
On behalf of all co-authors, I want to extend our gratitude for reviewing our 
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manuscript. In the subsequent response, I will address each comment point by 
point, using red font to facilitate easy identification. 

Reviewer 1: 

 

Enhancing Consistency of Microphysical Properties of Precipitation across 
the Melting Layer in the Dual-Frequency Precipitation Radar Data  

Mroz et al. 2023 submitted to AMT  

Review by:  

Anonymous Reviewer  

Introduction and Recommendation:  

Spaceborne radars provide unprecedented observations of the 3-dimensional structure of 
clouds and precipitation. The first meteorological spaceborne radar, named the Tropical 
Rainfall Measuring Mission (TRMM), was launched back in 1997, and enabled the first 
estimates of near surface precipitation rates across the global tropics. Through the years of 
TRMM, an emphasis was put on making the near surface rain rates more accurate. This 
emphasis carried through to the follow up mission, named the Global Precipitation 
Measurement Mission (GPM), which launched in 2014. The GPM mission extended 
spaceborne radar observations to higher latitudes with its more included orbit (65S – 65N).  

The authors of the submitted manuscript have sought out to create a new radar retrieval 
specifically designed for the GPM Dual-Frequency Precipitation Radar and in stratiform 
precipitation. They show that one of the stock GPM algorithms (2A.DPR) do not have a 
physically consistent retrieval of precipitation rate through the melting layer (0 degC) which 
has been discussed in previous literature as a quasi-conserved parameter. Their main 
conclusions are:  

1. 1)  Show the deficiency in the 2A.DPR algorithm for consistent retrievals across the 
melting layer.  

2. 2)  Provide a new, optimal estimation, retrieval of DSD parameters.  
3. 3)  Compare the new retrieval to ground based retrievals of the same DSD parameters.  

The overall writing is good, and the paper fits the scope of AMT. I do have the following 
major comments that need to be addressed before publication.  

Major comments:  

Other GPM retrievals:  



The author’s center their discussion on the 2A.DPR algorithm, which is a primary product of 
GPM through the JAXA team. This algorithm uses a R-Dm-Ze relationship to retrieve the 
DSD (Seto) and the R-Dm relationship for snow is likely inappropriate (Chase et al. 2020). 
This is acceptable, but given the authors are providing a new retrieval, there should be some 
discussion around other published retrievals. The main other retrievals that come to mind are:  

1) NASA GPM retrieval named the ‘Combined’ algorithm, which is first discussed in the 
literature by Grecu et al. (2016). The NASA CMB algorithm is an optimal estimation 
retrieval and might not have the same deficiencies as the 2A.DPR algorithm. The data are 
freely available from the same website as the 2A.DPR files and potentially could be added 
into the analysis 

2) The Chase et al. (2021) neural network retrieval. The focus of the Chase et al. (2021) 
retrieval was to correct for potential deficiencies in the 2A.DPR algorithm for snowfall (noted 
in Chase et al. 2020) and showed how the new retrieval compared to CloudSat in Chase et al. 
(2022). Furthermore, Chase et al. (2022; c.f., Figure 3), showed and discussed how the new 
neural network retrieval of snowfall rate, matches well with the 2A.DPR rain rate just below 
the melting level.  

I know that adding in new datasets is cumbersome and is not needed for this paper to be 
published, but at a minimum there needs to be discussion of these two other GPM algorithms 
and the caveat that the issue noted in the 2A.DPR algorithm might not extend to the others.  

 

Indeed, the primary focus of the paper is on the DPR product, given that our retrieval 
framework relies on radar-only measurements. Furthermore, in a previous study where we 
compared various GPM snowfall products over the continental US, we observed minimal 
differences between radar-only products and the radar-radiometer combined algorithm 
(CORRA). Since we had already acquired the CORRA product for other applications, we 
conducted an analysis on the mass flux and Dm changes within the melting zone for this 
algorithm as well. 

It came as no surprise to us that the radar-radiometer product is also impacted by the same 
issue of deficiency in the precipitation rate above the melting zone. In fact, the relationship 
between rainfall and snowfall rate in this product closely resembles that of the DPR product, 
as illustrated in the figures below:  

 



 

The following discussion was added to the paper: 

“We conducted a similar analysis with another official GPM product, specifically the 
2B.GPM.DPRGMI.CORRA. This algorithm integrates DPR data with passive measurements 
from the GPM Microwave Imager (GMI). We evaluated the same version of this product 
over a consistent time span of 5 years. The findings indicated that this product is also subject 
to the same issue—specifically, the precipitation rate above the melting layer is only one-
third of the rainfall rate below the melting zone. The regression line PR (ice) = 0.29 PR(rain) 
+ 0.89 best describes the  mass flux change between the phases. Similar to the radar-only 
product, the melted equivalent size of precipitation is well preserved through the melting 
zone (Dm (ice) = 0.83 Dm (rain) + 0.14).  

The striking similarities between the two official DPR products were already observed by 
Mroz at al. (2021), who noted that both products are affected by a similar underestimation of 
snowfall rates over the continental US. For brevity and given the similarities to the 
corresponding figures for the DPR product, the histograms illustrating these results are not 
included in this paper.” 

 

Regarding the alternative product, we obtained the neural network retrieval developed by 
Chase et al. (2021) from the repository and applied it to measurements above the melting 
zone. This analysis was performed with profiles where our OE algorithm was executed, i.e. 
for the DPR profiles within 100 km from the NEXRAD radars. Anticipating an alignment in 
precipitation rates below and above the melting zone in the NN retrieval, we conducted this 
exercise to assess how well the AI algorithm preserves the mass-weighted melted equivalent 
size of precipitation during the melting process. 

To our surprise, the algorithm by Chase et al. (2021) also exhibited a noticeable deficiency in 
precipitation rates above the melting zone. The histograms depicting this behaviour are 
presented below: 

 

To understand why the NN retrieval is influenced by this issue, we generated a joint 
probability density function (PDF) of precipitation rates as retrieved in ice by the DPR 
algorithm and the NN product (see below). The plot indicates that small precipitation rates 
are much larger in the NN algorithm. However, for large mass flux the two products appear 



to converge to the same value. Hence, the transition from ice to rain is characterized by a 
substantial increase in the NN algorithm mainly for large precipitation rates. We believe that 
an in-depth intercomparison of these products could potentially be explored in another 
publication, given that it would necessitate more comprehensive efforts. 

 

The following discussion was added in the text to stress the need for more intercomparison 
studies:  

“Notably, our product improves the coherence between precipitation rates above and below 
the melting zone. Similar to the DPR product, there is an increase in water mass flux during 
the transition from ice to rain, but in our case, this increase is more subdued. Upon examining 
the regression lines, the expected snowfall rate above the melting zone, with 10 mm/h of 
rainfall underneath, equals 6 mm/h for our product and 3 mm/h for the DPR product.  

Overall, the mean fractional bias (MFB), defined as: 
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is equal to 4% and 106% for the OE and the DPR algorithms, respectively. Using DPR 
precipitation rates in rain as the reference for our product, the snowfall rate is on average 
30% smaller than the rainfall rate underneath. 

 

In the validation study conducted by Chase et al. (2022), it was demonstrated that the Neural 
Network snowfall algorithm (Chase et al.,2021), designed specifically for the DPR, exhibits 
significantly improved agreement between snow and ice phase precipitation rates compared 
to the DPR product. Their algorithm almost perfectly aligns with the mass flux between the 
phases, showing only a 2% difference. This underscores the remarkable success achievable 
with artificial intelligence algorithms when trained using the right database. However, it is 
crucial to note that its accuracy is contingent on the precision of the attenuation correction, 
particularly at the Ka-band, which is more susceptible, especially in heavy precipitation 
conditions. 



While our algorithm doesn't achieve a perfect precipitation rate match between different 
water phases, it brings about noticeable improvement compared to the DPR product. The 
algorithm's development is still in its early stages, and ongoing adjustments in the code are 
expected to reduce this discrepancy. Preliminary tests have been conducted, revealing that the 
continuity of the mass flux through the melting zone can be enhanced at the expense of the 
continuity of the melted equivalent size. However, it remains debatable which of these two 
properties exhibits less variability within the melting zone, and this should be a topic for 
future studies. 

Furthermore, it's important to acknowledge that some changes in the precipitation rate may 
still occur within the melting zone, resulting in an anticipated growth in precipitation rate. 
The extent of this change depends on environmental conditions such as relative humidity and 
temperature profiles (Heymsfield et al., 2018).” 

Minor Comments:  

Focus on Snow to rain transition  

The whole paper has an emphasis on the snow to rain transition, yet the only evaluations 
done of the new algorithm is on surface rain (section 6). I get why this is done, to show that 
the new algorithm still gets sufficient rain accuracy, and the rain algorithms are generally 
better than snow algorithms (at least from NEXRAD). A suggestion here is reproduce Figure 
3 with the new algorithm. This would really tie the point home that the consistency across the 
melting layer has been improved. Ideally this would be shown prior to the bulk evaluation 
(Figure 7). Can the authors also be explicit that the evaluations in section 6 are near the 
surface?  

Thank you for your insightful comment. We have incorporated the suggested Figure 3, which 
explicitly illustrates the improved consistency across the melting layer using the new 
algorithm. This figure is now included before the bulk evaluation (Figure 7). 

Regarding the validation of the product in rain, we acknowledge the challenges associated 
with validating the algorithm in ice due to the limited number of validation underflights 
within stratiform precipitation. Even when these flights are conducted, they are often 
characterized by discrepancies in sampling time and significant differences in sampling 
volume due to the high ground track speed of the satellite. For instance, an in situ aircraft 
flying at 600 km/h only crosses over two DPR pixels in one minute. This means that within a 
10-minute window, we only collect approximately 20 validation points, which may not 
adequately represent the entire radar volume due to their proximity to a one-dimensional cut 
through a 5x5x0.25 km³ volume.  

Our validation in rain, was performed with all radar volumes below the melting zone and we 
added this statement in the paper to make it clear. 

The following discussion was also added:  

“An example of the OE retrieval is presented in Fig. 7. The rain component aligns with the 
overall structure observed in the DPR product, featuring distinct elements of a squall line 
system: a convective core, a transition zone, and stratiform precipitation, viewed from east to 
west. However, the range of retrieved parameters is smaller compared to the DPR algorithm, 



even within stratiform rain profiles. This discrepancy is mainly caused by differences in the 
differential attenuation fitting between the two algorithms. The DPR product tends to 
overestimate this parameter as it tries to compensate for the non-uniform beam filling effect, 
while our product does not incorporate this correction. It must be acknowledged that the 
reliability of the OE product is questionable in convective precipitation, given its design for 
stratiform precipitation. Consequently, the presence of artifacts at approximately 5 km 
altitude (a peak in Dm and PR) within the convective core should not come as a surprise.  

In the ice phase, the OE algorithm tends to yield a larger precipitation rate than the DPR 
product. Both the PR and Dm reach their peaks above the melting zone and remain relatively 
constant in rain; that is, the majority of the growth occurs within the ice phase. Moreover, 
compared to the DPR product, the precipitation structure in the ice phase is not affected by 
strong discontinuities during the transition from one profile to the other, although no 
constraints on horizontal variability were imposed.” 

Added figure: 

 

 

More details on the 2A.DPR algorithm:  

It would be helpful to readers to have a bit more intuition of the 2A.DPR algorithm. For 
example, noting that it is an R-Dm retrieval, is helpful to provide context to the reader that 
the algorithm was developed for rain, not snow, and might be the main reason for the 



discrepancy the authors are highlighting in the manuscript. It would be good to cite the paper 
that describes the algorithm as well (Seto et al. 2021).  

 

The following discussion was added: The DPR retrieval algorithm utilizes measured radar 
reflectivity, total path integrated attenuation estimates corrected for non-precipitating 
particles, the relationship between precipitation rate and mass-weighted mean diameter (P R 
− Dm), and phase information based on the melting layer detection. It generates profiles of 
precipitation rate and drop size distribution parameters (Dm, Nw). Additionally, profiles of 
effective reflectivity and specific attenuation coefficients are provided. The algorithm 
employs the P R − Dm relationship with an adjustment parameter, ε, aiming to reconcile 
discrepancies between the surface reference technique PIA and the one simulated from 
hydrometeor profiles. Version 06 had a single ε value along the profile, while Version 07 
introduces varying ε in the column.  

The P R-Dm relation, replaces the traditionally used relation involving specific attenuation 
(k) and effective radar reflectivity factor (Ze). While using the k-Ze relation with the 
Hitschfeld-Bordan attenuation correction method (Hitschfeld and Bordan, 1954) enables the 
derivation of a Ze profile from the Zm profile without the need for scattering tables, this 
relation is not applicable at the Ka-band due to the weaker correlation between involved 
parameters. This limitation arises from rain extinction being strongly affected by absorption 
rather than being dominated by scattering. Consequently, the Hitschfeld-Bordan method leads 
to inconsistencies in attenuation correction at two frequencies. 

The algorithm follows a logical sequence: assuming a gamma DSD with a fixed shape 
parameter, a relationship between PR and Dm imposes a unique solution for a given effective 
reflectivity. Consequently, the corresponding values for Nw is found and by using the 
scattering tables the specific attenuation coefficient k is obtained. The process begins at the 
top, where the measured reflectivity is assumed to be unaffected by attenuation and is 
iteratively corrected using the estimated k. This procedure is applied throughout the column, 
resulting in the attenuation profile. The process is iterated with different values of ε to 
minimize the difference between the simulated PIA at the SRT-estimate. 

For more details about the changes introduced in version 6 of the GPM-DPR algorithm, refer 
to the Algorithm Theoretical Basis Document (Iguchi et al., 2018) or to the algorithm 
description provided by SETO et al. (2021). Additionally, the study conducted by Chase et al. 
(2020) provides a thorough evaluation of the PR-Dm relation in both rain and snow using 
disdrometer measurements. They conclude that the P R-Dm retrieval may not be optimal in 
snow due to the variability of snowflake. mass, suggesting the exploration of alternative 
techniques. 

 

Length of record:  

Why just 5 years of data? Why not use all of it (2014 – 2023).  

Given the extensive size of the complete dataset, we opted to utilize a five-year period of data 
for our analysis. We are confident that the statistics derived from this five-year period are 



sufficiently robust and that incorporating additional data would not significantly alter the 
findings. 

Line by Line comments:  

Note, word suggestions are suggestions. Please feel free to disagree. 
Line 22: I have seen decent signal of the KuPR down to 12 dBZ. I know that this is not 
citable in a publication, but just a note. 

We refer to literature values, but we are aware that in many cases, the Ku-band radar 
reflectivity seems to capture precipitation as weak as 12 dBZ. Nevertheless, the probability 
density function (PDF) of measured reflectivity peaks at higher values, indicating that some 
returns below 15 dBZ are missed. 

  
Line 35: There is a better citation for the Conv/Stratiform retrieval: Awaka et al. (2021)  

Added 

Line 52: Maybe the word ‘stratiform rain volume’ is better than ‘stratiform rain deck’  

Changed 

Figure 1 caption: Which ray is this? Is it near nadir I assume?  

The ray number has been added. 

Line 84: I know that aggregates have large non-Rayleigh effects, but is this common 
knowledge? Should you cite an example here?  

We cited Kuo et al. (2016) 

Lines 93 – 96: it might be good to mention here that prior to May 2018, there was no matched 
Ka-band in the outer swath anyway. Making the identification of the bright band harder and 
no Ka-band for the dual-frequency retrieval anyway.  

We added your comment. 

Line 99: This would be a good spot for the Le and Chandrasekar (2013) reference.  

We cited their paper where you suggested.  

Section 3: This is where some added discussion on the R-Dm retrieval in the 2A.DPR product 
would be helpful (Seto et al. 2021). Furthermore, it might be good to mention Chase et al. 
(2020) which evaluated the R-Dm relationships in rain and snow.  

A more detailed description of the DPR algorithm was added. 

Line 174: Can you add 2A.DPR in parenthesis after the V06? This would help folks who 
know more about the DPR algorithms what files you are using.  



(2A.GPM.DPR) was added. 

Lines 178 – 181: This was noted previously by Chase et al. (2021; c.f., Figure 15).  

We cited Chase et al., 2021) here. 

Lines 212 – 213: The Skofronick-Jackson et al. (2019) and the Casella et al. (2017) papers 
also documented the snowfall rate deficiency of the 2A.DPR algorithm.  

The following statement was added: Similar problem with the snowfall deficiency in the 
2A.DPR product was also reported by Skofronick-Jackson et al. (2019) and Casella et al. 
(2017). 

Line 375 – 376: There is a good reference by Heymsfield et al. (2018) that talks about the 
relative humidity across the melting layer.  

We added this citation. 

Line 463: Refrain from using the word ‘significant’ unless a statistical test is used. If there 
was a statistical test used for hypothesis testing, be explicit which ones and what level of 
significance was used.  

The word 'significant' was replaced with more appropriate synonyms as no formal statistical 
tests were conducted. The original usage of 'significant' was more informal and imprecise. 

Line 464: Suggest switching the order of rain and snow to follow a top-down (i.e., snow 
falling and melting to rain).  

We kept the original order as the rain retrieval is simpler so the information flows from rain 
to ice. 

Code Availability: It would be nice to have a simple script to show how to run the OE 
retrieval developed in this paper. That way readers could run the suggested physically 
consistent retrieval for their respective scientific endeavors.  

We've updated the README file in the repository to point to a new Jupyter notebook, 
demonstrating the step-by-step execution of the retrieval process. This informative notebook 
is titled "test.ipynb." 
 
 

Reviewer 2: 

Major comments: 
  
The OE method is well described, but it is difficult for the audience who are not familiar with GPM 
DPR algorithms to understand the novelty of this work. Since this work is expected to ‘improve’ GPM 
retrievals, the GPM algorithm should be well presented. In parJcular, the authors should discuss the 
aspects that this algorithm are different from GPM. 
 



 
We have provided a more detailed descripJon of the algorithm. In addiJon, we added a subsecJon 
that summarizes main differences and similariJes between the algorithms: 
 

In SecJon 3 we added:  
 
The DPR retrieval algorithm utilizes measured radar reflectivity, total path integrated attenuation 
estimates corrected for non-precipitating particles, the relationship between precipitation rate and 
mass-weighted mean diameter (PR − Dm), and phase information based on the melting layer 
detection. It generates profiles of precipitation rate and drop size distribution parameters (Dm, Nw). 
Additionally, profiles of effective reflectivity and specific attenuation coefficients are provided. The 
algorithm employs the PR − Dm relationship with an adjustment parameter, ε, aiming to reconcile 
discrepancies between the surface reference technique PIA and the one simulated from 
hydrometeor profiles. Version 06 had a single ε value along the profile, while Version 07 introduces 
varying ε in the column.  

The P R-Dm relation, replaces the traditionally used relation involving specific attenuation (k) and 
effective radar reflectivity factor (Ze). While using the k-Ze relation with the Hitschfeld-Bordan 
attenuation correction method (Hitschfeld and Bordan, 1954) enables the derivation of a Ze profile 
from the Zm profile without the need for scattering tables, this relation is not applicable at the Ka-
band due to the weaker correlation between involved parameters. This limitation arises from rain 
extinction being strongly affected by absorption rather than being dominated by scattering. 
Consequently, the Hitschfeld-Bordan method leads to inconsistencies in attenuation correction at 
two frequencies. 

The algorithm follows a logical sequence: assuming a gamma DSD with a fixed shape parameter, a 
relationship between PR and Dm imposes a unique solution for a given effective reflectivity. 
Consequently, the corresponding values for Nw is found and by using the scattering tables the 
specific attenuation coefficient k is obtained. The process begins at the top, where the measured 
reflectivity is assumed to be unaffected by attenuation and is iteratively corrected using the 
estimated k. This procedure is applied throughout the column, resulting in the unattenuation profile. 
The process is iterated with different values of ε to minimize the difference between the simulated 
PIA at the SRT-estimate. 

For more details about the changes introduced in version 6 of the GPM-DPR algorithm, refer to the 
Algorithm Theoretical Basis Document (Iguchi et al., 2018) or to the algorithm description provided 
by SETO et al. (2021). Additionally, the study conducted by Chase et al. (2020) provides a thorough 
evaluation of the PR-Dm relation in both rain and snow using disdrometer measurements. They 
conclude that the PR-Dm retrieval may not be optimal in snow due to the variability of snowflake. 
mass, suggesting the exploration of alternative techniques. 

 
In secJon 4 we added subsecJon 4.4. SimilariJes and differences with the DPR product. 
 
Despite the disJnct mechanics employed by our algorithm, specifically our reliance on the opJmal 
esJmaJon framework, and the iteraJve nature of the DPR product, which primarily aims at fihng 
the measurements, there exist notable similariJes between these two approaches. For instance, the 
uJlizaJon of principal components in our method shares an underlying idea with the PR-Dm 
relaJonship. The principal components determine orthogonal direcJons within the space of 
microphysical parameters while providing insights into which component is most likely to change. 



The first principal component, for instance, represents the direcJon that undergoes the most 
significant changes as it is characterized by the largest variance, by definiJon. VariaJons along this 
principal component can be likened to imposing the PR-Dm relaJonship, a step analogous to the 
approach adopted in the DPR product. A noteworthy similarity arises when altering the second 
principal component; this modificaJon influences the PR-Dm relaJonship, akin to the e-adjustment 
implemented in the DPR product. Despite these similariJes, our approach offers a disJnct advantage 
– a priori knowledge regarding the natural variability of these relaJonships, quanJfied by their 
respecJve standard deviaJons. This insight allows for a more nuanced understanding of how these 
relaJonships may vary in real-world scenarios.  
 
Another notable similarity between our algorithm and the DPR product lies in the approach to 
assimilaJng the measured reflecJvity. TradiJonally, the measured reflecJvity is corrected for 
alenuaJon prior to microphysical retrievals (e.g. Vulpiani et al., 2006). Both our and the DPR 
algorithm adopt this step solely to obtain the iniJal guess. Subsequently, an iteraJve procedure is 
iniJated, and the distribuJon of microphysical parameters within the column is modified to align 
with the measured reflecJvity. Both algorithms employ a top-down approach, esJmaJng alenuaJon 
caused by various hydrometeors from scalering tables. The alenuaJon accumulates along the 
propagaJon path unJl reaching the surface. The total PIA esJmate serves as a crucial constraint for 
both algorithms, ensuring the stability of the iteraJve process. The difference lies in the modelling of 
the melJng layer. In our approach, we solely esJmate the alenuaJon caused by melJng parJcles 
using the parametrizaJon of Matrosov (2008). In contrast, the DPR product simulates the melJng 
parJcles and their associated scalering properJes within the melJng zone. This simulaJon yields 
reflecJvity and hydrometeor properJes profiles within the melJng zone. In our case, hydrometeor 
properJes are obtained solely through conJnuity, and no measurements are simulated within the 
melJng zone. 
 
It is essenJal to highlight a nuanced difference in our algorithm compared to the DPR product. Our 
algorithm is designed to simultaneously fit the measured reflecJvity at Ku and Ka bands, alongside 
the differenJal PIA esJmate. Conversely, the DPR product appears to prioriJze fihng the Ku-band 
reflecJvity. This prioriJzaJon is jusJfied due to challenges in simultaneously fihng both channels 
under non-uniform condiJons (Mroz et al.,2018). Notably, our algorithm is tailored for straJform rain 
scenarios, where such condiJons are minimized, while the official DPR product is designed to be a 
versaJle one-for-all approach. 
 
The primary disJncJon between the two algorithms centers on how ice is modeled. Our approach 
employs the simulaJon of realisJc snowflakes, complemented by discrete dipole simulaJons of 
scalering properJes. In contrast, the DPR product adopts "son-spheres" simulaJons, represenJng 
ice parJcles as a uniform mixture of air and ice. In this case, scalering simulaJons can be 
approximated using Mie theory. However, it's essenJal to emphasize that the primary difference in 
our approaches is not the shape of the parJcles or the scalering simulaJon methodology. 
What sets our algorithm apart is the capacity of the OE algorithm to accommodate changes in the 
density of ice parJcles, while the DPR product maintains a fixed density of spherical air-ice mixtures 
at 0.1g/cm3. This unique flexibility allows the OE algorithm to search for soluJons that ensure 
conJnuity in the water mass flux through the melJng zone. Importantly, this coherence in the fluxes 
is achieved without sacrificing the conJnuity of the melted equivalent size, and it is obtained with 
the radar measurements matching. The ability to adjust ice parJcle density provides a crucial 
advantage, enabling our algorithm to navigate to physically consistent soluJon more effecJvely. 
 
 



The manuscript is poor in organizaJon. SecJon 2 is DPR measurements; SecJon 3 is DPR retrieval, 
and 4 for OE. I understand that we usually inference the reason from results. However, it is beler to 
analyze the issues in DPR retrieval and then show the issues in observaJons in a scienJfic paper. 
 
We chose to adopt this structure to establish a logical flow, beginning with the presentaJon of DPR 
measurements, as they form the foundaJon of our retrievals. Subsequently, we introduce the official 
retrieval framework to highlight the issues impacJng the precipitaJon product. The OE algorithm, 
presented later in the manuscript, is then proposed as a soluJon to address these idenJfied issues. 
It's important to note that our intenJon is not to delve into issues related to the observaJons. 
Instead, we adhere to the convenJonal structure found in AMT arJcles, where the methodology 
secJon logically follows the presentaJon of data. 
 
 
ValidaJon should be made in ice. The current ‘validaJon’ is sanity check, not validaJon, since the 
validaJon was not in ice. The validaJon should be made against in-situ measurement of ice. There 
are several aircran campaigns designed for GPM validaJon, and the in-situ observaJons can be used 
for quanJtaJve validaJon. 
 
Concerning the validaJon of our product in rain, we decided to perform it this way due to the limited 
number of validaJon under-flights in the ice phase during straJform precipitaJon events. As far as 
our knowledge extends, only one flight was conducted throughout the enJre OLYMPEX campaign, 
and this event was uJlized in the study by Chase et al. (2021). In this study, only a qualitaJve 
assessment of their product was performed, refrained from direct comparisons due to dispariJes in 
sampling Jme during in-situ flights and significant differences in sampling volume. The dime 
difference is caused by the high ground track speed of the satellite. For instance, an in-situ aircran 
traveling at 600 km/h intersects only two DPR pixels in one minute. Within a 10-minute window, 
approximately 20 validaJon points are collected. This prompts a crucial quesJon regarding the 
representaJveness of the sample and the robustness of potenJal staJsJcal comparisons. Moreover, 
in-situ sampling is potenJally insufficient to adequately represent the enJre radar volume, given 
their proximity to a one-dimensional cut through a 5x5x0.25 km³ volume. The impact of this 
sampling volume difference could potenJally be miJgated with the collecJon of large staJsJcs, as 
discrepancies in the sampling volumes would result in random noise only. However, that would 
require a lot of flights. Chase et al. (2021) uJlized airborne radar data at finer horizontal and verJcal 
resoluJon for more robust staJsJcs. While we acknowledge their efforts, it's crucial to note that 
airborne data differ significantly from spaceborne measurements. Airborne data exhibit superior 
sensiJvity, resoluJon, and reduced signal fluctuaJons. AddiJonally, they are less affected by non-
uniform beam filling effects compared to satellite measurements. 
 
As you rightly noted, the validaJon secJon in our study primarily served as a sanity check. It 
showcased that a more physically consistent retrieval could be alained without compromising the 
integrity of the rainfall product. Although our proposal for a more extensive in-situ validaJon study 
of DPR products was not secured, this arJcle stands as a proof of concept. The retrieval algorithm is 
publicly available under the MIT license, welcoming exploraJon by everyone, including the GPM 
algorithm team. 
 
 
To address your comment, we have renamed this secJon to "Performance Assessment in Rain." 
AddiJonally, we have included the following discussion at the beginning of the secJon:  
 
“The validaJon of the OE algorithm was exclusively conducted within the rainy porJon of the radar 
profiles. This might appear surprising, given the anJcipated improvement in algorithm quality 



compared to the DPR product above the freezing level. However, this approach is expedient due to 
the limited availability of DPR under-flights within snow during straJform precipitaJon events. To the 
best of our knowledge, only one flight was conducted throughout the enJre OLYMPEX campaign, and 
this singular event was uJlized in the study by Chase et al. (2021). 
In their study, only a qualitaJve assessment of the product was conducted, refraining from direct 
comparisons due to dispariJes in sampling Jme during in-situ flights and significant differences in 
sampling volume. The discrepancy in sampling Jme arises from the high ground track speed of the 
satellite (7 km s⁻¹) compared to approximately 600 km h⁻¹ of an in-situ aircran. Consequently, within 
a 10-minute window, only 20 validaJon points are collected. 
This raises a criJcal quesJon about the representaJveness of the sample and the robustness of 
potenJal staJsJcal comparisons. Moreover, in-situ sampling may be inadequate to sufficiently 
represent the enJre radar volume, given its proximity to a one-dimensional cut through a 5×5×0.25 
km³ volume. The impact of this difference in sampling volume could potenJally be miJgated with the 
collecJon of large staJsJcs, as discrepancies in the sampling volumes would result in random noise 
only. 
However, as pointed out earlier, collecJng these staJsJcs is impracJcal due to the limited number of 
validaJon points per flight, making such an effort very expensive. Chase et al. (2021) overcame this 
issue by uJlizing airborne radar data at finer horizontal and verJcal resoluJons for more robust 
staJsJcs. While we acknowledge their efforts, it's crucial to note that airborne data differ 
significantly from spaceborne measurements. Airborne data exhibit superior sensiJvity, resoluJon, 
and reduced signal fluctuaJons. AddiJonally, they are less affected by non-uniform beam filling 
effects compared to satellite measurements. 
The validaJon presented here served as a sanity check, aiming to assess whether a physically 
consistent retrieval could be achieved without compromising the integrity of the DPR rainfall 
product.” 
 
Technical comments (in order of their appearance in manuscript):  

Eq. 11-15: How did you get these parameterizations? 

We derived them from derived from the polarimetric radar retrieval. We have made it clear in the 
text now.  

Eq. 20: Where is this equation from? 

This is a change of coordinates formula demonstrating how to convert a vector from the space of 
principal components into a Cartesian coordinate system. In addition to the standard conversion, 
there is also a normalization step. We included this formula for a more technical audience actively 
involved in the development of these algorithms. 

Line 366: in precipitation properties and and evaluating the accuracy. Extra 'and' 

Repetition was removed. 

Figure 8 is presented in a single-row, side-by-side arrangement, yet the caption indicating 'Top Panel' 
and 'Bottom Panel. This discrepancy may be attributed to formatting issues, and it warrants 
verification. 

It was due to formatting, thank you for pointing it out. 

Line 413: A similar, case study analysis - A similar case study analysis 



The comma was removed. 

Line 475: rater than – rather than 
 
It’s corrected now. 
 

 

 

 
 
 
 
 


