

1 **An efficient approach for inverting rock exhumation from thermochronologic age-elevation**
2 **relationship**

3

4 Yuntao Tian^{1,2*}, Lili Pan¹, Guihong Zhang¹, Xinbo Yao¹

5

6 ¹ Guangdong Provincial Key Laboratory of Geodynamics and Geohazards, School of Earth
7 Sciences and Engineering, Sun Yat-sen University, Guangzhou 510275, China

8 ² Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082,
9 China

10

11 *Corresponding author:

12 Yuntao Tian

13 tianyuntao@mail.sysu.edu.cn

14

15

16 **Abstract**

17 This study implements the least-squares inversion method for solving the exhumation history from
18 thermochronologic age-elevation relationship (AER) based on the linear equation among
19 exhumation rate, age and total exhumation from the closure depth to the Earth surface. Modelling
20 experiments suggest significant and systematic influence of initial geothermal model, the *a priori*
21 exhumation rate and the time interval length on the *a posteriori* exhumation history. Lessons
22 learned from the experiments include that (i) the modern geothermal gradient can be used for
23 constraining the initial geothermal model, (ii) a relatively higher *a priori* exhumation rate would
24 lead to systematically lower *a posteriori* exhumation, and *vice versa*, (iii) the variance of the *a*
25 *priori* exhumation rate controls the variation of the inverted exhumation history, (iv) the choice of
26 time interval length should be optimized for resolving the potential temporal changes in
27 exhumation. To mitigate the dependence of inverted erosion history on these initial parameters,
28 we implemented a new stepwise inverse modeling method for optimizing the model parameters
29 by comparing the observed and predicted thermochronologic data and modern geothermal
30 gradients. Finally, method demonstration was performed using four synthetic datasets and three
31 natural examples of different exhumation rates and histories. It is shown that the inverted rock
32 exhumation histories from the synthetic datasets match the whole picture of the “truth”, although
33 the temporal changes in the magnitude of exhumation are underestimated. Modelling of the
34 datasets from natural samples produce geologically reasonable exhumation histories. The code and
35 data used in this work is available in GitHub (https://github.com/yuntao-github/A2E_app).

36

37 **Key words:** Thermochronology; Exhumation; Numerical inversion; Age-elevation relationship;
38 Least-squares method; Geothermal model

39 **1. Introduction**

40 Quantifying rock exhumation from the Earth interior to the surface is important information for
41 better understanding many geological problems, ranging from orogenic growth (e.g., Zeitler et al.,
42 2001; Whipp Jr. et al., 2007) and decay (e.g., House et al., 2001; Hu et al., 2006), to resource and
43 hydrocarbon evaluation and exploration (e.g., Armstrong, 2005; McInnes et al., 2005), as well as
44 the underpinning endogenic and exogenic processes and their interactions (e.g., Burbank et al.,
45 2003; Fox et al., 2015; Tian et al., 2015). Various experimental and modeling methods have been
46 invented for estimating the rock exhumation at different crustal levels (e.g., Braun, 2003; Reiners
47 and Brandon, 2006; Anderson et al., 2008; Braun et al., 2012; Fox et al., 2014).

48 One type of the methods for estimating the rock exhumation in the middle and upper crust
49 relies on thermochronologic cooling ages acquired from noble gas and fission-track dating of a
50 series of accessory minerals, such as Ar-Ar, fission-track and (U-Th)/He analyses (Ault et al., 2019
51 and references therein). Based on the closure temperature theory (Dodson, 1973), assuming
52 monotonic cooling, a thermochronologic age records the time duration that a rock cooled through
53 the corresponding closure temperature, which is a function of the kinematics describing fission-
54 track annealing and noble gas diffusion, and rock cooling rate (Dodson, 1973). If the depth of the
55 closure temperature isotherm can be estimated from the crustal temperature field, a time-averaged
56 exhumation rate can be obtained from the cooling age.

57 Based on the thermochronologic methods and thermo-exhumation modelling, many
58 analytical and numerical tools have been implemented for inverting the exhumation and/or the
59 associated cooling history from thermochronologic data. These tools have different functions, such
60 as inverting temperature history (Laslett et al., 1987; Ketcham, 2005; Gallagher, 2012),
61 determining time-averaged exhumation rates (Brandon et al., 1998; Ehlers, 2005; Willett and

62 Brandon, 2013; Glotzbach et al., 2015; Van Der Beek and Schildgen, 2023), spatiotemporal
63 changes in exhumation (Sutherland et al., 2009; Herman et al., 2013; Fox et al., 2014; Willett et
64 al., 2020), and evolution of exhumation in two or three dimensions given a tectonic framework
65 (Batt and Brandon, 2002; Braun, 2003; Van Der Beek et al., 2010; Valla et al., 2011; Braun et al.,
66 2012).

67 Convincing estimate of exhumation history for a region requires both a proper sampling
68 strategy for thermochronologic data and a robust modeling approach for exhumation inversion,
69 especially when the rock exhumation and its spatiotemporal changes are tectonically controlled
70 (Ehlers and Farley, 2003; Schildgen et al., 2018). A routine and efficient sampling strategy
71 acquires themochronologic ages from an elevation transect over a significant relief and a relatively
72 confined spatial distance. Plotting the age versus elevation, i.e., the age-elevation relationship
73 (AER), and analyzing the slope changes of the plot can provide first-order understanding of the
74 exhumation history (Fitzgerald et al., 1986). Because both the subsurface geothermal field and
75 closure temperature of thermochronometers are functions of the thermal advection and cooling
76 during rock exhumation (e.g., Dodson, 1973; Brandon et al., 1998), as well as the long-wavelength
77 topography (Braun, 2002; Ehlers and Farley, 2003; Glotzbach et al., 2015), Estimating reliable
78 exhumation rates requires to account for temporal variations of the thermal field caused by changes
79 in the thermal and kinematic boundary conditions.

80 Fox et al. (2014) reported a linear inversion modeling method that solves exhumation
81 history from AER, given a combination of *a priori* exhumation rates and assumed geothermal
82 parameters. However, as shown in that study, the inverted exhumation history depends highly on
83 these *a priori* values and geothermal assumptions. Building on that study, we here provide a

84 detailed test on the method and report an improved modeling method that makes use of both the
85 AER and the modern geothermal gradient for inverting exhumation history.

86

87 **2. Linear inversion method**

88 Our inversion of exhumation from thermochronologic data followed the linear inversion
89 approach of Fox et al. (2014). Rock Exhumation from the closure depth of a thermochronometer,
90 z_c , to the Earth's surface can be described as an integral of the exhumation (\dot{e}) from the cooling
91 age (τ) to the present (Brandon et al., 1998; Fox et al., 2014). For a set of correlated bedrock
92 samples with a shared history of exhumation rates (\dot{e}), their thermochronologic ages (\mathbf{A}) and the
93 corresponding closure depths (\mathbf{z}_c) can be expressed by the following equation.

94
$$\int_0^\tau \dot{e} dt = z_c \quad \Rightarrow \quad \mathbf{A}\dot{e} = \mathbf{z}_c , \quad (1)$$

95 where \mathbf{A} is a model matrix, with n rows (the total number of samples) and m columns (the total
96 number of time intervals). Each row of the matrix is a discretization of a sample age, which is
97 composed of a number of time lengths (Δt) followed by an age residual (R_i) and a number of zeros.

98 The \dot{e} is a m -length vector of exhumation rates, and the \mathbf{z}_c is n -length vector of closure depths.

99 This linear equation can be solved using the Least-Squares Regression approach assuming
100 the Gaussian uncertainties and *a priori* mean exhumation rate (\dot{e}_{pr}) and associated variance (σ_{pr})
101 (Tarantola, 2005; Fox et al., 2014). Such an approach requires a $m*m$ -sized parameter covariance
102 matrix, \mathbf{C} , and a $n*n$ -sized data covariance matrix, \mathbf{C}_ϵ , which includes the uncertainties on the
103 closure depths. These two matrices can be constructed as equations 2 and 3, respectively.

104
$$C_{ij} = \begin{cases} \sigma_{pr}^2, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases} \quad (2)$$

105
$$(C_\epsilon)_{ij} = \begin{cases} \dot{e}_{pr}\epsilon_i, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases} , \quad (3)$$

106 where \dot{e}_{pr} and σ_{pr} are the *a priori* exhumation and the associated variance, and the ε is analytical
 107 uncertainty of the age data. The construction of the data covariance matrix assumes the age data
 108 are uncorrelated. Worth noting is that previous studies used different constructions of the data
 109 covariance, changing from using the analytical age uncertainties (Fox et al., 2014; Fox et al., 2015)
 110 to constant values (Jiao et al., 2017; Stalder et al., 2020).

111 Given the above model parameters, the equation 1 has a maximum likelihood solution for
 112 the exhumation rate vector:

$$113 \quad \dot{e}_{po} = \dot{e}_{pr} + \mathbf{C}\mathbf{A}^T(\mathbf{A}\mathbf{C}\mathbf{A}^T + \mathbf{C}_\epsilon)^{-1}(\mathbf{z}_c - \mathbf{A}\dot{e}_{pr}), \quad (4)$$

114 where \dot{e}_{pr} is a n-length vector of \dot{e}_{pr} , \mathbf{z}_c is the n-length vector of closure depths calculated using a
 115 combination of exhumation and geothermal model parameters (see section 3). The \dot{e}_{po} is the
 116 posteriori maximum likelihood estimate of the exhumation rate, with a covariance matrix, \mathbf{C}_{po} ,
 117 which provides an estimate of the uncertainties on the model parameters (equation 5).

$$118 \quad \mathbf{C}_{po} = \mathbf{C} - \mathbf{C}\mathbf{A}^T(\mathbf{A}\mathbf{C}\mathbf{A}^T + \mathbf{C}_\epsilon)^{-1}\mathbf{A} \quad (5)$$

119 The method also provides a model resolution matrix, \mathbf{R} , which gives a measure on how
 120 well the model estimates correspond to the true values:

$$121 \quad \mathbf{R} = \mathbf{C}\mathbf{A}^T(\mathbf{A}\mathbf{C}\mathbf{A}^T + \mathbf{C}_\epsilon)^{-1}\mathbf{A} \quad (6)$$

122

123 **3. Closure depth and topographic correction**

124 Inversion of the exhumation using the equation 1 requires accurate estimates of the closure
 125 depths of the thermochronologic ages (\mathbf{z}_c), i.e., the depth of the closure temperatures (Fig. 1). The
 126 latter can be determined by modelling the temperature of the crust using a 1D thermal-kinematic
 127 model, which accounts for heat conduction, advection and production (Turcotte and Schubert,
 128 2002):

129
$$\frac{\partial T_m}{\partial t} = \kappa \frac{\partial^2 T_m}{\partial z^2} + \dot{e} \frac{\partial T_m}{\partial z} + A_b, \quad (7)$$

130 where A_b is the heat production (in $^{\circ}\text{C}/\text{Myr}$). This function can be numerically solved using a
 131 Crank–Nicolson time integration with a set of initial and boundary conditions, such as an initial
 132 geothermal gradient (G_0) at the start time of the model and surface temperature (T_s) (Turcotte and
 133 Schubert, 2002; Fox et al., 2014).

134 The closure temperature (T_c) of a thermochronometer is a function of cooling rate (\dot{T}) at
 135 the closure time and kinetic parameters of Helium and Argon diffusion and fission-track annealing
 136 in mineral phases (Dodson, 1973):

137
$$\dot{T} = \frac{\Omega R T_c^2}{E_a} \exp\left(\frac{-E_a}{R T_c}\right), \quad (8)$$

138 where Ω and E_a are the diffusion frequency factor normalized by the mineral size and geometry,
 139 and activation energy, respectively. Parameter R is the gas law constant. See reviews by Reiners
 140 and Brandon (2006) for the Ω and E_a parameter values for different thermochronometers.

141 The cooling rate (\dot{T}) can be computed from the derivative of transient geotherms, $T_m(t, z)$
 142 that can be computed using equation 7 (Fox et al., 2014):

143
$$\dot{T} = \frac{\partial T_m}{\partial t} + \dot{e} \frac{\partial T_m}{\partial z}, \quad (9)$$

144 where \dot{e} is unknown exhumation that can be computed through the equation 1.

145 Combining the equations 7-9, the closure depth of a thermochronological system ($z_{c,m}$) can
 146 be numerically computed. This depth also needs a topographic correction, because of the
 147 topographic perturbation, p , on the isotherms (Braun, 2002; Ehlers and Farley, 2003; Fox et al.,
 148 2014; Glotzbach et al., 2015). Such a perturbation can be determined by the following equation
 149 (Mancktelow and Grasemann, 1997; Fox et al., 2014):

150
$$p(\lambda) = \left(\frac{\gamma_0 - \gamma_a}{\gamma_{z_m}}\right) \exp\left(-z_m\left(\frac{\dot{e}}{2\kappa} + \sqrt{\left(\frac{\dot{e}}{2\kappa}\right)^2 + (2\pi\kappa)^2}\right)\right) h(\lambda), \quad (10)$$

151 where γ_a is the atmospheric lapse rate, γ_0 and γ_{z_m} are the thermal gradients at the model surface and
 152 at the depth z_m . The $h(\lambda)$ is a cosine function expression of the model surface topography, which
 153 can be determined using the discrete Fast Fourier Transform at the frequency domain. Here we use
 154 the SRTM30 data for computing the topography of regions of interests.

155 Finally, the closure depth of the z_c is corrected by the topographic perturbation (e.g.,
 156 Brandon et al., 1998):

$$157 \quad (z_c)_i = (z_{c,m})_i - p_i + h_i, \quad (11)$$

158 where $z_{c,m}$ is the closure depth calculated using the 1D geothermal model, p and h are the
 159 topographic perturbation and elevation difference with respect to the mean elevation at the sample
 160 site (Fig. 1), and the i denotes the i -th age.

161 As shown by the equations 7, 8 and 9, the closure depth is a non-linear function of rock
 162 cooling and exhumation. Therefore, the problem of interest is non-linear, which can be addressed
 163 by iterative numerical modelling methods. In this work, the solution of exhumation is
 164 approximated by coupling and iterating the linear inversion and closure depth modeling. As shown
 165 in Tarantola (2005) and Fox et al. (2014), the algorithm converges in a few iterations and produces
 166 stable outputs.

167

168 **4. Model evaluation**

169 Quantitative model assessment relies on a misfit value, i.e., the difference between
 170 observed and predicted ages weighted by the observed analytical uncertainty:

$$171 \quad \Phi_\tau = \sqrt{\frac{1}{N} \sum_{i=1}^N \left(\frac{\tau_{prd,i} - \tau_{obs,i}}{\varepsilon_i} \right)^2}, \quad (12)$$

172 where $\tau_{obs,i}$ and $\tau_{prd,i}$ are the observed and predicted i -th age calculated from the exhumation history,
 173 and ε_i is the uncertainty of the observed i -th age. Following Fox et al. (2014), both the *a priori* and

174 *a posteriori* misfits, $\Phi_{\tau, pr}$ and $\Phi_{\tau, po}$, are determined for the models. The difference between these
175 two misfit values provides a measure of the model improvements. A smaller posteriori misfit value
176 indicates an improved model result, and *vice versa*.

177 To evaluate the geothermal parameters, we also determined the misfit value of the
178 predicted to the observed modern geothermal gradient value using the following equation:

179

$$\Phi_{\gamma} = \sqrt{\left(\frac{\gamma_{prd} - \gamma_{obs}}{\varepsilon_{\gamma}}\right)^2}, \quad (13)$$

180 where γ_{prd} and γ_{obs} are the predicted and observed geothermal gradients, and ε_{γ} is the uncertainty
181 of the observed value. Because the depth-temperature curves are slightly non-linear, the predicted
182 geothermal gradient (γ_{prd}) is calculated as a mean value for the upper 1 km of the model. Similar
183 as the assessment of age data, we also determined the *a priori* and *a posteriori* misfits, $\Phi_{\gamma, pr}$ and
184 $\Phi_{\gamma, po}$ values for assessing the geothermal parameters.

185

186 **5. The reference inverse model**

187 Following Willett and Brandon (2013) and Fox et al. (2014), here we use the published
188 AFT data acquired from Denali Massif (Fitzgerald et al., 1995) for method demonstration (Fig.
189 2a). A break-in-slope is shown by the AER at ~7-6 Ma, indicating a coeval change in slope, i.e.,
190 the apparent exhumation rate (Fitzgerald et al., 1995), increasing from 0.17 ± 0.04 km/Myr to 1.2
191 ± 0.6 km/Myr (Fig. 2b). AER regression of young dates from the lower part of the transect
192 (between 4.3-2.0 km) also predicts a closure depth that is the intercept at -3.3 ± 3.4 km (Fig. 2b).
193 However, using the present geothermal gradient (38.9 °C/km) (Fox et al., 2014) and a nominal
194 closure temperature of AFT method (110 °C) (Reiners and Brandon, 2006) and a -12 °C surface
195 temperature (Fox et al., 2014), the closure depth is predicted as ~3.1 km beneath the mean elevation

196 (~4 km), which is equivalent to an elevation of ~0.9 km. This closure depth is significantly higher
197 than the intercept (-3.3 ± 3.4 km). Such a difference indicates the AER slope of the lower part
198 overestimates the exhumation rates since ~7-6 Ma.

199 Following the protocol outlined in Fox et al. (2014), the reference inverse model uses the
200 following parameters, a start time at 25 Ma, a time interval (Δt) of 2.5 Myr, a 4020 m mean
201 elevation, a -12 °C surface temperature, *a priori* exhumation rate of 0.5 ± 0.15 km/Myr, a 24 °C/km
202 initial geothermal gradient, a 38.9 °C/km present geothermal gradient, a model block with a
203 thickness of 80 km, and a 30 km 2 /Myr thermal diffusivity.

204 The exhumation history output of the reference model is shown in Fig. 3. The inversion
205 results reveal an more than two-fold increase of exhumation rate to a value of ~0.6 km/Myr at 7.5
206 Ma (Fig. 3b), consistent with the development of the break-in-slope in the AER. The model also
207 shows a gradual decrease of exhumation rate from *a priori* exhumation rate (0.5 km/Myr) to 0.3
208 km/Myr from 25 Ma to 7.5 Ma. The invariant exhumation during the starting stage resulted from
209 the fact that all ages are younger than 17.5 Ma, and thus the data have no resolution for the time
210 span. These results are similar to those of Fox et al. (2014). The posteriori misfit for the age is
211 1.88, significantly smaller than that of the priori model (4.51), suggesting the improvement by the
212 inverse modeling (Fig. 3b). Such a model also provides reasonable fit to the modern temperature
213 field, as shown by the small misfit (0.39) in the geothermal gradient (Fig. 3b).

214 The resolution of the inverted exhumation history can be assessed by the resolution matrix
215 **R** (equation 6). Imaging of the matrix shows the model provides no resolution for the time period
216 before 17.5 Ma (Fig. 3c), consistent with the fact that the oldest input age is younger than $16.1 \pm$
217 0.9 Ma. For the time span between 15 and 5 Ma, the model resolution is high, as shown by the
218 diagonal elements of the matrix, with the highest resolution at 7.5-5 Ma span, including eight age

219 date points (Fig. 3c). The most recent two phases of exhumation (5-0 Ma) are less resolved, as
220 shown by the nearly equal resolution values for the two phases, i.e., the latest four pixels of the
221 matrix (Fig. 3c). This is because no input ages fall into this time span, when the modeled
222 exhumation results are time-averaged values. The slight decrease in the last stage reflects changes
223 in geothermal gradient.

224 For assessing the correlation among model parameters, the calculated covariance matrix is
225 scaled by the diagonal covariance matrix (Fox et al., 2014):

226

$$\hat{C}_{\xi\beta} = \frac{C_{\xi\beta}}{\sqrt{C_{\xi\xi}}\sqrt{C_{\beta\beta}}} \quad (14)$$

227 The correlation matrix for the reference model is shown in Fig. 3d. The diagonal correlation
228 values are 1 and off-diagonal ones are dominantly negative, indicating anti-correlated uncertainties
229 (Fig. 3d), which suggests exhumation parameters were not resolved independently by the modeling.
230 In fact, it is expected to have the anti-correlation, because, given two steps of rock exhumation,
231 decreasing the exhumation during one step would increase that of the other step.

232

233 **6. Dependence on model parameters and proposed solutions**

234 Here we use the Denali data set for demonstrating the influences of (1) the initial
235 geothermal parameters, (2 and 3) the *a priori* mean and variance values of the exhumation rates,
236 and (4) time interval length on the inverted exhumation history. Also discussed in this section are
237 the solutions for optimizing the model setup for these parameters.

238

239 **6.1. Dependence on initial thermal model**

240 Different initial model geothermal parameters would lead isotherms to shift either
241 downward to greater depths or upwards to the Earth surface, and either compression or expansion

242 among isotherms. Therefore, the initial thermal models have systematic influence on the closure
243 depths and consequently the *a posteriori* exhumation.

244 This is demonstrated by modelling experiments presented in Figure 4. Using a relatively
245 lower initial geothermal gradient produces relatively higher *a posteriori* exhumation rates
246 (comparing the models shown in Figs. 4a-4f), and *vice versa*. Such an influence is significant even
247 for the time and elevation intervals with multiple age constraints (10-5.0 Ma). For example, using
248 relatively lower geothermal gradients of <22 °C/km would yield significantly higher average
249 exhumation rates of >0.75 km/Myr for the last two stages (<5 Ma) (Figs. 4a-4c) than those (<0.6
250 km/Myr) using higher initial geothermal gradients of ≥26 °C/km (Figs. 4d-f). Further, it is also
251 shown that models using higher and lower prior geothermal gradients of <20 °C/km (Figs. 4a-4b)
252 and >30 °C/km (Figs. 4e-4f) yield worse misfits ($\Phi_{\gamma, po} > 1$) for the observed present-day
253 geothermal gradient than those ($\Phi_{\gamma, po} < 1$) using medium initial gradients (22-26 °C/km) (Figs. 3
254 and 4c-4d).

255 These results highlight the importance of taking geothermal parameters into account in
256 inverting the exhumation history and model evaluation. We proposed to run a set of models using
257 different *a priori* geothermal parameters, especially the initial geothermal gradient, to search for
258 the proper initial geothermal setup that provides reasonable fits to both the ages and the modern
259 geothermal gradient (see section 7 for details).

260

261 **6.2. Dependence on the *a priori* exhumation rate**

262 Both the mean and variance of the *a priori* exhumation rate have important influences on
263 the model solution for the maximum likelihood estimation method. Our modeling experiments
264 show that the mean value of the *a priori* exhumation has systematic influences on the inverted

265 exhumation. Similar to the reference model, exhumation of the preceding three stages (25-17.5
266 Ma) without age constraints is the same as the *a priori* input. For the following stages, a relatively
267 higher mean value of the *a priori* exhumation results in relatively lower *a posteriori* exhumation
268 rates (comparing different models presented in Fig. 5). For example, models using the mean *a*
269 *priori* exhumation of ≤ 0.4 km/Myr yield *a posterior* exhumation of 0.5-0.9 km/Myr for the stages
270 < 7.5 Ma (Figs. 5a-5c), whereas those using a higher *a priori* value (≥ 0.6 km/Myr) result in *a*
271 *posterior* exhumation of 0.45-0.6 km/Myr for the same stages (Figs. 5d-5f). This is because a
272 relatively higher *a priori* value, which would be used for calculating thermal models, would lead
273 to a quicker increase in geothermal gradient and thus relatively shallower closure depths and
274 relatively lower exhumation rates.

275 The variance of the *a priori* exhumation rate has important influence on both the
276 exhumation rates and the posterior variance. Models with lower *a priori* variances yield less
277 variations in the *a posterior* exhumation history, and *vice versa* (comparing models in Fig. 6).
278 Further, models using the input variance of the *a priori* exhumation of 0.2-0.3 km/Myr (40-60%
279 of the mean value), the variation of the inverted exhumation history becomes stable (Figs. 3, 6c-
280 6d). Given that the uncertainty of the input age data, which is often 10%-20% at a two-sigma level,
281 larger variance of the inverted exhumation would be unreasonable (Figs. 6e-6f), especially when
282 multiple age data are available at different elevations.

283 We proposed to run a set of models using different *a priori* mean value of erosion rates to
284 search for the one that provides appropriate fits to both the ages and the modern geothermal
285 gradient. As to the *a priori* variance, we propose to use a value 30-70% of the *a priori* erosion rate.
286 Future applications of the method may need to test a set of the variance inputs so as to get a stable

287 exhumation output. Larger *a priori* variance would lead to larger uncertainties for the exhumation
288 rates, which is unreasonable and non-meaning for geological studies.

289

290 **6.3. Dependence on time interval length**

291 Constraining the onset time of major changes in exhumation rates is one of the important
292 tasks for inverting the exhumation history from thermochronologic data. Using a large time
293 interval length cannot accurately capture the potential transition time of exhumation rates. As
294 shown in the Figs. 7b-7d, models using time lengths of ≤ 3.5 Ma show an abrupt increase in
295 exhumation at 7-6 Ma, consistent with that shown in AER plot. However, the models using a large
296 time interval length (≥ 4.5 Ma) overestimate the onset time of the enhanced exhumation (Figs. 7e-
297 7f). Further, a relatively shorter time length would smooth temporal changes in exhumation rates,
298 leading to an underestimating of the variations. For example, as shown in the Fig. 7a, the model
299 using a relatively shorter time length (0.5 Ma) yields an exhumation variation between 0.35-0.60
300 km/Myr, significantly lower than those using relatively larger time interval lengths (Figs. 7b-7f).
301 In addition, a shorter time length also significantly increases the computational time and resources,
302 especially when processing a large number of vertical transects.

303 Given the interests in major exhumation changes, we propose the time interval length (Δt)
304 should be optimized for constraining the transitional time and the associated exhumation changes.
305 Therefore, the time interval length should be set as the absolute uncertainty at two sigma levels at
306 the break point (τ_b) (equation 15). If the break point is unclear in AER, we suggest to use the
307 absolute uncertainty at two-three sigma levels at the median age value ($\tilde{\tau}$) (equation 15), so as to
308 focus on the time intervals where ages cluster.

309
$$\Delta\tau = \begin{cases} \delta\tau_b, & \text{if a break in slope exists} \\ \delta\tilde{\tau}, & \text{if no clear break in AER} \end{cases} , \quad (15)$$

310 where δ is the relative age uncertainty at two sigma levels, varying between 10%-20% among
311 different studies. Following this method, the Denali case should use a time length of \sim 1.5 Ma (7
312 Ma \times 20%), slightly lower than that used in the reference model (Fig. 3).

313

314 **7. A new modeling guideline**

315 Following the modelling protocol outlined above, a stepwise modeling guideline is
316 developed for addressing the model dependencies on the initial geothermal parameter, the *a priori*
317 exhumation rates and time interval length. As illustrated in the Figure 8, the approach includes the
318 following three steps.

319 (i) Estimating a time-averaged erosion rate. Dividing each nominal closure depth, which
320 can be estimated from the nominal closure temperatures and the modern geothermal gradient, by
321 the corresponding age results in a time-averaged erosion rate. Then, a mean value can be
322 determined by averaging the rates. Such a mean value and assumed variance (30% - 50% in this
323 work) will be used as the *a priori* erosion rate.

324 (ii) Optimizing the fit to the modern geothermal gradient. This step runs a set of inversion
325 models (20 in this work) using different geothermal gradients, ranging from 50% to 120% of the
326 modern value, together with the *a priori* erosion rate estimated in the first step, for determining
327 the initial geothermal gradient that yields the maximum fit to the modern value, i.e., the minimum
328 Φ_γ (equation 13).

329 (iii) Optimizing the fit to both the age data and the geothermal gradient. Given the model
330 dependence on the geothermal parameters (see section 6.1), a comprehensive evaluation of the
331 models should assess not only the age misfit (Φ_τ), but also that of the geothermal gradient (Φ_γ). In
332 the third step, a set of inversion models (20 in this work) are run using different *a priori* erosion

333 rates, changing from 10% to 200% of the mean value estimated in the first step, together with the
334 estimated geothermal gradient by the second step, to search for the model that provides the best fit
335 to both the age data and the modern geothermal gradient. This study uses the following compound
336 misfit function to evaluate the models:

337
$$\Phi = \Phi_\tau + \Phi_\gamma / \sqrt{N}, \quad (17)$$

338 where Φ_τ and Φ_γ are misfit values for the age and geothermal gradient calculated using the
339 equations 12 and 13, and N is the number of age inputs. Dividing Φ_γ by the square root of N in this
340 equation, as also done for calculating the Φ_τ (equation 12), means that the modern geothermal
341 gradient is given the same weight as an age input for evaluating the model.

342

343 **8. Synthetic models for testing the new modeling guideline**

344 We firstly test our stepwise inversion scheme by synthetic datasets generated by thermo-
345 kinematic models modified from Braun et al. (2012) (their Fig. 9). The synthetic age dataset is
346 produced by *Pecube* using the following parameters: a steady-state topography with a 20-km
347 wavelength and a 2-km relief, a model block thickness of 30 km with a basal temperature of 600 °C,
348 a thermal diffusivity of 25 km²/Myr, a sea level temperature of 10 °C, a lapse rate of 5 °C/km.
349 Worth noting is that these parameters are the same as Braun et al. (2012). For model details, see
350 Braun et al. (2012). For model setup see the supplementary Figure S1.

351 Synthetic AFT and AHe ages (supplementary Tables T1) were calculated for both surface
352 and borehole samples for four different exhumation histories. The synthetic models a and b are
353 characterized by a sudden decrease in exhumation rate from 1 km/Myr to 0.1 km/Myr (model-a,
354 same as the that shown in the Fig. 9 of Braun et al. 2012) and 0.3 km/Myr (model-b) at 5 Ma,
355 respectively. The models c and d include a sudden increase in exhumation rate from 0.3 km/Myr

356 (model-c) and 0.1 km/Myr (model-d) to 1 km/Myr at 5 Ma, respectively. All models start from 40
357 Ma. Except for the synthetic age data (plotted in the first row of Fig. 9), these four models generate
358 modern geothermal gradients of 26.5 °C/km, 28.6 °C/km, 35.5 °C/km and 34 °C/km for the
359 uppermost 2-km crust, respectively.

360 Inversion of rock exhumation history used a start time of 20 Ma and a time interval length
361 of 1.0 Myr for all synthetic datasets, which were assigned with a 6% uncertainty. As shown by the
362 modelling output visualized in Fig. 9a, our inversion of the rock exhumation from the synthetic
363 dataset-a finds an optimal initial geothermal gradient of 22 °C/km and *a priori* rate of 0.85 ± 0.25
364 km/Myr, and yields a decrease in exhumation rates from ~0.9 km/Myr (before 6 Ma) to 0.3-0.1
365 km/Myr (4-0 Ma), via a gradual decrease during 6-4 Ma. The data has no resolution for the
366 exhumation history before 10 Ma. Comparing to the synthetic model (abrupt decrease from 1
367 km/Myr to 0.1 km/Myr at 5 Ma), the rates before 5 Ma are underestimated by 0.1 km/Myr, whereas
368 the values after 5 Ma overestimated by 0.1-0.3 km/Myr.

369 The inversion for the synthetic dataset-b results in an optimal initial geothermal gradient
370 of 21.7 °C/km and *a priori* rate of 0.81 ± 0.24 km/Myr, and an increase in exhumation rates from
371 ~0.85 (before 5 Ma) km/Myr to 0.4-0.5 km/Myr (4-0 Ma), via a gradual decrease during 5-4 Ma
372 (Fig. 9b). Comparing to the synthetic model (abrupt decrease from 1 km/Myr to 0.3 km/Myr at 5
373 Ma), the rates before 5 Ma are underestimated, whereas the values before 5 Ma are overestimated
374 by ~0.1-0.2 km/Myr.

375 The inversion for the synthetic dataset-c yields an optimal initial geothermal gradient of
376 24.3 °C/km and *a priori* rate of 0.55 ± 0.17 km/Myr, and a decrease in exhumation rates from
377 ~0.45-0.3 km/Myr (before 5 Ma) to 1.0 km/Myr (3-0 Ma), via a gradual increase during 5-3 Ma
378 (Fig. 9c). Comparing to the synthetic model (abrupt decrease from 0.3 km/Myr to 1.0 km/Myr at

379 5 Ma), the rates during 5-3 Ma are underestimated, whereas the rates before 5 Ma overestimated
380 by 0-0.15 km/Myr.

381 The inversion for the synthetic dataset-d produces an optimal initial geothermal gradient
382 of 24.5 °C/km and *a priori* rate of 0.25 ± 0.08 km/Myr, and an increase in exhumation rates from
383 ~0.1-0.2 km/Myr (before 5 Ma) to 1.0 km/Myr (3-0 Ma), via a gradual decrease during 5-3 Ma
384 (Fig. 9d). Comparing to the synthetic model (abrupt decrease from 1 km/Myr to 0.3 km/Myr at 5
385 Ma), the rates before 5 Ma are slightly overestimated, whereas the values during 5-3 Ma are
386 underestimated.

387 To summarize, the inverted rock exhumation histories for the four synthetic datasets match
388 the whole picture of the synthetic “truth”, but the variations in exhumation are underestimated,
389 and the sharp changes at 5 Ma are smoothed. It is worth noting that inversions using only surface
390 samples produce similar results (supplementary Fig. S2).

391

392 **9. Natural examples for testing the new modeling guideline**

393 Below we use three examples to demonstrate our new method. The Denali data is used
394 again for demonstrating the efficiency of our method in finding the proper initial geothermal
395 gradient and the *a priori* exhumation rate. Then, we further test our method using the Himalayan
396 Dhanladar range and KTB borehole (the Continental Deep Drilling Project in Germany)
397 thermochronologic data for representing regions of fast and slow erosion, respectively.

398 9.1 The Denali transect

399 Using the stepwise inversion modeling guideline, the Denali transect yields an exhumation
400 history generally similar with that of the reference model (Fig. 10a). Differences in the *a priori*
401 parameters include that the new inversion finds and uses an initial geothermal gradient of

402 25.2 °C/km (slightly higher than that of the reference model), *a priori* erosion rate of 0.46 ± 0.23
403 km/Myr (slightly lower than that of the reference model) and a time interval length of 1.5 Ma. The
404 combination of these *a priori* parameters result in a major increase in erosion rate to 0.55-0.6
405 km/Myr at 6 Ma, which is 1.5 Myr latter than that of the reference model (7.5 Ma). The subtle
406 differences from the reference model mainly result from the time interval length used in these
407 models. Comparing the misfit values, the new model produces slightly better fits than the reference
408 model, with the *a posteriori* misfit values of 1.81 and 0.11 for the observed age and geothermal
409 data.

410

411 9.2 Himalayan Dharladar range transect

412 AFT and ZHe data from the Dharladar range in the northwestern Himalayas, reported in
413 the publications by Deeken et al. (2011) and Thiede et al. (2017) are used as an example for regions
414 of young cooling ages and fast exhumation. The samples were collected in an elevation range
415 between 1.5 and 4.5 km, covering a topographic relief of 3 km within a spatial distance of ~ 15 km
416 on the hanging wall of the main central thrust of the Himalayan fold-thrust-belt (Deeken et al.,
417 2011; Thiede et al., 2017). AER slope regression of ZHe and AFT ages performed in Deeken et al.
418 (2011) produced apparent erosion rates of ~ 2.8 km/Myr and ~ 0.2 km/Myr for the time intervals
419 6.4–14.5 Ma and 1.7–3.7 Ma, respectively, implying a potential increase in erosion rates at ~ 3.7 –
420 6.4 Ma. Using geothermal gradients of 25–45 °C/km, time-averaged erosion rates were estimated
421 as 0.8–2.0 km/Myr since 3.7 Ma (Deeken et al., 2011).

422 The modelling of the Dharladar range data uses a modern geothermal gradient constraint
423 of 45 ± 8 °C/km (Deeken et al., 2011). The relatively large uncertainty is assigned for the
424 geothermal gradient, because of the absence of direct geothermal measurements in the study area.

425 Our exhumation inversion for the AER data using the stepwise modeling guideline yields relatively
426 slow rates of 0.1-0.6 km/Myr and fast rates of 1.2-1.6 km/Myr before and after \sim 3 Ma, respectively
427 (Fig. 10b). The abrupt increase of exhumation rates at \sim 3 Ma is generally consistent with the
428 estimates from the slope regression results of Deeken et al. (2011). However, the inverted
429 exhumation rates since 3 Ma are significantly lower than the estimation from the AER slope (\sim 2.8
430 km/Myr), which is likely due to the overestimation of exhumation of the AER slope due to
431 topographic perturbation of isotherms. Such a perturbation is a function of exhumation rates: the
432 higher the exhumation, the larger the perturbation (Glotzbach et al., 2015). The modelling yields
433 a history of the geothermal gradient that gradually increases to a modern value of \sim 46 $^{\circ}$ C/km, close
434 to the input value (45 ± 8 $^{\circ}$ C/km).

435

436 9.3 KTB borehole

437 The KTB borehole yields a large thermochronologic and geochronologic age data
438 (Warnock and Zeitler, 1998; Stockli and Farley, 2004). Previous studies suggest the borehole are
439 truncated by multiple faults, which offset the age-depth relationship (Wagner et al., 1997). Here
440 we use the data at depths shallower than 1 km, where data are abundant and have linear relationship
441 with depths.

442 The KTB apatite, zircon and titanite (U-Th)/He (AHe, ZHe and THe) and AFT age data
443 vary largely between 85-50 Ma. These clustered ages have been interpreted as indicating a late
444 Cretaceous phase of exhumation, followed by slow exhumation (Wagner et al., 1997; Stockli and
445 Farley, 2004), as also shown by previous thermal history reconstructions based on k-feldspar
446 40 Ar/ 39 Ar data (Warnock and Zeitler, 1998).

447 Our modeling, using the AER data and a modern geothermal gradient of 27.5 ± 2.8 °C/km
448 (Clauser et al., 1997), shows that elevated exhumation rates (0.1-0.13 km/Myr) between 80-50 Ma,
449 followed by slower exhumation rates of ~0.04 km/Myr (Fig. 10c), are similar to previous estimates
450 (Wagner et al., 1997; Warnock and Zeitler, 1998; Stockli and Farley, 2004). Associated with
451 changes in exhumation, geothermal gradient gradually decreases from the peak values at 70-60
452 Ma to a value of ~28 °C/km at the present-day.

453

454 **10. Conclusion**

455 The *a priori* information has important effects on the inversion results using the least-
456 squares inversion method. Our study demonstrates the importance of geothermal gradient and the
457 *a priori* exhumation rate in estimating the exhumation history from the thermochronology data.
458 To take into account the geothermal data into the exhumation history inversion, we outlined a
459 stepwise inversion method that first searches for the appropriate initial geothermal gradient, which
460 is then used in the modelling searching for the *a priori* exhumation rate. Our modelling guideline
461 produces exhumation history and geothermal gradient that provide reasonable fits for both the
462 observed AER and modern geothermal data, as tested by datasets of both synthetic models and
463 natural samples. The code and data used in this work are available in GITHUB
464 (https://github.com/yuntao-github/A2E_app).

465

466 **Code availability**

467 The code used in this work are available in GITHUB (https://github.com/yuntao-github/A2E_app).

468

469 **Data availability**

470 The data used in this work are available in GITHUB (https://github.com/yuntao-github/A2E_app).

471

472 **Author contribution**

473 Yuntao Tian: Conceptualization, Methodology, Software, Data curation, Visualization,

474 Investigation, Writing- Original draft preparation. Lili Pan: Visualization, Writing- Reviewing and

475 Editing. Guihong Zhang and Xinbo Yao: Writing- Reviewing and Editing.

476

477 **Competing interests**

478 The contact author has declared that none of the authors has any competing interests.

479

480 **Acknowledgments**

481 This study is funded by the National Natural Science Foundation of China (42172229, 41888101

482 and 41772211). Discussions with Jie Hu and Donglan Zeng are gratefully appreciated. Comments

483 and suggestions from Gilby Jepson and Christoph Glotzbach clarified many points of this work.

484

485 **References:**

486 Anderson, J. L., Barth, A. P., Wooden, J. L., and Mazdab, F.: Thermometers and

487 Thermobarometers in Granitic Systems, Rev. Mineral. Geochem., 69, 121-142,

488 10.2138/rmg.2008.69.4, 2008.

489 Armstrong, P. A.: Thermochronometers in Sedimentary Basins, Rev. Mineral. Geochem., 58,

490 499-525, 10.2138/rmg.2005.58.19, 2005.

491 Ault, A. K., Gautheron, C., and King, G. E.: Innovations in (U–Th)/He, Fission Track, and

492 Trapped Charge Thermochronometry with Applications to Earthquakes, Weathering, Surface-

493 Mantle Connections, and the Growth and Decay of Mountains, Tectonics, 38, 3705-3739,

494 10.1029/2018TC005312, 2019.

495 Batt, G. E. and Brandon, M. T.: Lateral thinking: 2-D interpretation of thermochronology in
496 convergent orogenic settings, *Tectonophysics*, 349, 185-201, 2002.

497 Brandon, M. T., Roden-Tice, M. K., and Garver, J. I.: Late Cenozoic exhumation of the Cascadia
498 accretionary wedge in the Olympic Mountains, Northwest Washington State, *Bull. Geol. Soc.*
499 *Am.*, 110, 985-1009, 1998.

500 Braun, J.: Quantifying the effect of recent relief changes on age-elevation relationships, *Earth*
501 *Planet. Sci. Lett.*, 200, 331-343, 2002.

502 Braun, J.: Pecube: a new finite-element code to solve the 3D heat transport equation including
503 the effects of a time-varying, finite amplitude surface topography, *Comput. Geosci.*, 29, 787-794,
504 2003.

505 Braun, J., van der Beek, P., Valla, P., Robert, X., Herman, F., Glotzbach, C., Pedersen, V., Perry,
506 C., Simon-Labrec, T., and Prigent, C.: Quantifying rates of landscape evolution and tectonic
507 processes by thermochronology and numerical modeling of crustal heat transport using
508 PECUBE, *Tectonophysics*, 524-525, 1-28, 10.1016/j.tecto.2011.12.035, 2012.

509 Burbank, D. W., Blythe, A. E., Putkonen, J., Pratt-Sitaula, B., Gabet, E., Oskin, M., Barros, A.,
510 and Ojha, T. P.: Decoupling of erosion and precipitation in the Himalayas, *Nature*, 426, 652-655,
511 2003.

512 Clauser, C., Giese, P., Huenges, E., Kohl, T., Lehmann, H., Rybach, L., Šafanda, J., Wilhelm,
513 H., Windloff, K., and Zoth, G.: The thermal regime of the crystalline continental crust:
514 Implications from the KTB, *J Geophy Res: Solid Earth*, 102, 18417-18441,
515 <https://doi.org/10.1029/96JB03443>, 1997.

516 Deeken, A., Thiede, R. C., Sobel, E. R., Hourigan, J. K., and Strecker, M. R.: Exhumational
517 variability within the Himalaya of northwest India, *Earth Planet. Sci. Lett.*, 305, 103-114,
518 10.1016/j.epsl.2011.02.045, 2011.

519 Dodson, M. H.: Closure temperature in cooling geochronological and petrological systems,
520 *Contrib. Mineral. Petrol.*, 40, 259-274, 1973.

521 Ehlers, T. A.: Crustal Thermal Processes and the Interpretation of Thermochronometer Data,
522 Rev. Mineral. Geochem., 58, 315-350, 10.2138/rmg.2005.58.12, 2005.

523 Ehlers, T. A. and Farley, K. A.: Apatite (U-Th)/He thermochronometry: methods and
524 applications to problems in tectonic and surface processes, Earth Planet. Sci. Lett., 206, 1-14,
525 2003.

526 Fitzgerald, P. G., Sandiford, M., Barrett, P. J., and Gleadow, A. J. W.: Asymmetric extension
527 associated with uplift and subsidence in the Transantarctic Mountains and Ross Embayment,
528 Earth Planet. Sci. Lett., 81, 67-78, [http://dx.doi.org/10.1016/0012-821X\(86\)90101-9](http://dx.doi.org/10.1016/0012-821X(86)90101-9), 1986.

529 Fitzgerald, P. G., Sorkhabi, R. B., Redfield, T. F., and Stump, E.: Uplift and denudation of the
530 central Alaska Range: A case study in the use of apatite fission track thermochronology to
531 determine absolute uplift parameters, J Geophy Res: Solid Earth, 100, 20175-20191,
532 doi:10.1029/95JB02150, 1995.

533 Fox, M., Herman, F., Kissling, E., and Willett, S. D.: Rapid exhumation in the Western Alps
534 driven by slab detachment and glacial erosion, Geology, 43, 379-382, 2015.

535 Fox, M., Herman, F., Willett, S. D., and May, D. A.: A linear inversion method to infer
536 exhumation rates in space and time from thermochronometric data, Earth Surf. Dynam., 2, 47-
537 65, 10.5194/esurf-2-47-2014, 2014.

538 Gallagher, K.: Transdimensional inverse thermal history modelling for quantitative
539 thermochronology, J. Geophys. Res., 117, B02408, doi:10.1029/2011JB008825., 2012.

540 Glotzbach, C., Braun, J., and van der Beek, P.: A Fourier approach for estimating and correcting
541 the topographic perturbation of low-temperature thermochronological data, Tectonophysics, 649,
542 115-129, <https://doi.org/10.1016/j.tecto.2015.03.005>, 2015.

543 Herman, F., Seward, D., Valla, P. G., Carter, A., Kohn, B., Willett, S. D., and Ehlers, T. A.:
544 Worldwide acceleration of mountain erosion under a cooling climate, Nature, 504, 423-426,
545 2013.

546 House, M. A., Wernicke, B. P., and Farley, K. A.: Paleo-geomorphology of the Sierra Nevada,
547 California, from (U-Th)/He ages in apatite, *Am. J. Sci.*, 301, 77-102, 2001.

548 Hu, S. B., Raza, A., Min, K., Kohn, B. P., Reiners, P. W., Ketcham, R. A., Wang, J. Y., and
549 Gleadow, A. J. W.: Late Mesozoic and Cenozoic thermotectonic evolution along a transect from
550 the north China craton through the Qinling orogen into the Yangtze craton, central China,
551 *Tectonics*, 25, 10.1029/2006TC001985., 2006.

552 Jiao, R., Herman, F., and Seward, D.: Late Cenozoic exhumation model of New Zealand:
553 Impacts from tectonics and climate, *Earth-Science Reviews*, 166, 286-298,
554 <https://doi.org/10.1016/j.earscirev.2017.01.003>, 2017.

555 Ketcham, R. A.: Forward and Inverse Modeling of Low-Temperature Thermochronometry Data,
556 *Rev. Mineral. Geochem.*, 58, 275-314, 10.2138/rmg.2005.58.11, 2005.

557 Laslett, G., Green, P. F., Duddy, I., and Gleadow, A.: Thermal annealing of fission tracks in
558 apatite 2. A quantitative analysis, *Chem. Geol.*, 65, 1-13, 1987.

559 Mancktelow, N. S. and Grasemann, B.: Time-dependent effects of heat advection and
560 topography on cooling histories during erosion, *Tectonophysics*, 270, 167-195,
561 [https://doi.org/10.1016/S0040-1951\(96\)00279-X](https://doi.org/10.1016/S0040-1951(96)00279-X), 1997.

562 McInnes, B. I. A., Evans, N. J., Fu, F. Q., and Garwin, S.: Application of Thermochronology to
563 Hydrothermal Ore Deposits, *Rev. Mineral. Geochem.*, 58, 467-498, 10.2138/rmg.2005.58.18,
564 2005.

565 Reiners, P. W. and Brandon, M. T.: Using thermochronology to understand orogenic erosion,
566 *Ann Rev Earth Planet Sci*, 34, 419-466, 2006.

567 Schildgen, T. F., van der Beek, P. A., Sinclair, H. D., and Thiede, R. C.: Spatial correlation bias
568 in late-Cenozoic erosion histories derived from thermochronology, *Nature*, 559, 89-93,
569 10.1038/s41586-018-0260-6, 2018.

570 Stalder, N. F., Herman, F., Fellin, M. G., Coutand, I., Aguilar, G., Reiners, P. W., and Fox, M.:
571 The relationships between tectonics, climate and exhumation in the Central Andes (18–36°S):

572 Evidence from low-temperature thermochronology, *Earth-Science Reviews*, 210, 103276,
573 <https://doi.org/10.1016/j.earscirev.2020.103276>, 2020.

574 Stockli, D. F. and Farley, K. A.: Empirical constraints on the titanite (U–Th)/He partial retention
575 zone from the KTB drill hole, *Chem. Geol.*, 207, 223-236,
576 <https://doi.org/10.1016/j.chemgeo.2004.03.002>, 2004.

577 Sutherland, R., Gurnis, M., Kamp, P. J. J., and House, M. A.: Regional exhumation history of
578 brittle crust during subduction initiation, Fiordland, southwest New Zealand, and implications for
579 thermochronologic sampling and analysis strategies, *Geosphere*, 5, 409-425,
580 10.1130/GES00225.1, 2009.

581 Tarantola, A.: *Inverse Problem Theory and Methods for Model Parameter Estimation*, SIAM,
582 Philadelphia2005.

583 Thiede, R., Robert, X., Stübner, K., Dey, S., and Faruhn, J.: Sustained out-of-sequence
584 shortening along a tectonically active segment of the Main Boundary thrust: The Dhauladhar
585 Range in the northwestern Himalaya, *Lithosphere*, 9, 715-725, 10.1130/L630.1, 2017.

586 Tian, Y., Kohn, B. P., Hu, S., and Gleadow, A. J. W.: Synchronous fluvial response to surface
587 uplift in the eastern Tibetan Plateau: Implications for crustal dynamics, *Geophys. Res. Lett.*, 42,
588 29-35, 10.1002/2014GL062383, 2015.

589 Turcotte, D. and Schubert, G.: *Geodynamics*, Cambridge Univiversity Press2002.

590 Valla, P. G., van der Beek, P. A., and Braun, J.: Rethinking low-temperature thermochronology
591 data sampling strategies for quantification of denudation and relief histories: A case study in the
592 French western Alps, *Earth Planet. Sci. Lett.*, 307, 309-322, 10.1016/j.epsl.2011.05.003, 2011.

593 van der Beek, P. and Schildgen, T. F.: Short communication: age2exhume – a MATLAB/Python
594 script to calculate steady-state vertical exhumation rates from thermochronometric ages and
595 application to the Himalaya, *Geochronology*, 5, 35-49, 10.5194/gchron-5-35-2023, 2023.

596 van der Beek, P. A., Valla, P. G., Herman, F., Braun, J., Persano, C., Dobson, K. J., and Labrin,
597 E.: Inversion of thermochronological age-elevation profiles to extract independent estimates of

598 denudation and relief history -- II: Application to the French Western Alps, Earth Planet. Sci.
599 Lett., 296, 9-22, DOI: 10.1016/j.epsl.2010.04.032, 2010.

600 Vermeesch, P.: IsoplotR: A free and open toolbox for geochronology, Geoscience Frontiers, 9,
601 1479-1493, <https://doi.org/10.1016/j.gsf.2018.04.001>, 2018.

602 Wagner, G. A., Coyle, D. A., Duyster, J., Henjes-Kunst, F., Peterek, A., Schröder, B., Stöckhert,
603 B., Wemmer, K., Zulauf, G., Ahrendt, H., Bischoff, R., Hejl, E., Jacobs, J., Menzel, D., Lal, N.,
604 Van den haute, P., Vercoutere, C., and Welzel, B.: Post-Variscan thermal and tectonic evolution
605 of the KTB site and its surroundings, J Geophy Res: Solid Earth, 102, 18221-18232,
606 <https://doi.org/10.1029/96JB02565>, 1997.

607 Warnock, A. C. and Zeitler, P. K.: 40Ar/39Ar thermochronometry of K-feldspar from the KTB
608 borehole, Germany, Earth Planet. Sci. Lett., 158, 67-79, [https://doi.org/10.1016/S0012-821X\(98\)00044-2](https://doi.org/10.1016/S0012-821X(98)00044-2), 1998.

610 Whipp Jr., D. M., Ehlers, T. A., Blythe, A. E., Huntington, K. W., Hodges, K. V., and Burbank,
611 D. W.: Plio-Quaternary exhumation history of the central Nepalese Himalaya: 2.
612 Thermokinematic and thermochronometer age prediction model, Tectonics, 26,
613 10.1029/2006tc001991, 2007.

614 Willett, S. D. and Brandon, M. T.: Some analytical methods for converting thermochronometric
615 age to erosion rate, Geochem. Geophys. Geosyst., 14, 209-222, 10.1029/2012gc004279, 2013.

616 Willett, S. D., Herman, F., Fox, M., Stalder, N., Ehlers, T. A., Jiao, R., and Yang, R.: Bias and
617 error in modelling thermochronometric data: resolving a potential increase in Plio-Pleistocene
618 erosion rate, Earth Surf. Dynam. Discuss., 2020, 1-78, 10.5194/esurf-2020-59, 2020.

619 Zeitler, P., Meltzer, A., Koons, P., Craw, D., Hallet, B., Chamberlain, C., Kidd, W., Park, S.,
620 Seeber, L., Bishop, M., and Shroder, J. F.: Erosion, Himalayan Geodynamics, and the
621 Geomorphology of Metamorphism, GSA Today, 11, 4-9, 10.1130/1052-
622 5173(2001)011<0004:EHGATG>2.0.CO;2, 2001.

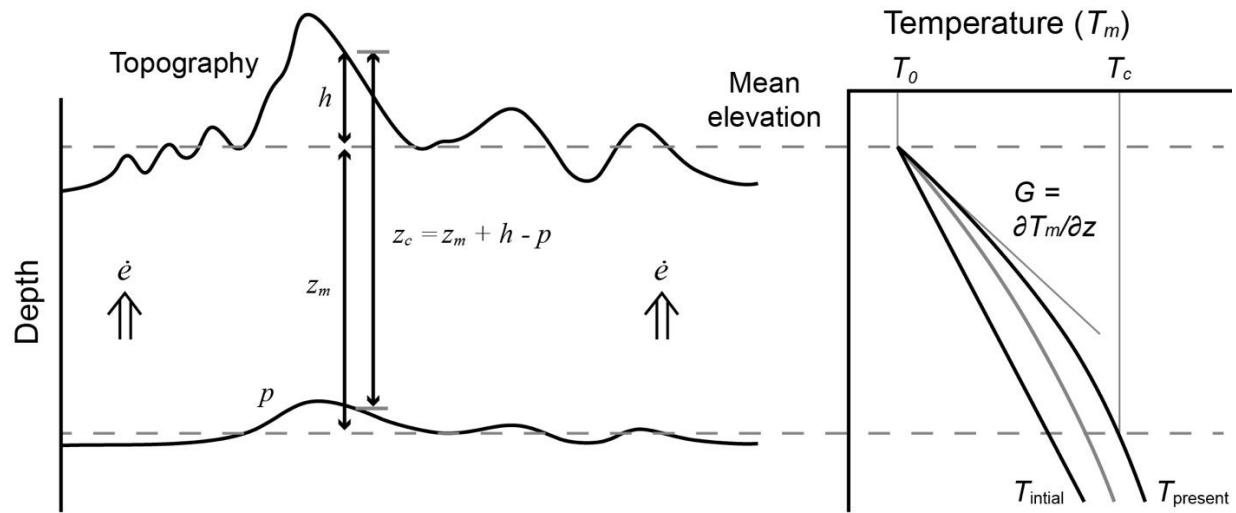
623

624

625

626 **Figures captions:**

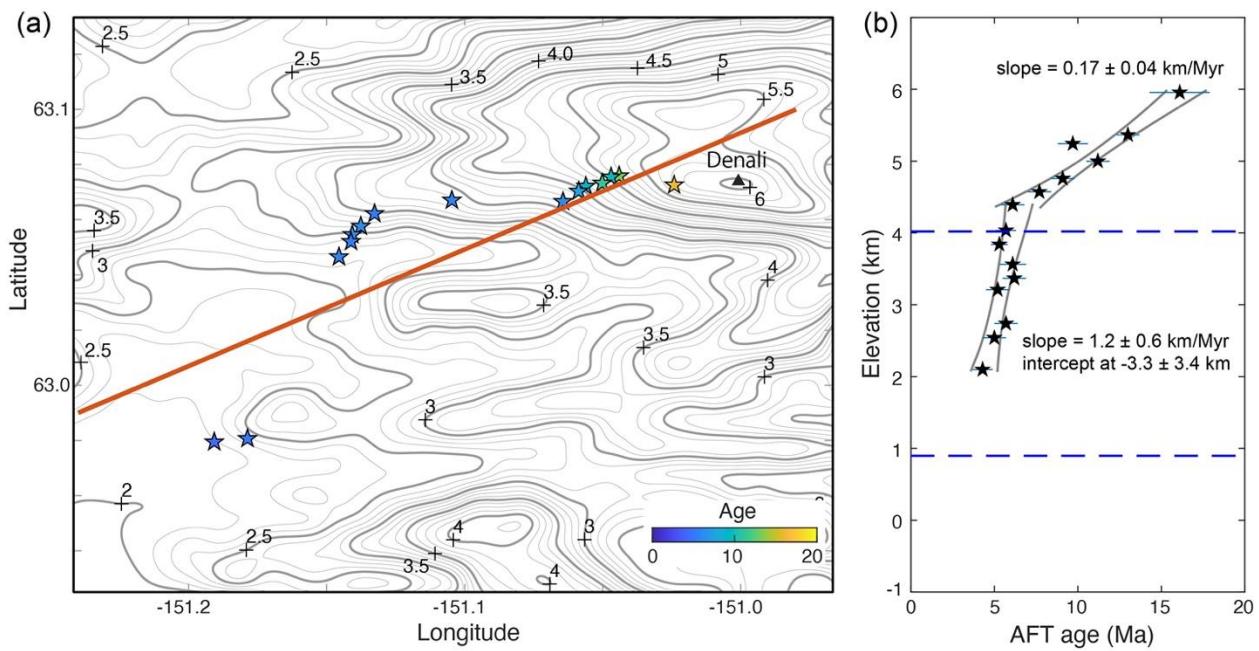
627



628 Figure 1. Schematics showing the relationship among closure depth (z_c), topography and its
629 perturbation (p). The parameter h denotes the difference between the sample and the mean
630 elevation, and z_m the depth of the closure temperature (T_c , the lower dashed line) derived from
631 the mean elevation (upper dashed line) and intial temperature field ($T_{initial}$) and exhumation
632 history (\dot{e}).

633

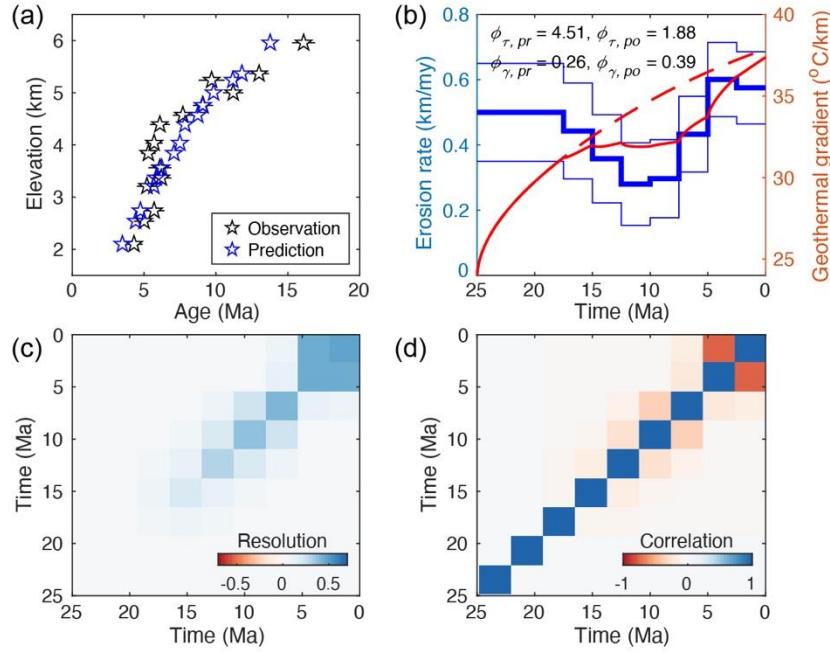
634



635

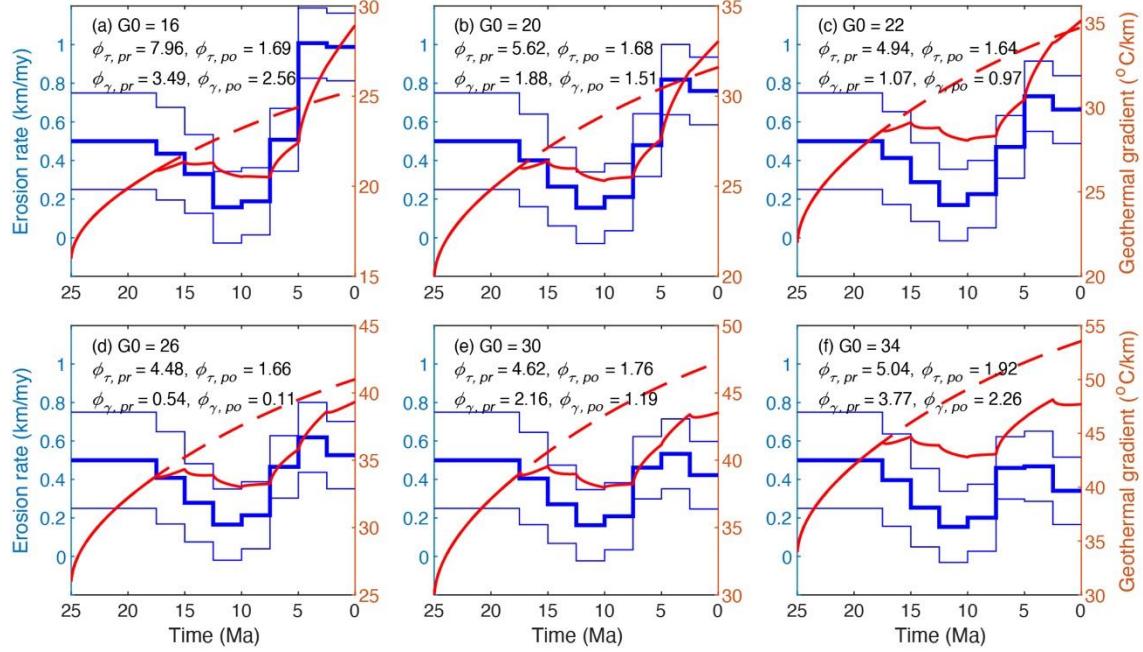
636 Figure 2. (a) Distribution of AFT age data (pentagons, colored by age values) over the elevation
 637 contour map computed using the SRTM30 data of the Denali massif in Alaska. AFT data
 638 sourced from Fitzgerald et al. (1995). (b) AER and the slope fitting results using isoplotR
 639 (Vermeesch, 2018). AER fitting of ages older than 6.7 Ma yields a slope of 0.17 ± 0.04 km/Myr;
 640 whereas the fitting of ages between 6.5 Ma and 4.3 Ma produces a slope of 1.2 ± 0.6 km/Myr
 641 and an intercept at -3.3 ± 3.4 km. The upper and lower dashed lines denote the mean elevation
 642 (4.02 km) and the depth of the nominal closure temperature (110 °C), calculated using the
 643 modern geothermal gradient (38.9 °C/km) and the surface temperature (-12 °C).

644



645

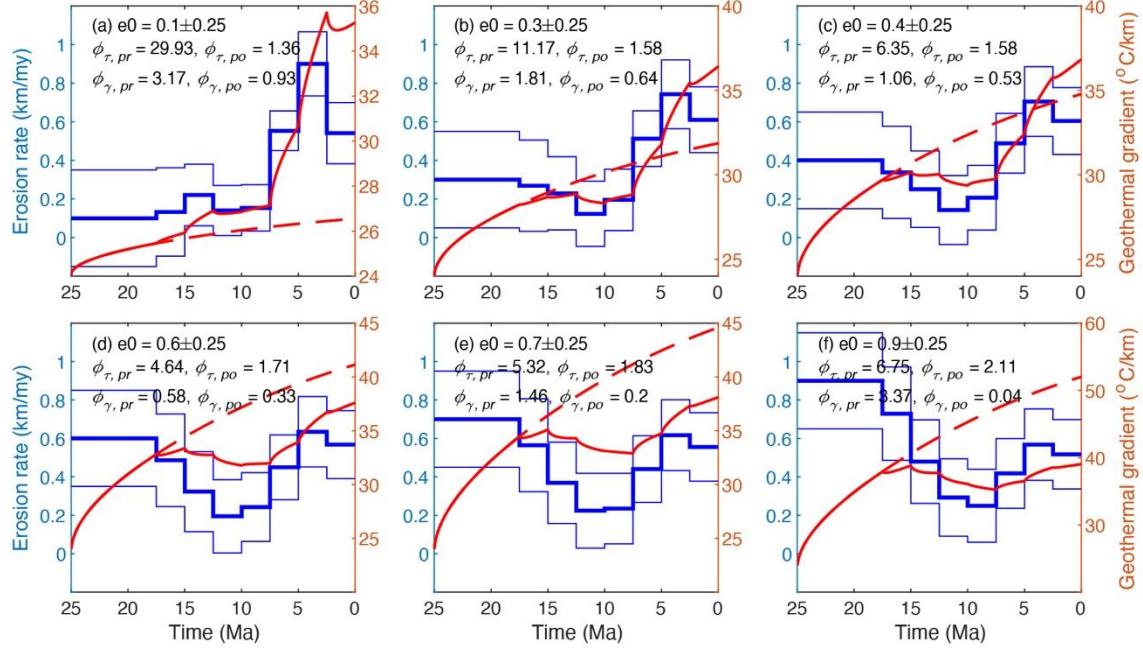
646 Figure 3. Inputs and outputs of the reference model for the Denali AFT. (a) Comparison between
 647 the observed (in black) and predicted (in blue) AER. (b) The *a posterior* exhumation history
 648 generated by the reference model. Thick and thin lines are the mean and one standard deviation
 649 of the inverted exhumation history. The red dash and solid lines are the history of the geothermal
 650 gradients, predicted by the *a priori* and *a posterior* models, respectively. (c) and (d) Plots of the
 651 resolution and correlation matrix.



652

653 Figure 4. Histories of exhumation and geothermal gradients, predicted by models using different
 654 initial geothermal gradients between 18 °C/km and 34 °C/km. The blue thick and thin lines are
 655 the mean and one standard deviation of the inverted exhumation history. The red dash and solid
 656 lines are the history of the geothermal gradients, predicted by the *a priori* and *a posteriori*
 657 models, respectively. Except for the initial geothermal gradient, other parameters are the same as
 658 the reference model. Comparing to the reference model which used an initial geothermal gradient
 659 of 24 °C/km (Fig. 3), models using a lower initial geothermal gradient yield relatively higher
 660 exhumation rates (panels a-c), whereas those using a higher gradient produce lower exhumation
 661 rates (panels d-f).

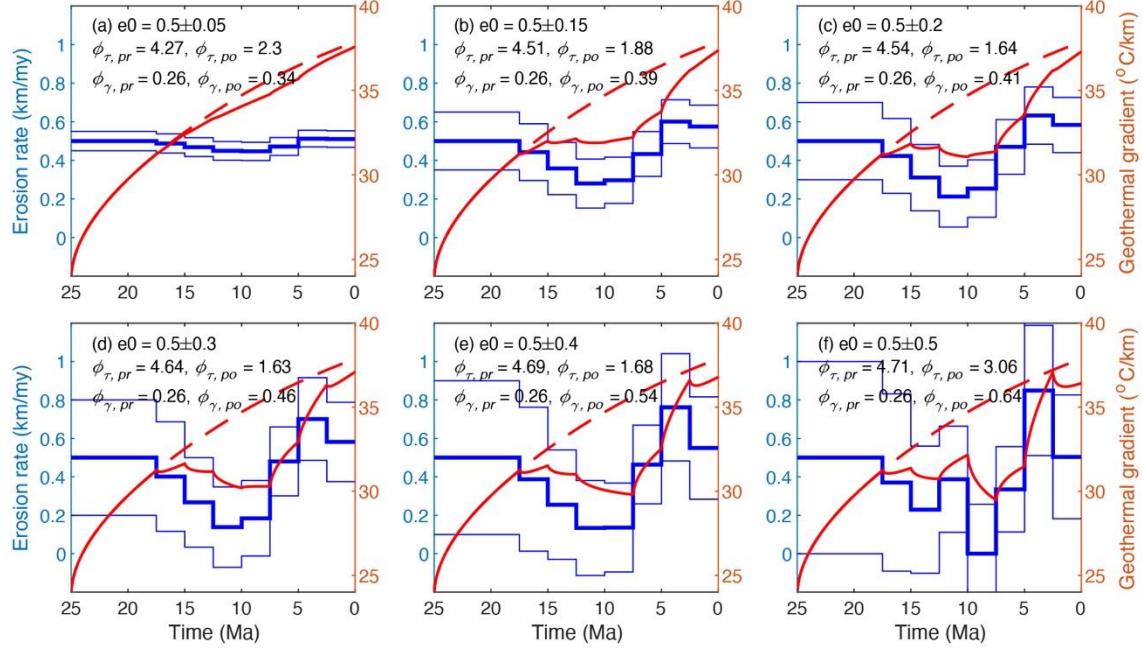
662



663

664 Figure 5. Histories of exhumation and geothermal gradients, predicted by models using different
 665 *a priori* mean values of the exhumation rates, ranging from 0.1 km/Myr to 0.9 km/Myr. Other
 666 parameters are the same as the reference model. For explanation of the plotted lines, see Figure
 667 4. Comparing to the reference model which used *a priori* mean exhumation of 0.5 km/Myr (Fig.
 668 3), models using a lower *a priori* exhumation yield relatively higher exhumation rates for the last
 669 three stages (7.5 - 0 Ma) (panels a-c), whereas those using a higher *a priori* exhumation produce
 670 lower exhumation rates for the last three stages (panels d-f).

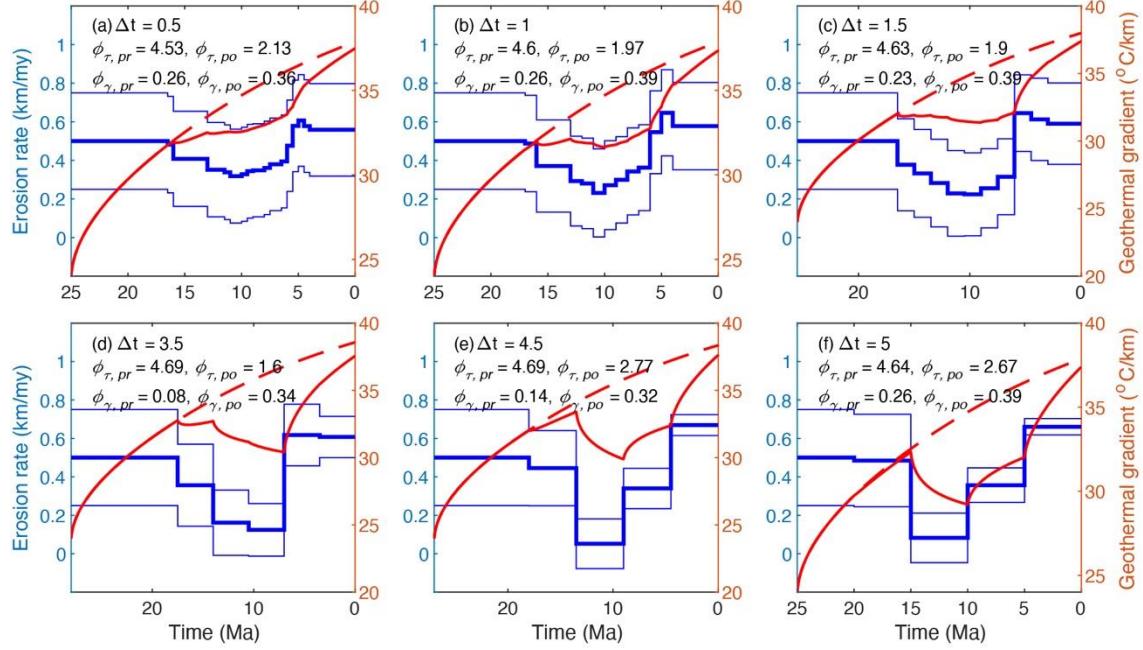
671



672

673 Figure 6. Histories of exhumation and geothermal gradients, predicted by models using different
 674 *a priori* variance values (between 0.05 km/Myr and 0.5 km/Myr) of the exhumation rates (0.5
 675 km/ Myr). Other parameters are the same as the reference model. For explanation of the plotted
 676 lines, see Figure 4. Comparing to the reference model which used *a priori* variance of the
 677 exhumation (0.25 km/Myr) (Fig. 3), models using a lower *a priori* variance yield limited
 678 variations and uncertainties in exhumation (panels a-c), whereas those using a higher *a priori*
 679 variance produce larger variations and uncertainties (panels d-f).

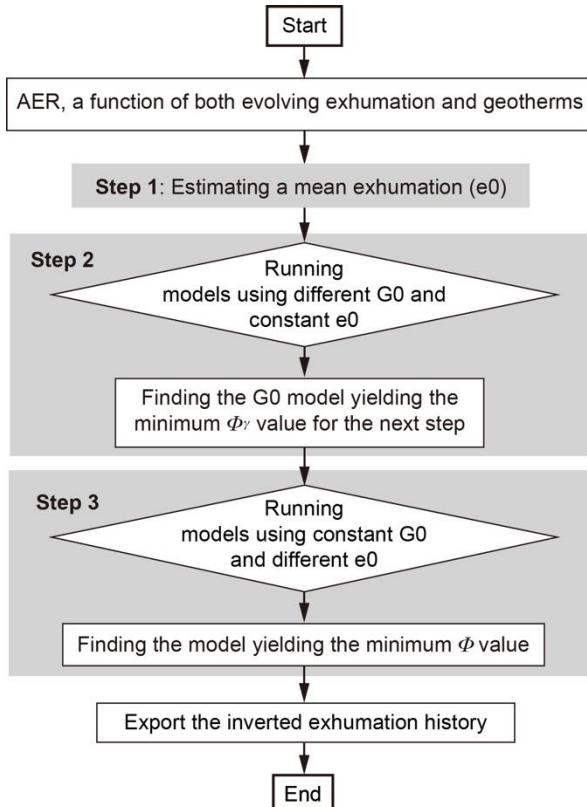
680



681

682 Figure 7. Histories of exhumation and geothermal gradients, predicted by models using different
 683 time interval lengths. Other parameters are the same as the reference model. For explanation of
 684 the plotted lines, see Figure 4. Comparing to the reference model which used a time interval
 685 length of 2.5 Ma (Fig. 3), models using smaller time interval lengths yield lower variations in
 686 exhumation (panels a-c) than other using larger time interval lengths (panels d-f).

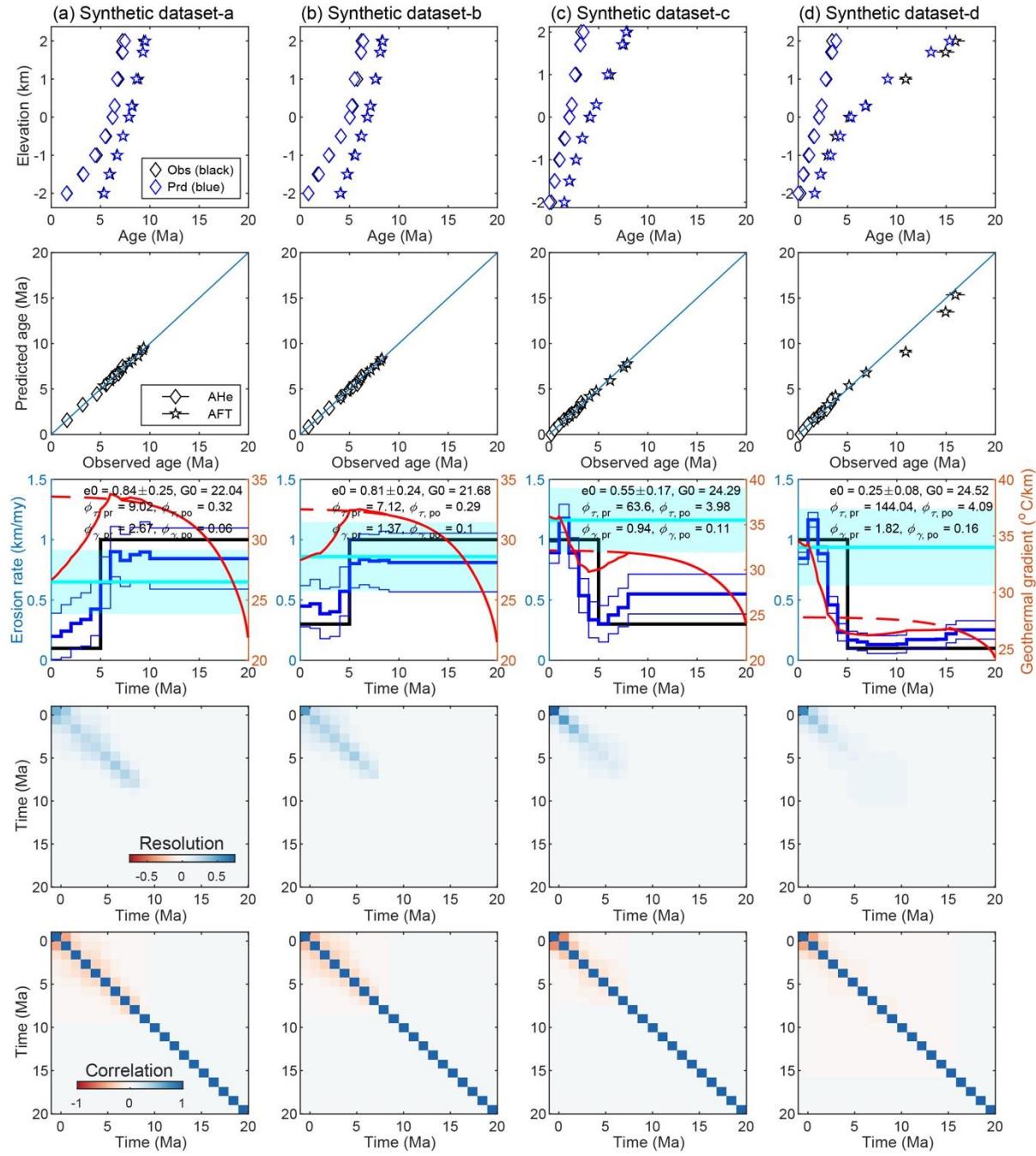
687



688

689 Figure 8. Flow chat of a stepwise modeling method, which includes three main steps. The first
 690 step estimates a mean exhumation rate (e_0) using the nominal closure temperatures, modern
 691 geothermal gradient and sample ages. The mean rate is used in the second step which runs a set
 692 of models using different initial geothermal gradients for optimizing the initial geothermal
 693 model. The third step runs a set of models using different *a priori* exhumation rates, which is
 694 generated around the mean rate, and the optimized initial geothermal model by the second step,
 695 to find the best model that yields the minimum misfit to both age data and modern geothermal
 696 gradient.

697

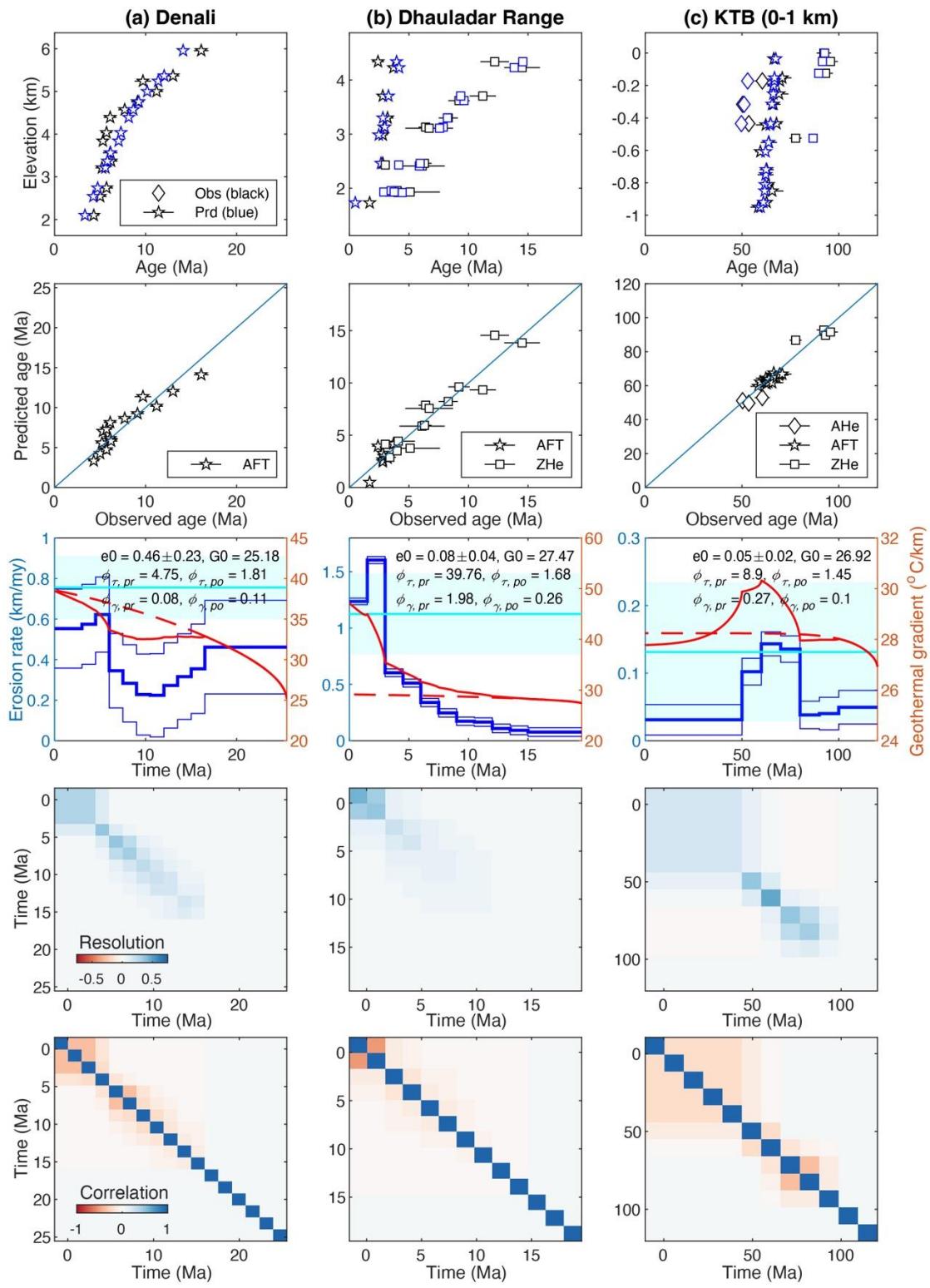


698

699 Figure 9. The best-fit model for the synthetic dataset-a, -b, -c and -d using the modeling method
700 shown in figure 8. First row: Comparison between the observed (in black) and predicted (in blue)
701 AER. Second row: plots of observed and modeled ages. Third row: Histories of exhumation and
702 geothermal gradients. The black line marks the “true” exhumation history used for simulating the
703 age dataset, whereas the blue thick and thin lines are the mean and one standard deviation of the

704 inverted exhumation. The red dash and solid lines are the history of the geothermal gradients,
705 predicted by the *a priori* and *a posterior* models, respectively, whereas the cyan line and polygon
706 denotes the modern geothermal gradient. Fourth and bottom row: Plots of the resolution and
707 correlation matrix.

708



709

710 Figure 10. The best-fit model for the Denali (a), Dhanladar range (b) and upper KTB (c)
711 transects, using the modeling method shown in figure 8. See Fig. 8 for panel interpretations.