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Abstract.

Three supervised neural network cloud classification routines are applied to daytime MODIS Aqua imagery and compared

for the year 2018 over the North Atlantic Ocean
:
.
:::::::
Routines

::::::::
surveyed

::::
here

::::::
include: The Morphology Identification Data Aggre-

gated over the Satellite-era (MIDAS), which specializes in subtropical stratocumulus (Sc) clouds; Sugar, Gravel, Flowers, and5

Fish (SGFF), which is focused on shallow cloud systems in the tropical trade winds; and the community record of marine low-

cloud mesoscale morphology supported by the NASA Making Earth Science Data Records for Use in Research Environments

(MEaSUREs) dataset, which is focused on shallow clouds globally.

Comparisons of co-occurrence and vertical and geographic distribution show that morphologies are classified in geographi-

cally distinct regions: shallow suppressed and deeper aggregated and disorganized cumulus are seen in the tropical trade winds.10

Shallow Sc types are frequent in subtropical subsidence regions. More vertically developed solid stratus and open and closed

cell Sc are frequent in the mid-latitude storm track. Differing classifier routines favor noticeably different distributions of

equivalent types.

Average scene albedo is more strongly correlated with cloud albedo than cloud amount for each morphology. Cloud albedo

is strongly correlated with the fraction of optically thin cloud cover. The albedo of each morphology is dependent on latitude15

and location in the mean anticyclonic wind flow over the N. Atlantic. Strong rain rates are associated with middling values

of albedo for many cumuliform types, hinting at a complex relationship between the presence of heavily precipitating cores

and cloud albedo. The presence of ice at cloud top is associated with higher albedos. For a constant albedo, each morphology

displays a distinct set of physical characteristics.
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1 Introduction20

Low clouds tend to organize into large-scale, repeating morphological structures with individual cells observed on the scale of

20-150 km in patterns that repeat for hundreds or even thousands of kilometers (Agee, 1987; Muhlbauer et al., 2014). These

structures influence climate in different ways due to their unique radiative characteristics (McCoy et al., 2023) and sensitivities

to their surrounding environment (Qu et al., 2015). Understanding where and how different morphological structures develop,

and what the radiative characteristics of those structures are is vital for understanding how low clouds will evolve with climate25

change and for determining the sensitivity of our
::::::
Earth’s

:
climate.

Clouds can evolve between morphologies via multiple pathways depending on initial environmental conditions and subse-

quent changes to those environmental conditions (Bretherton et al., 2010; Yamaguchi et al., 2017; Eastman et al., 2022; Salazar

and Tziperman, 2023). Additionally, differing cloud morphologies can experience opposite changes when exposed to the same

environmental forcing. For instance stratiform clouds, which form beneath temperature inversions and are driven by radiative30

cooling at cloud top, will reduce in extent when a warming sea surface weakens the inversion. However, the warming sea

surface will drive more upward motion within the boundary layer, causing cumulus (Cu) to replace stratus (St). This process is

detailed in Wyant et al. (1997) and is also shown in Norris et al. (1998) and Eastman et al. (2011). This process shows how one

archetypal cloud organization
:::::
cloud

::::
type (e.g., Stratocumulus, Sc) can be replaced by another (e.g., Cu) when environmental

conditions (sea surface temperature, SST) changes
::::::
change, and is one example of many possible changes in cloud organization35

associated with a changing climate.

Until recently, surface observations were the primary source of cloud type information, including the studies referenced

above. Trained observers classify cloud types at multiple levels as part of coordinated weather reporting (WMO, 1974), and

these classifications have contributed to long-term climate records (Hahn et al., 2009). These records have been valuable assets

in studying long-term cloud and climate behaviors (Klein et al., 1995; Norris et al., 1998; Eastman et al., 2011), but are limited40

in their spatial resolution and are prone to incongruities in their record due to geopolitical and economic shifts (Warren et al.,

1991). Satellite-based cloud-type data are now being developed in an attempt to continue and enhance the study of cloud types.

Several methods for systematically identifying low cloud morphological structure have recently been developed (Wood and

Hartmann, 2006; Rasp et al., 2020; Yuan et al., 2020; Denby, 2020; Janssens et al., 2021). This development coincides with

advances in the spatial and spectral resolution of satellite observations along with exponentially improved computing power.45

The three routines compared here are human-trained or supervised machine learning algorithms that classify cloud cover

using satellite images. First, human observers classify morphological structures on hundreds or thousands of satellite images.

These classifications are then used to train a neural network, which can then identify these specific structures on other images

from the same sensor. These classifying routines have some flexibility as they can be run on all available data or applied to

other data sources. Aside from human-trained algorithms, routines are being developed that identify and sort morphologies50

without initial training (i.e., unsupervised, Denby, 2020). Future work may focus on comparing unsupervised classifications

with those from supervised methods.
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Cloud classifiers have been developed to identify archetypal cloud morphologies for a variety of climatological regions.

The Morphology Identification Data Aggregated over the Satellite-era (MIDAS, Wood and Hartmann (2006); updated in

McCoy et al. (2023)) dataset was trained to discern between open and closed cell Sc fields in subtropical subsidence re-55

gions, also producing a “disorganized, but cellular” category representing any remaining cloud cover that has cellular struc-

ture. The Sugar, Gravel, Flowers, Fish (SGFF, Schulz et al., 2021) algorithm was trained in the North Atlantic trade wind

regime, and identifies four cloud morphologies more common to the tropics and has limited overlap with the MIDAS dataset

(e.g., mostly the disogranized type, Rasp et al., 2020)
::::::::::::::::::::::::::::::::::::::::::
(e.g., mostly the disorganized type, Rasp et al., 2020). The community record

of marine low-cloud mesoscale morphology supported by the NASA Making Earth Science Data Records for Use in Research60

Environments (MEaSUREs, Yuan et al., 2020) routine produced a more geographically varied dataset by training the algorithm

with images sourced globally, and with cloud morphologies ranging from solid marine stratus to clustered tropical convection.

A focus of this work is to understand the extent to which these algorithms classify the same patterns and variability, despite

their differing training routines and areas. This is still an open question and has important implications for how we place studies

based on these varied routines into context with one another.65

:::
The

:::::
three

:::::::
routines

::::::::
compared

::::
here

::::
are

::::::::::::
human-trained

::
or

:::::::::
supervised

::::::::
machine

:::::::
learning

:::::::::
algorithms

::::
that

:::::::
classify

:::::
cloud

:::::
cover

::::
using

:::::::
satellite

:::::::
images.

:::::
First,

::::::
human

::::::::
observers

::::::
classify

:::::::::::::
morphological

::::::::
structures

::
on

::::::::
hundreds

::
or
:::::::::

thousands
::
of

:::::::
satellite

:::::::
images.

:::::
These

::::::::::::
classifications

:::
are

::::
then

:::::
used

::
to
:::::

train
::
a
::::::
neural

:::::::
network,

::::::
which

::::
can

::::
then

:::::::
identify

:::::
these

:::::::
specific

:::::::::
structures

:::
on

:::::
other

::::::
images.

:::::
Aside

:::::
from

::::::::::::
human-trained

:::::::::
algorithms,

:::::::
routines

:::
are

:::::
being

:::::::::
developed

:::
that

:::::::
identify

:::
and

::::
sort

:::::::::::
morphologies

:::::::
without

:::::
initial

::::::
training

:::::::::::::::::::::::::::
(i.e., unsupervised, Denby, 2020)

:
.
::::::
Future

::::
work

::::
may

:::::
focus

:::
on

:::::::::
comparing

:::::::::::
unsupervised

:::::::::::
classifications

:::::
with

::::
those

:::::
from70

:::::::::
supervised

:::::::
methods.

:

Prior work has shown that cloud albedo is a function of both cloud amount and morphology globally (e.g., McCoy et al.,

2017, 2023). McCoy et al. (2023) found that the relationship between scene albedo and cloud amount is significantly different

depending on cloud morphology, with closed-cell Sc clouds reflecting more than open cell Sc or disorganized Sc for the

same cloud amount. They found this
::::
This was in-part due to the different fractions of optically thin cloud cover between75

morphologies, clearly illustrating how cloud amount alone does not fully explain cloud albedo. The three MIDAS cloud types,

which are especially skilled for open or closed cell Sc identification, were utilized in this
:::
that analysis. This motivates further

evaluation of this behavior using more specific, largely tropical cloud type identifications to subset the expansive disorganized

category. The global focus of McCoy et al. (2023) also motivates evaluating behaviors on a more regional scale to better

understand their variability since cloud micro- and macro-physical characteristics and radiative properties may be affected by80

geographic location.

This work will assess and compare geographic, radiative, and physical differences for a variety of cloud types identified by

the supervised neural network algorithms discussed above (i.e., MIDAS, SGFF, and MEASURES) for one year in the North

Atlantic. The characteristics of our three classification routines can be compared across several climate regimes in the N.

Atlantic, from the mid-latitude storm track,
:
to subtropical subsidence regions

:
,
:
and the tropical trade-winds. Cloud properties85

within each routine will also be compared against one another. In particular, we seek to quantify the contributions that a varied
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range of cloud morphologies make to the global cloud amount-albedo relationships and further investigate the albedo sensitivity

to variations in cloud characteristics across morphology types.

2 Data

Data in this manuscript span the entire year 2018 for the North Atlantic, defined by a box bounded by 0-90◦ W and 5-55◦ N.90

Only ocean areas are considered in this work. The region and time were chosen because classifier data from all three sources

were reliably available for that entire year in that region, and also because the North Atlantic Ocean contains a wide variety

of climatological conditions in a single ocean basin, including a strong mid-latitude storm track in the north, a subtropical

subsidence region in the east, and tropical trade winds to the south. Classifier data will soon be available for more regions

and more dates, allowing for more extensive studies of morphologies. Data from all three classifier routines come from the95

Moderate Resolution Imagine
::::::
Imaging

:
Spectroradiometer (MODIS) radiometer on the polar orbitting

:::::::
orbiting Aqua satellite,

which crosses the equator at 01:30 and 13:30 local time (LT). For this work, only the daytime swaths are used. In order to bet-

ter compare datasets built by these differing routines at differing resolutions, all morphology data are projected onto a 1◦ × 1◦

latitude/longitude grid. Each 1◦ × 1◦ box is classified as a morphology if any part of that box was classified by a routine. This

means that a 1◦ × 1◦ box can be classified multiple times by the same classifier if multiple cloud morphologies are observed100

in that box. This allows for the study of overlap
:::::::::::
co-occurrence, where certain boxes may be located in a transitioning regime

between two morphologies.

2.1 Classifier Routines

2.1.1 MIDAS105

The Morphology Identification Data Aggregated over the Satellite-era (MIDAS, Wood and Hartmann, 2006; McCoy et al.,

2023, updated) was initially developed to distinguish closed cell mesoscale cellular convection (MCC) from open cell MCC in

Sc decks in subtropical subsidence regions. A third cloud type, disorganized but cellular, identifies shallow ocean clouds that

do not readily fit into the other two categories. These morphologies will be referred to as MIDAS closed, MIDAS open, and

MIDAS disorganized
:::::
MIDAS

::::::
closed

:
,
::::::
MIDAS

::::
open

:
,
:::
and

:::::::
MIDAS

::::::::::
disorganized throughout this manuscript.110

The MIDAS routine was trained by human observers classifying visible MODIS imagery. These classifiers were then used

to train a neural network, which used the mean and spatial variability in the MODIS 6.1 L2 liquid water path (LWP, King et al.,

1997; Platnick et al., 2003) field within 256km square boxes to produce classifications for 2003 through 2018. These boxes

are spaced 128km apart, allowing for 50% overlap between neighboring boxes. Observations are screened for ice in that LWP

is required for classifications. Classified scenes are rejected if the cloud top temperature – SST difference is greater than 30K115

or if the cloud top is shown to be a majority ice water instead of liquid. Scenes are also rejected if the SST is below 275K.

Additional filtration is done to remove the distorting effects of excessive sun glint near the swath center.

4



2.1.2 SGFF

The Sugar, Gravel, Fish, and Flowers (SGFF, Stevens et al., 2019; Schulz et al., 2021) classifications were first developed to

distinguish large patches of organized cloud structures in the North Atlantic tropical trade winds. Shallow suppressed Cu cloud120

scenes are named Sugar, while more developed and aggregated shallow convective scenes are named Gravel. More stratiform

scenes, with geographically separated, horizontally extensive cloud tops and thicker, frequently raining cloud cores are named

Flowers. The Fish classification is named for extensive “bony” structures of thick clouds, often oriented in tendrils aligned in

an east-west direction. Fish are often associated with the shallow remnants of cold fronts as they dissipate in the tropical trades

(Schulz et al., 2021; Aemisegger et al., 2021).125

Classifications were initially made by human observers based on visible MODIS images (Rasp et al., 2020), and these

classifications were used to train a neural network to identify morphologies in the North Atlantic for years 2003-2020 based

on MODIS Aqua infrared brightness temperatures (Schulz et al., 2021). Classifications are made in variably-sized rectangular

(WRT latitude-longitude) boxes, often 10◦ × 10◦ or larger. Classified regions are permitted to overlap.

2.1.3 MEASURES130

The third classifier analyzed here is the Community Record Of Marine low-cloud mesoscale Morphology, developed with the

support of the NASA Making Earth Science Data Records for Use in Research Environments (MEaSUREs, Yuan et al., 2020;

Mohrmann et al., 2021). This routine, built as a continuation and improvement of the MIDAS classifier originally made by

Wood and Hartmann (2006), classifies six morphologies present across multiple climate regimes. Morphologies include: solid

stratus , closed
:
(
::::::::::
MEASURES

::::
solid

::
St
::
),

:::::
closed

:
(
::::::::::
MEASURES

::::::
closed

:
) and open cell

:
(
::::::::::
MEASURES

:::::
open)

:
MCC, and disorganized135

clouds
:
(
::::::::::
MEASURES

::::::::::
disorganized

:
)
:
observed predominantly in mid-latitude storm track and subtropical subsidence environ-

ment, and clustered Cu
:
(
::::::::::
MEASURES

::::::::
clustered)

:
and suppressed Cu (

::::::::::
MEASURES

::::::::::
suppressed)

:
in the tropical trade winds.

These tropical cloud types were developed to improve upon the disorganized morphology produced in the MIDAS dataset,

which was not trained to discern cloud structures in the tropics and instead classified most tropical scenes as disorganized.

The MEASURES routine was initially trained by human observers classifying MODIS visible images for ocean regions140

globally. These classifications were used to train a neural network, which employed MODIS visible imagery along with cloud

top height, cloud optical depth, cloud drop effective radius, and a cloud mask (Platnick et al., 2017) to produce morphologies

globally. Data are available upon request for a selected number of years, including 2018 used here. Classifications are made

within 128km square boxes with no overlap between boxes. Classifications are not made near the swath edge (sensor zenith

angle > 45◦) due to the distorting effects of wide view angles on observed cloud properties (Maddux et al., 2010).145

2.2 Cloud Properties from Satellites

Cloud properties are gathered concurrently with all classifications in order to assess and compare radiative and physical traits.

Concurrent datasets are made possible by the formation flying of numerous sensors in NASAs A-Train polar-orbiting satellite
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constellation. All data are collected during the day at approximately 13:30 local time along the same swath used to generate150

the classifications (as MODIS on Aqua is part of the A-Train).

Cloud physical properties, including cloud liquid water path (LWP), ice water path (IWP), cloud optical thickness (τ ), and

cloud droplet effective radius (re) are sourced from MODIS Aqua L3 optical properties dataset (King et al., 2003; Platnick

et al., 2017) on a 1◦ × 1◦ latitude-longitude grid. MODIS cloud LWP and re are combined to produce an estimate of cloud

droplet concentration (Nd), as demonstrated in Possner et al. (2020), based on relationships presented in Boers et al. (2006) and155

Bennartz (2007).
:::::
Cloud

::::::
optical

::::::::
thickness

:::
(τ )

::
is

::::::::
calculated

::
as

::
a
::::::::
weighted

::::::
average

::
of

::
τ
::::
from

:::::::
"Filled"

:::
and

::::::
partly

::::::
cloudy

:::::::
("PCL")

:::::
pixels,

::::::::
weighted

:::
by

:::
the

:::::::
relative

:::::::
"Filled"

:::
and

::::::
"PCL"

:::::
cloud

::::::::
amounts.

::::::
Other

:::::
cloud

:::::::::
properties

:::
are

::::
only

:::::::::
calculated

:::
for

:::::::
"Filled"

:::::
pixels

:::::::
because

:::::
cloud

:::::
edges

::::
may

::::::
distort

:::
and

::::
bias

:::::
those

::::::::
retrievals.

:
The ratio of optically thin to optically thick cloud cover is

derived from MODIS liquid cloud optical thickness histograms, which produce counts of observations within optical thickness

bins for all observations within 1◦×1◦ grid boxes. Clouds with a τ value of less than 3 are considered optically thin, as defined160

in Leahy et al. (2012). Cloud Cover data
:::::
cover is sourced from MODIS cloud mask (Platnick et al., 2017) on the 1◦ × 1◦ L3

grid.

Daily albedo is sourced from the Clouds and the Earth’s Radiant Energy System (CERES, Loeb et al., 2018) single scanner

footprint daily 1◦×1◦ dataset (SSF1deg, NASA/LARC/SD/ASDC, 2015) based on retrievals from MODIS Aqua. The SSF1deg

dataset offers total scene albedo and cloud-free albedo along with cloud amount. These products can be used to calculate the165

albedo of the cloudy regions within each 1◦ × 1◦ grid box, which is the value most frequently applied here.

Vertical profiles of cloud frequency associated with each morphology are produced using the vertical feature mask (VFM,

Vaughan et al., 2004) based on LIDAR retrievals taken by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP)

carried aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite. The VFM dataset

produces observations of: clear air, cloud, aerosol, ocean surface, and a flag for when the beam is fully attenuated. Below 8km,170

profiles contain data in 30-meter vertical bins spaced 333 meters apart along the satellite ground track,
:::::::::
producing

:
a
::::
333

:::::
meter

::::::::
horizontal

::::::
spatial

::::::::
resolution. Data are available at higher altitudes at reduced spatial resolution. Only ’clear’ and ’cloudy’ pixels

are studied here.

Rain rate data are sourced from the Advanced Microwave Scanning Radiometer (AMSR2) 89 GHz passive microwave

brightness temperatures (Tb, JAXA, 2012), tuned to estimate rain rates using co-located CloudSat rain-profile observations175

(Lebsock and L’Ecuyer, 2011) using the routine developed in Eastman et al. (2019). This routine derives rain rate from Tb by

controlling for variability in AMSR/2 column integrated water vapor (Wentz et al., 2014), and ERA5 SST and 10-meter wind

speed (Copernicus Climate Change Service, 2017), then comparing CloudSat rain rates to Tb values, which tend to be warmer

when more liquid precipitation is present. This establishes a mean relationship between Tb and rain rate, which is then applied

to the full AMSR swath.180

:::
The

::::::
strong

::::::::
resolution

:::
of

::::
light

:::::::::::
precipitation

:::
by

:::
the

:::
89

::::
GHz

:::::::::
microwave

:::::
band

::::
and

:::
the

::::::::
CloudSat

:::::
cloud

::::::::
profiling

::::
radar

:::::
used

::
to

::::::
develop

:::
the

:::::::::::
precipitation

:::::::
product

:::::
allow

::
us

:::
to

:::
see

::::
light

::::
rain

:::::::::
associated

::::
with

:::::
many

::
of

:::
the

:::::
cloud

::::::::::::
morphologies

::::::
studied

:::::
here.

::::::::
However,

::::::::
retrievals

::::
tend

::
to

:::::::
saturate

::
at

:::::
fairly

::::
low

:::
rain

:::::
rates

::::::
relative

:::
to

::::::
deeper

:::::::
tropical

::::::::
boundary

::::
layer

::::::::::
convection,

:::::::::
providing

::::
only

:
a
:::::::::
minimum

:::::::
possible

::::
rate.

::::
This

:::::::::
saturation

:::::::
prevents

::::
the

:::
rain

::::
rate

:::::::
product

:::::
from

:::::::
precisely

:::::::::
resolving

::::
rates

::
in

:::
the

::::::::
heaviest
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::::::
raining

::::
cores

:::
in

:::
the

::::::
tropics,

::
so

::::
rain

::::
rates

::::::
shown

::::
here

:::
for

:::
the

:::::
some

:::::::::
convective

:::::::::::
morphologies

::::
may

:::
be

::::::::::::
underestimated

:::::
given

::::
this185

::::::::
limitation.

:

3 Results

3.1 Geographic Distributions

Classifier output from all three routines is plotted on a MODIS visible satellite image for the same day (January 26, 2018)

in Figure 1 in order to compare the spatial structures of the routines. Frame 1a shows the three MIDAS classifiers in their190

256 km square overlapping boxes. Closed and open
::::::
MIDAS

::::::
closed

:::
and

::::::
MIDAS

:::::
open cells are identified in the subtropical

subsidence region in the eastern Atlantic, and are also seen in smaller amounts in the northwestern region, behind the cold

front. In the tropical trades, the central-southern portion of the image, the MIDAS routine classifies nearly all features as

disorganized
::::::
MIDAS

:::::::::::
disorganized. Frame 1b shows the same image classified by the MEASURES routine which uses non-

overlapping grid boxes that are half the size of the MIDAS boxes. Similar to MIDAS, closed and open
::::::::::
MEASURES

::::::
closed195

:::
and

::::::::::
MEASURES

:::::
open Sc cells are seen in the subtropical region, but clouds in the tropical trade winds are mostly classified

as clustered or suppressed Cu. Solid St and closed cell Sc
::::::::::
MEASURES

::::::::
clustered

::
or

::::::::::
MEASURES

::::::::::
suppressed

:::
Cu.

:::::::::::
MEASURES

::::
solid

::
St

:::
and

::::::::::
MEASURES

::::::
closed

:::
cells

:
dominate the region behind the cold front, where the MIDAS routine did not classify

most clouds. The dissipating, trailing edge of the cold front is classified as solid St
::::::::::
MEASURES

:::::
solid

::
St. In Frame 1c, the SGFF

classifications are only present in the subtropics and tropics, with Flowers observed upstream where other routines saw Sc200

types. Sugar is observed where the MEASURES routine observed suppressed Cu
::::::::::
MEASURES

::::::::::
suppressed

:::
Cu

:::
was

::::::::
classified,

off the northwestern African coast. Downstream, the remains of the cold front are classified as Fish, and a broad area south of

the cold front is classified as Gravel, where the MEASURES routine classified a mix of suppressed and clustered
::::::::::
MEASURES

:::::::::
suppressed

:::
and

:::::::::::
MEASURES

:::::::
clustered Cu.

The numbers
::::::
Clouds

::
are

::::::::::
unclassified

::
in

::
a

:::
few

::::::
regions

:::
for

:
a
::::::
variety

::
of
:::::::
reasons.

::
If
::::::::
overlying

:::
ice

::::::
clouds

:::
are

::::::
present,

::
or

::::
sun

::::
glint205

:
is
:::::::::
interfering

:::::
with

:::
the

::::::::
retrievals,

::
or

::
if
:::
the

::::::::
observed

:::::::
patterns

::
do

::::
not

:::::::::
adequately

::::::
satisfy

:::
any

::
of

:::
the

:::::::
criteria

:::
for

:::
any

:::::::::::
morphology,

:::
then

:::::
these

:::
are

:::
left

::::::
blank.

::::::
Future

::::
work

::::
may

:::
be

::::
able

::
to

:::::::
identify

::::
other

::::::::::::
morphologies

::
or

:::::::::
transitions

::
in

:::::
these

:::::
gaps,

:::
but

:::
we

::::::
restrict

::
the

:::::::
analysis

::::
here

::
to

::::
only

:::::
boxes

::::
that

:::
are

::::::::
classified.

::::::
Colors

::::
may

::::::
deviate

:::::
from

::
the

::::::
legend

::::::
shown

::
if

:::::
boxes

::::::
overlap

::::
(red

::::::::::
overlapping

:::::
yellow

::::
may

::::::
appear

:::::::
orange),

::
or

::
if
:::
the

::::::::::
background

:::::
color

::
of

:::
the

:::::
image

::::::::
changes.

:::
The

::::::::::
frequencies

:
of observations of each morphology and their geographic distributions are shown in Figures 2-4, where210

contour maps show how many times
::::::::
frequently

:
morphologies were classified within 5◦ × 5◦ latitude-longitude boxes.

:::::
These

::
are

::::::::
absolute

::::::::::
frequencies,

:::
not

::::::
relative

::
to

::::
each

::::::::
classifier.

:
The grid is aggregated from 1◦×1◦ in order to show smoother contours,

meaning each 1◦ × 1◦ box classified within a 5◦ × 5◦ grid box counts as a single observation.

MIDAS
::::::
MIDAS

::::
open

:::
and

:::::::
MIDAS

:::::
closed (Figure 2) open and closed cells are observed less frequently than disorganized

::::::
MIDAS

:::::::::::
disorganized and occur in roughly equal amounts in the midlatitude storm track and subtropical subsidence region.215

Disorganized
::::::
MIDAS

:::::::::::
disorganized clouds are extremely common across the entire trade wind belt. This region experiences

mean anticyclonic (clockwise) boundary layer wind flow centered over the central Atlantic (Brueck et al., 2015). The peaks in
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a) MIDAS

b) MEASURES

c) SGFF

Figure 1. The cloud field from January 26, 2018 with overlayed classifications by a) MIDAS, b) MEASURES, c) SGFF.
:::::
Colors

:::
may

::::::
deviate

:::
from

:::
the

:::::
legend

::
if
:::::
boxes

:::::
overlap

::
or

::
if

:::::::::
background

:::::
colors

::::
differ.

:
Image Credit: NASA, MODIS AQUA

:
.
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Figure 2. The number
:::::::
frequency of 1◦ × 1◦ grid boxes classified by MIDAS as a) open MCC, b) closed MCC, and c) disorganized within

5◦ × 5◦ grid boxes.

cloud type distributions coincide with this flow. Closed cell
::::::
MIDAS

:::::
closed MCC transition to open cells

::::::
MIDAS

:::::
open

:::::
MCC

further downstream in the mid-latitude storm track and subsidence region. These transition into disorganized clouds
::::::
MIDAS

::::::::::
disorganized

:::::
scenes

:
even further downstream as clouds are brought into the deeper tropics and trade wind flow toward the220

Caribbean.

Figure 3 shows the distributions of MEASURES cloud types and adds specificity to the cloud transitions seen in MI-

DAS associated with the mean anticyclonic Atlantic winds. Furthest upstream in the cold-air-outbreak region, just offshore

of the Canadian Maritimes, solid stratus
::::::::::
MEASURES

:::::
solid

::
St occurrence peaks. Downwind (eastward) of that peak are sub-

sequent distribution peaks in closed
::::::::::
MEASURES

::::::
closed MCC, then open

::::::::::
MEASURES

::::
open MCC, followed by disorganized225

::::::::::
MEASURES

:::::::::::
disorganized clouds in the subsidence region offshore of western Europe. In contrast with the MIDAS routine,

closed and open MCC are seen less frequently
::::::::::
MEASURES

::::::
closed

:::
and

:::::::::::
MEASURES

::::
open

::::
MCC

:::
are

::::
less

:::::::
frequent overall, and

are classified more frequently in the midlatitude storm track compared to the subsidence region. Disorganized
::::::::::
MEASURES

::::::::::
disorganized clouds are seen primarily in the eastern Atlantic. Rounding the eastern extreme of the North Atlantic high,

clustered
::::::::::
MEASURES

::::::::
clustered Cu occurrence peaks first before suppressed

::::::::::
MEASURES

:::::::::
suppressed Cu which dominates230

9



Figure 3. The number
::::::::
frequency of 1◦×1◦ grid boxes classified by MEASURES as a) closed MCC, b) clustered Cu, c) disorganized Cu, d)

open MCC, e) solid St, and f) suppressed Cu within 5◦ × 5◦ grid boxes.

the downwind trade winds just upwind of the Caribbean. This distribution progression highlights the frequent , Lagrangian

morphology transitions that occur as airmasses advect equatorward in the anticyclonic mean flow.

The geographical distributions of the SGFF morphologies are shown in Figure 4 and mainly describe clouds near the tropical

belt. Sugar is seen most frequently in the upstream trade winds off the coast of Africa with a second region of frequent

occurrence nearer the Caribbean. Gravel is most frequent closer to
:::
just

::::::::
upstream

::::
from

:
the Caribbean, downwind from the235

Sugar maximum. Flowers are observed most frequently in a region spanning the subtropical subsidence region and upwind

in the tropical belt, where Sc types are generally transitioning to more tropical, Cu cloud types. This is consistent with the

more stratiform nature of Flowers as observed by Schulz et al. (2021). These distributions suggest Sugar cloud types can occur

across the trade winds but may frequently form in offshore winds originating over Africa. It is likely these shallower Cu deepen

into convective structures akin to Gravel and Flowers (Narenpitak et al., 2021) as they travel across the trade-winds. Fish is the240
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Figure 4. The number
::::::::
frequency of 1◦×1◦ grid boxes classified by SGFF as a) Sugar, b) Gravel, c) Flowers, and d) Fish within 5◦×5◦ grid

boxes.

least frequently observed type and is most common in the south-central Atlantic. It should be noted that Schulz et al. (2021)

also found Sugar frequently occurring adjacent to the ITCZ and its nearby subsidence region.

3.2 Overlap
:::::::::::::
Co-Occurrence

:
Statistics

To assess how the different routines classify the same scenes, Figure 5 illustrates overlap
::::::::::::
co-occurrence between the mor-

phologies. A 1◦ × 1◦ grid box may have multiple classifications assigned by differing routines, or from the same routine due245

to overlapping observation boxes or a box containing an ‘edge’ between classifications. To quantify overlap frequency given

the varying numbers of observations of differing morphologies, we show the ‘fraction of maximum possible overlaps’ between

morphologies for all grid boxes in the North Atlantic. The denominator of this fraction is
::
At

:::
the

::::::
chosen

:::::::::
resolution

::
of

:::
the

::::
data

:::
set,

::::::::::::
co-occurrences

::::
can

::::
stem

::::
from

::::::::::::
morphologies

::::::::::
overlapping

::
or

:::::
being

:::::::
adjacent

::
to

::::
each

:::::
other

::::::
within

:
a
::::
box.

::::
Due

::
to

:::
the

:::::::
patterns

::::::::
mesoscale

::::::
extent

:::
this

:::::::::
unresolved

::::::::::::
co-occurrence

::::::
affects

::::
only

:::
the

:::::
edges

::
of the lower of the two total numbers of observations for250

any pair of morphologies. The
::::::
patterns

::::
and

:
is
::::::::
assumed

::
to

::::
have

:::
no

:::::
affect

::
on

:::
the

:::::::::
geospatial

:::::::
analysis.

:::
To

:::::::
quantify

::::::::::::
co-occurrence

11



Figure 5. The relative amount
:::::::::::
Co-Occurrences

:
of overlap seen between any set of two morphology classifications. Shading represents the

::::
cloud

::::::::::
morphologies

:::::
shown

::
as
::
a fractionof maximum possible overlaps: the

::::::::
numerator

:
is
:::
the

:
number of times

::
the two morphologies are seen

in the same grid box
:::::::
classified at the same

::::
place

:::
and

::::
same

:
timedivided by ,

:::
and

:
the lowest of

:::::::::
denominator

::
is the two total numbers

::::::
number

of observations for those two morphologies
:::

times
:::

the
:::::
x-axis

:::::::::
morphology

::
is
:::::::
classified. Black lines separate classifier routines (labeled at top

and right edge). Individual classification labels are marked along the bottom and left edge. Comparison frequencies
:::::::::
Contributing

:::::
boxes

:
are

repeated across the diagonal
::::::::::
area-weighted

::
to

::::::
account for readability

:::::
varying

:::
grid

::::
box

:::
area

::::
with

:::::
latitude.

::
we

:::::
show

::
a

::::::
fraction

::::::
where

:::
the

:::::::::::
denominator

:
is
::::

the
::::
total

::::::
number

:::
of

:::::
times

:
a
::::::::::
morphology

::::::::::
represented

:::
on

:::
the

:::::
x-axis

::
is
:::::::::
classified,

:::
and

:::
the numerator is the number of times the two morphologies are observed in the same 1◦×1◦ box (same place, same time).

The denominator is chosen this way because the smaller total number of observations represents the maximum number of

times that the two morphologies can co-occur in time and space. For instance, if there are 1000 total boxesclassified as MIDAS255

open cells, and 3000 boxes classified as MEASURES open cells, then only 1000 boxes can possibly overlap. If, in this case,

500 boxes are actually observed to overlap, then the fraction of maximum possible overlaps is 0.5
::::::::::::
Co-occurrence

::::::
events

:::
are

:::::::
weighted

:::
by

:::
the

::::::
surface

::::
area

::::::
within

::::
grid

::::::
boxes,

::
so

::::::
smaller

::::
grid

:::::
boxes

:::
in

:::
the

:::::::
northern

::::::
region

::::::::
contribute

::::
less

::
to

:::
the

:::::::::
frequency

:::
due

::
to

::::
their

:::::::::
relatively

::::::
smaller

::::::
surface

::::::
areas.

::::::::::
Differences

:::::::
between

:::
the

::::::::::::
co-occurrence

::::::::
fractions

:::
for

:::::::
elements

::::::
above

:::
and

::::::
below

::
the

::::::
central

::::::::
diagonal

:::::::
indicates

::::::::
differing

::::::::::
frequencies

::
of

::::::::::
observations

::
of

::::
one

::::::::::
morphology

:::::::
(y-axis)

:::::
given

:::
the

:::::::
presence

::
of

:::
the

:::::
other260

::::::
(x-axis).
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The fractions of overlap between all types
:::::::::::
co-occurrence

:
are shown as shades of blue in Figure 5, with darker shades

indicating more overlap
:::::::
frequent

:::::::::::
co-occurrence. This representation allows us to compare scene classification behaviors within

and between classifier routines (separated by black lines). MIDAS-classified scenes show the most within-routine overlap of

any classifier examined,
:

with MEASURES and SGFF coming second and third, respectively.
::::
The

::::::
overlap

::::::::
sampling

:::::::
method265

::
of

:::::::
MIDAS

:::::
scenes

::
is
:::::
likely

::::::::::
responsible

:::
for

::::
this.

:
Within MIDAS, disorganized

::::::
MIDAS

:::::::::::
disorganized scenes overlap more with

closed or open
::::::
MIDAS

:::::
closed

:
or

:::::::
MIDAS

::::
open MCC relative to the less frequent overlap between closed and open

::::::
MIDAS

::::::
closed

:::
and

::::::
MIDAS

:::::
open MCC. This suggests that edges between closed or open MCC and disorganized

::::::
MIDAS

::::::
closed

::
or

:::::::
MIDAS

::::
open

:::::
MCC

:::
and

:::::::
MIDAS

::::::::::
disorganized scenes are more common than edges between closed and open

:::::
MIDAS

::::::
closed

:::
and

:::::::
MIDAS

::::
open MCC. Between the MIDAS and MEASURES classifications, open MCC classifications frequently overlap as do MIDAS270

closed MCC and MEASURES closed MCC and solid St
::::::
MIDAS

::::::
closed

:::::
MCC

::::
with

::::::::::
MEASURES

::::::
closed

:::::
MCC

:::
and

:::::::::::
MEASURES

::::
solid

::
St. This suggests broad classification verification for these types between the MIDAS and MEASURES routines. MIDAS

disorganized
::::::
MIDAS

:::::::::::
disorganized scenes have the most frequent overlap with other classification routine types, especially

those scenes that are not described as closed MCC, solid St, or
:::::::
excluding

:::::::::::
MEASURES

:::::
closed

:::::
MCC,

::::::::::
MEASURES

:::::
solid

::
St,

::::
and

Sugar.275

MEASURES clustered
::::::::::
MEASURES

::::::::
clustered scenes overlap with MEASURES open MCC and suppressed

::::::::::
MEASURES

::::
open

::::
MCC

::::
and

:::::::::::
MEASURES

:::::::::
suppressed Cu scenes. Taken together with the maps from the prior section, a Lagrangian

model emerges, where open
::::::::::
MEASURES

:::::
open cells evolve into sparser clustered

::::::::::
MEASURES

::::::::
clustered Cu, which then

alternates with suppressed
::::::::::
MEASURES

::::::::::
suppressed Cu in the tropical trade winds. MEASURES clustered and suppressed

::::::::::
MEASURES

::::::::
clustered

:::
and

::::::::::
MEASURES

::::::::::
suppressed scenes overlap with MIDAS disorganized

::::::
MIDAS

:::::::::::
disorganized scenes,280

showing that the MEASURES routine accomplishes its mission of adding further detail to the expansive MIDAS disorganized

classification. MEASURES clustered
::::::
MIDAS

:::::::::::
disorganized

:::::::::::
classification.

:::::::::::
MEASURES

::::::::
clustered scenes overlap with Gravel

and Fish, while MEASURES suppressed
::::::::::
MEASURES

::::::::::
suppressed scenes overlap more with Sugar, Gravel, and Fish. It is

likely that MEASURES is detecting suppressed Cu
::::::::::
MEASURES

:::::::::
suppressed

::
Cu

::
is

:::::::
detected

:
in gaps between larger features in

Fish and Gravel scenes.285

The SGFF classifications show less frequent overlap with one another, but some overlap is apparent between Sugar-

Gravel and Fish-Flowers. Flowers overlap most with MIDAS open MCC and disorganized
::::::
MIDAS

::::
open

:::::
MCC

:::
and

:::::::
MIDAS

::::::::::
disorganized, in addition to MEASURES clustered and disorganized

::::::::::
MEASURES

::::::::
clustered

::
and

:::::::::::
MEASURES

:::::::::::
disorganized.

Sugar and MEASURES suppressed
::::::::::
MEASURES

::::::::::
suppressed Cu show some overlap, as do Gravel and clustered

::::::::::
MEASURES

:::::::
clustered Cu, indicating that the two routines are classifying the same scenes as these conceptually similar types.290

3.3 Morphology and Albedo

In this section, we construct comparisons between various cloud properties for each morphology type to understand the influ-

ence morphological organization has on albedo. Generally, we utilize one variable to define quantile bins along the x-axis and

report the mean of a second variable in each bin (e.g., shaded lines in Figure 6).
::::
Grid

:::
box

::::
area

::
is
:::::
used

::
to

::::::
weight

::
all

::::::::
averages

::::::
shown,

::
so

:::::::
smaller

:::::
boxes

::
do

::::
not

::::
have

::::::::::::::
disproportionate

:::::::::::
contributions.

:
The 2-sigma standard error for each bin mean is shown295
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Figure 6. Morphology relationships (colored lines) for y-axis variables binned into quantiles along the x-axis between a) cloud albedo vs.

all-sky albedo, b) cloud amount vs. all-sky albedo, c) cloud albedo vs. cloud amount, and d) cloud amount vs. normalized observation

number. Line width in the y-direction represents the 2-σ standard error of the mean. Data for lines exclude the upper and lower 10% quantile

bins. Hollow symbols and colors distinguish lines between classifier routine classifications (legend in b) and do not represent any values. In

a-b
::
a-c), averages for each morphology are shown as large, corresponding filled symbols. In d), observation number per cloud amount bin are

normalized between 0-1 in order to best compare shape.
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Figure 7. Yearly mean of daily albedo anomalies relative to the 100-day running mean for all classifiable low cloud scenes for MIDAS

morphologies: a) open MCC, b) closed MCC, and c) disorganized.

by the line width in the y-direction. To eliminate noise caused by outliers, data plotted in the lines represent the middle 80%

quantile (with the upper and lower 10% removed). Large, filled symbols represent the morphology mean x and y behavior.

Small, hollow symbols mark the corresponding morphology for
:::::::::
morphology

::::::::::::
corresponding

:::
to each line. We are able to ex-

amine inter-morphology (between mean morphology behaviors, compare large symbols)
:::::::::::
relationships and intra-morphology

(within morphology type behaviors, compare shaded lines)
::::::::::
relationships

:
to test whether relationships

:::::::
observed

:::::::::
behaviors are300

unique to each type or common to all morphology types.
:::::::::::
morphologies.

:

::::
Each

:::::
figure

::
in

::::
this

::::::
section

:::
has

:::::
been

::::::::
produced

:::::
using

:::
two

::::::::
methods:

:::
one

::::
uses

:::
all

::::
grid

:::::
boxes

:::::::
assigned

:::
to

:
a
:::::::::::
morphology,

:::::
while

::
the

:::::
other

::::
uses

::
a
:::::
’pure’

:::
set

::::
that

::::
only

::::
uses

:::::
boxes

::::::::
assigned

::
to

::
a
:::::
single

:::::::::::
morphology

::
by

:::::
each

::::::
routine

:::
(no

:::::::::::::
co-occurrences

::::::
within

:::::::::
classifiers).

::::
This

::
is
::
to

::::::
ensure

::::
that

::
no

::::
bias

::
is

::::::
present

::::
due

::
to

:::::::
overlap

:::::::
between

::::::::::::
morphologies.

:::::::
Figures

:::
are

::::::::::
qualitatively

::::::::
identical

::::::::
regardless

:::
of

:::::
which

:::::::
method

::
is
:::::
used,

::::::::
showing

::
no

::::
bias

:::::::
caused

:::
by

:::::::
overlap.

:::::::
Figures

::::::
shown

:::
use

:::
all

::::::::
available

::::
data,

:::::::::
including305

::::::::::::
co-occurrences

::::::
within

:::::::::
classifiers.

For each morphology, we find that the scene (all-sky) albedo is both a function of cloud albedo (6a) and cloud amount (6b).

The correlation coefficients shown are calculated for the means (large symbols) and describe how much variation between

morphologies in mean scene albedo is explained by cloud albedo (6a) and cloud cover (6b). Cloud albedo explains slightly

more (98%) of the variability in all-sky albedo compared to cloud cover (90%). Cloud amount and cloud albedo (6c) are also310

closely related with 86% variance explained.
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Figure 8. As in Figure 7 but for MEASURES morphologies: a) closed MCC, b) clustered Cu, c) disorganized Cu, d) open MCC, e) solid St,

and f) suppressed cu.

There is broad agreement in albedo values for similar cloud types seen by different classifiers. For example, MEASURES

suppressed Cu and SGFF
::::::::::
MEASURES

::::::::::
suppressed

:::
Cu

:::
and

:
Sugar show nearly equivalent albedos. Albedo tends to be lowest

for Cu types and highest for stratiform types, with open cell MCC, disorganized
:::::
cells,

::::::::::
disorganized

::::::
scenes, and clustered Cu

:::::::::
cumuliform

:
albedos in the middle. Stratiform types show far more extensive cloud cover accompanied by a higher albedo315

compared with Cu
::::::::::
cumuliform types.

The spread between lines in the three plots suggests that the relationships between
:::::
mean scene albedo and

:::::
mean cloud

cover as well as between
::::
mean

:
cloud albedo and

::::
mean

:
cloud amount are unique functions of cloud morphology. This is

particularly true for the cloud albedo and cloud amount relationships,
:
which exhibit more separation

:::::
(Figure

:::
6c). For instance,

the two suppressed Cu cloud types in frame 6c show a significantly less extensive mean cloud amount and a weaker increase320

in amount when albedo increases relative to stratiform morphologies. Differences are also present in frame 6a, where, again,

the suppressed Cu types show a weaker relationship along with Gravel and MEASURES open
::::::::::
MEASURES

:::::
open cells. Taken
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Figure 9. As in Figures 7 and 8 but for SGFF morphologies: a) Sugar, b) Gravel, c) Flowers, and d) Fish.

together, these figures show how
:::::
mean radiative properties for each cloud morphology are a unique function of cloud cover

and cloud albedo.

In addition to the correlations between the mean morphology behaviors, we examine the correlations based on the points325

used to create the shaded lines in Figures 6a-6c. These coefficients (Table 1) describe how strongly cloud albedo or cloud

amount relate to scene albedo for each morphology. For every morphology (with the exception of MEASURES suppressed

Cu
::::::::::
MEASURES

::::::::::
suppressed), cloud albedo is a stronger driver of scene albedo than cloud cover. This is consistent with the mean

correlations and implies that, for these morphologies, cloud reflectivity may drive all-sky albedo variability more strongly than

cloud amount. These relationships are generally weaker for the suppressed Cu types, which may indicate difficulty in detecting330

the larger proportion of optically thin clouds in these predominantly clear scenes
:::::::::::::::::::
(Mieslinger et al., 2022).

Figure 6d shows normalized curves comparing the relative number of observations per cloud amount bin for each mor-

phology. These curves show that stratiform types are more frequently observed in cloudy environments, while most of the
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Figure 10. Cloud properties: a) in-cloud liquid water path (LWP), b) droplet number concentration (Nd), c) mean optical depth (τ ), d)

maximum optical depth, e) mean rain rate, f) maximum rain rate, g) in-cloud ice water path (IWP), and h) fraction of optically thin cloud

features (τ<3) as a function of cloud albedo. As in Figure 6, symbols show the mean relationship for each classification, lines show the

relationship for cloud properties within each morphology for bins of constant cloud albedo, and line width in the y-direction represents the

2-σ standard error of the mean.
:::::
Frames

::
a,

::
b,

:::
and

:
g
::::
only

:::
use

::::::
’Filled’

::::::
MODIS

:::::
pixels

:::
and

::
not

:::::
cloud

::::
edges

::
in
:::::
order

:
to
::::::
reduce

::::::
possible

:::::
biases

::
in

:::::::
retrievals

:
in
:::::

partly
:::::
cloudy

:::::::
regions.
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Correlation (r) with Scene (All-Sky) Albedo

Cloud Albedo Cloud Amount

MIDAS

Open MCC 0.92 0.66

Closed MCC 0.87 0.52

Disorganized 0.85 0.75

MEASURES

Closed MCC 0.94 0.64

Clustered Cu 0.83 0.77

Disorganized Cu 0.89 0.73

Open MCC 0.91 0.75

Solid St 0.92 0.66

Suppressed Cu 0.57 0.63

SGFF

Sugar 0.62 0.44

Gravel 0.83 0.70

Flowers 0.79 0.71

Fish 0.77 0.75

Table 1. Correlations between all-sky albedo and cloud albedo (first column) and between all-sky albedo and cloud amount (second column)

for each morphology.

disorganized or cumuliform types are frequently observed when cloud cover is much lower. However, the distribution of mor-

phology occurrence across the cloud amount space is varied and overlapping, both within and across types, which emphasizes335

that using cloud amount as a proxy for
::::::::
suggesting

::::
that morphology is not always advantageous

:
a
:::::
simple

::::::::
function

::
of

::::
cloud

::::::
cover,

:::
nor

::::::::
vice-versa.

In Figures 7-9, maps show the geographic distributions of cloud albedo anomaly for each morphology. Albedo anomaly is

defined as the daily mean albedo for a specific morphology minus the mean albedo for all sampled low cloud scenes
:::::
(from

:
a
:::::::::::
combination

::
of

:::
all

::::::::
routines)

:
within a 5◦ × 5◦ grid box for a 100-day running mean centered on every day. The values340

shown are annual means. Results show that MEASURES suppressed
::::::::::
MEASURES

:::::::::
suppressed Cu, Sugar, Gravel, and MIDAS

disorganized
::::::
MIDAS

:::::::::::
disorganized scenes have anomalously low albedos throughout our region, while closed cell

::
Sc

:
and

solid stratiform clouds almost always have anomalously high albedos. For other types, including MIDAS and MEASURES

open cell MCC, MEASURES clustered and disorganized Cu, and
::::::
MIDAS

::::
open

::::
cells,

:::::::::::
MEASURES

::::
open

::::
cells,

:::::::::::
MEASURES

:::::::
clustered

:
,
::::::::::
MEASURES

:::::::::::
disorganized

:::
Cu,

:
Fish and Flowers, the albedo anomaly is negative near the storm track, but positive in345

more southern regions
:
to
:::
the

:::::
south. This suggests a complex picture where climatologically relevant cloud radiative properties

are a function of morphology and location.
:::::::
Because

::
of

:::::::
differing

::::::::::
frequencies

::
of

::::::::::
occurrence

:::
for

::::
each

::::::::::
morphology

:::
(as

::::::
shown

::
in

::::::
Figures

::::
2-4)

:::
the

::::
sum

::
of

::
all

:::::::::
anomalies

::
in

::::::
Figures

::::
7-9

:::::
should

:::
not

:::
be

::::
zero.

:

In Figure 6 and Table 1, cloud albedo was shown to have a profound effect on the all-sky albedo of a cloud scene, greater

than cloud amount. This motivates further study into what cloud properties most influence cloud albedo for each morphology.350
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In Figure 10, the relationships between cloud albedo and a number of remotely sensed cloud variables are shown for each

morphology using the same method as Figure 6. Data are gathered only for cloud scenes with cloud amounts within 10%

of the respective morphology median, which allows us to control for the differing mean cloud amounts associated with the

morphologies (sampling the "peaks" relative to cloud amount in 6d). Results were not qualitatively sensitive to changing this

threshold to 5% or 20%.355

For all morphologies, cloud albedo increases when LWP, Nd, τ , and IWP (Fig. 10a,b,c,g, respectively) increase while cloud

albedo decreases when the fraction of optically-thin cloud cover increases (Fig. 10h). This final relationship shows the strongest

correlation, indicating that the fraction of optically-thin cloud cover most strongly explains the cloud albedo variability between

morphologies after controlling for cloud amount,
::
as

::::::
shown

:::
by

::::::::::::::::
McCoy et al. (2023).

:::::
Figure

:::
10

::::
uses

:::::
LWP,

:::
Nd,

:::
and

::::
IWP

::::::
values

::::
from

::::::
’Filled’

:::::::
MODIS

::::::
pixels

::::
only,

::::::::
excluding

:::::
cloud

:::::
edges

::
or

:::
any

:::::
other

:::::
scenes

::::::
where360

:::::
pixels

:::
are

:::::::
partially

:::::
filled.

::::
This

::
is
::
to
:::::
avoid

::::::
biases

::::::
caused

::
by

:::::::::::
assumptions

::::
used

:::
by

:::
the

::::::::
retrievals

:::
that

::::
may

:::
not

:::
be

::::::::::
appropriate

::
in

::::::
broken

:::::
cloud

::::::
scenes.

:::
To

:::
see

:::::::
whether

::::::::
including

::
or

:::::::::
excluding

::::::
broken

:::::
scenes

:::::
could

:::::
cause

::
a
::::
bias,

::::::
Figure

:::
10

::::
was

::::
also

::::::::
produced

::::
using

::::::::
weighted

:::::::
averages

::
of
:::::::
’Filled’

:::
and

::::::
’Partly

:::::::
Cloudy’

::::::
pixels,

::::
with

:::::::
separate

::::
LWP,

::::
Nd,

:::
and

::::
IWP

:::::
values

::::::::
averaged

:::
for

:::::::
portions

::
of

::::
each

:::
grid

::::
box

:::::::::
considered

:::::::
’Filled’

::
or

::::::
’Partly

:::::::
Cloudy’,

::::
then

::::::::
averaged

:::::
based

::
on

:::
the

:::::::
fraction

::
of

:::::::
’Filled’

::
or

::::::
’Partly

:::::::
Cloudy’

::::::
scenes

:::::
within

::::
each

:::::
box.

::::
This

::::::::
averaged

:::::
figure

::::
was

::::::::::
qualitatively

::::::::::
unchanged

::::
from

:::
the

::::::::
original,

:::::::::
suggesting

::::
that

:::
the

:::::::::::
relationships

::::
seen365

:::
here

:::
are

::::::::
unlikely

::
to

::
be

::::::
biased

::
by

::::::::
scattered

::
or

::::::
broken

:::::
cloud

:::::::
scenes.

::::::
Optical

:::::
depth

::::::
values

:::
use

:::
this

::::::::
weighted

:::::::
average

:::::::::
technique,

:::::::::::
incorporating

::::::
’Filled’

::::
and

::::::
’Partly

:::::::
Cloudy’

:::::::::::
observations,

::::
since

::::
that

::::::
product

:::::
relies

:::
on

:::::
fewer

:::::::::::
assumptions.

The spread of lines in the y-direction in Figure 10 indicates that there is some degree of cloud albedo equifinality across

morphologies. That is, different morphologies can produce an equivalent cloud albedo despite vastly
::::::::::
significantly

:
different

cloud properties. A comparison of the plotted lines shows that more cumuliform morphologies such as Gravel, disorganized370

clouds, and open cell MCC have higher values of maximum τ , higher peak rain rates, more ice content and more optically

thin clouds compared to the stratiform types for an equivalent cloud albedo. This suggests that the cumuliform morphologies

are characterized by thick, raining cores surrounded by optically-thin clouds while stratiform morphologies are much more

uniform.

We find a curious difference when comparing mean τ and peak τ versus comparing mean rain rate and peak rain rate375

behaviors. The relationship between τ and cloud albedo is consistent and positive for both mean and maximum τ (Fig. 10c,d).

However this is not the case for rain rates: mean rain rates are higher for a higher albedo but maximum rain rates are highest

for middling albedos over a broad set of cumuliform morphologies. This nuanced relationship between maximum rain rate and

albedo may be associated with heavily precipitating cores surrounded by more optically-thin clouds.
:::::::
Because

::
of

:::
the

:::::::::
limitations

::
in

:::
the

::::::
89GHz

::::
rain

:::
rate

:::::::
product

::
in
:::::::

sensing
:::::::
heavier

::::
rain,

:::
this

::::::
result

::::
may

::::
need

::
to

:::
be

::::::::
evaluated

:::::
using

::::
rain

:::
rate

::::::::
products

::::
with

::
a380

::::::
greater

::::::::
sensitivity

::
to

::::::
strong

:::
rain

:::::
rates.

:

3.4 Vertical Profiles and Optical Thickness from CALIPSO

The CALIOP LIDAR aboard CALIPSO provides vertical profiles of cloud tops, and a measure of cloud optical thickness. This

section analyses ‘cloudy’ retrievals in 30m height bins in the lowest 4km of CALIOP LIDAR profiles in classified boxes. Pro-
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Figure 11. CALIPSO Vertical Feature Mask (VFM) vertical profiles of all (black dashed), optically thin (blue dashed), and thick (black

solid) clouds for each morphology. Anomalies relative to the mean profiles in frame (n) are shown as shaded regions (blue for thin, black for

thick).
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Figure 12. Mean optically thin cloud cover fraction as detected by MODIS (# of obs with τ < 3 / total # of cloudy obs) plotted against mean

optically thin cloud cover as detected by CALIOP on CALIPSO (# of soundings that see the surface / total # of cloudy soundings).

files that penetrate the clouds and detect the surface are considered optically thin while fully attenuated profiles are considered385

optically thick. Optically thick profiles only represent cloud tops, since the true vertical extent of the cloud is unknown due

to attenuation of the lidar beam. Profiles that see layered clouds are more complex: occasionally, the lidar sees through upper

clouds and attenuates in a lower cloud. Here, layered profiles are split into thin and thick portions. The thin portion represents

all clouds that the lidar sees through and the thick portion consists only of the cloud that fully attenuates the beam. Plots in

Figure 11 show the fraction of cloudy observations for thin (blue dashed) and thick (solid black) profiles in each height bin390

divided by the total number of profiles that see cloud for each classification. Combined profiles (sum of thick and thin) are

shown as thin black dashed lines. Clear profiles are excluded from the denominator in order to better show and compare the

shapes of the cloud profiles. Anomalies for thin and thick profiles, shown respectively as blue and black shaded regions, rep-

resent the profiles for each type minus the mean profiles
::::::
profile of all types shown in Fig. 11. Frames are arranged to facilitate

comparisons between theoretically similar identification types across classifiers.395
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::::
Since

:::::::::
overlying

::::
high

:::::
clouds

:::::
could

:::::::::
potentially

::::::::
attenuate

:::
the

::::
lidar

::::::
beam,

:::::
Figure

:::
11

::::
was

:::
also

:::::::
created

::::
only

:::
for

::::::
profiles

::::
with

:::
no

::::
cloud

:::::
cover

::::::
above

::::
4km.

::::
This

::::::
filtered

::::::
subset

::
of

:::
our

::::
data

::::::::
produced

:::::::::::
qualitatively

:::::::::
comparable

:::::::
results,

:::::::
showing

::
no

::::
bias

::::::
caused

:::
by

::::
high

::::::
clouds.

Results show strong differences in vertical profiles between classifications. Shallower and less vertically distributed types

include suppressed Cu types, closed MCC, MEASURES disorganized
::::::::::
MEASURES

:::::::::::
disorganized, and Flowers. Deeper types400

are Gravel, open cells, solid St
::::::::::
MEASURES

::::
solid

::
St, and Fish. These deeper types tend to rain more heavily (Fig. 10f), except

for solid St that
::::::::::
MEASURES

::::
solid

::
St

:::::
which are likely associated with weather systems and not convection. Note that, because

we are limiting to 4km depth, the Fish identifications are likely highlighting the low-level, scud clouds that happen in the

vicinity of the larger feature (e.g., Fig. 1). Generally, optically thin clouds tend to be lower in height than surrounding optically

thick clouds for all classifications even when accounting for layered scenes.405

Comparing absolute and anomaly profiles between similar types classified by different routines, we find similar behaviors

for suppressed Cu types (MEASURES
::::::::::
MEASURES

::::::::::
suppressed vs. Sugar) and closed MCC types (MEASURES vs. MIDAS).

Some differences are apparent between other theoretically similar types. Gravel scenes tend to contain more optically thin and

fewer optically thick clouds compared to MEASURES clustered
::::::::::
MEASURES

::::::::
clustered Cu. This may be because more optically

thin clouds are present in the larger classification boxes around Gravel. Open cells classified by MEASURES
::::::::::
MEASURES

:::::
open410

::::
cells contain more clouds, especially optically thin, in the upper portions of the profile compared to MIDAS open

::::::
MIDAS

:::::
open

cells, perhaps owing to the MEASURES open
::::::::::
MEASURES

:::::
open cells disproportionate prevalence in the storm track.

CALIOP provides an independent measure of the fraction of optically thin clouds that can be compared to MODIS. In

Figure 12 the number of CALIOP profiles that see the surface divided by the total number of cloudy profiles is plotted against

the fraction of cloudy MODIS pixels with τ < 3. Layered CALIOP soundings are considered optically thick here, since an415

equivalent MODIS observation would be unable to effectively distinguish the layers, and the albedo would be more akin to that

of an optically thick scene. We see strong agreement between MODIS and CALIOP measures
::
of

:
τ
:
(88% variance explained),

increasing confidence in our assessment of optically thin fractions for the classified types.

3.5 Regional Differences

Figure 10 shows significant differences in cloud properties between morphologies while Figures 2-4 show strong differences420

in their geographic distributions. Given this, we wish to investigate the degree that cloud property differences are influenced by

varying geographic distributions separately from morphological differences. To assess this, Figures 14-15 present a comparison

of cloud properties in smaller sub-regions that are illustrated in Figure 13. Boxes sample different sub-regions along the

anticyclonic flow in the Atlantic, illustrated by mean winds at cloud level (vectors, 925hPa). Boxes in the far North Atlantic

and East Atlantic subsidence regions are chosen to compare stratiform morphologies while boxes in the upwind and downwind425

tropical trade winds are chosen in order to compare shallow tropical convective morphologies. Plots compare cloud micro- and

macro-physics, radiative properties, precipitation, and phase. Scatter plots in Figures 14 and 15 present each sub-region on an

axis. A 1:1 line is also shown, where the area-wide North Atlantic mean values for each morphology are shown as a hollow

symbol, in order to compare sub-regional behavior to the entire regional mean.
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Figure 13. The four study regions compared in Figures 14 and 15 for the entire year 2018. Mean wind vectors at 925hPa from ERA5 are

shown as arrows, with arrow length scaled by mean wind speed.

Figure 14 compares the far North Atlantic with the East Atlantic subsidence region. This effectively contrasts stratiform430

morphologies between those that frequently occur in the storm track where cold air outbreaks are common and the Sc cloud

types that commonly occur under a shallow marine inversion. Rain rate data derived from Tb are frequently missing in the

far North Atlantic region due to the presence of ice, so rain rates are replaced by cloud droplet effective radius (re) in order

to better compare rain characteristics. The far North Atlantic shows a greater maximum τ , marginally fewer but somewhat

bigger cloud drops (likely indicating more rain), greater LWP and IWP, and more cloud cover but fewer optically thin clouds.435

These differences suggest a thicker, icier, and rainier cloud environment for all morphologies in the far North Atlantic. As a

consequence of these thicker clouds, the cloud albedo in this region is consistently higher compared to both the entire study

region and the subsidence region in the East Atlantic.

Figure 15 compares warm, shallow convective morphologies between upwind and downwind locations in the tropical trade

winds (note axes changes from Fig. 14). Morphologies observed upwind have lower peak rain rates with more drops and are440

marginally cloudier with a smaller proportion of optically thin clouds. The cloud LWP is also marginally lower upwind while

ice is minimal in both sub-regions (not unexpected for the trades). The upwind region shows a higher max τ and albedo,

suggesting that the cleaner (lower Nd), more remote, and likely more developed downwind cloud systems are less reflective.
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Figure 14. Mean cloud properties for each morphology that is commonly observed in the far North Atlantic (x-axis) and subtropical subsi-

dence region (y-axis). Properties include a) Maximum optical depth (τ ), b) Cloud droplet effective radius (re, in place of rain rate), c) Cloud

droplet concentration (Nd), d) In-cloud liquid water path (LWP), e) Albedo, f) Fraction of optically thin cloud (τ<3), g) Cloud amount, and

h) In-cloud ice water path.
:
A
:::
1:1

:::
line

::
is

:::
also

::::::
shown,

:::::
where

:::
the

:::::::
area-wide

:::::
North

::::::
Atlantic

:::::
mean

:::::
values

::
for

::::
each

:::::::::
morphology

:::
are

:::::
shown

::
as
::

a

:::::
hollow

::::::
symbol.
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Figure 15. Mean cloud properties for each morphology that is commonly observed in the far upwind trade winds (x-axis) downwind trade

winds (y-axis). Properties include a) Maximum optical depth (τ ), b) Rain rate, c) Cloud droplet concentration (Nd), d) In-cloud liquid water

path (LWP), e) Albedo, f) Fraction of optically thin cloud (τ<3), g) Cloud amount, and h) In-cloud ice water path.
:
A
:::
1:1

:::
line

::
is

:::
also

::::::
shown,

::::
where

:::
the

::::::::
area-wide

::::
North

::::::
Atlantic

:::::
mean

:::::
values

::
for

::::
each

:::::::::
morphology

:::
are

:::::
shown

::
as

:
a
::::::
hollow

::::::
symbol.
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This result hints at the presence of strong Lagrangian development of cloud systems in the trade winds, which may have

significant radiative implications.445

Figure 14 and 15 show that the ordering from high-to-low for most cloud properties generally remains consistent between

types and between regions even though mean values may differ significantly between regions. Some of the variability seen

in Figure 10 is likely caused by geographic differences, but a strong morphology-driven variation of cloud properties is still

present after controlling for regionality. Further, Lagrangian development is apparent when looking at upwind/downwind lo-

cations in the trade winds. Finally, the association between rain rates and albedo may be dependent upon morphology or cloud450

phase, with more heavily raining, warm tropical clouds being less reflective, while rainier, and possibly icier, scenes in the

mid-latitudes have a higher albedo.

4 Discussion

In Figure 6 and Table 1, we show that cloud albedo is at least as strong a predictor of scene albedo as cloud amount. This

was true in explaining albedo variability between morphologies (Fig 6) and within morphologies (Table 1). Figure 10 goes455

on to show that the fraction of optically thin cloud cover best predicts the cloud albedo variability between morphologies,

highlighting the importance of cloud optical thickness in climate studies. This result agrees with the results of McCoy et al.

(2023) in showing that differences in cloud optical thickness between MIDAS morphologies drive albedo variation between

those morphologies for a constant cloud amount. Here, we can now extend that conclusion by examining more specialized

tropical cloud morphology identifications that were previously considered together as one disorganized type.460

The radiative
::::::
relative

:::::::::
importance

::
of

::::::
albedo

::::
and

::::
cloud

:::::
cover

::
in

::::::::::
diagnosing

::
the

::::::::
radiative

::::::
impact

::
of

:::::
clouds

::
is
::::::
in-part

:::::::::
dependent

::::
upon

:::::::::
thresholds

::::
used

::
in

:::::::
satellite

::::::::
retrievals

::
to

::::::
identify

::::::
cloudy

:::
or

::::
clear

::::::
scenes.

::
It
::
is

:::::::
possible

::::
that

:
a
:::::::::::
modification

::
of

:::
the

::::::::
threshold

::::
used

::
to

:::::::
separate

::::::
cloudy

:::::
from

::::
clear

::::::
pixels

::
in

:::
the

:::::::
MODIS

::::::
cloud

:::::
mask

::::::::
employed

::::
here

:::::
could

:::::::
modify

:::
our

:::::::
results.

:::::::
Because

:::
no

::::::
perfect

::::
truth

:::::
exists

:::
for

::::::::::
quantifying

::::::::::::::
satellite-detected

::::::
clouds,

:::
we

:::::::
motivate

::::::
future

::::
work

::
in
::::
this

::::
area

::
to

:::::::
improve

:::
the

:::::::::
resolution

::
of

::::
cloud

:::::
cover

:::::::::
retrievals.465

:::
The

::::::::
radiative

:
importance of cloud optical depth in our present and future climate has been demonstrated in prior work

(McCoy et al., 2023; Hu and Stamnes, 2000; Konsta et al., 2022). Using a radiative-convective model, Hu and Stamnes (2000)

found that an increase in cloud optical depth was associated with less warming. McCoy et al. (2023) used present-day morphol-

ogy observations as a basis for calculating the optical depth component of the shortwave cloud feedback (e.g., Zelinka et al.,

2012) from shifts in morphology occurrence under extreme climate scenarios. For example, McCoy et al. (2023) show a local,470

positive optical depth feedback on SST warming from morphology shifts, which occurred during the 2015-2016 North East

Pacific marine heatwave: closed
::::::
MIDAS

::::::
closed cell MCC was replaced by less cloudy, optically thinner MIDAS disorganized

::::::
MIDAS

:::::::::::
disorganized scenes, increasing sunlight on the sea surface. Here, we expanded the specificity of morphology identi-

fications, especially in the tropics, from those used in McCoy et al. (2023) and found some additional variation in behaviors

across morphology types. Our results highlight the potential complexity of understanding morphology feedback onto the cli-475
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mate system in present and future climates. Identifying the processes involved in development and transitions across these

varied morphology types and the sensitivity of these processes to the environment warrants additional study as well.

A comparison of climate models by Konsta et al. (2022) shows that models fail to reproduce realistic cloud optical depth

variability, often producing no optically thin clouds. This contributes to the ‘too few, too bright’ problem endemic in cloud

representation in general circulation models. That study also showed a model failure to reproduce higher cloud optical depths480

observed in thicker Sc scenes. Examining parameterized cloud behaviors in the context of morphological classifications may

aid in the reproduction of realistic optical thicknesses. Relating morphology occurrence, and their inherent radiative property

signatures, to distinct climate regimes (e.g., McCoy et al., 2017; Mohrmann et al., 2021; McCoy et al., 2023) may also be

useful in adding nuance to regime based forcing (e.g., Wall et al., 2022) and feedback (e.g., Myers et al., 2021; Zelinka

et al., 2022) calculations. In particular, trade-cumulus feedback is still a large source of uncertainty in climate models and485

significantly disagrees with observational estimates (e.g., Myers et al., 2021; Vogel et al., 2022), emphasizing the importance

of understanding cloud development and radiative impacts in this region.

Geographic distribution maps and overlap
:::::::::::
co-occurrence

:
statistics shown in sections 3.1 and 3.2 suggest that Lagrangian

transitions between morphologies are common as the mean flow advects clockwise (anti-cyclonically) around the study region.

Given the regional , morphology albedo anomalies we found (Figures 7-9), Earth’s radiation budget will be modified by shifts in490

the location of the climatological average transition regions or other changes in the most common types of transitions occurring

in this basin. A few studies have already addressed the drivers of Lagrangian morphology changes in these regions. Narenpitak

et al. (2021) demonstrated that moisture convergence and large-scale ascent can drive a Sugar-to-Flowers transition in the

trade-winds. Eastman et al. (2022) found that increased rain driven by strong winds and its accompanying moisture fluxes

can drive a closed-to-open MCC transition in the subtropics while warmer surfaces and strong winds
:
a
:::::::
warmer

:::
sea

:::::::
surface,495

:
a
::::::
weaker

:::::::::
inversion,

:::
and

::::::::
stronger

:::
dry

:::
air

::::::::::
entrainment

:
were associated with closed-to-disorganized

::::::
MIDAS

::::::
closed

:::
-to-

::::::
MIDAS

::::::::::
disorganized transitions. Identifying more such mechanisms influencing climatological and Lagrangian morphology transitions

and their sensitivity to environmental changes will be important for understanding how these transitions will modulate present

and future energy flows in the climate system.

Our results also motivate future work examining other frequent, radiatively significant transitions that are now apparent from500

::
the

:::::::::
relatively

:::::::
frequent

::::::::::::
co-occurrences

:::::::::
suggested

::
in

:
Figure 5. For example, the change between stratiform

::::::::::
disorganized

:
types

and Flowers ,
::
or suppressed Cu evolving into or from clustered Cu, and Flowers evolving into suppressed or clustered Cu. The

importance of examining these regionally specific transitions is further emphasized by our finding that a single morphology

may present differing radiative characteristics as it undergoes Lagrangian evolution (e.g., along the flow), as shown by clustered

::::::::::
MEASURES

::::::::
clustered Cu or Gravel becoming rainier and increasingly optically thin in the downwind trades (Fig. 15). That505

relationship combined with the heavier rain
::::::::
maximum

::::
rain

::::
rates

:
observed at middling cloud albedo values in Figure 10

:
f for

several shallow convective morphologies hints at a precipitation-driven process where heavy rain may be associated with less

reflective clouds for some morphologies.
:::
This

::::
may

:::
be

::::::
broadly

:::::::::
consistent

:::
with

:::
the

::::::::
increased

:::::::::
prevalence

::
of

:::::::::
cloud-free

::::
cold

:::::
pools

::::::::::
surrounding

::::::
mature

::::::
raining

:::::
cells.

::::::::
However,

::::::::::::::::
Vogel et al. (2021)

::::::
suggest

::
the

::::::::
opposite

::::::::::
relationship

::::
with

::::::
greater

::::::
optical

::::::::
thickness

::::::::
associated

:::::
with

:::::::
stronger

::::
rain

:::::
rates.

:::::::
Heavier

::::::::::
precipitation

::::::::
observed

:::
in

:::
the

::::::::::::::::::::
Stratocumulus-Cumulus

::::::::
transition

::::
was

::::::
shown

:::
by510
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::::::::::::
O et al. (2018)

::
to

::
be

:::::::::
associated

::::
with

:::::
more

:::::::
optically

::::
thin

:::
veil

::::::
clouds,

::::::
which

::
is

::::::
broadly

:::::::::
consistent

::::
with

:::::
lower

:::::::
albedos

::::
seen

::::
with

::::::
heavier

:::
rain

:::::
rates.

:::::::
Further

::::
work

::
is

::::::
needed

::
to

:::::
better

::::::::::
understand

::::
these

:::::::::
processes. The differences in droplet concentrations (e.g.,

higher upwind in the trades) in Figures 14 and 15 also motivate a more detailed examination of aerosol influence on morphology

radiative properties (e.g., higher albedo upwind) and cloud evolution.

In Leahy et al. (2012), cloud optical thickness
:::
the

::::::
fraction

:::
of

:::::::
optically

::::
thin

:::::
cloud

:::::
cover was shown to vary inversely to

::::
with515

cloud size. Although our study has not specifically studied the sizes of cloudy elements within each morphology, our results

generally agree with this inverse relationship. Morphologies such as suppressed Cu
::::::::::
MEASURES

:::::::::
suppressed

::
Cu

::
or

:::::
sugar, which

consist of many small clouds, contain a greater proportion of optically thin cloud compared to the broad cells associated with

closed cell Sc. Objective classification methods have also found that cloud size is one of four important dimensions to consider

in separating cloud morphology types, indicating this is a fundamental property of different organization states (Janssens et al.,520

2021). This motivates future study of cell size, possibly using methods developed by Zhou et al. (2021) and Janssens et al.

(2021) to see whether this inverse relationship applies within each morphology, or only between morphologies. Both Leahy

et al. (2012) and Mieslinger et al. (2022) found that small, optically thin clouds are frequently undetected by remote platforms

such as MODIS and CALIPSO, causing significant uncertainty in cloud radiative effects and suggesting that optically thin

fractions shown here may be underestimated. Advances in observations may aid in detecting these ‘hidden’ but radiatively525

significant clouds.

::
In

:::::
Figure

:::
5,

::::
open

::::
cell

:::::::::::
co-occurrence

::::::::
statistics

:::
are

:::::::
peculiar

::
in

::::
that

::::::::::
MEASURES

:::::
open

::::
cells

::::
tend

::
be

:::::::::
infrequent

:::::
when

:::::::
MIDAS

::::
open

:::
cells

:::
are

::::::::
reported,

:::::::
relative

::
to

:::
the

::::::::
opposite

::::::::::
relationship

:::::
where

:::::::
MIDAS

::::
open

::::
cells

:::
are

:::::
more

:::::::
frequent

:::::
when

:::::::::::
MEASURES

::::
open

::::
cells

:::
are

:::::::
present.

::::::::
Differing

:::::::::
geographic

::::::::::
distributions

:::
are

::::
also

::::::
present

::
in

:::::::
Figures

::
2a

:::
and

:::
3d,

:::::::
showing

::::
that

::::::::::
MEASURES

:::::
open

::::
cells

:::
are

::::
more

::::::::
confined

::
to

::
the

:::::
storm

:::::
track

:::::
where

::::::
Figure

:::
15d

::::::
shows

:::::
much

:::::
higher

:::::
LWP

::::::
values.

::::
One

:::::::
possible

::::::::::
explanation

::
for

::::
this530

::::::::
difference

::
is

:::
the

:::::::
contrast

::
in

::::::
training

:::::::
regions

:::::::
between

:::::::
MIDAS,

:::::
which

::
is
::::::::::
exclusively

::::::
trained

::
in

:::
the

:::::::::
subtropics,

:::
and

::::::::::::
MEASURES,

:::::
which

::
is

::::::
trained

::::::::
globally.

:::
The

::::::::
inclusion

:::
of

:::
the

:::::
storm

::::
track

:::
in

:::
the

:::::::::::
MEASURES

:::::::
training

:::::
region

::::
may

:::::
have

::::::::
increased

:::
the

:::::
LWP

:::::::
threshold

:::
for

:::
the

:::::::::::
classification

::
of

:::::
open

:::::
cells.

::
A

::::
brief

::::::::::
comparison

::
of

:::::
mean

::::
LWP

::::::::
between

::::::
MIDAS

::::
and

:::::::::::
MEASURES

:::::
open

::::
cells

::
in

:::::
Figure

::::
10a

:::::
shows

::::
that

::::::::::
MEASURES

:::::
open

::::
cells

::::
have

:::::
higher

:::::
LWP,

:::::::::
consistent

::::
with

:
a
:::::::::
sensitivity

::
to

:::::::
differing

:::::::
training

:::::::
regions.

:

This comparison may aid in establishing a single set of unique morphologies. Given their radiative and physical character-535

istics, distinct morphologies likely include: solid stratus, closed cell MCC, open cell MCC (though these may present differ-

ently in the storm track compared to subsidence regions), aggregated Cu (a combination of Gravel and clustered
::::::::::
MEASURES

:::::::
clustered Cu, with the former presenting a deeper, more developed version of the latter), suppressed Cu (as seen similarly

by MEASURES
::::::::::
MEASURES

:::::::::
suppressed and SGFF Sugar), Fish, and Flowers. Overlap

::::::::::::
Co-occurrence

:
statistics for Fish and

Flowers suggest that these are currently or formerly sub-types of clustered
:::::::::
aggregated Cu and can be alternately described540

as disorganized. However, their radiative properties appear unique enough to warrant a distinct classification as do their for-

mation mechanisms (i.e., the larger structures in Fish are typically associated with trailing cold fronts (Schulz et al., 2021;

Aemisegger et al., 2021)). It will be necessary for future work to converge on this set of morphologies or one like it to avoid

endless proliferation of differing cloud types, causing a lack of comparability in studies. New data sources, including improved
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geostationary satellites, should be used in producing globally focused versions of these identifications in order to maintain a545

continuing record
:::
and

::
to

:::::::
establish

:::::
daily

:::
and

:::::::
seasonal

::::::::::::
climatologies.

Finally, this work hints at the presence of both equifinality and multifinality in the cloud-climate system. Equifinality, equiv-

alent outcomes born of diverse processes or properties, is demonstrated by the wide range of cloud properties that can be

combined to produce the same albedo, depending on cloud morphology. Multifinality, diverse outcomes resulting from similar

perterbations
:::::::::::
perturbations, is also present in this system given the unique cloud processes and properties associated with each550

morphology: A single perturbation to the climate system will likely favor one cloud morphology over another. These concepts

motivate future research to better quantify the diverse cloud processes and radiative characteristics associated with each unique

morphology.

5 Conclusions

Three supervised machine learning routines (MIDAS, MEASURES, and SGFF) are used to produce thirteen cloud classifica-555

tions representing distinct morphologies using MODIS Aqua satellite imagery and radiances over the North Atlantic Ocean

for the year 2018. Geographic distributions of morphologies vary between classifiers. MIDAS open and closed cell mesoscale

cellular convection (MCC )
::::::
MIDAS

::::
open

:::
and

::::::
MIDAS

::::::
closed

::::
MCC

:
are most prevalent in midlatitude storm track and eastern

subsidence regions, while MIDAS disorganized
::::::
MIDAS

::::::::::
disorganized scenes are most common in the tropical trade winds.

MEASURES stratiform cloud types are most common in the midlatitudes, with disorganized
::::::::::
MEASURES

:::::::::::
disorganized clouds560

more prevalent in the subsidence region. MEASURES Cu types are most common in the tropical trade winds, with clustered

::::::::::
MEASURES

::::::::
clustered Cu peaking upwind, east of suppressed

::::::::::
MEASURES

::::::::::
suppressed Cu. All four of the morphologies pro-

duced by SGFF are common in the tropical trade winds. A study of classifier overlap
:::::::::::
co-occurrence (when a 1◦ × 1◦ grid box

is assigned multiple morphologies) finds that MIDAS disorganized clouds overlap
::::::
MIDAS

::::::::::
disorganized

:::::
clouds

::::::::
co-occur with

all of the morphologies frequently seen in the tropical trade wind region. This demonstrates that the added specificity of the565

SGFF and MEASURES routines have added value by separating this expansive category into distinct subsets.

A comparison of CERES-derived albedos shows that cloud albedo and cloud amount both strongly predict the variability

in total scene albedo between morphologies. When analyzing albedo variability within each morphology, the scene albedo

was consistently more strongly correlated with cloud albedo than cloud amount. The fraction of optically thin clouds most

strongly predicts the mean cloud albedo compared with other physical quantities such as in-cloud liquid water path, in-cloud570

ice water path, droplet number concentration, maximum optical depth, or rain rate. Different morphologies display unique

combinations of these physical variables to achieve a similar cloud albedo. This equifinality complicates our understanding of

what controls cloud albedo and highlights the importance of process understanding and the usefulness of a morphology-based

analysis framework. A comparison with the CALIPSO-derived fractions of optically thin cloud cover shows strong agreement

with the MODIS-derived fractions, showing robustness of the MODIS optically-thin feature detection method.575

Vertical profiles of optically thin and thick cloud cover are produced using CALIPSO LIDAR data. More vertically extensive

morphologies include: clustered Cu types (Gravel and clustered), solid St
::::::::::
MEASURES

:::::::
clustered

::
),

::::::::::
MEASURES

:::::
solid

::
St, open
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cell MCC
::::
from

:::::::
MIDAS

:::
and

::::::::::::
MEASURES, and, for clouds below 4 km near these features, Fish. Shallower morphologies

include: closed cell MCC
::::
from

:::::::
MIDAS

::::
and

:::::::::::
MEASURES, Flowers, and both suppressed

::::::::::
MEASURES

::::::::::
suppressed Cu and

Sugar types. Optically thin features dominated
:::
are

:::::
more

:::::::
common

:
at lower altitudes, nearer cloud base, despite separating580

multi-layered scenes into thin upper and thick lower portions.

A geographic breakdown shows strong regional differences in radiative and physical properties. Stratiform morphologies are

thicker, rainier, and more reflective in the far North Atlantic region where cold air outbreaks commonly occur compared to the

subtropical subsidence region. Trade wind Cu types are less rainy, more reflective, and less optically thin in the upwind trades

nearer the subsidence region compared to downwind. This suggests there is some Lagrangian evolution occurring within types585

as well as variability in cloud properties that may be associated with proximity to aerosol sources on land.

Overall, this work describes how a morphology-driven approach to the study of clouds can provide radiatively-important

insights about cloud characteristics and evolution, potentially helping us to better encapsulate cloud behaviors in climate

models and reduce uncertainty in climate projections. For the wide range of morphological cloud types examined in this study,

we find unique relationships between cloud physical properties and radiation. Future work may improve upon this by tying590

archetypal cloud morphologies to common climate regimes, identifying processes unique to the development and evolution of

each morphology, and examining the sensitivity of these processes to environmental conditions
::::::
changes.

Data availability. Datasets Include:

MODIS L2 data used to run classifier routines is available at: https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/MYD06_L2/ (Plat-

nick et al., 2015)595

CERES data used to quantify albedo are available: https://asdc.larc.nasa.gov/project/CERES/CER_SSF1deg-Hour_Aqua-MODIS_Edition4A

(NASA/LARC/SD/ASDC, 2015)

MODIS L3 cloud data are available at: https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/MYD08_D3 (Platnick et al., 2017)600

ERA5 reanalysis data are available at: https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation (Copernicus Climate

Change Service, 2017)

CALIPSO VFM data are available at: https://catalog.data.gov/dataset/calipso-lidar-level-2-vertical-feature-mask-vfm-validated-stage-1-v3-41605

(Vaughan et al., 2004)

Rain rate data from AMSR2 and CloudSat are available at: https://www.cloudsat.cira.colostate.edu/community-products/warm-rain-rate-estimates-from-amsr-89ghz-and-cloudsat

(Eastman et al., 2019)

:::
The

::::
joint

:::::::::
mesoscale

:::::
cloud

:::::::::::
morphology

::::::
dataset

:::::
(eas)

::
can

:::
be

:::::::
accessed

::::
via

:::
the

:::::
intake

::::::
catalog

::::::::
provided

::
at

:
https://github.com/610

ISSI-CONSTRAIN/meso-morphs
:
.
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