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Abstract.

Three supervised neural network cloud classification routines are applied to daytime MODIS Aqua imagery and compared
for the year 2018 over the North Atlantic Ocean. Routines surveyed here include: The Morphology Identification Data Aggre-
gated over the Satellite-era (MIDAS), which specializes in subtropical stratocumulus (Sc) clouds; Sugar, Gravel, Flowers, and
Fish (SGFF), which is focused on shallow cloud systems in the tropical trade winds; and the community record of marine low-
cloud mesoscale morphology supported by the NASA Making Earth Science Data Records for Use in Research Environments
(MEaSURESs) dataset, which is focused on shallow clouds globally.

Comparisons of co-occurrence and vertical and geographic distribution show that morphologies are classified in geographi-
cally distinct regions: shallow suppressed and deeper aggregated and disorganized cumulus are seen in the tropical trade winds.
Shallow Sc types are frequent in subtropical subsidence regions. More vertically developed solid stratus and open and closed
cell Sc are frequent in the mid-latitude storm track. Differing classifier routines favor noticeably different distributions of
equivalent types.

Average scene albedo is more strongly correlated with cloud albedo than cloud amount for each morphology. Cloud albedo
is strongly correlated with the fraction of optically thin cloud cover. The albedo of each morphology is dependent on latitude
and location in the mean anticyclonic wind flow over the N. Atlantic. Strong rain rates are associated with middling values
of albedo for many cumuliform types, hinting at a complex relationship between the presence of heavily precipitating cores
and cloud albedo. The presence of ice at cloud top is associated with higher albedos. For a constant albedo, each morphology

displays a distinct set of physical characteristics.
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1 Introduction

Low clouds tend to organize into large-scale, repeating morphological structures with individual cells observed on the scale of
20-150 km in patterns that repeat for hundreds or even thousands of kilometers (Agee, 1987; Muhlbauer et al., 2014). These
structures influence climate in different ways due to their unique radiative characteristics (McCoy et al., 2023) and sensitivities
to their surrounding environment (Qu et al., 2015). Understanding where and how different morphological structures develop,
and what the radiative characteristics of those structures are is vital for understanding how low clouds will evolve with climate
change and for determining the sensitivity of Earth’s climate.

Clouds can evolve between morphologies via multiple pathways depending on initial environmental conditions and subse-
quent changes to those conditions (Bretherton et al., 2010; Yamaguchi et al., 2017; Eastman et al., 2022; Salazar and Tziperman,
2023). Additionally, differing cloud morphologies can experience opposite changes when exposed to the same environmental
forcing. For instance stratiform clouds, which form beneath temperature inversions and are driven by radiative cooling at cloud
top, will reduce in extent when a warming sea surface weakens the inversion. However, the warming sea surface will drive
more upward motion within the boundary layer, causing cumulus (Cu) to replace stratus (St). This process is detailed in Wyant
et al. (1997) and is also shown in Norris et al. (1998) and Eastman et al. (2011). This process shows how one cloud type
(e.g., Stratocumulus, Sc) can be replaced by another (e.g., Cu) when environmental conditions (sea surface temperature, SST)
change, and is one example of many possible changes in cloud organization associated with a changing climate.

Until recently, surface observations were the primary source of cloud type information, including the studies referenced
above. Trained observers classify cloud types at multiple levels as part of coordinated weather reporting (WMO, 1974), and
these classifications have contributed to long-term climate records (Hahn et al., 2009). These records have been valuable assets
in studying long-term cloud and climate behaviors (Klein et al., 1995; Norris et al., 1998; Eastman et al., 2011), but are limited
in their spatial resolution and are prone to incongruities in their record due to geopolitical and economic shifts (Warren et al.,
1991). Satellite-based cloud-type data are now being developed in an attempt to continue and enhance the study of cloud types.
Several methods for systematically identifying low cloud morphological structure have recently been developed (Wood and
Hartmann, 2006; Rasp et al., 2020; Yuan et al., 2020; Denby, 2020; Janssens et al., 2021). This development coincides with
advances in the spatial and spectral resolution of satellite observations along with exponentially improved computing power.

Cloud classifiers have been developed to identify archetypal cloud morphologies for a variety of climatological regions. The
Morphology Identification Data Aggregated over the Satellite-era (MIDAS, Wood and Hartmann (2006); updated in McCoy
et al. (2023)) dataset was trained to discern between open and closed cell Sc fields in subtropical subsidence regions, also pro-
ducing a “disorganized, but cellular” category representing any remaining cloud cover that has cellular structure. The Sugar,
Gravel, Flowers, Fish (SGFF, Schulz et al., 2021) algorithm was trained in the North Atlantic trade wind regime, and identifies
four cloud morphologies more common to the tropics and has limited overlap with the MIDAS dataset (e.g., mostly the disor-
ganized type, Rasp et al., 2020). The community record of marine low-cloud mesoscale morphology supported by the NASA
Making Earth Science Data Records for Use in Research Environments (MEaSURESs, Yuan et al., 2020) routine produced a

more geographically varied dataset by training the algorithm with images sourced globally, and with cloud morphologies rang-
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ing from solid marine stratus to clustered tropical convection. A focus of this work is to understand the extent to which these
algorithms classify the same patterns and variability, despite their differing training routines and areas. This is still an open
question and has important implications for how we place studies based on these varied routines into context with one another.

The three routines compared here are human-trained or supervised machine learning algorithms that classify cloud cover
using satellite images. First, human observers classify morphological structures on hundreds or thousands of satellite images.
These classifications are then used to train a neural network, which can then identify these specific structures on other im-
ages. Aside from human-trained algorithms, routines are being developed that identify and sort morphologies without initial
training (i.e., unsupervised, Denby, 2020). Future work may focus on comparing unsupervised classifications with those from
supervised methods.

Prior work has shown that cloud albedo is a function of both cloud amount and morphology globally (e.g., McCoy et al.,
2017, 2023). McCoy et al. (2023) found that the relationship between scene albedo and cloud amount is significantly different
depending on cloud morphology, with closed-cell Sc clouds reflecting more than open cell Sc or disorganized Sc for the same
cloud amount. This was in-part due to the different fractions of optically thin cloud cover between morphologies, clearly
illustrating how cloud amount alone does not fully explain cloud albedo. The three MIDAS cloud types, which are especially
skilled for open or closed cell Sc identification, were utilized in that analysis. This motivates further evaluation of this behavior
using more specific, largely tropical cloud type identifications to subset the expansive disorganized category. The global focus
of McCoy et al. (2023) also motivates evaluating behaviors on a more regional scale to better understand their variability since
cloud micro- and macro-physical characteristics and radiative properties may be affected by geographic location.

This work will assess and compare geographic, radiative, and physical differences for a variety of cloud types identified by
the supervised neural network algorithms discussed above (i.e., MIDAS, SGFF, and MEASURES) for one year in the North
Atlantic. The characteristics of our three classification routines can be compared across several climate regimes in the N.
Atlantic, from the mid-latitude storm track, to subtropical subsidence regions, and the tropical trade-winds. Cloud properties
within each routine will also be compared against one another. In particular, we seek to quantify the contributions that a varied
range of cloud morphologies make to the global cloud amount-albedo relationships and further investigate the albedo sensitivity

to variations in cloud characteristics across morphology types.

2 Data

Data in this manuscript span the entire year 2018 for the North Atlantic, defined by a box bounded by 0-90° W and 5-55° N.
Only ocean areas are considered in this work. The region and time were chosen because classifier data from all three sources
were reliably available for that entire year in that region, and also because the North Atlantic Ocean contains a wide variety
of climatological conditions in a single ocean basin, including a strong mid-latitude storm track in the north, a subtropical
subsidence region in the east, and tropical trade winds to the south. Classifier data will soon be available for more regions
and more dates, allowing for more extensive studies of morphologies. Data from all three classifier routines come from the

Moderate Resolution Imaging Spectroradiometer (MODIS) on the polar orbiting Aqua satellite, which crosses the equator at
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01:30 and 13:30 local time (LT). For this work, only the daytime swaths are used. In order to better compare datasets built by
these differing routines at differing resolutions, all morphology data are projected onto a 1° x 1° latitude/longitude grid. Each
1° x 1° box is classified as a morphology if any part of that box was classified by a routine. This means that a 1° x 1° box can
be classified multiple times by the same classifier if multiple cloud morphologies are observed in that box. This allows for the

study of co-occurrence, where certain boxes may be located in a transitioning regime between two morphologies.

2.1 Classifier Routines
2.1.1 MIDAS

The Morphology Identification Data Aggregated over the Satellite-era (MIDAS, Wood and Hartmann, 2006; McCoy et al.,
2023, updated) was initially developed to distinguish closed cell mesoscale cellular convection (MCC) from open cell MCC in
Sc decks in subtropical subsidence regions. A third cloud type, disorganized but cellular, identifies shallow ocean clouds that
do not readily fit into the other two categories. These morphologies will be referred to as MIDAS closed, MIDAS open, and
MIDAS disorganized throughout this manuscript.

The MIDAS routine was trained by human observers classifying visible MODIS imagery. These classifiers were then used
to train a neural network, which used the mean and spatial variability in the MODIS 6.1 L2 liquid water path (LWP, King et al.,
1997; Platnick et al., 2003) field within 256km square boxes to produce classifications for 2003 through 2018. These boxes
are spaced 128km apart, allowing for 50% overlap between neighboring boxes. Observations are screened for ice in that LWP
is required for classifications. Classified scenes are rejected if the cloud top temperature — SST difference is greater than 30K
or if the cloud top is shown to be a majority ice water instead of liquid. Scenes are also rejected if the SST is below 275K.

Additional filtration is done to remove the distorting effects of excessive sun glint near the swath center.
2.1.2 SGFF

The Sugar, Gravel, Fish, and Flowers (SGFF, Stevens et al., 2019; Schulz et al., 2021) classifications were first developed to
distinguish large patches of organized cloud structures in the North Atlantic tropical trade winds. Shallow suppressed Cu cloud
scenes are named Sugar, while more developed and aggregated shallow convective scenes are named Gravel. More stratiform
scenes, with geographically separated, horizontally extensive cloud tops and thicker, frequently raining cloud cores are named
Flowers. The Fish classification is named for extensive “bony” structures of thick clouds, often oriented in tendrils aligned in
an east-west direction. Fish are often associated with the shallow remnants of cold fronts as they dissipate in the tropical trades
(Schulz et al., 2021; Aemisegger et al., 2021).

Classifications were initially made by human observers based on visible MODIS images (Rasp et al., 2020), and these
classifications were used to train a neural network to identify morphologies in the North Atlantic for years 2003-2020 based
on MODIS Aqua infrared brightness temperatures (Schulz et al., 2021). Classifications are made in variably-sized rectangular

(WRT latitude-longitude) boxes, often 10° x 10° or larger. Classified regions are permitted to overlap.
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2.1.3 MEASURES

The third classifier analyzed here is the Community Record Of Marine low-cloud mesoscale Morphology, developed with the
support of the NASA Making Earth Science Data Records for Use in Research Environments (MEaSUREs, Yuan et al., 2020;
Mohrmann et al., 2021). This routine, built as a continuation and improvement of the MIDAS classifier originally made by
Wood and Hartmann (2006), classifies six morphologies present across multiple climate regimes. Morphologies include: solid
stratus (MEASURES solid St), closed (MEASURES closed) and open cell (MEASURES open) MCC, and disorganized clouds
(MEASURES disorganized) observed predominantly in mid-latitude storm track and subtropical subsidence environment, and
clustered Cu (MEASURES clustered) and suppressed Cu (MEASURES suppressed) in the tropical trade winds. These tropical
cloud types were developed to improve upon the disorganized morphology produced in the MIDAS dataset, which was not
trained to discern cloud structures in the tropics and instead classified most tropical scenes as disorganized.

The MEASURES routine was initially trained by human observers classifying MODIS visible images for ocean regions
globally. These classifications were used to train a neural network, which employed MODIS visible imagery along with cloud
top height, cloud optical depth, cloud drop effective radius, and a cloud mask (Platnick et al., 2017) to produce morphologies
globally. Data are available upon request for a selected number of years, including 2018 used here. Classifications are made
within 128km square boxes with no overlap between boxes. Classifications are not made near the swath edge (sensor zenith

angle > 45°) due to the distorting effects of wide view angles on observed cloud properties (Maddux et al., 2010).

2.2 Cloud Properties from Satellites

Cloud properties are gathered concurrently with all classifications in order to assess and compare radiative and physical traits.
Concurrent datasets are made possible by the formation flying of numerous sensors in NASAs A-Train polar-orbiting satellite
constellation. All data are collected during the day at approximately 13:30 local time along the same swath used to generate
the classifications (as MODIS on Aqua is part of the A-Train).

Cloud physical properties, including cloud liquid water path (LWP), ice water path (IWP), cloud optical thickness (7), and
cloud droplet effective radius (r.) are sourced from MODIS Aqua L3 optical properties dataset (King et al., 2003; Platnick
et al., 2017) on a 1° x 1° latitude-longitude grid. MODIS cloud LWP and r, are combined to produce an estimate of cloud
droplet concentration (Ny), as demonstrated in Possner et al. (2020), based on relationships presented in Boers et al. (2006) and
Bennartz (2007). Cloud optical thickness (7) is calculated as a weighted average of 7 from "Filled" and partly cloudy ("PCL")
pixels, weighted by the relative "Filled" and "PCL" cloud amounts. Other cloud properties are only calculated for "Filled"
pixels because cloud edges may distort and bias those retrievals. The ratio of optically thin to optically thick cloud cover is
derived from MODIS liquid cloud optical thickness histograms, which produce counts of observations within optical thickness
bins for all observations within 1° x 1° grid boxes. Clouds with a 7 value of less than 3 are considered optically thin, as defined
in Leahy et al. (2012). Cloud cover is sourced from MODIS cloud mask (Platnick et al., 2017) on the 1° x 1° L3 grid.
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Daily albedo is sourced from the Clouds and the Earth’s Radiant Energy System (CERES, Loeb et al., 2018) single scanner
footprint daily 1° x 1° dataset (SSF1deg, NASA/LARC/SD/ASDC, 2015) based on retrievals from MODIS Aqua. The SSF1deg
dataset offers total scene albedo and cloud-free albedo along with cloud amount. These products can be used to calculate the
albedo of the cloudy regions within each 1° x 1° grid box, which is the value most frequently applied here.

Vertical profiles of cloud frequency associated with each morphology are produced using the vertical feature mask (VFM,
Vaughan et al., 2004) based on LIDAR retrievals taken by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP)
carried aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite. The VFM dataset
produces observations of: clear air, cloud, aerosol, ocean surface, and a flag for when the beam is fully attenuated. Below 8km,
profiles contain data in 30-meter vertical bins spaced 333 meters apart along the satellite ground track, producing a 333 meter
horizontal spatial resolution. Data are available at higher altitudes at reduced spatial resolution. Only ’clear’ and ’cloudy’ pixels
are studied here.

Rain rate data are sourced from the Advanced Microwave Scanning Radiometer (AMSR2) 89 GHz passive microwave
brightness temperatures (Tp, JAXA, 2012), tuned to estimate rain rates using co-located CloudSat rain-profile observations
(Lebsock and L’Ecuyer, 2011) using the routine developed in Eastman et al. (2019). This routine derives rain rate from T by
controlling for variability in AMSR/2 column integrated water vapor (Wentz et al., 2014), and ERAS SST and 10-meter wind
speed (Copernicus Climate Change Service, 2017), then comparing CloudSat rain rates to T, values, which tend to be warmer
when more liquid precipitation is present. This establishes a mean relationship between T, and rain rate, which is then applied
to the full AMSR swath.

The strong resolution of light precipitation by the 89 GHz microwave band and the CloudSat cloud profiling radar used
to develop the precipitation product allow us to see light rain associated with many of the cloud morphologies studied here.
However, retrievals tend to saturate at fairly low rain rates relative to deeper tropical boundary layer convection, providing
only a minimum possible rate. This saturation prevents the rain rate product from precisely resolving rates in the heaviest
raining cores in the tropics, so rain rates shown here for the some convective morphologies may be underestimated given this

limitation.

3 Results
3.1 Geographic Distributions

Classifier output from all three routines is plotted on a MODIS visible satellite image for the same day (January 26, 2018)
in Figure 1 in order to compare the spatial structures of the routines. Frame la shows the three MIDAS classifiers in their
256 km square overlapping boxes. MIDAS closed and MIDAS open cells are identified in the subtropical subsidence region
in the eastern Atlantic, and are also seen in smaller amounts in the northwestern region, behind the cold front. In the tropical
trades, the central-southern portion of the image, the MIDAS routine classifies nearly all features as MIDAS disorganized.
Frame 1b shows the same image classified by the MEASURES routine which uses non-overlapping grid boxes that are half the
size of the MIDAS boxes. Similar to MIDAS, MEASURES closed and MEASURES open Sc cells are seen in the subtropical
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Figure 1. The cloud field from January 26, 2018 with overlayed classifications by a) MIDAS, b) MEASURES, ¢) SGFF. Colors may deviate

from the legend if boxes overlap or if background colors differ. Image Credit: NASA, MODIS AQUA.
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Figure 2. The frequency of 1° x 1° grid boxes classified by MIDAS as a) open MCC, b) closed MCC, and c) disorganized within 5° x 5°

grid boxes.

region, but clouds in the tropical trade winds are mostly classified as MEASURES clustered or MEASURES suppressed Cu.
MEASURES solid St and MEASURES closed cells dominate the region behind the cold front, where the MIDAS routine did
not classify most clouds. The dissipating, trailing edge of the cold front is classified as MEASURES solid St. In Frame 1c, the
SGFF classifications are only present in the subtropics and tropics, with Flowers observed upstream where other routines saw
Sc types. Sugar is observed where MEASURES suppressed Cu was classified, off the northwestern African coast. Downstream,
the remains of the cold front are classified as Fish, and a broad area south of the cold front is classified as Gravel, where the
MEASURES routine classified a mix of MEASURES suppressed and MEASURES clustered Cu.

Clouds are unclassified in a few regions for a variety of reasons. If overlying ice clouds are present, or sun glint is interfering
with the retrievals, or if the observed patterns do not adequately satisfy any of the criteria for any morphology, then these are
left blank. Future work may be able to identify other morphologies or transitions in these gaps, but we restrict the analysis
here to only boxes that are classified. Colors may deviate from the legend shown if boxes overlap (red overlapping yellow may
appear orange), or if the background color of the image changes.

The frequencies of observations of each morphology and their geographic distributions are shown in Figures 2-4, where

contour maps show how frequently morphologies were classified within 5° x 5° latitude-longitude boxes. These are absolute
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Figure 3. The frequency of 1° x 1° grid boxes classified by MEASURES as a) closed MCC, b) clustered Cu, c¢) disorganized Cu, d) open
MCGC, e) solid St, and f) suppressed Cu within 5° x 5° grid boxes.

frequencies, not relative to each classifier. The grid is aggregated from 1° x 1° in order to show smoother contours, meaning
each 1° x 1° box classified within a 5° x 5° grid box counts as a single observation.

MIDAS open and MIDAS closed (Figure 2) cells are observed less frequently than MIDAS disorganized and occur in roughly
equal amounts in the midlatitude storm track and subtropical subsidence region. MIDAS disorganized clouds are extremely
common across the entire trade wind belt. This region experiences mean anticyclonic (clockwise) boundary layer wind flow
centered over the central Atlantic (Brueck et al., 2015). The peaks in cloud type distributions coincide with this flow. MIDAS
closed MCC transition to MIDAS open MCC further downstream in the mid-latitude storm track and subsidence region. These
transition into MIDAS disorganized scenes even further downstream as clouds are brought into the deeper tropics and trade
wind flow toward the Caribbean.

Figure 3 shows the distributions of MEASURES cloud types and adds specificity to the cloud transitions seen in MIDAS

associated with the mean anticyclonic Atlantic winds. Furthest upstream in the cold-air-outbreak region, just offshore of the

0.6
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Figure 4. The frequency of 1° x 1° grid boxes classified by SGFF as a) Sugar, b) Gravel, ¢) Flowers, and d) Fish within 5° x 5° grid boxes.

Canadian Maritimes, MEASURES solid St occurrence peaks. Downwind (eastward) of that peak are subsequent distribution
peaks in MEASURES closed MCC, then MEASURES open MCC, followed by MEASURES disorganized clouds in the subsi-
dence region offshore of western Europe. In contrast with the MIDAS routine, MEASURES closed and MEASURES open MCC
are less frequent overall, and are classified more frequently in the midlatitude storm track compared to the subsidence region.
MEASURES disorganized clouds are seen primarily in the eastern Atlantic. Rounding the eastern extreme of the North Atlantic
high, MEASURES clustered Cu occurrence peaks first before MEASURES suppressed Cu which dominates the downwind trade
winds just upwind of the Caribbean. This distribution progression highlights the frequent Lagrangian morphology transitions
that occur as airmasses advect equatorward in the anticyclonic mean flow.

The geographical distributions of the SGFF morphologies are shown in Figure 4 and mainly describe clouds near the trop-
ical belt. Sugar is seen most frequently in the upstream trade winds off the coast of Africa with a second region of frequent
occurrence nearer the Caribbean. Gravel is most frequent just upstream from the Caribbean, downwind from the Sugar maxi-
mum. Flowers are observed most frequently in a region spanning the subtropical subsidence region and upwind in the tropical

belt, where Sc types are generally transitioning to more tropical, Cu cloud types. This is consistent with the more stratiform
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Figure 5. Co-Occurrences of cloud morphologies shown as a fraction: the numerator is the number of times the two morphologies are
classified at the same place and same time, and the denominator is the total number of times the x-axis morphology is classified. Black
lines separate classifier routines (labeled at top and right edge). Individual classification labels are marked along the bottom and left edge.

Contributing boxes are area-weighted to account for varying grid box area with latitude.

nature of Flowers as observed by Schulz et al. (2021). These distributions suggest Sugar cloud types can occur across the trade
winds but may frequently form in offshore winds originating over Africa. It is likely these shallower Cu deepen into convective
structures akin to Gravel and Flowers (Narenpitak et al., 2021) as they travel across the trade-winds. Fish is the least frequently
observed type and is most common in the south-central Atlantic. It should be noted that Schulz et al. (2021) also found Sugar

frequently occurring adjacent to the ITCZ and its nearby subsidence region.
3.2 Co-Occurrence Statistics

To assess how the different routines classify the same scenes, Figure 5 illustrates co-occurrence between the morphologies. A
1° x 1° grid box may have multiple classifications assigned by differing routines, or from the same routine due to overlapping
observation boxes or a box containing an ‘edge’ between classifications. At the chosen resolution of the data set, co-occurrences
can stem from morphologies overlapping or being adjacent to each other within a box. Due to the patterns mesoscale extent
this unresolved co-occurrence affects only the edges of the patterns and is assumed to have no affect on the geospatial analysis.

To quantify co-occurrence we show a fraction where the denominator is the total number of times a morphology represented
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on the x-axis is classified, and the numerator is the number of times the two morphologies are observed in the same 1° x 1°
box (same place, same time). Co-occurrence events are weighted by the surface area within grid boxes, so smaller grid boxes
in the northern region contribute less to the frequency due to their relatively smaller surface areas. Differences between the
co-occurrence fractions for elements above and below the central diagonal indicates differing frequencies of observations of
one morphology (y-axis) given the presence of the other (x-axis).

The fractions of co-occurrence are shown as shades of blue in Figure 5, with darker shades indicating more frequent co-
occurrence. This representation allows us to compare scene classification behaviors within and between classifier routines
(separated by black lines). MIDAS-classified scenes show the most within-routine overlap of any classifier examined, with
MEASURES and SGFF coming second and third, respectively. The overlap sampling method of MIDAS scenes is likely
responsible for this. Within MIDAS, MIDAS disorganized scenes overlap more with MIDAS closed or MIDAS open MCC
relative to the less frequent overlap between MIDAS closed and MIDAS open MCC. This suggests that edges between MIDAS
closed or MIDAS open MCC and MIDAS disorganized scenes are more common than edges between MIDAS closed and MIDAS
open MCC. Between the MIDAS and MEASURES classifications, open MCC classifications frequently overlap as do MIDAS
closed MCC with MEASURES closed MCC and MEASURES solid St. This suggests broad classification verification for these
types between the MIDAS and MEASURES routines. MIDAS disorganized scenes have the most frequent overlap with other
classification routine types, excluding MEASURES closed MCC, MEASURES solid St, and Sugar.

MEASURES clustered scenes overlap with MEASURES open MCC and MEASURES suppressed Cu scenes. Taken together
with the maps from the prior section, a Lagrangian model emerges, where MEASURES open cells evolve into sparser MEA-
SURES clustered Cu, which then alternates with MEASURES suppressed Cu in the tropical trade winds. MEASURES clustered
and MEASURES suppressed scenes overlap with MIDAS disorganized scenes, showing that the MEASURES routine accom-
plishes its mission of adding further detail to the expansive MIDAS disorganized classification. MEASURES clustered scenes
overlap with Gravel and Fish, while MEASURES suppressed scenes overlap more with Sugar, Gravel, and Fish. It is likely that
MEASURES suppressed Cu is detected in gaps between larger features in Fish and Gravel scenes.

The SGFF classifications show less frequent overlap with one another, but some overlap is apparent between Sugar-Gravel
and Fish-Flowers. Flowers overlap most with MIDAS open MCC and MIDAS disorganized, in addition to MEASURES clus-
tered and MEASURES disorganized. Sugar and MEASURES suppressed Cu show some overlap, as do Gravel and MEASURES

clustered Cu, indicating that the two routines are classifying the same scenes as these conceptually similar types.
3.3 Morphology and Albedo

In this section, we construct comparisons between various cloud properties for each morphology to understand the influence
morphological organization has on albedo. Generally, we utilize one variable to define quantile bins along the x-axis and
report the mean of a second variable in each bin (e.g., shaded lines in Figure 6). Grid box area is used to weight all averages
shown, so smaller boxes do not have disproportionate contributions. The 2-sigma standard error for each bin mean is shown
by the line width in the y-direction. To eliminate noise caused by outliers, data plotted in the lines represent the middle 80%

quantile (with the upper and lower 10% removed). Large, filled symbols represent the morphology mean x and y behavior.
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Figure 6. Morphology relationships (colored lines) for y-axis variables binned into quantiles along the x-axis between a) cloud albedo vs.
all-sky albedo, b) cloud amount vs. all-sky albedo, c) cloud albedo vs. cloud amount, and d) cloud amount vs. normalized observation
number. Line width in the y-direction represents the 2-o standard error of the mean. Data for lines exclude the upper and lower 10% quantile
bins. Hollow symbols and colors distinguish lines between classifier routine classifications (legend in b) and do not represent any values. In

a-c), averages for each morphology are shown as large, corresponding filled symbols. In d), observation number per cloud amount bin are

Cloud Albedo (CERES, Aqua)

normalized between 0-1 in order to best compare shape.
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Albedo Anomaly

Figure 7. Yearly mean of daily albedo anomalies relative to the 100-day running mean for all classifiable low cloud scenes for MIDAS

morphologies: a) open MCC, b) closed MCC, and c) disorganized.

Small, hollow symbols mark the morphology corresponding to each line. We are able to examine inter-morphology (between
mean morphology behaviors, compare large symbols) relationships and intra-morphology (within morphology type behaviors,
compare shaded lines) relationships to test whether observed behaviors are unique to each type or common to all morphologies.

Each figure in this section has been produced using two methods: one uses all grid boxes assigned to a morphology, while
the other uses a ’pure’ set that only uses boxes assigned to a single morphology by each routine (no co-occurrences within
classifiers). This is to ensure that no bias is present due to overlap between morphologies. Figures are qualitatively identical
regardless of which method is used, showing no bias caused by overlap. Figures shown use all available data, including co-
occurrences within classifiers.

For each morphology, we find that the scene (all-sky) albedo is both a function of cloud albedo (6a) and cloud amount (6b).
The correlation coefficients shown are calculated for the means (large symbols) and describe how much variation between
morphologies in mean scene albedo is explained by cloud albedo (6a) and cloud cover (6b). Cloud albedo explains slightly
more (98%) of the variability in all-sky albedo compared to cloud cover (90%). Cloud amount and cloud albedo (6¢) are also
closely related with 86% variance explained.

There is broad agreement in albedo values for similar cloud types seen by different classifiers. For example, MEASURES

suppressed Cu and Sugar show nearly equivalent albedos. Albedo tends to be lowest for Cu types and highest for stratiform
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Figure 8. As in Figure 7 but for MEASURES morphologies: a) closed MCC, b) clustered Cu, c) disorganized Cu, d) open MCC, e) solid St,

and f) suppressed cu.

types, with open cells, disorganized scenes, and clustered cumuliform albedos in the middle. Stratiform types show far more
extensive cloud cover accompanied by a higher albedo compared with cumuliform types.

The spread between lines in the three plots suggests that the relationships between mean scene albedo and mean cloud
cover as well as between mean cloud albedo and mean cloud amount are unique functions of cloud morphology. This is
particularly true for the cloud albedo and cloud amount relationships, which exhibit more separation (Figure 6¢). For instance,
the two suppressed Cu cloud types in frame 6¢ show a significantly less extensive mean cloud amount and a weaker increase in
amount when albedo increases relative to stratiform morphologies. Differences are also present in frame 6a, where, again, the
suppressed Cu types show a weaker relationship along with Gravel and MEASURES open cells. Taken together, these figures
show how mean radiative properties for each cloud morphology are a unique function of cloud cover and cloud albedo.

In addition to the correlations between the mean morphology behaviors, we examine the correlations based on the points
used to create the shaded lines in Figures 6a-6¢. These coefficients (Table 1) describe how strongly cloud albedo or cloud

amount relate to scene albedo for each morphology. For every morphology (with the exception of MEASURES suppressed),
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Figure 9. As in Figures 7 and 8 but for SGFF morphologies: a) Sugar, b) Gravel, c) Flowers, and d) Fish.

cloud albedo is a stronger driver of scene albedo than cloud cover. This is consistent with the mean correlations and implies
that, for these morphologies, cloud reflectivity may drive all-sky albedo variability more strongly than cloud amount. These
relationships are generally weaker for the suppressed Cu types, which may indicate difficulty in detecting the larger proportion
of optically thin clouds in these predominantly clear scenes (Mieslinger et al., 2022).

Figure 6d shows normalized curves comparing the relative number of observations per cloud amount bin for each mor-
phology. These curves show that stratiform types are more frequently observed in cloudy environments, while most of the
disorganized or cumuliform types are frequently observed when cloud cover is much lower. However, the distribution of mor-
phology occurrence across the cloud amount space is varied and overlapping, suggesting that morphology is not a simple
function of cloud cover, nor vice-versa.

In Figures 7-9, maps show the geographic distributions of cloud albedo anomaly for each morphology. Albedo anomaly is

defined as the daily mean albedo for a specific morphology minus the mean albedo for all sampled low cloud scenes (from a
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Figure 10. Cloud properties: a) in-cloud liquid water path (LWP), b) droplet number concentration (Ng4), ¢) mean optical depth (7), d)
maximum optical depth, e) mean rain rate, f) maximum rain rate, g) in-cloud ice water path (IWP), and h) fraction of optically thin cloud
features (7<3) as a function of cloud albedo. As in Figure 6, symbols show the mean relationship for each classification, lines show the
relationship for cloud properties within each morphology for bins of constant cloud albedo, and line width in the y-direction represents the
2-¢ standard error of the mean. Frames a, b, and g only use Filled” MODIS pixels and not cloud edges in order to reduce possible biases in

retrievals in partly cloudy regions.
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Correlation (r) with Scene (All-Sky) Albedo
Cloud Albedo Cloud Amount
Open MCC 0.92 0.66
MIDAS Closed MCC 0.87 0.52
Disorganized 0.85 0.75
Closed MCC 0.94 0.64
Clustered Cu 0.83 0.77
MEASURES Disorganized Cu 0.89 0.73
Open MCC 0.91 0.75
Solid St 0.92 0.66
Suppressed Cu 0.57 0.63
Sugar 0.62 0.44
Gravel 0.83 0.70
SGFF
Flowers 0.79 0.71
Fish 0.77 0.75

Table 1. Correlations between all-sky albedo and cloud albedo (first column) and between all-sky albedo and cloud amount (second column)

for each morphology.

combination of all routines) within a 5° x 5° grid box for a 100-day running mean centered on every day. The values shown
are annual means. Results show that MEASURES suppressed Cu, Sugar, Gravel, and MIDAS disorganized scenes have anoma-
lously low albedos throughout our region, while closed cell Sc and solid stratiform clouds almost always have anomalously
high albedos. For other types, including MIDAS open cells, MEASURES open cells, MEASURES clustered, MEASURES dis-
organized Cu, Fish and Flowers, the albedo anomaly is negative near the storm track, but positive to the south. This suggests a
complex picture where climatologically relevant cloud radiative properties are a function of morphology and location. Because
of differing frequencies of occurrence for each morphology (as shown in Figures 2-4) the sum of all anomalies in Figures 7-9
should not be zero.

In Figure 6 and Table 1, cloud albedo was shown to have a profound effect on the all-sky albedo of a cloud scene, greater
than cloud amount. This motivates further study into what cloud properties most influence cloud albedo for each morphology.
In Figure 10, the relationships between cloud albedo and a number of remotely sensed cloud variables are shown for each
morphology using the same method as Figure 6. Data are gathered only for cloud scenes with cloud amounts within 10%
of the respective morphology median, which allows us to control for the differing mean cloud amounts associated with the
morphologies (sampling the "peaks" relative to cloud amount in 6d). Results were not qualitatively sensitive to changing this
threshold to 5% or 20%.

For all morphologies, cloud albedo increases when LWP, N, 7, and IWP (Fig. 10a,b,c,g, respectively) increase while cloud

albedo decreases when the fraction of optically-thin cloud cover increases (Fig. 10h). This final relationship shows the strongest
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correlation, indicating that the fraction of optically-thin cloud cover most strongly explains the cloud albedo variability between
morphologies after controlling for cloud amount, as shown by McCoy et al. (2023).

Figure 10 uses LWP, N, and IWP values from "Filled’ MODIS pixels only, excluding cloud edges or any other scenes where
pixels are partially filled. This is to avoid biases caused by assumptions used by the retrievals that may not be appropriate in
broken cloud scenes. To see whether including or excluding broken scenes could cause a bias, Figure 10 was also produced
using weighted averages of ’Filled” and ’Partly Cloudy’ pixels, with separate LWP, N;, and IWP values averaged for portions of
each grid box considered ’Filled’ or "Partly Cloudy’, then averaged based on the fraction of "Filled’ or ’Partly Cloudy’ scenes
within each box. This averaged figure was qualitatively unchanged from the original, suggesting that the relationships seen
here are unlikely to be biased by scattered or broken cloud scenes. Optical depth values use this weighted average technique,
incorporating ’Filled’ and "Partly Cloudy’ observations, since that product relies on fewer assumptions.

The spread of lines in the y-direction in Figure 10 indicates that there is some degree of cloud albedo equifinality across
morphologies. That is, different morphologies can produce an equivalent cloud albedo despite significantly different cloud
properties. A comparison of the plotted lines shows that more cumuliform morphologies such as Gravel, disorganized clouds,
and open cell MCC have higher values of maximum 7, higher peak rain rates, more ice content and more optically thin
clouds compared to the stratiform types for an equivalent cloud albedo. This suggests that the cumuliform morphologies
are characterized by thick, raining cores surrounded by optically-thin clouds while stratiform morphologies are much more
uniform.

We find a curious difference when comparing mean 7 and peak 7 versus comparing mean rain rate and peak rain rate
behaviors. The relationship between 7 and cloud albedo is consistent and positive for both mean and maximum 7 (Fig. 10c,d).
However this is not the case for rain rates: mean rain rates are higher for a higher albedo but maximum rain rates are highest
for middling albedos over a broad set of cumuliform morphologies. This nuanced relationship between maximum rain rate and
albedo may be associated with heavily precipitating cores surrounded by more optically-thin clouds. Because of the limitations
in the 89GHz rain rate product in sensing heavier rain, this result may need to be evaluated using rain rate products with a

greater sensitivity to strong rain rates.
3.4 Vertical Profiles and Optical Thickness from CALIPSO

The CALIOP LIDAR aboard CALIPSO provides vertical profiles of cloud tops, and a measure of cloud optical thickness. This
section analyses ‘cloudy’ retrievals in 30m height bins in the lowest 4km of CALIOP LIDAR profiles in classified boxes. Pro-
files that penetrate the clouds and detect the surface are considered optically thin while fully attenuated profiles are considered
optically thick. Optically thick profiles only represent cloud tops, since the true vertical extent of the cloud is unknown due
to attenuation of the lidar beam. Profiles that see layered clouds are more complex: occasionally, the lidar sees through upper
clouds and attenuates in a lower cloud. Here, layered profiles are split into thin and thick portions. The thin portion represents
all clouds that the lidar sees through and the thick portion consists only of the cloud that fully attenuates the beam. Plots in
Figure 11 show the fraction of cloudy observations for thin (blue dashed) and thick (solid black) profiles in each height bin di-

vided by the total number of profiles that see cloud for each classification. Combined profiles (sum of thick and thin) are shown
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Figure 11. CALIPSO Vertical Feature Mask (VFM) vertical profiles of all (black dashed), optically thin (blue dashed), and thick (black

solid) clouds for each morphology. Anomalies relative to the mean profiles in frame (n) are shown as shaded regions (blue for thin, black for

thick).

Fraction: # of Observations per Height Bin / Total # of Cloudy Profiles
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Figure 12. Mean optically thin cloud cover fraction as detected by MODIS (# of obs with 7 < 3/ total # of cloudy obs) plotted against mean
optically thin cloud cover as detected by CALIOP on CALIPSO (# of soundings that see the surface / total # of cloudy soundings).

as thin black dashed lines. Clear profiles are excluded from the denominator in order to better show and compare the shapes
of the cloud profiles. Anomalies for thin and thick profiles, shown respectively as blue and black shaded regions, represent
the profiles for each type minus the mean profile of all types shown in Fig. 11. Frames are arranged to facilitate comparisons
between theoretically similar identification types across classifiers.

Since overlying high clouds could potentially attenuate the lidar beam, Figure 11 was also created only for profiles with no
cloud cover above 4km. This filtered subset of our data produced qualitatively comparable results, showing no bias caused by
high clouds.

Results show strong differences in vertical profiles between classifications. Shallower and less vertically distributed types
include suppressed Cu types, closed MCC, MEASURES disorganized, and Flowers. Deeper types are Gravel, open cells,
MEASURES solid St, and Fish. These deeper types tend to rain more heavily (Fig. 10f), except for MEASURES solid St which
are likely associated with weather systems and not convection. Note that, because we are limiting to 4km depth, the Fish

identifications are likely highlighting the low-level, scud clouds that happen in the vicinity of the larger feature (e.g., Fig. 1).
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Generally, optically thin clouds tend to be lower in height than surrounding optically thick clouds for all classifications even
when accounting for layered scenes.

Comparing absolute and anomaly profiles between similar types classified by different routines, we find similar behaviors for
suppressed Cu types (MEASURES suppressed vs. Sugar) and closed MCC types (MEASURES vs. MIDAS). Some differences
are apparent between other theoretically similar types. Gravel scenes tend to contain more optically thin and fewer optically
thick clouds compared to MEASURES clustered Cu. This may be because more optically thin clouds are present in the larger
classification boxes around Gravel. MEASURES open cells contain more clouds, especially optically thin, in the upper portions
of the profile compared to MIDAS open cells, perhaps owing to the MEASURES open cells disproportionate prevalence in the
storm track.

CALIOP provides an independent measure of the fraction of optically thin clouds that can be compared to MODIS. In
Figure 12 the number of CALIOP profiles that see the surface divided by the total number of cloudy profiles is plotted against
the fraction of cloudy MODIS pixels with 7 < 3. Layered CALIOP soundings are considered optically thick here, since an
equivalent MODIS observation would be unable to effectively distinguish the layers, and the albedo would be more akin to that
of an optically thick scene. We see strong agreement between MODIS and CALIOP measures of 7 (88% variance explained),

increasing confidence in our assessment of optically thin fractions for the classified types.
3.5 Regional Differences

Figure 10 shows significant differences in cloud properties between morphologies while Figures 2-4 show strong differences
in their geographic distributions. Given this, we wish to investigate the degree that cloud property differences are influenced by
varying geographic distributions separately from morphological differences. To assess this, Figures 14-15 present a comparison
of cloud properties in smaller sub-regions that are illustrated in Figure 13. Boxes sample different sub-regions along the
anticyclonic flow in the Atlantic, illustrated by mean winds at cloud level (vectors, 925hPa). Boxes in the far North Atlantic
and East Atlantic subsidence regions are chosen to compare stratiform morphologies while boxes in the upwind and downwind
tropical trade winds are chosen in order to compare shallow tropical convective morphologies. Plots compare cloud micro- and
macro-physics, radiative properties, precipitation, and phase. Scatter plots in Figures 14 and 15 present each sub-region on an
axis. A 1:1 line is also shown, where the area-wide North Atlantic mean values for each morphology are shown as a hollow
symbol, in order to compare sub-regional behavior to the entire regional mean.

Figure 14 compares the far North Atlantic with the East Atlantic subsidence region. This effectively contrasts stratiform
morphologies between those that frequently occur in the storm track where cold air outbreaks are common and the Sc cloud
types that commonly occur under a shallow marine inversion. Rain rate data derived from T, are frequently missing in the
far North Atlantic region due to the presence of ice, so rain rates are replaced by cloud droplet effective radius (r.) in order
to better compare rain characteristics. The far North Atlantic shows a greater maximum 7, marginally fewer but somewhat
bigger cloud drops (likely indicating more rain), greater LWP and IWP, and more cloud cover but fewer optically thin clouds.

These differences suggest a thicker, icier, and rainier cloud environment for all morphologies in the far North Atlantic. As a
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Figure 13. The four study regions compared in Figures 14 and 15 for the entire year 2018. Mean wind vectors at 925hPa from ERAS are

shown as arrows, with arrow length scaled by mean wind speed.

consequence of these thicker clouds, the cloud albedo in this region is consistently higher compared to both the entire study
region and the subsidence region in the East Atlantic.

Figure 15 compares warm, shallow convective morphologies between upwind and downwind locations in the tropical trade
winds (note axes changes from Fig. 14). Morphologies observed upwind have lower peak rain rates with more drops and are
marginally cloudier with a smaller proportion of optically thin clouds. The cloud LWP is also marginally lower upwind while
ice is minimal in both sub-regions (not unexpected for the trades). The upwind region shows a higher max 7 and albedo,
suggesting that the cleaner (lower Ng), more remote, and likely more developed downwind cloud systems are less reflective.
This result hints at the presence of strong Lagrangian development of cloud systems in the trade winds, which may have
significant radiative implications.

Figure 14 and 15 show that the ordering from high-to-low for most cloud properties generally remains consistent between
types and between regions even though mean values may differ significantly between regions. Some of the variability seen
in Figure 10 is likely caused by geographic differences, but a strong morphology-driven variation of cloud properties is still
present after controlling for regionality. Further, Lagrangian development is apparent when looking at upwind/downwind lo-

cations in the trade winds. Finally, the association between rain rates and albedo may be dependent upon morphology or cloud
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Figure 14. Mean cloud properties for each morphology that is commonly observed in the far North Atlantic (x-axis) and subtropical subsi-
dence region (y-axis). Properties include a) Maximum optical depth (7), b) Cloud droplet effective radius (r., in place of rain rate), c) Cloud
droplet concentration (Ng), d) In-cloud liquid water path (LWP), e) Albedo, f) Fraction of optically thin cloud (7<3), g) Cloud amount, and

h) In-cloud ice water path. A 1:1 line is also shown, where the area-wide North Atlantic mean values for each morphology are shown as a

hollow symbol.
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Figure 15. Mean cloud properties for each morphology that is commonly observed in the far upwind trade winds (x-axis) downwind trade
winds (y-axis). Properties include a) Maximum optical depth (7), b) Rain rate, c) Cloud droplet concentration (Ng), d) In-cloud liquid water
path (LWP), e) Albedo, f) Fraction of optically thin cloud (7<3), g) Cloud amount, and h) In-cloud ice water path. A 1:1 line is also shown,

where the area-wide North Atlantic mean values for each morphology are shown as a hollow symbol.
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phase, with more heavily raining, warm tropical clouds being less reflective, while rainier, and possibly icier, scenes in the

mid-latitudes have a higher albedo.

4 Discussion

In Figure 6 and Table 1, we show that cloud albedo is at least as strong a predictor of scene albedo as cloud amount. This
was true in explaining albedo variability between morphologies (Fig 6) and within morphologies (Table 1). Figure 10 goes
on to show that the fraction of optically thin cloud cover best predicts the cloud albedo variability between morphologies,
highlighting the importance of cloud optical thickness in climate studies. This result agrees with the results of McCoy et al.
(2023) in showing that differences in cloud optical thickness between MIDAS morphologies drive albedo variation between
those morphologies for a constant cloud amount. Here, we can now extend that conclusion by examining more specialized
tropical cloud morphology identifications that were previously considered together as one disorganized type.

The relative importance of albedo and cloud cover in diagnosing the radiative impact of clouds is in-part dependent upon
thresholds used in satellite retrievals to identify cloudy or clear scenes. It is possible that a modification of the threshold used
to separate cloudy from clear pixels in the MODIS cloud mask employed here could modify our results. Because no perfect
truth exists for quantifying satellite-detected clouds, we motivate future work in this area to improve the resolution of cloud
cover retrievals.

The radiative importance of cloud optical depth in our present and future climate has been demonstrated in prior work (Mc-
Coy et al., 2023; Hu and Stamnes, 2000; Konsta et al., 2022). Using a radiative-convective model, Hu and Stamnes (2000)
found that an increase in cloud optical depth was associated with less warming. McCoy et al. (2023) used present-day mor-
phology observations as a basis for calculating the optical depth component of the shortwave cloud feedback (e.g., Zelinka
et al., 2012) from shifts in morphology occurrence under extreme climate scenarios. For example, McCoy et al. (2023) show a
local, positive optical depth feedback on SST warming from morphology shifts, which occurred during the 2015-2016 North
East Pacific marine heatwave: MIDAS closed cell MCC was replaced by less cloudy, optically thinner MIDAS disorganized
scenes, increasing sunlight on the sea surface. Here, we expanded the specificity of morphology identifications, especially in
the tropics, from those used in McCoy et al. (2023) and found some additional variation in behaviors across morphology types.
Our results highlight the potential complexity of understanding morphology feedback onto the climate system in present and
future climates. Identifying the processes involved in development and transitions across these varied morphology types and
the sensitivity of these processes to the environment warrants additional study as well.

A comparison of climate models by Konsta et al. (2022) shows that models fail to reproduce realistic cloud optical depth
variability, often producing no optically thin clouds. This contributes to the ‘too few, too bright’ problem endemic in cloud
representation in general circulation models. That study also showed a model failure to reproduce higher cloud optical depths
observed in thicker Sc scenes. Examining parameterized cloud behaviors in the context of morphological classifications may
aid in the reproduction of realistic optical thicknesses. Relating morphology occurrence, and their inherent radiative property

signatures, to distinct climate regimes (e.g., McCoy et al., 2017; Mohrmann et al., 2021; McCoy et al., 2023) may also be
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useful in adding nuance to regime based forcing (e.g., Wall et al., 2022) and feedback (e.g., Myers et al., 2021; Zelinka
et al., 2022) calculations. In particular, trade-cumulus feedback is still a large source of uncertainty in climate models and
significantly disagrees with observational estimates (e.g., Myers et al., 2021; Vogel et al., 2022), emphasizing the importance
of understanding cloud development and radiative impacts in this region.

Geographic distribution maps and co-occurrence statistics shown in sections 3.1 and 3.2 suggest that Lagrangian transitions
between morphologies are common as the mean flow advects clockwise (anti-cyclonically) around the study region. Given
the regional morphology albedo anomalies we found (Figures 7-9), Earth’s radiation budget will be modified by shifts in the
location of the climatological average transition regions or other changes in the most common types of transitions occurring in
this basin. A few studies have already addressed the drivers of Lagrangian morphology changes in these regions. Narenpitak
et al. (2021) demonstrated that moisture convergence and large-scale ascent can drive a Sugar-to-Flowers transition in the
trade-winds. Eastman et al. (2022) found that increased rain driven by strong winds and its accompanying moisture fluxes can
drive a closed-to-open MCC transition in the subtropics while a warmer sea surface, a weaker inversion, and stronger dry air
entrainment were associated with MIDAS closed-to-MIDAS disorganized transitions. Identifying more such mechanisms influ-
encing climatological and Lagrangian morphology transitions and their sensitivity to environmental changes will be important
for understanding how these transitions will modulate present and future energy flows in the climate system.

Our results also motivate future work examining other frequent, radiatively significant transitions that are now apparent
from the relatively frequent co-occurrences suggested in Figure 5. For example, the change between disorganized types and
Flowers or suppressed Cu evolving into or from clustered Cu. The importance of examining these regionally specific transitions
is further emphasized by our finding that a single morphology may present differing radiative characteristics as it undergoes
Lagrangian evolution (e.g., along the flow), as shown by MEASURES clustered Cu or Gravel becoming rainier and increasingly
optically thin in the downwind trades (Fig. 15). That relationship combined with the heavier maximum rain rates observed at
middling cloud albedo values in Figure 10f for several shallow convective morphologies hints at a precipitation-driven process
where heavy rain may be associated with less reflective clouds for some morphologies. This may be broadly consistent with
the increased prevalence of cloud-free cold pools surrounding mature raining cells. However, Vogel et al. (2021) suggest the
opposite relationship with greater optical thickness associated with stronger rain rates. Heavier precipitation observed in the
Stratocumulus-Cumulus transition was shown by O et al. (2018) to be associated with more optically thin veil clouds, which is
broadly consistent with lower albedos seen with heavier rain rates. Further work is needed to better understand these processes.
The differences in droplet concentrations (e.g., higher upwind in the trades) in Figures 14 and 15 also motivate a more detailed
examination of aerosol influence on morphology radiative properties (e.g., higher albedo upwind) and cloud evolution.

In Leahy et al. (2012), the fraction of optically thin cloud cover was shown to vary inversely with cloud size. Although our
study has not specifically studied the sizes of cloudy elements within each morphology, our results generally agree with this
inverse relationship. Morphologies such as MEASURES suppressed Cu or sugar, which consist of many small clouds, contain
a greater proportion of optically thin cloud compared to the broad cells associated with closed cell Sc. Objective classification
methods have also found that cloud size is one of four important dimensions to consider in separating cloud morphology types,

indicating this is a fundamental property of different organization states (Janssens et al., 2021). This motivates future study of
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cell size, possibly using methods developed by Zhou et al. (2021) and Janssens et al. (2021) to see whether this inverse rela-
tionship applies within each morphology, or only between morphologies. Both Leahy et al. (2012) and Mieslinger et al. (2022)
found that small, optically thin clouds are frequently undetected by remote platforms such as MODIS and CALIPSO, causing
significant uncertainty in cloud radiative effects and suggesting that optically thin fractions shown here may be underestimated.
Advances in observations may aid in detecting these ‘hidden’ but radiatively significant clouds.

In Figure 5, open cell co-occurrence statistics are peculiar in that MEASURES open cells tend be infrequent when MIDAS
open cells are reported, relative to the opposite relationship where MIDAS open cells are more frequent when MEASURES
open cells are present. Differing geographic distributions are also present in Figures 2a and 3d, showing that MEASURES open
cells are more confined to the storm track where Figure 15d shows much higher LWP values. One possible explanation for this
difference is the contrast in training regions between MIDAS, which is exclusively trained in the subtropics, and MEASURES,
which is trained globally. The inclusion of the storm track in the MEASURES training region may have increased the LWP
threshold for the classification of open cells. A brief comparison of mean LWP between MIDAS and MEASURES open cells
in Figure 10a shows that MEASURES open cells have higher LWP, consistent with a sensitivity to differing training regions.

This comparison may aid in establishing a single set of unique morphologies. Given their radiative and physical characteris-
tics, distinct morphologies likely include: solid stratus, closed cell MCC, open cell MCC (though these may present differently
in the storm track compared to subsidence regions), aggregated Cu (a combination of Gravel and MEASURES clustered Cu,
with the former presenting a deeper, more developed version of the latter), suppressed Cu (as seen similarly by MEASURES
suppressed and SGFF Sugar), Fish, and Flowers. Co-occurrence statistics for Fish and Flowers suggest that these are currently
or formerly sub-types of aggregated Cu and can be alternately described as disorganized. However, their radiative properties
appear unique enough to warrant a distinct classification as do their formation mechanisms (i.e., the larger structures in Fish
are typically associated with trailing cold fronts (Schulz et al., 2021; Aemisegger et al., 2021)). It will be necessary for future
work to converge on this set of morphologies or one like it to avoid endless proliferation of differing cloud types, causing a
lack of comparability in studies. New data sources, including improved geostationary satellites, should be used in producing
globally focused versions of these identifications in order to maintain a continuing record and to establish daily and seasonal
climatologies.

Finally, this work hints at the presence of both equifinality and multifinality in the cloud-climate system. Equifinality, equiv-
alent outcomes born of diverse processes or properties, is demonstrated by the wide range of cloud properties that can be
combined to produce the same albedo, depending on cloud morphology. Multifinality, diverse outcomes resulting from similar
perturbations, is also present in this system given the unique cloud processes and properties associated with each morphology:
A single perturbation to the climate system will likely favor one cloud morphology over another. These concepts motivate future

research to better quantify the diverse cloud processes and radiative characteristics associated with each unique morphology.
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5 Conclusions

Three supervised machine learning routines (MIDAS, MEASURES, and SGFF) are used to produce thirteen cloud classifica-
tions representing distinct morphologies using MODIS Aqua satellite imagery and radiances over the North Atlantic Ocean for
the year 2018. Geographic distributions of morphologies vary between classifiers. MIDAS open and MIDAS closed MCC are
most prevalent in midlatitude storm track and eastern subsidence regions, while MIDAS disorganized scenes are most common
in the tropical trade winds. MEASURES stratiform cloud types are most common in the midlatitudes, with MEASURES disor-
ganized clouds more prevalent in the subsidence region. MEASURES Cu types are most common in the tropical trade winds,
with MEASURES clustered Cu peaking upwind, east of MEASURES suppressed Cu. All four of the morphologies produced
by SGFF are common in the tropical trade winds. A study of classifier co-occurrence (when a 1° x 1° grid box is assigned
multiple morphologies) finds that MIDAS disorganized clouds co-occur with all of the morphologies frequently seen in the
tropical trade wind region. This demonstrates that the added specificity of the SGFF and MEASURES routines have added
value by separating this expansive category into distinct subsets.

A comparison of CERES-derived albedos shows that cloud albedo and cloud amount both strongly predict the variability
in total scene albedo between morphologies. When analyzing albedo variability within each morphology, the scene albedo
was consistently more strongly correlated with cloud albedo than cloud amount. The fraction of optically thin clouds most
strongly predicts the mean cloud albedo compared with other physical quantities such as in-cloud liquid water path, in-cloud
ice water path, droplet number concentration, maximum optical depth, or rain rate. Different morphologies display unique
combinations of these physical variables to achieve a similar cloud albedo. This equifinality complicates our understanding of
what controls cloud albedo and highlights the importance of process understanding and the usefulness of a morphology-based
analysis framework. A comparison with the CALIPSO-derived fractions of optically thin cloud cover shows strong agreement
with the MODIS-derived fractions, showing robustness of the MODIS optically-thin feature detection method.

Vertical profiles of optically thin and thick cloud cover are produced using CALIPSO LIDAR data. More vertically extensive
morphologies include: clustered Cu types (Gravel and MEASURES clustered), MEASURES solid St, open cell MCC from
MIDAS and MEASURES, and, for clouds below 4 km near these features, Fish. Shallower morphologies include: closed cell
MCC from MIDAS and MEASURES, Flowers, and both MEASURES suppressed Cu and Sugar types. Optically thin features
are more common at lower altitudes, nearer cloud base, despite separating multi-layered scenes into thin upper and thick lower
portions.

A geographic breakdown shows strong regional differences in radiative and physical properties. Stratiform morphologies are
thicker, rainier, and more reflective in the far North Atlantic region where cold air outbreaks commonly occur compared to the
subtropical subsidence region. Trade wind Cu types are less rainy, more reflective, and less optically thin in the upwind trades
nearer the subsidence region compared to downwind. This suggests there is some Lagrangian evolution occurring within types
as well as variability in cloud properties that may be associated with proximity to aerosol sources on land.

Overall, this work describes how a morphology-driven approach to the study of clouds can provide radiatively-important

insights about cloud characteristics and evolution, potentially helping us to better encapsulate cloud behaviors in climate
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models and reduce uncertainty in climate projections. For the wide range of morphological cloud types examined in this study,
we find unique relationships between cloud physical properties and radiation. Future work may improve upon this by tying
archetypal cloud morphologies to common climate regimes, identifying processes unique to the development and evolution of

each morphology, and examining the sensitivity of these processes to environmental changes.

Data availability. Datasets Include:
MODIS L2 data used to run classifier routines is available at: https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/MYDO06_L2/ (Plat-
nick et al., 2015)

CERES data used to quantify albedo are available: https://asdc.larc.nasa.gov/project/CERES/CER_SSF1deg-Hour_Aqua-MODIS_Edition4A
(NASA/LARC/SD/ASDC, 2015)

MODIS L3 cloud data are available at: https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/MYDO08_D?3 (Platnick et al., 2017)

ERAS reanalysis data are available at: https://confluence.ecmwf.int/display/CKB/ERAS5 %3 A+data+documentation (Copernicus Climate
Change Service, 2017)

CALIPSO VFM data are available at: https://catalog.data.gov/dataset/calipso-lidar-level-2- vertical-feature- mask- vfm- validated- stage- 1-v3-41
(Vaughan et al., 2004)

Rain rate data from AMSR?2 and CloudSat are available at: https://www.cloudsat.cira.colostate.edu/community-products/warm-rain-rate-estimates- fron

(Eastman et al., 2019)

The joint mesoscale cloud morphology dataset (Eastman et al., 2024) can be accessed via the intake catalog provided at
https://github.com/ISSI-CONSTRAIN/meso-morphs.
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