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Abstract 16 

This study implements the least-squares inversion method for solving the exhumation history from 17 

thermochornologic age-elevation relationship (AER) based on the linear equation among 18 

exhumation rate, age and total exhumation from the closure depth to the Earth surface. Modelling 19 

experiments suggest significant and systematic influence of initial geothermal model, the a priori 20 

exhumation rate and the time interval length on the a posterior exhumation history. Lessons 21 

learned from the experiments include that (i) the modern geothermal gradient can be used for 22 

constraining the initial geothermal model, (ii) a relatively higher a priori exhumation rate would 23 

lead to systematically lower a posteriori exhumation, and vice versa, (iii) the variance of the a 24 

priori exhumation rate controls the variation of the inverted exhumation history, (iv) the choice of 25 

time interval length should be optimized for resolving the potential temporal changes in 26 

exhumation. To mitigate the dependence of inverted erosion history on these initial parameters, 27 

we implemented a new stepwise inverse modeling method for optimizing the model parameters 28 

by comparing the observed and predicted thermochronologic data and modern geothermal 29 

gradients. Finally, method demonstration was performed using four synthetic datasets and three 30 

natural examples of different exhumation rates and histories. It is shown that the inverted rock 31 

exhumation histories from the synthetic datasets match the whole picture of the “truth”, although 32 

the temporal changes in the magnitude of exhumation are underestimated. Modelling of the 33 

datasets from natural samples produce geologically reasonable exhumation histories. The code and 34 

data used in this work is available in GitHub (https://github.com/yuntao-github/A2E_app). 35 

 36 
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1. Introduction 39 

Quantifying rock exhumation from the Earth interior to the surface is important information for 40 

better understanding many geological problems, ranging from orogenic growth (e.g., Zeitler et al., 41 

2001; Whipp Jr. et al., 2007) and decay (e.g., House et al., 2001; Hu et al., 2006), to resource and 42 

hydrocarbon evaluation and exploration (e.g., Armstrong, 2005; Mcinnes et al., 2005), as well as 43 

the underpinning endogenic and exogenic processes and their interactions (e.g., Burbank et al., 44 

2003; Fox et al., 2015; Tian et al., 2015). Various experimental and modeling methods have been 45 

invented for estimating the rock exhumation at different crustal levels (e.g., Braun, 2003; Reiners 46 

and Brandon, 2006; Anderson et al., 2008; Braun et al., 2012; Fox et al., 2014). 47 

One type of the methods for estimating the rock exhumation in the middle and upper crust 48 

relies on thermochronologic cooling ages acquired from by noble gas and fission-track dating of a 49 

series of accessory minerals, such as Ar-Ar, fission-track and (U-Th)/He analyses (Ault et al., 2019 50 

and references therein). Based on the closure temperature theory (Dodson, 1973), assuming 51 

monotonic cooling, a thermochronologic age records the time duration that a rock cooled through 52 

the corresponding closure temperature, which is a function of the kinematics describing fission-53 

track annealing and noble gas diffusion, and rock cooling rate (Dodson, 1973). If the depth of the 54 

closure temperature isotherm can be estimated from the crustal temperature field, a time-averaged 55 

exhumation rate can be obtained from the cooling age. 56 

Based on the thermochronologic methods and thermo-exhumation modelling, many 57 

analytical and numerical tools have been implemented for inverting the exhumation and/or the 58 

associated cooling history from thermochronologic data. These tools have different functions, such 59 

as inverting temperature history (Laslett et al., 1987; Ketcham, 2005; Gallagher, 2012), 60 

determining time-averaged exhumation rates (Brandon et al., 1998; Ehlers, 2005; Willett and 61 
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Brandon, 2013; Glotzbach et al., 2015; Van Der Beek and Schildgen, 2023), spatiotemporal 62 

changes in exhumation (Sutherland et al., 2009; Herman et al., 2013; Fox et al., 2014; Willett et 63 

al., 2020), and evolution of exhumation in two or three dimensions given a tectonic framework 64 

(Batt and Brandon, 2002; Braun, 2003; Van Der Beek et al., 2010; Valla et al., 2011; Braun et al., 65 

2012).  66 

Convincing estimate of exhumation history for a region requires both a proper sampling 67 

strategy for thermochronologic data and a robust modeling approach for exhumation inversion, 68 

especially when the rock exhumation and its spatiotemporal changes are tectonically controlled 69 

(Ehlers and Farley, 2003; Schildgen et al., 2018). A routine and efficient sampling strategy 70 

acquires themochronologic ages from an elevation transect over a significant relief and a relatively 71 

confined spatial distance. Plotting the age versus elevation, i.e., the age-elevation relationship 72 

(AER), and analyzing the slope changes of the plot can provide first-order understanding of the 73 

exhumation history (Fitzgerald et al., 1986). Because both the subsurface geothermal field and 74 

closure temperature of thermochronometers are functions of the thermal advection and cooling 75 

during rock exhumation (e.g., Dodson, 1973; Brandon et al., 1998), as well as the long-wavelength 76 

topography (Braun, 2002; Ehlers and Farley, 2003; Glotzbach et al., 2015), Estimating reliable 77 

exhumation rates requires to account for temporal variations of the thermal field caused by changes 78 

in the thermal and kinematic boundary conditions.  79 

 Fox et al. (2014) reported a linear inversion modeling method that solves exhumation 80 

history from AER, given a combination of a priori exhumation rates and assumed geothermal 81 

parameters. However, as shown in that study, the inverted exhumation history depends highly on 82 

these a priori values and geothermal assumptions. Building on that study, we here provide a 83 
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detailed test on the method and report an improved modeling method that makes use of both the 84 

AER and the modern geothermal gradient for inverting exhumation history.  85 

 86 

2. Linear inversion method 87 

Our inversion of exhumation from thermochronologic data followed the linear inversion 88 

approach of Fox et al. (2014). Rock Exhumation from the closure depth of a thermochronometer, 89 

zc, to the Earth’s surface can be described as an integral of the exhumation (ė) from the cooling 90 

age () to the present (Brandon et al., 1998; Fox et al., 2014). For a set of correlated bedrock 91 

samples with a shared history of exhumation rates (ė), their thermochronologic ages (A) and the 92 

corresponding closure depths (zc) can be expressed by the following equation.  93 

∫ 𝑒̇ 𝑑𝑡
𝝉

𝟎
= 𝑧𝑐      ⇒       𝐀ė = 𝐳𝐜 ,  (1) 94 

where A is a model matrix, with n rows (the total number of samples) and m columns (the total 95 

number of time intervals). Each row of the matrix is a discretization of a sample age, which is 96 

composed of a number of time lengths (t) followed by an age residual (Ri) and a number of zeros. 97 

The ė is a m-length vector of exhumation rates, and the zc is n-length vector of closure depths.  98 

This linear equation can be solved using the Least-Squares Regression approach assuming 99 

the Gaussian uncertainties and a priori mean exhumation rate (ėpr) and associated variance (pr) 100 

(Tarantola, 2005; Fox et al., 2014). Such an approach requires a m*m-sized parameter covariance 101 

matrix, C, and a n*n-sized data covariance matrix, C, which includes the uncertainties on the 102 

closure depths. These two matrices can be constructed as equations 2 and 3, respectively.  103 

𝐶𝑖𝑗 = {
𝜎𝑝𝑟

2 , 𝑖𝑓 𝑖 = 𝑗

0, 𝑖𝑓 𝑖 ≠ 𝑗
    (2) 104 

(𝐶𝜖)𝑖𝑗 = {
𝑒̇𝑝𝑟𝜖𝑖 , 𝑖𝑓 𝑖 = 𝑗

0, 𝑖𝑓 𝑖 ≠ 𝑗
 ,   (3) 105 
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where ėpr and pr are the a priori exhumation and the associated variance, and the i is analytical 106 

uncertainty of the age data. The construction of the data covariance matrix assumes the age data 107 

are uncorrelated. Worth noting is that previous studies used different constructions of the data 108 

covariance, changing from using the analytical age uncertainties (Fox et al., 2014; Fox et al., 2015) 109 

to constant values (Jiao et al., 2017; Stalder et al., 2020).  110 

Given the above model parameters, the equation 1 has a maximum likelihood solution for 111 

the exhumation rate vector: 112 

𝐞̇𝑝𝑜 = 𝐞̇𝑝𝑟 + 𝐂𝐀𝑇(𝐀𝐂𝐀𝑇 + 𝐂𝛜)−1(𝐳𝑐 − 𝐀𝐞̇𝑝𝑟),   (4) 113 

where ėpr is a n-length vector of ėpr, zc is the n-length vector of closure depths calculated using a 114 

combination of exhumation and geothermal model parameters (see section 3). The ėpo is the 115 

posteriori maximum likelihood estimate of the exhumation rate, with a covariance matrix, Cpo, 116 

which provides an estimate of the uncertainties on the model parameters (equation 5). 117 

𝐂𝒑𝒐 = 𝐂 − 𝐂𝐀𝑇(𝐀𝐂𝐀𝑇 + 𝐂𝛜)−1𝐀𝐂   (5) 118 

 The method also provides a model resolution matrix, R, which gives a measure on how 119 

well the model estimates correspond to the true values: 120 

𝐑 = 𝐂𝐀𝑇(𝐀𝐂𝐀𝑇 + 𝐂𝛜)−1A   (6) 121 

 122 

3. Closure depth and topographic correction  123 

 Inversion of the exhumation using the equation 1 requires accurate estimates of the closure 124 

depths of the thermochronologic ages (zc), i.e., the depth of the closure temperatures (Fig. 1). The 125 

latter can be determined by modelling the temperature of the crust using a 1D thermal-kinematic 126 

model, which accounts for heat conduction, advection and production (Turcotte and Schubert, 127 

2002): 128 
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𝜕𝑇𝑚

𝜕𝑡
= 𝜅

𝜕2𝑇𝑚

𝜕𝑧2 + 𝑒̇
𝜕𝑇𝑚

𝜕𝑧
+ 𝐴𝑏,   (7) 129 

where Ab is the heat production (in °C/Myr). This function can be numerically solved using a 130 

Crank–Nicolson time integration with a set of initial and boundary conditions, such as an initial 131 

geothermal gradient (G0) at the start time of the model and surface temperature (Ts) (Turcotte and 132 

Schubert, 2002; Fox et al., 2014).  133 

The closure temperature (Tc) of a thermochronometer is a function of cooling rate (Ṫ) at 134 

the closure time and kinetic parameters of Helium and Argon diffusion and fission-track annealing 135 

in mineral phases (Dodson, 1973): 136 

𝑇̇ =
𝛺𝑅𝑇𝑐

2

𝐸𝑎
exp (

−𝐸𝑎

𝑅𝑇𝑐
),   (8) 137 

where Ω and Ea are the diffusion frequency factor normalized by the mineral size and geometry, 138 

and activation energy, respectively. Parameter R is the gas law constant. See reviews by Reiners 139 

and Brandon (2006) for the Ω and Ea parameter values for different thermochronometers.  140 

 The cooling rate (Ṫ) can be computed from the derivative of transient geotherms, Tm(t,z) 141 

that can be computed using equation 7 (Fox et al., 2014): 142 

𝑇̇ =
𝜕𝑇𝑚

𝜕𝑡
+ 𝑒̇

𝜕𝑇𝑚

𝜕𝑧
,   (9) 143 

where ė is unknown exhumation that can be computed through the equation 1. 144 

Combining the equations 7-9, the closure depth of a thermochronological system (zc,m) can 145 

be numerically computed. This depth also needs a topographic correction, because of the 146 

topographic perturbation, p, on the isotherms (Braun, 2002; Ehlers and Farley, 2003; Fox et al., 147 

2014; Glotzbach et al., 2015). Such a perturbation can be determined by the following equation 148 

(Mancktelow and Grasemann, 1997; Fox et al., 2014):  149 

𝑝(𝜆) = (
𝛾0−𝛾𝑎

𝛾𝑧𝑚

) exp (−𝑧𝑚(
𝑒̇

2𝜅
+ √(

𝑒̇

2𝜅
)

2
+ (2𝜋𝜅)2) ℎ(𝜆),    (10) 150 
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where a is the atmospheric lapse rate, 0 and zm are the thermal gradients at the model surface and 151 

at the depth zm. The h() is a cosine function expression of the model surface topography, which 152 

can be determined using the discrete Fast Fourier Transform at the frequency domain. Here we use 153 

the SRTM30 data for computing the topography of regions of interests.  154 

Finally, the closure depth of the zc is corrected by the topographic perturbation (e.g., 155 

Brandon et al., 1998): 156 

(𝑧𝑐)𝑖 = (𝑧𝑐,𝑚)𝑖 − 𝑝𝑖 + ℎ𝑖,   (11) 157 

where zc,m is the closure depth calculated using the 1D geothermal model, p and h are the 158 

topographic perturbation and elevation difference with respect to the mean elevation at the sample 159 

site (Fig. 1), and the i denotes the i-th age. 160 

As shown by the equations 7, 8 and 9, the closure depth is a non-linear function of rock 161 

cooling and exhumation. Therefore, the problem of interest is non-linear, which can be addressed 162 

by iterative numerical modelling methods. In this work, the solution of exhumation is 163 

approximated by coupling and iterating the linear inversion and closure depth modeling. As shown 164 

in Tarantola (2005) and Fox et al. (2014), the algorithm converges in a few iterations and produces 165 

stable outputs. 166 

 167 

4. Model evaluation 168 

Quantitative model assessment relies on a misfit value, i.e., the difference between 169 

observed and predicted ages weighted by the observed analytical uncertainty: 170 

𝛷𝜏 = √1

𝑁
∑ (

𝜏𝑝𝑟𝑑,𝑖−𝜏𝑜𝑏𝑠,𝑖

𝜀𝑖
)

2
𝑁
𝑖=1 ,   (12) 171 

where obs,i and prd,i are the observed and predicted i-th age calculated from the exhumation history, 172 

and i is the uncertainty of the observed i-th age. Following Fox et al. (2014), both the a priori and 173 
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a posteriori misfits, , pr and , po, are determined for the models. The difference between these 174 

two misfit values provides a measure of the model improvements. A smaller posteriori misfit value 175 

indicates an improved model result, and vice versa.  176 

 To evaluate the geothermal parameters, we also determined the misfit value of the 177 

predicted to the observed modern geothermal gradient value using the following equation: 178 

𝛷𝛾 = √(
𝛾𝑝𝑟𝑑−𝛾𝑜𝑏𝑠

𝜀𝛾
)

2

,   (13) 179 

where  prd and  obs are the predicted and observed geothermal gradients, and  is the uncertainty 180 

of the observed value. Because the depth-temperature curves are slightly non-linear, the predicted 181 

geothermal gradient (prd) is calculated as a mean value for the upper 1 km of the model. Similar 182 

as the assessment of age data, we also determined the a priori and a posteriori misfits, , pr and 183 

, po values for assessing the geothermal parameters. 184 

  185 

5. The reference inverse model 186 

Following Willett and Brandon (2013) and Fox et al. (2014), here we use the published 187 

AFT data acquired from Denali Massif (Fitzgerald et al., 1995) for method demonstration (Fig. 188 

2a). A break-in-slope is shown by the AER at ~7-6 Ma, indicating a coeval change in slope, i.e., 189 

the apparent exhumation rate (Fitzgerald et al., 1995), increasing from 0.17 ± 0.04 km/Myr to 1.2 190 

± 0.6 km/Myr (Fig. 2b). AER regression of young dates from the lower part of the transect 191 

(between 4.3-2.0 km) also predicts a closure depth that is the intercept at -3.3  3.4 km (Fig. 2b). 192 

However, using the present geothermal gradient (38.9 °C/km) (Fox et al., 2014) and a nominal 193 

closure temperature of AFT method (110 °C) (Reiners and Brandon, 2006) and a -12 °C surface 194 

temperature (Fox et al., 2014), the closure depth is predicted as ~3.1 km beneath the mean elevation 195 
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(~4 km), which is equivalent to an elevation of ~0.9 km. This closure depth is significantly higher 196 

than the intercept (-3.3  3.4 km). Such a difference indicates the AER slope of the lower part 197 

overestimates the exhumation rates since ~7-6 Ma. 198 

Following the protocol outlined in Fox et al. (2014), the reference inverse model uses the 199 

following parameters, a start time at 25 Ma, a time interval (t) of 2.5 Myr, a 4020 m mean 200 

elevation, a -12 °C surface temperature, a priori exhumation rate of 0.5 ± 0.15 km/Myr, a 24 °C/km 201 

initial geothermal gradient, a 38.9 °C/km present geothermal gradient, a model block with a 202 

thickness of 80 km, and a 30 km2/Myr thermal diffusivity.  203 

 The exhumation history output of the reference model is shown in Fig. 3. The inversion 204 

results reveal an more than two-fold increase of exhumation rate to a value of ~0.6 km/Myr at 7.5 205 

Ma (Fig. 3b), consistent with the development of the break-in-slope in the AER. The model also 206 

shows a gradual decrease of exhumation rate from a priori exhumation rate (0.5 km/Myr) to 0.3 207 

km/Myr from 25 Ma to 7.5 Ma. The invariant exhumation during the starting stage resulted from 208 

the fact that all ages are younger than 17.5 Ma, and thus the data have no resolution for the time 209 

span. These results are similar to those of Fox et al. (2014). The posteriori misfit for the age is 210 

1.88, significantly smaller than that of the priori model (4.51), suggesting the improvement by the 211 

inverse modeling (Fig. 3b). Such a model also provides reasonable fit to the modern temperature 212 

field, as shown by the small misfit (0.39) in the geothermal gradient (Fig. 3b). 213 

 The resolution of the inverted exhumation history can be assessed by the resolution matrix 214 

R (equation 6). Imaging of the matrix shows the model provides no resolution for the time period 215 

before 17.5 Ma (Fig. 3c), consistent with the fact that the oldest input age is younger than 16.1 ± 216 

0.9 Ma. For the time span between 15 and 5 Ma, the model resolution is high, as shown by the 217 

diagonal elements of the matrix, with the highest resolution at 7.5-5 Ma span, including eight age 218 
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date points (Fig. 3c). The most recent two phases of exhumation (5-0 Ma) are less resolved, as 219 

shown by the nearly equal resolution values for the two phases, i.e., the latest four pixels of the 220 

matrix (Fig. 3c). This is because no input ages fall into this time span, when the modeled 221 

exhumation results are time-averaged values.  The slight decrease in the last stage reflects changes 222 

in geothermal gradient. 223 

For assessing the correlation among model parameters, the calculated covariance matrix is 224 

scaled by the diagonal covariance matrix (Fox et al., 2014): 225 

𝐶̂𝜉𝛽 =
𝐶𝜉𝛽

√𝐶𝜉𝜉√𝐶𝛽𝛽
   (14) 226 

The correlation matrix for the reference model is shown in Fig. 3d. The diagonal correlation 227 

values are 1 and off-diagonal ones are dominantly negative, indicating anti-correlated uncertainties 228 

(Fig. 3d), which suggests exhumation parameters were not resolved independently by the modeling. 229 

In fact, it is expected to have the anti-correlation, because, given two steps of rock exhumation, 230 

decreasing the exhumation during one step would increase that of the other step. 231 

 232 

6. Dependence on model parameters and proposed solutions 233 

 Here we use the Denali data set for demonstrating the influences of (1) the initial 234 

geothermal parameters, (2 and 3) the a priori mean and variance values of the exhumation rates, 235 

and (4) time interval length on the inverted exhumation history. Also discussed in this section are 236 

the solutions for optimizing the model setup for these parameters.  237 

 238 

6.1. Dependence on initial thermal model 239 

Different initial model geothermal parameters would lead isotherms to shift either 240 

downward to greater depths or upwards to the Earth surface, and either compression or expansion 241 
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among isotherms. Therefore, the initial thermal models have systematic influence on the closure 242 

depths and consequently the a posterior exhumation.  243 

This is demonstrated by modelling experiments presented in Figure 4. Using a relatively 244 

lower initial geothermal gradient produces relatively higher a posterior exhumation rates 245 

(comparing the models shown in Figs. 4a-4f), and vice versa. Such an influence is significant even 246 

for the time and elevation intervals with multiple age constraints (10-5.0 Ma). For example, using 247 

relatively lower geothermal gradients of <22 °C/km would yield significantly higher average 248 

exhumation rates of >0.75 km/Myr for the last two stages (<5 Ma) (Figs. 4a-4c) than those (<0.6 249 

km/Myr) using higher initial geothermal gradients of 26 °C/km (Figs. 4d-f). Further, it is also 250 

shown that models using higher and lower prior geothermal gradients of <20 °C/km (Figs. 4a-4b) 251 

and >30 °C/km (Figs. 4e-4f) yield worse misfits (, po > 1) for the observed present-day 252 

geothermal gradient than those (, po < 1) using medium initial gradients (22-26 °C/km) (Figs. 3 253 

and 4c-4d).  254 

These results highlight the importance of taking geothermal parameters into account in 255 

inverting the exhumation history and model evaluation. We proposed to run a set of models using 256 

different a priori geothermal parameters, especially the initial geothermal gradient, to search for 257 

the proper intitial geothermal setup that provides reasonable fits to both the ages and the modern 258 

geothermal gradient (see section 7 for details). 259 

 260 

6.2. Dependence on the a priori exhumation rate 261 

 Both the mean and variance of the a priori exhumation rate have important influences on 262 

the model solution for the maximum likelihood estimation method. Our modeling experiments 263 

show that the mean value of the a priori exhumation has systematic influences on the inverted 264 
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exhumation. Similar to the reference model, exhumation of the preceding three stages (25-17.5 265 

Ma) without age constraints is the same as the a priori input. For the following stages, a relatively 266 

higher mean value of the a priori exhumation results in relatively lower a posteriori exhumation 267 

rates (comparing different models presented in Fig. 5). For example, models using the mean a 268 

priori exhumation of 0.4 km/Myr yield a posterior exhumation of 0.5-0.9 km/Myr for the stages 269 

<7.5 Ma (Figs. 5a-5c), whereas those using a higher a priori value ( 0.6 km/Myr) result in a 270 

posterior exhumation of 0.45-0.6 km/Myr for the same stages (Figs. 5d-5f). This is because a 271 

relatively higher a priori value, which would be used for calculating thermal models, would lead 272 

to a quicker increase in geothermal gradient and thus relatively shallower closure depths and 273 

relatively lower exhumation rates.  274 

 The variance of the a priori exhumation rate has important influence on both the 275 

exhumation rates and the posterior variance. Models with lower a priori variances yield less 276 

variations in the a posterior exhumation history, and vice versa (comparing models in Fig. 6). 277 

Further, models using the input variance of the a priori exhumation of 0.2-0.3 km/Myr (40-60% 278 

of the mean value), the variation of the inverted exhumation history becomes stable (Figs. 3, 6c-279 

6d). Given that the uncertainty of the input age data, which is often 10%-20% at a two-sigma level, 280 

larger variance of the inverted exhumation would be unreasonable (Figs. 6e-6f), especially when 281 

multiple age data are available at different elevations. 282 

 We proposed to run a set of models using different a priori mean value of erosion rates to 283 

search for the one that provides appropriate fits to both the ages and the modern geothermal 284 

gradient. As to the a priori variance, we propose to use a value 30-70% of the a priori erosion rate. 285 

Future applications of the method may need to test a set of the variance inputs so as to get a stable 286 
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exhumation output. Larger a priori variance would lead to larger uncertainties for the exhumation 287 

rates, which is unreasonable and non-meaning for geological studies.  288 

 289 

6.3. Dependence on time interval length 290 

Constraining the onset time of major changes in exhumation rates is one of the important 291 

tasks for inverting the exhumation history from thermochronologic data. Using a large time 292 

interval length cannot accurately capture the potential transition time of exhumation rates. As 293 

shown in the Figs. 7b-7d, models using time lengths of 3.5 Ma show an abrupt increase in 294 

exhumation at 7-6 Ma, consistent with that shown in AER plot. However, the models using a large 295 

time interval length (4.5 Ma) overestimate the onset time of the enhanced exhumation (Figs. 7e-296 

7f). Further, a relatively shorter time length would smooth temporal changes in exhumation rates, 297 

leading to an underestimating of the variations. For example, as shown in the Fig. 7a, the model 298 

using a relatively shorter time length (0.5 Ma) yields an exhumation variation between 0.35-0.60 299 

km/Myr, significantly lower than those using relatively larger time interval lengths (Figs. 7b-7f). 300 

In addition, a shorter time length also significantly increases the computational time and resources, 301 

especially when processing a large number of vertical transects. 302 

Given the interests in major exhumation changes, we propose the time interval length (t) 303 

should be optimized for constraining the transitional time and the associated exhumation changes. 304 

Therefore, the time interval length should be set as the absolute uncertainty at two sigma levels at 305 

the break point (b) (equation 15). If the break point is unclear in AER, we suggest to use the 306 

absolute uncertainty at two-three sigma levels at the median age value (̃) (equation 15), so as to 307 

focus on the time intervals where ages cluster.  308 

∆𝜏 = {
𝛿𝑏, 𝑖𝑓 𝑎 𝑏𝑟𝑒𝑎𝑘 𝑖𝑛 𝑠𝑙𝑜𝑝𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 

𝛿̃, 𝑖𝑓 𝑛𝑜 𝑐𝑙𝑒𝑎𝑟 𝑏𝑟𝑒𝑎𝑘 𝑖𝑛 𝐴𝐸𝑅
 ,   (15) 309 
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where  is the relative age uncertainty at two sigma levels, varying between 10%-20% among 310 

different studies. Following this method, the Denali case should use a time length of ~1.5 Ma (7 311 

Ma × 20%), slightly lower than that used in the reference model (Fig. 3).  312 

 313 

7. A new modeling guideline 314 

 Following the modelling protocol outlined above, a stepwise modeling guideline is 315 

developed for addressing the model dependencies on the initial geothermal parameter, the a priori 316 

exhumation rates and time interval length. As illustrated in the Figure 8, the approach includes the 317 

following three steps.  318 

(i) Estimating a time-averaged erosion rate. Dividing each nominal closure depth, which 319 

can be estimated from the nominal closure temperatures and the modern geothermal gradient, by 320 

the corresponding age results in a time-averaged erosion rate. Then, a mean value can be 321 

determined by averaging the rates. Such a mean value and assumed variance (30% - 50% in this 322 

work) will be used as the a priori erosion rate.  323 

(ii) Optimizing the fit to the modern geothermal gradient. This step runs a set of inversion 324 

models (20 in this work) using different geothermal gradients, ranging from 50% to 120% of the 325 

modern value, together with the a priori erosion rate estimated in the first step, for determining 326 

the initial geothermal gradient that yields the maximum fit to the modern value, i.e., the minimum 327 

 (equation 13). 328 

(iii) Optimizing the fit to both the age data and the geothermal gradient. Given the model 329 

dependence on the geothermal parameters (see section 6.1), a comprehensive evaluation of the 330 

models should assess not only the age misfit (), but also that of the geothermal gradient (). In 331 

the third step, a set of inversion models (20 in this work) are run using different a priori erosion 332 
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rates, changing from 10% to 200% of the mean value estimated in the first step, together with the 333 

estimated geothermal gradient by the second step, to search for the model that provides the best fit 334 

to both the age data and the modern geothermal gradient. This study uses the following compound 335 

misfit function to evaluate the models: 336 

𝛷 =  𝛷𝜏 + 𝛷𝛾/√𝑁,   (17) 337 

where  and  are misfit values for the age and geothermal gradient calculated using the 338 

equations 12 and 13, and N is the number of age inputs. Dividing  by the square root of N in this 339 

equation, as also done for calculating the  (equation 12), means that the modern geothermal 340 

gradient is given the same weight as an age input for evaluating the model. 341 

 342 

8. Synthetic models for testing the new modeling guideline 343 

We firstly test our stepwise inversion scheme by synthetic datasets generated by thermo-344 

kinematic models modified from Braun et al. (2012) (their Fig. 9). The synthetic age dataset is 345 

produced by Pecube using the following parameters: a steady-state topography with a 20-km 346 

wavelength and a 2-km relief, a model block thickness of 30 km with a basal temperature of 600 °C, 347 

a thermal diffusivity of 25 km2/Myr, a sea level temperature of 10 °C, a lapse rate of 5 °C/km. 348 

Worth noting is that these parameters are the same as Braun et al. (2012). For model details, see 349 

Braun et al. (2012). For model setup see the supplementary Figure S1.  350 

 Synthetic AFT and AHe ages (supplementary Tables T1) were calculated for both surface 351 

and borehole samples for four different exhumation histories. The synthetic models a and b are 352 

characterized by a sudden decrease in exhumation rate from 1 km/Myr to 0.1 km/Myr (model-a, 353 

same as the that shown in the Fig. 9 of Braun et al. 2012) and 0.3 km/Myr (model-b) at 5 Ma, 354 

respectively. The models c and d include a sudden increase in exhumation rate from 0.3 km/Myr 355 
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(model-c) and 0.1 km/Myr (model-d) to 1 km/Myr at 5 Ma, respectively. All models start from 40 356 

Ma. Except for the synthetic age data (plotted in the first row of Fig. 9), these four models generate 357 

modern geothermal gradients of 26.5 °C/km, 28.6 °C/km, 35.5 °C/km and 34 °C/km for the 358 

uppermost 2-km crust, respectively.  359 

Inversion of rock exhumation history used a start time of 20 Ma and a time interval length 360 

of 1.0 Myr for all synthetic datasets, which were assigned with a 6% uncertainty. As shown by the 361 

modelling output visualized in Fig. 9a, our inversion of the rock exhumation from the synthetic 362 

dataset-a finds an optimal initial geothermal gradient of 22 °C/km and a priori rate of 0.85  0.25 363 

km/Myr, and yields a decrease in exhumation rates from ~0.9 km/Myr (before 6 Ma) to 0.3-0.1 364 

km/Myr (4-0 Ma), via a gradual decrease during 6-4 Ma. The data has no resolution for the 365 

exhumation history before 10 Ma.  Comparing to the synthetic model (abrupt decrease from 1 366 

km/Myr to 0.1 km/Myr at 5 Ma), the rates before 5 Ma are underestimated by 0.1 km/Myr, whereas 367 

the values after 5 Ma overestimated by 0.1-0.3 km/Myr.  368 

The inversion for the synthetic dataset-b results in an optimal initial geothermal gradient 369 

of 21.7 °C/km and a priori rate of 0.81  0.24 km/Myr, and an increase in exhumation rates from 370 

~0.85 (before 5 Ma) km/Myr to 0.4-0.5 km/Myr (4-0 Ma), via a gradual decrease during 5-4 Ma 371 

(Fig. 9b). Comparing to the synthetic model (abrupt decrease from 1 km/Myr to 0.3 km/Myr at 5 372 

Ma), the rates before 5 Ma are underestimated, whereas the values before 5 Ma are overestimated 373 

by ~0.1-0.2 km/Myr. 374 

The inversion for the synthetic dataset-c yields an optimal initial geothermal gradient of 375 

24.3 °C/km and a priori rate of 0.55  0.17 km/Myr, and a decrease in exhumation rates from 376 

~0.45-0.3 km/Myr (before 5 Ma) to 1.0 km/Myr (3-0 Ma), via a gradual increase during 5-3 Ma 377 

(Fig. 9c). Comparing to the synthetic model (abrupt decrease from 0.3 km/Myr to 1.0 km/Myr at 378 
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5 Ma), the rates during 5-3 Ma are underestimated, whereas the rates before 5 Ma overestimated 379 

by 0-0.15 km/Myr.  380 

The inversion for the synthetic dataset-d produces an optimal initial geothermal gradient 381 

of 24.5 °C/km and a priori rate of 0.25  0.08 km/Myr, and an increase in exhumation rates from 382 

~0.1-0.2 km/Myr (before 5 Ma) to 1.0 km/Myr (3-0 Ma), via a gradual decrease during 5-3 Ma 383 

(Fig. 9d). Comparing to the synthetic model (abrupt decrease from 1 km/Myr to 0.3 km/Myr at 5 384 

Ma), the rates before 5 Ma are slightly overestimated, whereas the values during 5-3 Ma are 385 

underestimated. 386 

 To summarize, the inverted rock exhumation histories for the four synthetic datasets match 387 

the whole picture of the synthetic “truth”, but the variations in exhumation are underestimated, 388 

and the sharp changes at 5 Ma are smoothed. It is worth noting that inversions using only surface 389 

samples produce similar results (supplementary Fig. S2). 390 

 391 

9. Natural examples for testing the new modeling guideline 392 

Below we use three examples to demonstrate our new method. The Denali data is used 393 

again for demonstrating the efficiency of our method in finding the proper initial geothermal 394 

gradient and the a priori exhumation rate. Then, we further test our method using the Himalayan 395 

Dhanladar range and KTB borehole (the Continental Deep Drilling Project in Germany) 396 

thermochronologic data for representing regions of fast and slow erosion, respectively. 397 

9.1 The Denali transect 398 

Using the stepwise inversion modeling guideline, the Denali transect yields an exhumation 399 

history generally similar with that of the reference model (Fig. 10a). Differences in the a priori 400 

parameters include that the new inversion finds and uses an initial geothermal gradient of 401 
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25.2 °C/km (slightly higher than that of the reference model), a priori erosion rate of 0.46  0.23 402 

km/Myr (slightly lower than that of the reference model) and a time interval length of 1.5 Ma. The 403 

combination of these a priori parameters result in a major increase in erosion rate to 0.55-0.6 404 

km/Myr at 6 Ma, which is 1.5 Myr latter than that of the reference model (7.5 Ma). The subtle 405 

differences from the reference model mainly result from the time interval length used in these 406 

models. Comparing the misfit values, the new model produces slightly better fits than the reference 407 

model, with the a posterior misfit values of 1.81 and 0.11 for the observed age and geothermal 408 

data. 409 

 410 

9.2 Himalayan Dharladar range transect 411 

AFT and ZHe data from the Dharladar range in the northwestern Himalayas, reported in 412 

the publications by Deeken et al. (2011) and Thiede et al. (2017) are used as an example for regions 413 

of young cooling ages and fast exhumation. The samples were collected in an elevation range 414 

between 1.5 and 4.5 km, covering a topographic relief of 3 km within a spatial distance of ~15 km 415 

on the hanging wall of the main central thrust of the Himalayan fold-thrust-belt (Deeken et al., 416 

2011; Thiede et al., 2017). AER slope regression of ZHe and AFT ages performed in Deeken et al. 417 

(2011) produced apparent erosion rates of ~2.8 km/Myr and ~0.2 km/Myr for the time intervals 418 

6.4–14.5 Ma and 1.7–3.7 Ma, respectively, implying a potential increase in erosion rates at ~3.7-419 

6.4 Ma. Using geothermal gradients of 25-45 °C/km, time-averaged erosion rates were estimated 420 

as 0.8-2.0 km/Myr since 3.7 Ma (Deeken et al., 2011).  421 

The modelling of the Dharladar range data uses a modern geothermal gradient constraint 422 

of 45  8 °C/km (Deeken et al., 2011). The relatively large uncertainty is assigned for the 423 

geothermal gradient, because of the absence of direct geothermal measurements in the study area. 424 
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Our exhumation inversion for the AER data using the stepwise modeling guideline yields relatively 425 

slow rates of 0.1-0.6 km/Myr and fast rates of 1.2-1.6 km/Myr before and after ~3 Ma, respectively 426 

(Fig. 10b). The abrupt increase of exhumation rates at ~3 Ma is generally consistent with the 427 

estimates from the slope regression results of Deeken et al. (2011). However, the inverted 428 

exhumation rates since 3 Ma are significantly lower than the estimation from the AER slope (~2.8 429 

km/Myr), which is likely due to the overestimation of exhumation of the AER slope due to 430 

topographic perturbation of isotherms. Such a perturbation is a function of exhumation rates: the 431 

higher the exhumation, the larger the perturbation (Glotzbach et al., 2015). The modelling yields 432 

a history of the geothermal gradient that gradually increases to a modern value of ~46 °C/km, close 433 

to the input value (45  8 °C/km).  434 

 435 

9.3 KTB borehole 436 

The KTB borehole yields a large thermochornologic and geochronologic age data 437 

(Warnock and Zeitler, 1998; Stockli and Farley, 2004). Previous studies suggest the borehole are 438 

truncated by multiple faults, which offset the age-depth relationship (Wagner et al., 1997). Here 439 

we use the data at depths shallower than 1 km, where data are abundant and have linear relationship 440 

with depths.  441 

The KTB apatite, zircon and titanite (U-Th)/He (AHe, ZHe and THe) and AFT age data 442 

vary largely between 85-50 Ma. These clustered ages have been interpreted as indicating a late 443 

Cretaceous phase of exhumation, followed by slow exhumation (Wagner et al., 1997; Stockli and 444 

Farley, 2004), as also shown by previous thermal history reconstructions based on k-feldspar 445 

40Ar/39Ar data (Warnock and Zeitler, 1998).  446 
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Our modeling, using the AER data and a modern geothermal gradient of 27.5  2.8 °C/km 447 

(Clauser et al., 1997), shows that elevated exhumation rates (0.1-0.13 km/Myr) between 80-50 Ma, 448 

followed by slower exhumation rates of ~0.04 km/Myr (Fig. 10c), are similar to previous estimates 449 

(Wagner et al., 1997; Warnock and Zeitler, 1998; Stockli and Farley, 2004). Associated with 450 

changes in exhumation, geothermal gradient gradually decreases from the peak values at 70-60 451 

Ma to a value of ~28 °C/km at the present-day. 452 

 453 

10. Conclusion 454 

The a priori information has important effects on the inversion results using the least-455 

squares inversion method. Our study demonstrates the importance of geothermal gradient and the 456 

a priori exhumation rate in estimating the exhumation history from the thermochronology data. 457 

To take into account the geothermal data into the exhumation history inversion, we outlined a 458 

stepwise inversion method that first searches for the appropriate initial geothermal gradient, which 459 

is then used in the modelling searching for the a priori exhumation rate. Our modelling guideline 460 

produces exhumation history and geothermal gradient that provide reasonable fits for both the 461 

observed AER and modern geothermal data, as tested by datasets of both synthetic models and 462 

natural samples. The code and data used in this work are available in GITHUB 463 

(https://github.com/yuntao-github/A2E_app). 464 
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Figures captions: 626 

 627 

Figure 1. Schematics showing the relationship among closure depth (zc), topography and its 628 

perturbation (p). The parameter h denotes the difference between the sample and the mean 629 

elevation, and zm the depth of the closure temperature (Tc, the lower dashed line) derived from 630 

the mean elevation (upper dashed line) and intial temperature field (Tinitial) and exhumation 631 

history (ė).  632 
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 633 

 634 

 635 

Figure 2. (a) Distribution of AFT age data (pentagons, colored by age values) over the elevation 636 

contour map computed using the SRTM30 data of the Denali massif in Alaska. AFT data 637 

sourced from Fitzgerald et al. (1995). (b) AER and the slope fitting results using isoplotR 638 

(Vermeesch, 2018). AER fitting of ages older than 6.7 Ma yields a slope of 0.17 ± 0.04 km/Myr; 639 

whereas the fitting of ages between 6.5 Ma and 4.3 Ma produces a slope of 1.2 ± 0.6 km/Myr 640 

and an intercept at -3.3 ± 3.4 km. The upper and lower dashed lines denote the mean elevation 641 

(4.02 km) and the depth of the nominal closure temperature (110 °C), calculated using the 642 

modern geothermal gradient (38.9 °C/km) and the surface temperature (-12 °C). 643 

 644 
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 645 

Figure 3. Inputs and outputs of the reference model for the Denali AFT. (a) Comparison between 646 

the observed (in black) and predicted (in blue) AER. (b) The a posterior exhumation history 647 

generated by the reference model. Thick and thin lines are the mean and one standard deviation 648 

of the inverted exhumation history. The red dash and solid lines are the history of the geothermal 649 

gradients, predicted by the a priori and a posterior models, respectively. (c) and (d) Plots of the 650 

resolution and correlation matrix. 651 



 31 

 652 

Figure 4. Histories of exhumation and geothermal gradients, predicted by models using different 653 

initial geothermal gradients between 18 °C/km and 34 °C/km. The blue thick and thin lines are 654 

the mean and one standard deviation of the inverted exhumation history. The red dash and solid 655 

lines are the history of the geothermal gradients, predicted by the a priori and a posterior 656 

models, respectively. Except for the initial geothermal gradient, other parameters are the same as 657 

the reference model. Comparing to the reference model which used an initial geothermal gradient 658 

of 24 °C/km (Fig. 3), models using a lower initial geothermal gradient yield relatively higher 659 

exhumation rates (panels a-c), whereas those using a higher gradient produce lower exhumation 660 

rates (panels d-f).  661 

 662 
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 663 

Figure 5. Histories of exhumation and geothermal gradients, predicted by models using different 664 

a priori mean values of the exhumation rates, ranging from 0.1 km/Myr to 0.9 km/Myr. Other 665 

parameters are the same as the reference model. For explanation of the plotted lines, see Figure 666 

4. Comparing to the reference model which used a priori mean exhumation of 0.5 km/Myr (Fig. 667 

3), models using a lower a priori exhumation yield relatively higher exhumation rates for the last 668 

three stages (7.5 - 0 Ma) (panels a-c), whereas those using a higher a priori exhumation produce 669 

lower exhumation rates for the last three stages (panels d-f). 670 

 671 
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 672 

Figure 6. Histories of exhumation and geothermal gradients, predicted by models using different 673 

a priori variance values (between 0.05 km/Myr and 0.5 km/Myr) of the exhumation rates (0.5 674 

km/ Myr).  Other parameters are the same as the reference model. For explanation of the plotted 675 

lines, see Figure 4. Comparing to the reference model which used a priori variance of the 676 

exhumation (0.25 km/Myr) (Fig. 3), models using a lower a priori variance yield limited 677 

variations and uncertainties in exhumation (panels a-c), whereas those using a higher a priori 678 

variance produce larger variations and uncertainties (panels d-f). 679 

 680 
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 681 

Figure 7. Histories of exhumation and geothermal gradients, predicted by models using different 682 

time interval lengths.  Other parameters are the same as the reference model. For explanation of 683 

the plotted lines, see Figure 4. Comparing to the reference model which used a time interval 684 

length of 2.5 Ma (Fig. 3), models using smaller time interval lengths yield lower variations in 685 

exhumation (panels a-c) than other using larger time interval lengths (panels d-f). 686 

 687 
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 688 

Figure 8. Flow chat of a stepwise modeling method, which includes three main steps. The first 689 

step estimates a mean exhumation rate (e0) using the nominal closure temperatures, modern 690 

geothermal gradient and sample ages. The mean rate is used in the second step which runs a set 691 

of models using different initial geothermal gradients for optimizing the initial geothermal 692 

model. The third step runs a set of models using different a priori exhumation rates, which is 693 

generated around the mean rate, and the optimized initial geothermal model by the second step, 694 

to find the best model that yields the minimum misfit to both age data and modern geothermal 695 

gradient. 696 

 697 
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 698 

Figure 9. The best-fit model for the synthetic dataset-a, -b, -c and -d using the modeling method 699 

shown in figure 8. First row: Comparison between the observed (in black) and predicted (in blue) 700 

AER. Second row: plots of observed and modeled ages. Third row:  Histories of exhumation and 701 

geothermal gradients. The black line marks the “true” exhumation history used for simulating the 702 

age dataset, whereas the blue thick and thin lines are the mean and one standard deviation of the 703 
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inverted exhumation. The red dash and solid lines are the history of the geothermal gradients, 704 

predicted by the a priori and a posterior models, respectively, whereas the cyan line and polygon 705 

denotes the modern geothermal gradient. Fourth and bottom row: Plots of the resolution and 706 

correlation matrix. 707 

 708 
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 709 

Figure 10. The best-fit model for the Denali (a), Dhanladar range (b) and upper KTB (c) 710 

transects, using the modeling method shown in figure 8. See Fig. 8 for panel interpretations. 711 


