally lead to a model order, where models with high ECS (Tab. 1) usually show the highest exposure of population and 

land area to emerged climate signals (Supplementary Fig. S4, S6, S14). In contrast, our results show that a GWL-centered 525 

analysis results in a model orderingorder that is largely independent of the models’ ECS (Supplementary Fig. S3, S5, S13). 

This holds particularly true for temperature indices and to a lesser degree also for PRCPtot and Rx1day. In particular, for 

Rx1day model resolution seems to be more impactful than ESC. 

Our results are presented for GWLs extracted from simulations of transient climate that do not necessarily comply with 

equilibrium conditions with long-term stabilization at a certain GWL (Mitchell et al. 2016). Regional warming in model 530 

experiments with quasi-equilibrium climate states can be expected to be cooler than in transient warming scenarios (King et 

al. 2020). This becomes even more prominent for the magnitude of summer extremes, in turn also affecting their frequency 

(King et al. 2020). Consequently, our results do not reflect stabilized climate states as, for instance, occurring in overshoot 

scenarios, and should thus not be misinterpreted as long-term impacts if specific GWLs were met (e.g., the 1.5 °C target). 

Quantifying emergences under equilibrium conditions would require a different study design with an ensemble of SMILEs 535 

with stabilized GWLs (Mitchell et al. 2016, King et al. 2020). Instead, our results represent snapshots of GWLs under transient 

climate conditions with focus on their dynamics and changes at incremental GWLs, which remain valid under the given 

constraints.  

Finally, our results are based on the high-end warming scenario SSP5-8.5, which is considered to project a low-probability 

high warming for the end of the 21st century, given current climate policies (Hausfather & Peters, 2020). Analyzing the impacts 540 

of high warming levels (>3.0°C)), however, requires the selection of rather extreme warming scenarios (SSP3-7.0 or SSP5-

https://www.nature.com/articles/d41586-022-01192-2
https://link.springer.com/article/10.1007/s00382-021-05821-w
https://doi.org/10.1038/d41586-020-00177-3
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8.5), as these scenarios are the only ones that reach sufficiently high warming (Meinshausen et al. 2020). Furthermore, 

temperature and precipitation changes were found to scale largely linearly across scenarios for moderate GWLs (Seneviratne 

et al. 2016) and given). Given that we use a cut-off GWL of 4°C, our results shouldcan still be considered robust for the range 

of GWLs that we investigate. 545 

5 Conclusions 

In this study, we present the global warming level of emergence (GWLoE) of four temperature and precipitation indices (TXx, 

TNx, PRCPtot, and Rx1day) and the related exposure of population and land area based on the joint emergence of five SMILEs. 

Under current warming levels, large parts of the global population and global land area are already exposed to TXx and TNx 

emergences, while PRCPtot and Rx1day are about to emerge in several regions. We find widespread emergence of TXx and 550 

TNx at a GWL of 2.0°C and mostly linear increases in the emergence of PRCPtot and Rx1day over the GWL range 1.0-2.0°C. 

Emergences of TXx, PRCPtot, and Rx1day continue increasing beyond 2.0°C. These results confirm that a GWL of 2.0°C 

should not be misinterpreted as a safe target (Knutti et al. 2016). For higher warming levels (>2.0°C) strong increases in the 

fraction of exposed land area and population to emerged climate signals were identified for precipitation indices (PRCPtot and 

Rx1day). Further, we identify a sharp increase in the frequency of temperature extremes (assessed through probability ratios 555 

of TXx and TNx)), particularly at lower GWLs. These results highlight that considering incremental GWL steps for analyzing 

the emergence of climate change signals is essential. 

Given the dominant role of internal variability at low GWLs that are close to present-day warming, we argue that large 

ensemble simulations are essential. First: first, to robustly detect the emergence of climate change signals and second, for their 

assessment at incremental GWL steps, particularly for analyses of extreme events., which we find to be of highly relevant 560 

magnitude at low GWLs. Using GWLs over time to detect the emergence of climate change signals proofsproves to be 

particularly well suited for temperature-based indices. Here,, as it substantially reduces the uncertainty of signal emergence 

compared to a time-based approach. For precipitation-based indices, we find lower uncertainties when expressing their 

emergence as a function of time instead of GWL. The decision of whether to apply GWLoE or ToE thus depends on the 

considered climate variable and additionally needs to respect. Additionally, regional specifications should be respected, as 565 

indicated by the large regional discrepancy in our results. Further, the strong sensitivity of the emergence of Rx1day on the 

remapping sequencing highlights the need to tailor the order of remapping to the individual research focus of each study. 

Our results underline the importance of climate mitigation and the imminent need for an early achievement of net -zero 

emissions (Iyer et al. 2022Iyer et al. 2022) to avoid strongly increasing emergences of temperature and precipitation indices. 

This urges for the implementation of policies to ensure that global warming is limited at least to the targets defined in the Paris 570 

agreement. Every fraction of a degree matters to prevent additionally emerging adverse effects of climate change on human 

wellbeing. 

https://gmd.copernicus.org/articles/13/3571/2020/
https://www.nature.com/articles/nature16542
https://www.nature.com/articles/nature16542
https://www.nature.com/articles/s41558-022-01508-0
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https://www.isimip.org/gettingstarted/input-data-bias-adjustment/. All codes to perform the presented analyses and data to 
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