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Abstract.

Three supervised neural network cloud classification routines are applied to daytime MODIS Aqua imagery and compared

for the year 2018 over the North Atlantic Ocean. Routines surveyed here include: The Morphology Identification Data Aggre-

gated over the Satellite-era (MIDAS), which specializes in subtropical stratocumulus (Sc) clouds; Sugar, Gravel, Flowers, and

Fish (SGFF), which is focused on shallow cloud systems in the tropical trade winds; and the community record of marine low-5

cloud mesoscale morphology supported by the NASA Making Earth Science Data Records for Use in Research Environments

(MEaSUREs) dataset, which is focused on shallow clouds globally.

Comparisons of co-occurrence and vertical and geographic distribution show that morphologies are classified in geographi-

cally distinct regions: shallow suppressed and deeper aggregated and disorganized cumulus are seen in the tropical trade winds.

Shallow Sc types are frequent in subtropical subsidence regions. More vertically developed solid stratus and open and closed10

cell Sc are frequent in the mid-latitude storm track. Differing classifier routines favor noticeably different distributions of

equivalent types.

Average scene albedo is more strongly correlated with cloud albedo than cloud amount for each morphology. Cloud albedo

is strongly correlated with the fraction of optically thin cloud cover. The albedo of each morphology is dependent on latitude

and location in the mean anticyclonic wind flow over the N. Atlantic. Strong rain rates are associated with middling values15

of albedo for many cumuliform types, hinting at a complex relationship between the presence of heavily precipitating cores

and cloud albedo. The presence of ice at cloud top is associated with higher albedos. For a constant albedo, each morphology

displays a distinct set of physical characteristics.
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1 Introduction

Low clouds tend to organize into large-scale, repeating morphological structures with individual cells observed on the scale of20

20-150 km in patterns that repeat for hundreds or even thousands of kilometers (Agee, 1987; Muhlbauer et al., 2014). These

structures influence climate in different ways due to their unique radiative characteristics (McCoy et al., 2023) and sensitivities

to their surrounding environment (Qu et al., 2015). Understanding where and how different morphological structures develop,

and what the radiative characteristics of those structures are is vital for understanding how low clouds will evolve with climate

change and for determining the sensitivity of Earth’s climate.25

Clouds can evolve between morphologies via multiple pathways depending on initial environmental conditions and subse-

quent changes to those conditions (Bretherton et al., 2010; Yamaguchi et al., 2017; Eastman et al., 2022; Salazar and Tziperman,

2023). Additionally, differing cloud morphologies can experience opposite changes when exposed to the same environmental

forcing. For instance stratiform clouds, which form beneath temperature inversions and are driven by radiative cooling at cloud

top, will reduce in extent when a warming sea surface weakens the inversion. However, the warming sea surface will drive30

more upward motion within the boundary layer, causing cumulus (Cu) to replace stratus (St). This process is detailed in Wyant

et al. (1997) and is also shown in Norris et al. (1998) and Eastman et al. (2011). This process shows how one cloud type

(e.g., Stratocumulus, Sc) can be replaced by another (e.g., Cu) when environmental conditions (sea surface temperature, SST)

change, and is one example of many possible changes in cloud organization associated with a changing climate.

Until recently, surface observations were the primary source of cloud type information, including the studies referenced35

above. Trained observers classify cloud types at multiple levels as part of coordinated weather reporting (WMO, 1974), and

these classifications have contributed to long-term climate records (Hahn et al., 2009). These records have been valuable assets

in studying long-term cloud and climate behaviors (Klein et al., 1995; Norris et al., 1998; Eastman et al., 2011), but are limited

in their spatial resolution and are prone to incongruities in their record due to geopolitical and economic shifts (Warren et al.,

1991). Satellite-based cloud-type data are now being developed in an attempt to continue and enhance the study of cloud types.40

Several methods for systematically identifying low cloud morphological structure have recently been developed (Wood and

Hartmann, 2006; Rasp et al., 2020; Yuan et al., 2020; Denby, 2020; Janssens et al., 2021). This development coincides with

advances in the spatial and spectral resolution of satellite observations along with exponentially improved computing power.

Cloud classifiers have been developed to identify archetypal cloud morphologies for a variety of climatological regions. The

Morphology Identification Data Aggregated over the Satellite-era (MIDAS, Wood and Hartmann (2006); updated in McCoy45

et al. (2023)) dataset was trained to discern between open and closed cell Sc fields in subtropical subsidence regions, also pro-

ducing a “disorganized, but cellular” category representing any remaining cloud cover that has cellular structure. The Sugar,

Gravel, Flowers, Fish (SGFF, Schulz et al., 2021) algorithm was trained in the North Atlantic trade wind regime, and identifies

four cloud morphologies more common to the tropics and has limited overlap with the MIDAS dataset (e.g., mostly the disor-

ganized type, Rasp et al., 2020). The community record of marine low-cloud mesoscale morphology supported by the NASA50

Making Earth Science Data Records for Use in Research Environments (MEaSUREs, Yuan et al., 2020) routine produced a

more geographically varied dataset by training the algorithm with images sourced globally, and with cloud morphologies rang-
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ing from solid marine stratus to clustered tropical convection. A focus of this work is to understand the extent to which these

algorithms classify the same patterns and variability, despite their differing training routines and areas. This is still an open

question and has important implications for how we place studies based on these varied routines into context with one another.55

The three routines compared here are human-trained or supervised machine learning algorithms that classify cloud cover

using satellite images. First, human observers classify morphological structures on hundreds or thousands of satellite images.

These classifications are then used to train a neural network, which can then identify these specific structures on other im-

ages. Aside from human-trained algorithms, routines are being developed that identify and sort morphologies without initial

training (i.e., unsupervised, Denby, 2020). Future work may focus on comparing unsupervised classifications with those from60

supervised methods.

Prior work has shown that cloud albedo is a function of both cloud amount and morphology globally (e.g., McCoy et al.,

2017, 2023). McCoy et al. (2023) found that the relationship between scene albedo and cloud amount is significantly different

depending on cloud morphology, with closed-cell Sc clouds reflecting more than open cell Sc or disorganized Sc for the same

cloud amount. This was in-part due to the different fractions of optically thin cloud cover between morphologies, clearly65

illustrating how cloud amount alone does not fully explain cloud albedo. The three MIDAS cloud types, which are especially

skilled for open or closed cell Sc identification, were utilized in that analysis. This motivates further evaluation of this behavior

using more specific, largely tropical cloud type identifications to subset the expansive disorganized category. The global focus

of McCoy et al. (2023) also motivates evaluating behaviors on a more regional scale to better understand their variability since

cloud micro- and macro-physical characteristics and radiative properties may be affected by geographic location.70

This work will assess and compare geographic, radiative, and physical differences for a variety of cloud types identified by

the supervised neural network algorithms discussed above (i.e., MIDAS, SGFF, and MEASURES) for one year in the North

Atlantic. The characteristics of our three classification routines can be compared across several climate regimes in the N.

Atlantic, from the mid-latitude storm track, to subtropical subsidence regions, and the tropical trade-winds. Cloud properties

within each routine will also be compared against one another. In particular, we seek to quantify the contributions that a varied75

range of cloud morphologies make to the global cloud amount-albedo relationships and further investigate the albedo sensitivity

to variations in cloud characteristics across morphology types.

2 Data

Data in this manuscript span the entire year 2018 for the North Atlantic, defined by a box bounded by 0-90◦ W and 5-55◦ N.

Only ocean areas are considered in this work. The region and time were chosen because classifier data from all three sources80

were reliably available for that entire year in that region, and also because the North Atlantic Ocean contains a wide variety

of climatological conditions in a single ocean basin, including a strong mid-latitude storm track in the north, a subtropical

subsidence region in the east, and tropical trade winds to the south. Classifier data will soon be available for more regions

and more dates, allowing for more extensive studies of morphologies. Data from all three classifier routines come from the

Moderate Resolution Imaging Spectroradiometer (MODIS) on the polar orbiting Aqua satellite, which crosses the equator at85
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01:30 and 13:30 local time (LT). For this work, only the daytime swaths are used. In order to better compare datasets built by

these differing routines at differing resolutions, all morphology data are projected onto a 1◦ × 1◦ latitude/longitude grid. Each

1◦× 1◦ box is classified as a morphology if any part of that box was classified by a routine. This means that a 1◦× 1◦ box can

be classified multiple times by the same classifier if multiple cloud morphologies are observed in that box. This allows for the

study of co-occurrence, where certain boxes may be located in a transitioning regime between two morphologies.90

2.1 Classifier Routines

2.1.1 MIDAS

The Morphology Identification Data Aggregated over the Satellite-era (MIDAS, Wood and Hartmann, 2006; McCoy et al.,

2023, updated) was initially developed to distinguish closed cell mesoscale cellular convection (MCC) from open cell MCC in95

Sc decks in subtropical subsidence regions. A third cloud type, disorganized but cellular, identifies shallow ocean clouds that

do not readily fit into the other two categories. These morphologies will be referred to as MIDAS closed, MIDAS open, and

MIDAS disorganized throughout this manuscript.

The MIDAS routine was trained by human observers classifying visible MODIS imagery. These classifiers were then used

to train a neural network, which used the mean and spatial variability in the MODIS 6.1 L2 liquid water path (LWP, King et al.,100

1997; Platnick et al., 2003) field within 256km square boxes to produce classifications for 2003 through 2018. These boxes

are spaced 128km apart, allowing for 50% overlap between neighboring boxes. Observations are screened for ice in that LWP

is required for classifications. Classified scenes are rejected if the cloud top temperature – SST difference is greater than 30K

or if the cloud top is shown to be a majority ice water instead of liquid. Scenes are also rejected if the SST is below 275K.

Additional filtration is done to remove the distorting effects of excessive sun glint near the swath center.105

2.1.2 SGFF

The Sugar, Gravel, Fish, and Flowers (SGFF, Stevens et al., 2019; Schulz et al., 2021) classifications were first developed to

distinguish large patches of organized cloud structures in the North Atlantic tropical trade winds. Shallow suppressed Cu cloud

scenes are named Sugar, while more developed and aggregated shallow convective scenes are named Gravel. More stratiform

scenes, with geographically separated, horizontally extensive cloud tops and thicker, frequently raining cloud cores are named110

Flowers. The Fish classification is named for extensive “bony” structures of thick clouds, often oriented in tendrils aligned in

an east-west direction. Fish are often associated with the shallow remnants of cold fronts as they dissipate in the tropical trades

(Schulz et al., 2021; Aemisegger et al., 2021).

Classifications were initially made by human observers based on visible MODIS images (Rasp et al., 2020), and these

classifications were used to train a neural network to identify morphologies in the North Atlantic for years 2003-2020 based115

on MODIS Aqua infrared brightness temperatures (Schulz et al., 2021). Classifications are made in variably-sized rectangular

(WRT latitude-longitude) boxes, often 10◦ × 10◦ or larger. Classified regions are permitted to overlap.
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2.1.3 MEASURES

The third classifier analyzed here is the Community Record Of Marine low-cloud mesoscale Morphology, developed with the

support of the NASA Making Earth Science Data Records for Use in Research Environments (MEaSUREs, Yuan et al., 2020;120

Mohrmann et al., 2021). This routine, built as a continuation and improvement of the MIDAS classifier originally made by

Wood and Hartmann (2006), classifies six morphologies present across multiple climate regimes. Morphologies include: solid

stratus (MEASURES solid St), closed (MEASURES closed) and open cell (MEASURES open) MCC, and disorganized clouds

(MEASURES disorganized) observed predominantly in mid-latitude storm track and subtropical subsidence environment, and

clustered Cu (MEASURES clustered) and suppressed Cu (MEASURES suppressed) in the tropical trade winds. These tropical125

cloud types were developed to improve upon the disorganized morphology produced in the MIDAS dataset, which was not

trained to discern cloud structures in the tropics and instead classified most tropical scenes as disorganized.

The MEASURES routine was initially trained by human observers classifying MODIS visible images for ocean regions

globally. These classifications were used to train a neural network, which employed MODIS visible imagery along with cloud

top height, cloud optical depth, cloud drop effective radius, and a cloud mask (Platnick et al., 2017) to produce morphologies130

globally. Data are available upon request for a selected number of years, including 2018 used here. Classifications are made

within 128km square boxes with no overlap between boxes. Classifications are not made near the swath edge (sensor zenith

angle > 45◦) due to the distorting effects of wide view angles on observed cloud properties (Maddux et al., 2010).

2.2 Cloud Properties from Satellites135

Cloud properties are gathered concurrently with all classifications in order to assess and compare radiative and physical traits.

Concurrent datasets are made possible by the formation flying of numerous sensors in NASAs A-Train polar-orbiting satellite

constellation. All data are collected during the day at approximately 13:30 local time along the same swath used to generate

the classifications (as MODIS on Aqua is part of the A-Train).

Cloud physical properties, including cloud liquid water path (LWP), ice water path (IWP), cloud optical thickness (τ ), and140

cloud droplet effective radius (re) are sourced from MODIS Aqua L3 optical properties dataset (King et al., 2003; Platnick

et al., 2017) on a 1◦ × 1◦ latitude-longitude grid. MODIS cloud LWP and re are combined to produce an estimate of cloud

droplet concentration (Nd), as demonstrated in Possner et al. (2020), based on relationships presented in Boers et al. (2006) and

Bennartz (2007). Cloud optical thickness (τ ) is calculated as a weighted average of τ from "Filled" and partly cloudy ("PCL")

pixels, weighted by the relative "Filled" and "PCL" cloud amounts. Other cloud properties are only calculated for "Filled"145

pixels because cloud edges may distort and bias those retrievals. The ratio of optically thin to optically thick cloud cover is

derived from MODIS liquid cloud optical thickness histograms, which produce counts of observations within optical thickness

bins for all observations within 1◦×1◦ grid boxes. Clouds with a τ value of less than 3 are considered optically thin, as defined

in Leahy et al. (2012). Cloud cover is sourced from MODIS cloud mask (Platnick et al., 2017) on the 1◦ × 1◦ L3 grid.
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Daily albedo is sourced from the Clouds and the Earth’s Radiant Energy System (CERES, Loeb et al., 2018) single scanner150

footprint daily 1◦×1◦ dataset (SSF1deg, NASA/LARC/SD/ASDC, 2015) based on retrievals from MODIS Aqua. The SSF1deg

dataset offers total scene albedo and cloud-free albedo along with cloud amount. These products can be used to calculate the

albedo of the cloudy regions within each 1◦ × 1◦ grid box, which is the value most frequently applied here.

Vertical profiles of cloud frequency associated with each morphology are produced using the vertical feature mask (VFM,

Vaughan et al., 2004) based on LIDAR retrievals taken by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP)155

carried aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite. The VFM dataset

produces observations of: clear air, cloud, aerosol, ocean surface, and a flag for when the beam is fully attenuated. Below 8km,

profiles contain data in 30-meter vertical bins spaced 333 meters apart along the satellite ground track, producing a 333 meter

horizontal spatial resolution. Data are available at higher altitudes at reduced spatial resolution. Only ’clear’ and ’cloudy’ pixels

are studied here.160

Rain rate data are sourced from the Advanced Microwave Scanning Radiometer (AMSR2) 89 GHz passive microwave

brightness temperatures (Tb, JAXA, 2012), tuned to estimate rain rates using co-located CloudSat rain-profile observations

(Lebsock and L’Ecuyer, 2011) using the routine developed in Eastman et al. (2019). This routine derives rain rate from Tb by

controlling for variability in AMSR/2 column integrated water vapor (Wentz et al., 2014), and ERA5 SST and 10-meter wind

speed (Copernicus Climate Change Service, 2017), then comparing CloudSat rain rates to Tb values, which tend to be warmer165

when more liquid precipitation is present. This establishes a mean relationship between Tb and rain rate, which is then applied

to the full AMSR swath.

The strong resolution of light precipitation by the 89 GHz microwave band and the CloudSat cloud profiling radar used

to develop the precipitation product allow us to see light rain associated with many of the cloud morphologies studied here.

However, retrievals tend to saturate at fairly low rain rates relative to deeper tropical boundary layer convection, providing170

only a minimum possible rate. This saturation prevents the rain rate product from precisely resolving rates in the heaviest

raining cores in the tropics, so rain rates shown here for the some convective morphologies may be underestimated given this

limitation.

3 Results

3.1 Geographic Distributions175

Classifier output from all three routines is plotted on a MODIS visible satellite image for the same day (January 26, 2018)

in Figure 1 in order to compare the spatial structures of the routines. Frame 1a shows the three MIDAS classifiers in their

256 km square overlapping boxes. MIDAS closed and MIDAS open cells are identified in the subtropical subsidence region

in the eastern Atlantic, and are also seen in smaller amounts in the northwestern region, behind the cold front. In the tropical

trades, the central-southern portion of the image, the MIDAS routine classifies nearly all features as MIDAS disorganized.180

Frame 1b shows the same image classified by the MEASURES routine which uses non-overlapping grid boxes that are half the

size of the MIDAS boxes. Similar to MIDAS, MEASURES closed and MEASURES open Sc cells are seen in the subtropical
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a) MIDAS

b) MEASURES

c) SGFF

Figure 1. The cloud field from January 26, 2018 with overlayed classifications by a) MIDAS, b) MEASURES, c) SGFF. Colors may deviate

from the legend if boxes overlap or if background colors differ. Image Credit: NASA, MODIS AQUA.
7



Figure 2. The frequency of 1◦ × 1◦ grid boxes classified by MIDAS as a) open MCC, b) closed MCC, and c) disorganized within 5◦ × 5◦

grid boxes.

region, but clouds in the tropical trade winds are mostly classified as MEASURES clustered or MEASURES suppressed Cu.

MEASURES solid St and MEASURES closed cells dominate the region behind the cold front, where the MIDAS routine did

not classify most clouds. The dissipating, trailing edge of the cold front is classified as MEASURES solid St. In Frame 1c, the185

SGFF classifications are only present in the subtropics and tropics, with Flowers observed upstream where other routines saw

Sc types. Sugar is observed where MEASURES suppressed Cu was classified, off the northwestern African coast. Downstream,

the remains of the cold front are classified as Fish, and a broad area south of the cold front is classified as Gravel, where the

MEASURES routine classified a mix of MEASURES suppressed and MEASURES clustered Cu.

Clouds are unclassified in a few regions for a variety of reasons. If overlying ice clouds are present, or sun glint is interfering190

with the retrievals, or if the observed patterns do not adequately satisfy any of the criteria for any morphology, then these are

left blank. Future work may be able to identify other morphologies or transitions in these gaps, but we restrict the analysis

here to only boxes that are classified. Colors may deviate from the legend shown if boxes overlap (red overlapping yellow may

appear orange), or if the background color of the image changes.

The frequencies of observations of each morphology and their geographic distributions are shown in Figures 2-4, where195

contour maps show how frequently morphologies were classified within 5◦ × 5◦ latitude-longitude boxes. These are absolute
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Figure 3. The frequency of 1◦ × 1◦ grid boxes classified by MEASURES as a) closed MCC, b) clustered Cu, c) disorganized Cu, d) open

MCC, e) solid St, and f) suppressed Cu within 5◦ × 5◦ grid boxes.

frequencies, not relative to each classifier. The grid is aggregated from 1◦ × 1◦ in order to show smoother contours, meaning

each 1◦ × 1◦ box classified within a 5◦ × 5◦ grid box counts as a single observation.

MIDAS open and MIDAS closed (Figure 2) cells are observed less frequently than MIDAS disorganized and occur in roughly

equal amounts in the midlatitude storm track and subtropical subsidence region. MIDAS disorganized clouds are extremely200

common across the entire trade wind belt. This region experiences mean anticyclonic (clockwise) boundary layer wind flow

centered over the central Atlantic (Brueck et al., 2015). The peaks in cloud type distributions coincide with this flow. MIDAS

closed MCC transition to MIDAS open MCC further downstream in the mid-latitude storm track and subsidence region. These

transition into MIDAS disorganized scenes even further downstream as clouds are brought into the deeper tropics and trade

wind flow toward the Caribbean.205

Figure 3 shows the distributions of MEASURES cloud types and adds specificity to the cloud transitions seen in MIDAS

associated with the mean anticyclonic Atlantic winds. Furthest upstream in the cold-air-outbreak region, just offshore of the
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Figure 4. The frequency of 1◦ × 1◦ grid boxes classified by SGFF as a) Sugar, b) Gravel, c) Flowers, and d) Fish within 5◦ × 5◦ grid boxes.

Canadian Maritimes, MEASURES solid St occurrence peaks. Downwind (eastward) of that peak are subsequent distribution

peaks in MEASURES closed MCC, then MEASURES open MCC, followed by MEASURES disorganized clouds in the subsi-

dence region offshore of western Europe. In contrast with the MIDAS routine, MEASURES closed and MEASURES open MCC210

are less frequent overall, and are classified more frequently in the midlatitude storm track compared to the subsidence region.

MEASURES disorganized clouds are seen primarily in the eastern Atlantic. Rounding the eastern extreme of the North Atlantic

high, MEASURES clustered Cu occurrence peaks first before MEASURES suppressed Cu which dominates the downwind trade

winds just upwind of the Caribbean. This distribution progression highlights the frequent Lagrangian morphology transitions

that occur as airmasses advect equatorward in the anticyclonic mean flow.215

The geographical distributions of the SGFF morphologies are shown in Figure 4 and mainly describe clouds near the trop-

ical belt. Sugar is seen most frequently in the upstream trade winds off the coast of Africa with a second region of frequent

occurrence nearer the Caribbean. Gravel is most frequent just upstream from the Caribbean, downwind from the Sugar maxi-

mum. Flowers are observed most frequently in a region spanning the subtropical subsidence region and upwind in the tropical

belt, where Sc types are generally transitioning to more tropical, Cu cloud types. This is consistent with the more stratiform220
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Figure 5. Co-Occurrences of cloud morphologies shown as a fraction: the numerator is the number of times the two morphologies are

classified at the same place and same time, and the denominator is the total number of times the x-axis morphology is classified. Black

lines separate classifier routines (labeled at top and right edge). Individual classification labels are marked along the bottom and left edge.

Contributing boxes are area-weighted to account for varying grid box area with latitude.

nature of Flowers as observed by Schulz et al. (2021). These distributions suggest Sugar cloud types can occur across the trade

winds but may frequently form in offshore winds originating over Africa. It is likely these shallower Cu deepen into convective

structures akin to Gravel and Flowers (Narenpitak et al., 2021) as they travel across the trade-winds. Fish is the least frequently

observed type and is most common in the south-central Atlantic. It should be noted that Schulz et al. (2021) also found Sugar

frequently occurring adjacent to the ITCZ and its nearby subsidence region.225

3.2 Co-Occurrence Statistics

To assess how the different routines classify the same scenes, Figure 5 illustrates co-occurrence between the morphologies. A

1◦× 1◦ grid box may have multiple classifications assigned by differing routines, or from the same routine due to overlapping

observation boxes or a box containing an ‘edge’ between classifications. At the chosen resolution of the data set, co-occurrences

can stem from morphologies overlapping or being adjacent to each other within a box. Due to the patterns mesoscale extent230

this unresolved co-occurrence affects only the edges of the patterns and is assumed to have no affect on the geospatial analysis.

To quantify co-occurrence we show a fraction where the denominator is the total number of times a morphology represented
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on the x-axis is classified, and the numerator is the number of times the two morphologies are observed in the same 1◦ × 1◦

box (same place, same time). Co-occurrence events are weighted by the surface area within grid boxes, so smaller grid boxes

in the northern region contribute less to the frequency due to their relatively smaller surface areas. Differences between the235

co-occurrence fractions for elements above and below the central diagonal indicates differing frequencies of observations of

one morphology (y-axis) given the presence of the other (x-axis).

The fractions of co-occurrence are shown as shades of blue in Figure 5, with darker shades indicating more frequent co-

occurrence. This representation allows us to compare scene classification behaviors within and between classifier routines

(separated by black lines). MIDAS-classified scenes show the most within-routine overlap of any classifier examined, with240

MEASURES and SGFF coming second and third, respectively. The overlap sampling method of MIDAS scenes is likely

responsible for this. Within MIDAS, MIDAS disorganized scenes overlap more with MIDAS closed or MIDAS open MCC

relative to the less frequent overlap between MIDAS closed and MIDAS open MCC. This suggests that edges between MIDAS

closed or MIDAS open MCC and MIDAS disorganized scenes are more common than edges between MIDAS closed and MIDAS

open MCC. Between the MIDAS and MEASURES classifications, open MCC classifications frequently overlap as do MIDAS245

closed MCC with MEASURES closed MCC and MEASURES solid St. This suggests broad classification verification for these

types between the MIDAS and MEASURES routines. MIDAS disorganized scenes have the most frequent overlap with other

classification routine types, excluding MEASURES closed MCC, MEASURES solid St, and Sugar.

MEASURES clustered scenes overlap with MEASURES open MCC and MEASURES suppressed Cu scenes. Taken together

with the maps from the prior section, a Lagrangian model emerges, where MEASURES open cells evolve into sparser MEA-250

SURES clustered Cu, which then alternates with MEASURES suppressed Cu in the tropical trade winds. MEASURES clustered

and MEASURES suppressed scenes overlap with MIDAS disorganized scenes, showing that the MEASURES routine accom-

plishes its mission of adding further detail to the expansive MIDAS disorganized classification. MEASURES clustered scenes

overlap with Gravel and Fish, while MEASURES suppressed scenes overlap more with Sugar, Gravel, and Fish. It is likely that

MEASURES suppressed Cu is detected in gaps between larger features in Fish and Gravel scenes.255

The SGFF classifications show less frequent overlap with one another, but some overlap is apparent between Sugar-Gravel

and Fish-Flowers. Flowers overlap most with MIDAS open MCC and MIDAS disorganized, in addition to MEASURES clus-

tered and MEASURES disorganized. Sugar and MEASURES suppressed Cu show some overlap, as do Gravel and MEASURES

clustered Cu, indicating that the two routines are classifying the same scenes as these conceptually similar types.

3.3 Morphology and Albedo260

In this section, we construct comparisons between various cloud properties for each morphology to understand the influence

morphological organization has on albedo. Generally, we utilize one variable to define quantile bins along the x-axis and

report the mean of a second variable in each bin (e.g., shaded lines in Figure 6). Grid box area is used to weight all averages

shown, so smaller boxes do not have disproportionate contributions. The 2-sigma standard error for each bin mean is shown

by the line width in the y-direction. To eliminate noise caused by outliers, data plotted in the lines represent the middle 80%265

quantile (with the upper and lower 10% removed). Large, filled symbols represent the morphology mean x and y behavior.
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Figure 6. Morphology relationships (colored lines) for y-axis variables binned into quantiles along the x-axis between a) cloud albedo vs.

all-sky albedo, b) cloud amount vs. all-sky albedo, c) cloud albedo vs. cloud amount, and d) cloud amount vs. normalized observation

number. Line width in the y-direction represents the 2-σ standard error of the mean. Data for lines exclude the upper and lower 10% quantile

bins. Hollow symbols and colors distinguish lines between classifier routine classifications (legend in b) and do not represent any values. In

a-c), averages for each morphology are shown as large, corresponding filled symbols. In d), observation number per cloud amount bin are

normalized between 0-1 in order to best compare shape.
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Figure 7. Yearly mean of daily albedo anomalies relative to the 100-day running mean for all classifiable low cloud scenes for MIDAS

morphologies: a) open MCC, b) closed MCC, and c) disorganized.

Small, hollow symbols mark the morphology corresponding to each line. We are able to examine inter-morphology (between

mean morphology behaviors, compare large symbols) relationships and intra-morphology (within morphology type behaviors,

compare shaded lines) relationships to test whether observed behaviors are unique to each type or common to all morphologies.

Each figure in this section has been produced using two methods: one uses all grid boxes assigned to a morphology, while270

the other uses a ’pure’ set that only uses boxes assigned to a single morphology by each routine (no co-occurrences within

classifiers). This is to ensure that no bias is present due to overlap between morphologies. Figures are qualitatively identical

regardless of which method is used, showing no bias caused by overlap. Figures shown use all available data, including co-

occurrences within classifiers.

For each morphology, we find that the scene (all-sky) albedo is both a function of cloud albedo (6a) and cloud amount (6b).275

The correlation coefficients shown are calculated for the means (large symbols) and describe how much variation between

morphologies in mean scene albedo is explained by cloud albedo (6a) and cloud cover (6b). Cloud albedo explains slightly

more (98%) of the variability in all-sky albedo compared to cloud cover (90%). Cloud amount and cloud albedo (6c) are also

closely related with 86% variance explained.

There is broad agreement in albedo values for similar cloud types seen by different classifiers. For example, MEASURES280

suppressed Cu and Sugar show nearly equivalent albedos. Albedo tends to be lowest for Cu types and highest for stratiform
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Figure 8. As in Figure 7 but for MEASURES morphologies: a) closed MCC, b) clustered Cu, c) disorganized Cu, d) open MCC, e) solid St,

and f) suppressed cu.

types, with open cells, disorganized scenes, and clustered cumuliform albedos in the middle. Stratiform types show far more

extensive cloud cover accompanied by a higher albedo compared with cumuliform types.

The spread between lines in the three plots suggests that the relationships between mean scene albedo and mean cloud

cover as well as between mean cloud albedo and mean cloud amount are unique functions of cloud morphology. This is285

particularly true for the cloud albedo and cloud amount relationships, which exhibit more separation (Figure 6c). For instance,

the two suppressed Cu cloud types in frame 6c show a significantly less extensive mean cloud amount and a weaker increase in

amount when albedo increases relative to stratiform morphologies. Differences are also present in frame 6a, where, again, the

suppressed Cu types show a weaker relationship along with Gravel and MEASURES open cells. Taken together, these figures

show how mean radiative properties for each cloud morphology are a unique function of cloud cover and cloud albedo.290

In addition to the correlations between the mean morphology behaviors, we examine the correlations based on the points

used to create the shaded lines in Figures 6a-6c. These coefficients (Table 1) describe how strongly cloud albedo or cloud

amount relate to scene albedo for each morphology. For every morphology (with the exception of MEASURES suppressed),

15



Figure 9. As in Figures 7 and 8 but for SGFF morphologies: a) Sugar, b) Gravel, c) Flowers, and d) Fish.

cloud albedo is a stronger driver of scene albedo than cloud cover. This is consistent with the mean correlations and implies

that, for these morphologies, cloud reflectivity may drive all-sky albedo variability more strongly than cloud amount. These295

relationships are generally weaker for the suppressed Cu types, which may indicate difficulty in detecting the larger proportion

of optically thin clouds in these predominantly clear scenes (Mieslinger et al., 2022).

Figure 6d shows normalized curves comparing the relative number of observations per cloud amount bin for each mor-

phology. These curves show that stratiform types are more frequently observed in cloudy environments, while most of the

disorganized or cumuliform types are frequently observed when cloud cover is much lower. However, the distribution of mor-300

phology occurrence across the cloud amount space is varied and overlapping, suggesting that morphology is not a simple

function of cloud cover, nor vice-versa.

In Figures 7-9, maps show the geographic distributions of cloud albedo anomaly for each morphology. Albedo anomaly is

defined as the daily mean albedo for a specific morphology minus the mean albedo for all sampled low cloud scenes (from a
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Figure 10. Cloud properties: a) in-cloud liquid water path (LWP), b) droplet number concentration (Nd), c) mean optical depth (τ ), d)

maximum optical depth, e) mean rain rate, f) maximum rain rate, g) in-cloud ice water path (IWP), and h) fraction of optically thin cloud

features (τ<3) as a function of cloud albedo. As in Figure 6, symbols show the mean relationship for each classification, lines show the

relationship for cloud properties within each morphology for bins of constant cloud albedo, and line width in the y-direction represents the

2-σ standard error of the mean. Frames a, b, and g only use ’Filled’ MODIS pixels and not cloud edges in order to reduce possible biases in

retrievals in partly cloudy regions.
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Correlation (r) with Scene (All-Sky) Albedo

Cloud Albedo Cloud Amount

MIDAS

Open MCC 0.92 0.66

Closed MCC 0.87 0.52

Disorganized 0.85 0.75

MEASURES

Closed MCC 0.94 0.64

Clustered Cu 0.83 0.77

Disorganized Cu 0.89 0.73

Open MCC 0.91 0.75

Solid St 0.92 0.66

Suppressed Cu 0.57 0.63

SGFF

Sugar 0.62 0.44

Gravel 0.83 0.70

Flowers 0.79 0.71

Fish 0.77 0.75

Table 1. Correlations between all-sky albedo and cloud albedo (first column) and between all-sky albedo and cloud amount (second column)

for each morphology.

combination of all routines) within a 5◦ × 5◦ grid box for a 100-day running mean centered on every day. The values shown305

are annual means. Results show that MEASURES suppressed Cu, Sugar, Gravel, and MIDAS disorganized scenes have anoma-

lously low albedos throughout our region, while closed cell Sc and solid stratiform clouds almost always have anomalously

high albedos. For other types, including MIDAS open cells, MEASURES open cells, MEASURES clustered, MEASURES dis-

organized Cu, Fish and Flowers, the albedo anomaly is negative near the storm track, but positive to the south. This suggests a

complex picture where climatologically relevant cloud radiative properties are a function of morphology and location. Because310

of differing frequencies of occurrence for each morphology (as shown in Figures 2-4) the sum of all anomalies in Figures 7-9

should not be zero.

In Figure 6 and Table 1, cloud albedo was shown to have a profound effect on the all-sky albedo of a cloud scene, greater

than cloud amount. This motivates further study into what cloud properties most influence cloud albedo for each morphology.

In Figure 10, the relationships between cloud albedo and a number of remotely sensed cloud variables are shown for each315

morphology using the same method as Figure 6. Data are gathered only for cloud scenes with cloud amounts within 10%

of the respective morphology median, which allows us to control for the differing mean cloud amounts associated with the

morphologies (sampling the "peaks" relative to cloud amount in 6d). Results were not qualitatively sensitive to changing this

threshold to 5% or 20%.

For all morphologies, cloud albedo increases when LWP, Nd, τ , and IWP (Fig. 10a,b,c,g, respectively) increase while cloud320

albedo decreases when the fraction of optically-thin cloud cover increases (Fig. 10h). This final relationship shows the strongest
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correlation, indicating that the fraction of optically-thin cloud cover most strongly explains the cloud albedo variability between

morphologies after controlling for cloud amount, as shown by McCoy et al. (2023).

Figure 10 uses LWP, Nd, and IWP values from ’Filled’ MODIS pixels only, excluding cloud edges or any other scenes where

pixels are partially filled. This is to avoid biases caused by assumptions used by the retrievals that may not be appropriate in325

broken cloud scenes. To see whether including or excluding broken scenes could cause a bias, Figure 10 was also produced

using weighted averages of ’Filled’ and ’Partly Cloudy’ pixels, with separate LWP, Nd, and IWP values averaged for portions of

each grid box considered ’Filled’ or ’Partly Cloudy’, then averaged based on the fraction of ’Filled’ or ’Partly Cloudy’ scenes

within each box. This averaged figure was qualitatively unchanged from the original, suggesting that the relationships seen

here are unlikely to be biased by scattered or broken cloud scenes. Optical depth values use this weighted average technique,330

incorporating ’Filled’ and ’Partly Cloudy’ observations, since that product relies on fewer assumptions.

The spread of lines in the y-direction in Figure 10 indicates that there is some degree of cloud albedo equifinality across

morphologies. That is, different morphologies can produce an equivalent cloud albedo despite significantly different cloud

properties. A comparison of the plotted lines shows that more cumuliform morphologies such as Gravel, disorganized clouds,

and open cell MCC have higher values of maximum τ , higher peak rain rates, more ice content and more optically thin335

clouds compared to the stratiform types for an equivalent cloud albedo. This suggests that the cumuliform morphologies

are characterized by thick, raining cores surrounded by optically-thin clouds while stratiform morphologies are much more

uniform.

We find a curious difference when comparing mean τ and peak τ versus comparing mean rain rate and peak rain rate

behaviors. The relationship between τ and cloud albedo is consistent and positive for both mean and maximum τ (Fig. 10c,d).340

However this is not the case for rain rates: mean rain rates are higher for a higher albedo but maximum rain rates are highest

for middling albedos over a broad set of cumuliform morphologies. This nuanced relationship between maximum rain rate and

albedo may be associated with heavily precipitating cores surrounded by more optically-thin clouds. Because of the limitations

in the 89GHz rain rate product in sensing heavier rain, this result may need to be evaluated using rain rate products with a

greater sensitivity to strong rain rates.345

3.4 Vertical Profiles and Optical Thickness from CALIPSO

The CALIOP LIDAR aboard CALIPSO provides vertical profiles of cloud tops, and a measure of cloud optical thickness. This

section analyses ‘cloudy’ retrievals in 30m height bins in the lowest 4km of CALIOP LIDAR profiles in classified boxes. Pro-

files that penetrate the clouds and detect the surface are considered optically thin while fully attenuated profiles are considered

optically thick. Optically thick profiles only represent cloud tops, since the true vertical extent of the cloud is unknown due350

to attenuation of the lidar beam. Profiles that see layered clouds are more complex: occasionally, the lidar sees through upper

clouds and attenuates in a lower cloud. Here, layered profiles are split into thin and thick portions. The thin portion represents

all clouds that the lidar sees through and the thick portion consists only of the cloud that fully attenuates the beam. Plots in

Figure 11 show the fraction of cloudy observations for thin (blue dashed) and thick (solid black) profiles in each height bin di-

vided by the total number of profiles that see cloud for each classification. Combined profiles (sum of thick and thin) are shown355
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Figure 11. CALIPSO Vertical Feature Mask (VFM) vertical profiles of all (black dashed), optically thin (blue dashed), and thick (black

solid) clouds for each morphology. Anomalies relative to the mean profiles in frame (n) are shown as shaded regions (blue for thin, black for

thick).
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Figure 12. Mean optically thin cloud cover fraction as detected by MODIS (# of obs with τ < 3 / total # of cloudy obs) plotted against mean

optically thin cloud cover as detected by CALIOP on CALIPSO (# of soundings that see the surface / total # of cloudy soundings).

as thin black dashed lines. Clear profiles are excluded from the denominator in order to better show and compare the shapes

of the cloud profiles. Anomalies for thin and thick profiles, shown respectively as blue and black shaded regions, represent

the profiles for each type minus the mean profile of all types shown in Fig. 11. Frames are arranged to facilitate comparisons

between theoretically similar identification types across classifiers.

Since overlying high clouds could potentially attenuate the lidar beam, Figure 11 was also created only for profiles with no360

cloud cover above 4km. This filtered subset of our data produced qualitatively comparable results, showing no bias caused by

high clouds.

Results show strong differences in vertical profiles between classifications. Shallower and less vertically distributed types

include suppressed Cu types, closed MCC, MEASURES disorganized, and Flowers. Deeper types are Gravel, open cells,

MEASURES solid St, and Fish. These deeper types tend to rain more heavily (Fig. 10f), except for MEASURES solid St which365

are likely associated with weather systems and not convection. Note that, because we are limiting to 4km depth, the Fish

identifications are likely highlighting the low-level, scud clouds that happen in the vicinity of the larger feature (e.g., Fig. 1).
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Generally, optically thin clouds tend to be lower in height than surrounding optically thick clouds for all classifications even

when accounting for layered scenes.

Comparing absolute and anomaly profiles between similar types classified by different routines, we find similar behaviors for370

suppressed Cu types (MEASURES suppressed vs. Sugar) and closed MCC types (MEASURES vs. MIDAS). Some differences

are apparent between other theoretically similar types. Gravel scenes tend to contain more optically thin and fewer optically

thick clouds compared to MEASURES clustered Cu. This may be because more optically thin clouds are present in the larger

classification boxes around Gravel. MEASURES open cells contain more clouds, especially optically thin, in the upper portions

of the profile compared to MIDAS open cells, perhaps owing to the MEASURES open cells disproportionate prevalence in the375

storm track.

CALIOP provides an independent measure of the fraction of optically thin clouds that can be compared to MODIS. In

Figure 12 the number of CALIOP profiles that see the surface divided by the total number of cloudy profiles is plotted against

the fraction of cloudy MODIS pixels with τ < 3. Layered CALIOP soundings are considered optically thick here, since an

equivalent MODIS observation would be unable to effectively distinguish the layers, and the albedo would be more akin to that380

of an optically thick scene. We see strong agreement between MODIS and CALIOP measures of τ (88% variance explained),

increasing confidence in our assessment of optically thin fractions for the classified types.

3.5 Regional Differences

Figure 10 shows significant differences in cloud properties between morphologies while Figures 2-4 show strong differences

in their geographic distributions. Given this, we wish to investigate the degree that cloud property differences are influenced by385

varying geographic distributions separately from morphological differences. To assess this, Figures 14-15 present a comparison

of cloud properties in smaller sub-regions that are illustrated in Figure 13. Boxes sample different sub-regions along the

anticyclonic flow in the Atlantic, illustrated by mean winds at cloud level (vectors, 925hPa). Boxes in the far North Atlantic

and East Atlantic subsidence regions are chosen to compare stratiform morphologies while boxes in the upwind and downwind

tropical trade winds are chosen in order to compare shallow tropical convective morphologies. Plots compare cloud micro- and390

macro-physics, radiative properties, precipitation, and phase. Scatter plots in Figures 14 and 15 present each sub-region on an

axis. A 1:1 line is also shown, where the area-wide North Atlantic mean values for each morphology are shown as a hollow

symbol, in order to compare sub-regional behavior to the entire regional mean.

Figure 14 compares the far North Atlantic with the East Atlantic subsidence region. This effectively contrasts stratiform

morphologies between those that frequently occur in the storm track where cold air outbreaks are common and the Sc cloud395

types that commonly occur under a shallow marine inversion. Rain rate data derived from Tb are frequently missing in the

far North Atlantic region due to the presence of ice, so rain rates are replaced by cloud droplet effective radius (re) in order

to better compare rain characteristics. The far North Atlantic shows a greater maximum τ , marginally fewer but somewhat

bigger cloud drops (likely indicating more rain), greater LWP and IWP, and more cloud cover but fewer optically thin clouds.

These differences suggest a thicker, icier, and rainier cloud environment for all morphologies in the far North Atlantic. As a400
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Figure 13. The four study regions compared in Figures 14 and 15 for the entire year 2018. Mean wind vectors at 925hPa from ERA5 are

shown as arrows, with arrow length scaled by mean wind speed.

consequence of these thicker clouds, the cloud albedo in this region is consistently higher compared to both the entire study

region and the subsidence region in the East Atlantic.

Figure 15 compares warm, shallow convective morphologies between upwind and downwind locations in the tropical trade

winds (note axes changes from Fig. 14). Morphologies observed upwind have lower peak rain rates with more drops and are

marginally cloudier with a smaller proportion of optically thin clouds. The cloud LWP is also marginally lower upwind while405

ice is minimal in both sub-regions (not unexpected for the trades). The upwind region shows a higher max τ and albedo,

suggesting that the cleaner (lower Nd), more remote, and likely more developed downwind cloud systems are less reflective.

This result hints at the presence of strong Lagrangian development of cloud systems in the trade winds, which may have

significant radiative implications.

Figure 14 and 15 show that the ordering from high-to-low for most cloud properties generally remains consistent between410

types and between regions even though mean values may differ significantly between regions. Some of the variability seen

in Figure 10 is likely caused by geographic differences, but a strong morphology-driven variation of cloud properties is still

present after controlling for regionality. Further, Lagrangian development is apparent when looking at upwind/downwind lo-

cations in the trade winds. Finally, the association between rain rates and albedo may be dependent upon morphology or cloud
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Figure 14. Mean cloud properties for each morphology that is commonly observed in the far North Atlantic (x-axis) and subtropical subsi-

dence region (y-axis). Properties include a) Maximum optical depth (τ ), b) Cloud droplet effective radius (re, in place of rain rate), c) Cloud

droplet concentration (Nd), d) In-cloud liquid water path (LWP), e) Albedo, f) Fraction of optically thin cloud (τ<3), g) Cloud amount, and

h) In-cloud ice water path. A 1:1 line is also shown, where the area-wide North Atlantic mean values for each morphology are shown as a

hollow symbol.
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Figure 15. Mean cloud properties for each morphology that is commonly observed in the far upwind trade winds (x-axis) downwind trade

winds (y-axis). Properties include a) Maximum optical depth (τ ), b) Rain rate, c) Cloud droplet concentration (Nd), d) In-cloud liquid water

path (LWP), e) Albedo, f) Fraction of optically thin cloud (τ<3), g) Cloud amount, and h) In-cloud ice water path. A 1:1 line is also shown,

where the area-wide North Atlantic mean values for each morphology are shown as a hollow symbol.
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phase, with more heavily raining, warm tropical clouds being less reflective, while rainier, and possibly icier, scenes in the415

mid-latitudes have a higher albedo.

4 Discussion

In Figure 6 and Table 1, we show that cloud albedo is at least as strong a predictor of scene albedo as cloud amount. This

was true in explaining albedo variability between morphologies (Fig 6) and within morphologies (Table 1). Figure 10 goes

on to show that the fraction of optically thin cloud cover best predicts the cloud albedo variability between morphologies,420

highlighting the importance of cloud optical thickness in climate studies. This result agrees with the results of McCoy et al.

(2023) in showing that differences in cloud optical thickness between MIDAS morphologies drive albedo variation between

those morphologies for a constant cloud amount. Here, we can now extend that conclusion by examining more specialized

tropical cloud morphology identifications that were previously considered together as one disorganized type.

The relative importance of albedo and cloud cover in diagnosing the radiative impact of clouds is in-part dependent upon425

thresholds used in satellite retrievals to identify cloudy or clear scenes. It is possible that a modification of the threshold used

to separate cloudy from clear pixels in the MODIS cloud mask employed here could modify our results. Because no perfect

truth exists for quantifying satellite-detected clouds, we motivate future work in this area to improve the resolution of cloud

cover retrievals.

The radiative importance of cloud optical depth in our present and future climate has been demonstrated in prior work (Mc-430

Coy et al., 2023; Hu and Stamnes, 2000; Konsta et al., 2022). Using a radiative-convective model, Hu and Stamnes (2000)

found that an increase in cloud optical depth was associated with less warming. McCoy et al. (2023) used present-day mor-

phology observations as a basis for calculating the optical depth component of the shortwave cloud feedback (e.g., Zelinka

et al., 2012) from shifts in morphology occurrence under extreme climate scenarios. For example, McCoy et al. (2023) show a

local, positive optical depth feedback on SST warming from morphology shifts, which occurred during the 2015-2016 North435

East Pacific marine heatwave: MIDAS closed cell MCC was replaced by less cloudy, optically thinner MIDAS disorganized

scenes, increasing sunlight on the sea surface. Here, we expanded the specificity of morphology identifications, especially in

the tropics, from those used in McCoy et al. (2023) and found some additional variation in behaviors across morphology types.

Our results highlight the potential complexity of understanding morphology feedback onto the climate system in present and

future climates. Identifying the processes involved in development and transitions across these varied morphology types and440

the sensitivity of these processes to the environment warrants additional study as well.

A comparison of climate models by Konsta et al. (2022) shows that models fail to reproduce realistic cloud optical depth

variability, often producing no optically thin clouds. This contributes to the ‘too few, too bright’ problem endemic in cloud

representation in general circulation models. That study also showed a model failure to reproduce higher cloud optical depths

observed in thicker Sc scenes. Examining parameterized cloud behaviors in the context of morphological classifications may445

aid in the reproduction of realistic optical thicknesses. Relating morphology occurrence, and their inherent radiative property

signatures, to distinct climate regimes (e.g., McCoy et al., 2017; Mohrmann et al., 2021; McCoy et al., 2023) may also be
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useful in adding nuance to regime based forcing (e.g., Wall et al., 2022) and feedback (e.g., Myers et al., 2021; Zelinka

et al., 2022) calculations. In particular, trade-cumulus feedback is still a large source of uncertainty in climate models and

significantly disagrees with observational estimates (e.g., Myers et al., 2021; Vogel et al., 2022), emphasizing the importance450

of understanding cloud development and radiative impacts in this region.

Geographic distribution maps and co-occurrence statistics shown in sections 3.1 and 3.2 suggest that Lagrangian transitions

between morphologies are common as the mean flow advects clockwise (anti-cyclonically) around the study region. Given

the regional morphology albedo anomalies we found (Figures 7-9), Earth’s radiation budget will be modified by shifts in the

location of the climatological average transition regions or other changes in the most common types of transitions occurring in455

this basin. A few studies have already addressed the drivers of Lagrangian morphology changes in these regions. Narenpitak

et al. (2021) demonstrated that moisture convergence and large-scale ascent can drive a Sugar-to-Flowers transition in the

trade-winds. Eastman et al. (2022) found that increased rain driven by strong winds and its accompanying moisture fluxes can

drive a closed-to-open MCC transition in the subtropics while a warmer sea surface, a weaker inversion, and stronger dry air

entrainment were associated with MIDAS closed-to-MIDAS disorganized transitions. Identifying more such mechanisms influ-460

encing climatological and Lagrangian morphology transitions and their sensitivity to environmental changes will be important

for understanding how these transitions will modulate present and future energy flows in the climate system.

Our results also motivate future work examining other frequent, radiatively significant transitions that are now apparent

from the relatively frequent co-occurrences suggested in Figure 5. For example, the change between disorganized types and

Flowers or suppressed Cu evolving into or from clustered Cu. The importance of examining these regionally specific transitions465

is further emphasized by our finding that a single morphology may present differing radiative characteristics as it undergoes

Lagrangian evolution (e.g., along the flow), as shown by MEASURES clustered Cu or Gravel becoming rainier and increasingly

optically thin in the downwind trades (Fig. 15). That relationship combined with the heavier maximum rain rates observed at

middling cloud albedo values in Figure 10f for several shallow convective morphologies hints at a precipitation-driven process

where heavy rain may be associated with less reflective clouds for some morphologies. This may be broadly consistent with470

the increased prevalence of cloud-free cold pools surrounding mature raining cells. However, Vogel et al. (2021) suggest the

opposite relationship with greater optical thickness associated with stronger rain rates. Heavier precipitation observed in the

Stratocumulus-Cumulus transition was shown by O et al. (2018) to be associated with more optically thin veil clouds, which is

broadly consistent with lower albedos seen with heavier rain rates. Further work is needed to better understand these processes.

The differences in droplet concentrations (e.g., higher upwind in the trades) in Figures 14 and 15 also motivate a more detailed475

examination of aerosol influence on morphology radiative properties (e.g., higher albedo upwind) and cloud evolution.

In Leahy et al. (2012), the fraction of optically thin cloud cover was shown to vary inversely with cloud size. Although our

study has not specifically studied the sizes of cloudy elements within each morphology, our results generally agree with this

inverse relationship. Morphologies such as MEASURES suppressed Cu or sugar, which consist of many small clouds, contain

a greater proportion of optically thin cloud compared to the broad cells associated with closed cell Sc. Objective classification480

methods have also found that cloud size is one of four important dimensions to consider in separating cloud morphology types,

indicating this is a fundamental property of different organization states (Janssens et al., 2021). This motivates future study of
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cell size, possibly using methods developed by Zhou et al. (2021) and Janssens et al. (2021) to see whether this inverse rela-

tionship applies within each morphology, or only between morphologies. Both Leahy et al. (2012) and Mieslinger et al. (2022)

found that small, optically thin clouds are frequently undetected by remote platforms such as MODIS and CALIPSO, causing485

significant uncertainty in cloud radiative effects and suggesting that optically thin fractions shown here may be underestimated.

Advances in observations may aid in detecting these ‘hidden’ but radiatively significant clouds.

In Figure 5, open cell co-occurrence statistics are peculiar in that MEASURES open cells tend be infrequent when MIDAS

open cells are reported, relative to the opposite relationship where MIDAS open cells are more frequent when MEASURES

open cells are present. Differing geographic distributions are also present in Figures 2a and 3d, showing that MEASURES open490

cells are more confined to the storm track where Figure 15d shows much higher LWP values. One possible explanation for this

difference is the contrast in training regions between MIDAS, which is exclusively trained in the subtropics, and MEASURES,

which is trained globally. The inclusion of the storm track in the MEASURES training region may have increased the LWP

threshold for the classification of open cells. A brief comparison of mean LWP between MIDAS and MEASURES open cells

in Figure 10a shows that MEASURES open cells have higher LWP, consistent with a sensitivity to differing training regions.495

This comparison may aid in establishing a single set of unique morphologies. Given their radiative and physical characteris-

tics, distinct morphologies likely include: solid stratus, closed cell MCC, open cell MCC (though these may present differently

in the storm track compared to subsidence regions), aggregated Cu (a combination of Gravel and MEASURES clustered Cu,

with the former presenting a deeper, more developed version of the latter), suppressed Cu (as seen similarly by MEASURES

suppressed and SGFF Sugar), Fish, and Flowers. Co-occurrence statistics for Fish and Flowers suggest that these are currently500

or formerly sub-types of aggregated Cu and can be alternately described as disorganized. However, their radiative properties

appear unique enough to warrant a distinct classification as do their formation mechanisms (i.e., the larger structures in Fish

are typically associated with trailing cold fronts (Schulz et al., 2021; Aemisegger et al., 2021)). It will be necessary for future

work to converge on this set of morphologies or one like it to avoid endless proliferation of differing cloud types, causing a

lack of comparability in studies. New data sources, including improved geostationary satellites, should be used in producing505

globally focused versions of these identifications in order to maintain a continuing record and to establish daily and seasonal

climatologies.

Finally, this work hints at the presence of both equifinality and multifinality in the cloud-climate system. Equifinality, equiv-

alent outcomes born of diverse processes or properties, is demonstrated by the wide range of cloud properties that can be

combined to produce the same albedo, depending on cloud morphology. Multifinality, diverse outcomes resulting from similar510

perturbations, is also present in this system given the unique cloud processes and properties associated with each morphology:

A single perturbation to the climate system will likely favor one cloud morphology over another. These concepts motivate future

research to better quantify the diverse cloud processes and radiative characteristics associated with each unique morphology.
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5 Conclusions

Three supervised machine learning routines (MIDAS, MEASURES, and SGFF) are used to produce thirteen cloud classifica-515

tions representing distinct morphologies using MODIS Aqua satellite imagery and radiances over the North Atlantic Ocean for

the year 2018. Geographic distributions of morphologies vary between classifiers. MIDAS open and MIDAS closed MCC are

most prevalent in midlatitude storm track and eastern subsidence regions, while MIDAS disorganized scenes are most common

in the tropical trade winds. MEASURES stratiform cloud types are most common in the midlatitudes, with MEASURES disor-

ganized clouds more prevalent in the subsidence region. MEASURES Cu types are most common in the tropical trade winds,520

with MEASURES clustered Cu peaking upwind, east of MEASURES suppressed Cu. All four of the morphologies produced

by SGFF are common in the tropical trade winds. A study of classifier co-occurrence (when a 1◦ × 1◦ grid box is assigned

multiple morphologies) finds that MIDAS disorganized clouds co-occur with all of the morphologies frequently seen in the

tropical trade wind region. This demonstrates that the added specificity of the SGFF and MEASURES routines have added

value by separating this expansive category into distinct subsets.525

A comparison of CERES-derived albedos shows that cloud albedo and cloud amount both strongly predict the variability

in total scene albedo between morphologies. When analyzing albedo variability within each morphology, the scene albedo

was consistently more strongly correlated with cloud albedo than cloud amount. The fraction of optically thin clouds most

strongly predicts the mean cloud albedo compared with other physical quantities such as in-cloud liquid water path, in-cloud

ice water path, droplet number concentration, maximum optical depth, or rain rate. Different morphologies display unique530

combinations of these physical variables to achieve a similar cloud albedo. This equifinality complicates our understanding of

what controls cloud albedo and highlights the importance of process understanding and the usefulness of a morphology-based

analysis framework. A comparison with the CALIPSO-derived fractions of optically thin cloud cover shows strong agreement

with the MODIS-derived fractions, showing robustness of the MODIS optically-thin feature detection method.

Vertical profiles of optically thin and thick cloud cover are produced using CALIPSO LIDAR data. More vertically extensive535

morphologies include: clustered Cu types (Gravel and MEASURES clustered), MEASURES solid St, open cell MCC from

MIDAS and MEASURES, and, for clouds below 4 km near these features, Fish. Shallower morphologies include: closed cell

MCC from MIDAS and MEASURES, Flowers, and both MEASURES suppressed Cu and Sugar types. Optically thin features

are more common at lower altitudes, nearer cloud base, despite separating multi-layered scenes into thin upper and thick lower

portions.540

A geographic breakdown shows strong regional differences in radiative and physical properties. Stratiform morphologies are

thicker, rainier, and more reflective in the far North Atlantic region where cold air outbreaks commonly occur compared to the

subtropical subsidence region. Trade wind Cu types are less rainy, more reflective, and less optically thin in the upwind trades

nearer the subsidence region compared to downwind. This suggests there is some Lagrangian evolution occurring within types

as well as variability in cloud properties that may be associated with proximity to aerosol sources on land.545

Overall, this work describes how a morphology-driven approach to the study of clouds can provide radiatively-important

insights about cloud characteristics and evolution, potentially helping us to better encapsulate cloud behaviors in climate
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models and reduce uncertainty in climate projections. For the wide range of morphological cloud types examined in this study,

we find unique relationships between cloud physical properties and radiation. Future work may improve upon this by tying

archetypal cloud morphologies to common climate regimes, identifying processes unique to the development and evolution of550

each morphology, and examining the sensitivity of these processes to environmental changes.

Data availability. Datasets Include:

MODIS L2 data used to run classifier routines is available at: https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/MYD06_L2/ (Plat-

nick et al., 2015)

555

CERES data used to quantify albedo are available: https://asdc.larc.nasa.gov/project/CERES/CER_SSF1deg-Hour_Aqua-MODIS_Edition4A

(NASA/LARC/SD/ASDC, 2015)

MODIS L3 cloud data are available at: https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/MYD08_D3 (Platnick et al., 2017)
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ERA5 reanalysis data are available at: https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation (Copernicus Climate

Change Service, 2017)

CALIPSO VFM data are available at: https://catalog.data.gov/dataset/calipso-lidar-level-2-vertical-feature-mask-vfm-validated-stage-1-v3-41

(Vaughan et al., 2004)565

Rain rate data from AMSR2 and CloudSat are available at: https://www.cloudsat.cira.colostate.edu/community-products/warm-rain-rate-estimates-from-amsr-89ghz-and-cloudsat

(Eastman et al., 2019)

The joint mesoscale cloud morphology dataset (Eastman et al., 2024) can be accessed via the intake catalog provided at

https://github.com/ISSI-CONSTRAIN/meso-morphs.570
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