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Abstract. The regeneration niche of trees is governed by many processes and factors that are challenging to determine. Besides 

a species’s geographic distribution, which determines if seeds are available, a myriad of local processes in forest ecosystems 

(e.g., competition, pathogens) exert influence on tree regeneration. Consequently, the representation of tree regeneration in 

dynamic forest models is a notoriously complicated process which often involves many subprocesses that are often data 

deficient. The ForClim forest gap model solved this problem by linking species traits to regeneration properties. However, this 15 

regeneration module was never validated with large-scale data. Here, we compare this trait-based approach with an inverse 

calibration approach, where we estimate regeneration parameters directly from a large dataset of unmanaged European forests. 

The inverse calibration was done using Bayesian inference, estimating shade and drought tolerance as well as the temperature 

requirements for 11 common tree species along with the intensity of regeneration (i.e., the maximum regeneration rate). We 

find that the parameters determining species’ light niche (i.e., light requirements) are similar between the trait based and 20 

calibrated values for both model variants, but only a more complex model variant that included competition between recruits 

led to plausible estimates of the drought niche. The trait-derived temperature niche did not match to the estimates from either 

model variant using inverse calibration. The parameter estimates differed between the complex and the simple model, with the 

estimates for the complex model being closer to the trait-based parameters. In both model variants, the calibration strongly 

changed the parameters that determine regeneration intensity compared to the default. 25 

We conclude that the regeneration niche of trees can be recovered from large forestry data in terms of the stand-level parameters 

light availability and regeneration intensity, while abiotic drivers (temperature and drought) are more elusive. The higher 

performance (better fit to hold-out) of the inversely calibrated models underpins the importance of informing dynamic models 

by real-world observations. Future research should focus on an even larger environmental coverage of observations of 

demographic processes in unmanaged forests to verify our findings at species range limits under extreme climatic conditions. 30 
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Introduction 

Predictions of species range shifts and forest dynamics under climate change require process-based models that account for 

the complex feedback between stand dynamics, soils, and climate (Morin and Thuiller, 2009). In this context, tree regeneration 

is particularly important because of its key role in species range shifts (McDowell et al., 2020), and forest resilience to climate 35 

change (i.e., reorganisation after disturbances; Seidl and Turner, 2022). Yet, tree regeneration is an uncertain and convoluted 

process (Price et al., 2001; König et al., 2022), as shown by numerous studies that yield different results depending on the site, 

species, and spatial and temporal scale that is considered (Clark et al., 1999; Lett and Dorrepaal, 2018). The reason for these 

divergences among observations and experimentation is a) that many seemingly stochastic regeneration processes are actually 

controlled by biotic and abiotic conditions that vary across a wide range of temporal and spatial scales (Grubb, 1977; Hart et 40 

al., 2017), coupled with b) the lack of suitable data to consistently study these processes on different scales (Clark et al., 1999). 

A challenge that hinders progress on these questions is that a tree’s regeneration niche is generally driven by many factors and 

lacks a clear definition that distinguishes it from a plant’s full niche (Grubb, 1977). Instead, differences between Grubb’s niche 

types are continuous (see also ontogenetic shifts in environmental preferences, Heiland et al., 2022) and valid only 

conceptually. At the same time,  Grubb’s definition of the regeneration niche as “an expression of the requirements for a high 45 

chance of success in the replacement of one mature individual by a new mature individual of the next generation […]” provides 

a coherent framework to which regeneration models can be related.  

Regeneration in most Dynamic Forest Models (DFMs) is captured in a relatively simple manner (compared to growth and 

mortality of adult trees) and, due to the lack of detailed process data, mostly phenomenologically (König et al., 2022). 

Nevertheless, even these simplified representations of tree regeneration are characterized by widely different levels of 50 

complexity (Bugmann and Seidl, 2022). Typically, the representations of regeneration in DFMs are based on knowledge that 

is abstracted to an aggregate over many processes (Price et al., 2001). DFMs usually simulate regeneration via binary, count, 

or hurdle models. Such probabilistic models simulate the occurrence of small trees at certain size thresholds as a function of 

environmental variables and sometimes dispersal, vegetative reproduction, or browsing. The complexity of these models is 

characterized by the different definitions of the relation between environmental variables and species’ regeneration probability. 55 

Consequently, there is a wide range from very simple models that use binary threshold values for one or very few variables 

(e.g., FORMIND, Köhler and Huth, 1998), to highly complex models with continuous transitions from unsuitable to suitable 

regeneration conditions comprising many variables (e.g., iLAND, Seidl et al., 2012). In addition, the actual regeneration 

amount is often calculated invoking random numbers, which leads to high stochasticity and renders the validation of tree 

regeneration patterns in DFMs challenging. Bugmann and Seidl (2022) and Hanbury-Brown et al. (2022) provide a 60 

comprehensive overview of regeneration models. 

In this study, we focus on the relation between tree species’ regeneration success and environmental variables in DFMs. For 

this purpose, we aim to disentangle the effects of large- and small-scale environmental drivers on tree regeneration based on 

regeneration data that stem from natural conditions, i.e. unmanaged forests. In conjunction with such data, DFMs can be used 



3 

 

to assess how simulated natural regeneration relates to real-world observations. First, DFMs represent complex stand-65 

environment feedbacks explicitly, which puts the quantified effects in the context of specific processes. For example, species’ 

shade tolerance estimates will only be constrained by the actual available light and not by any other confounding factors. Thus, 

it opens up opportunities for more nuanced inference on processes, instead of yielding loose associations between observed 

regeneration patterns and environmental drivers. Second, using data from unmanaged forests minimizes the confounding 

influence of management on demographic processes. Specifically, the promotion of certain species or individual trees through 70 

planting or thinning are absent in unmanaged forests. 

Over the past decade, robust methods for evaluating stochastic models of ecological processes with data have been developed 

(cf. Hartig et al., 2011). Yet, only a few studies have confronted tree regeneration models with forest inventory data (Rüger et 

al., 2009; Díaz-Yáñez et al., in press). An important reason is the issue of elucidating the drivers of ecological processes at 

different spatial and temporal scales mechanistically, as the apparent stochasticity makes it challenging to retrieve signal from 75 

the data (Hart et al., 2017; Oberpriller et al., 2021; Shoemaker et al., 2020). Specifically, trade-offs between meaningful 

observations for key small-scale processes such as light competition, browsing, microclimate (e.g., frost events) and the 

coverage of macroclimatic gradients at which dispersal and plant migration take place impede a comprehensive analysis across 

the stages of tree regeneration (Clark et al., 1999). Consequently, there is a need to advance the frontier of evaluating tree 

regeneration in DFMs with data (cf. Díaz-Yáñez et al., in press). 80 

In the DFM ForClim (Huber et al., 2020), which we use as a case study, the regeneration niche is captured, among other 

factors, based on light availability, water availability, and summer temperature conditions. It is derived from trait values for 

shade tolerance, drought tolerance, and minimum degree-days (e.g., Leuschner and Ellenberg, 2017). The model is highly 

sensitive to the values of these parameters (cf. Huber et al., 2018), which adds weight to their detailed evaluation based on 

real-world observations. For traits directly linked to a specific, explicitly modelled process, such as the relationship between 85 

species' shade tolerance and light availability, a higher predictive power is anticipated. In contrast, traits influencing multiple 

processes tend to exhibit lower predictive power. An example of this is the intricate relationships involving species' temperature 

requirements, frost tolerance, and drought tolerance, all of which interact with factors such as precipitation and temperature 

(cf. Yang et al., 2018). Functional traits have successfully been applied in simple dynamic models of annual plant communities 

(e.g., Chalmandrier et al., 2021), thus underpinning the validity of trait-based approaches for modelling plant demography. 90 

In ForClim, the interplay between the traits of multiple species is implemented in two variants, i.e. a simple and a complex 

approach for capturing regeneration processes. In the simple approach, the relation between traits and environmental conditions 

is defined using binary thresholds and competition among regenerating trees is not considered. In the complex approach, the 

relation between traits and environmental conditions is defined with continuous transitions between suitable and unsuitable 

regeneration conditions, and competition among regenerating trees is considered (Huber et al., 2020). Interestingly, in both 95 

variants the link between traits and processes leads to ecologically plausible emergent properties of simulated Potential Natural 

Vegetation along elevational gradients in the Swiss Alps (Huber et al., 2020) and elsewhere (Bugmann and Solomon, 2000). 

While empirical studies based on plot-level data have provided valuable insights into large-scale regeneration patterns (Zell et 



4 

 

al., 2019; Käber et al., 2021), it remains unclear whether DFMs can match such empirical data. A comparison of many DFMs 

with data of unmanaged European forests shows that mismatches exist, yet the reasons for these mismatches remain vague 100 

(Díaz-Yáñez et al., in press). 

Here, we evaluate possible reasons for mismatches between process formulations and observations by comparing two 

approaches for parameterizing the regeneration niche in ForClim: (1) a trait-based approach, where the regeneration niche is 

based on trait values determined a priori from ecological knowledge, and (2) an inverse calibration approach, where the trait 

values are derived a posteriori using a novel observational data set of demographic processes in European unmanaged forests 105 

that covers unprecedented spatial and temporal scales (Käber et al., 2023). Specifically, we address two research questions. 

• How does the regeneration niche that is emerging from the inverse calibration differ compared to the niche defined 

by species’ traits?  

• Does a more complex regeneration model that includes competition feature a higher performance compared to a 

simple regeneration model without competition? 110 

Methods 

Data 

Forest inventory data 

We used records of tree recruitment from 6,540 forest inventory plots covering 299 strict forest reserves that are curated by 18 

European research institutions in the context of the European Forest Research Initiative (EuFoRIa, www.euforia-project.org) 115 

(Käber et al., 2023). Depending on the forest inventory design, different diameter thresholds (DBH, diameter at breast height) 

were used as the callipering limit in the inventories (i.e., 4, 7 or 10 cm). These inventory plots were aggregated or split into 

units of ca. 1 ha to obtain samples of similar spatial extent (Käber et al., 2023) that reduce the stochasticity in the data and thus 

increase the stability of the signal used for model evaluation. After data processing (Käber et al., 2023), 865 plots were 

available for this study. Some trees within these plots had implausible DBH measurements (e.g., annual DBH growth was 120 

unrealistically high (DBH > 2 cm/year) or negative (DBH < -0.1 cm/year), which required the exclusion of some plots. This 

allowed us to obtain a data set where all observations are in an ecologically plausible range. 

We defined two criteria for selecting plots suitable for the study. The first criterion evaluated the number of trees with 

implausible measurements relative to the total number of measured trees and observed basal area: at least 95 % of all trees 

needed to have plausible measurements together with at least 95 % of the basal area being comprised of trees with plausible 125 

DBH measurements. The second criterion evaluated the number of trees with implausible measurements relative to the plot 

area: the maximum number of trees with implausible measurements per ha allowed in the data set was defined as the 75 th 

percentile of trees with implausible measurements per ha (which amounted to 14.31 ha-1). The second criterion was defined 

http://www.euforia-project.org/
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because some plots did not fulfil the first criterion although they had a relatively low number of trees with implausible 

measurements per ha. These were particularly large plots with low tree number per ha (N = 51). After plot selection, all trees 130 

with implausible DBH measurements of the selected plots were removed. 

The final number of sites considered was 696 with sufficient information on tree regeneration for 11 tree species. All other 

species were aggregated in an extra category (“other” species). About half of the sites (353) were used for calibration (training 

data), and the other half (343) for evaluation (test data). We split the sites so that the variation of the represented inventory 

data sets (i.e., the individual data associated to one research institution) and DBH thresholds was similar in both test and 135 

training data. This also resulted in similar variations of environmental conditions because each inventory data set (from a given 

institution) represents a specific region with similar environmental conditions. 

Environmental input data 

ForClim contains a stochastic weather generator where the long-term averages and standard deviations of monthly mean 

temperature and log-transformed precipitation sums along with their cross-correlation serve as input (Bugmann, 1994; Risch 140 

et al., 2005). These climatic input variables were derived from the CHELSA data set version 2 (Karger et al. 2017) with a 

horizontal resolution of 30 arc seconds. The plot’s slope and aspect (represented as kSlAsp in the model; cf. Bugmann, 1994) 

are input variables as well; they were derived from the Copernicus digital elevation model EU-DEM (EU-DEM 2020) with a 

spatial resolution of 25 m, which was further processed with QGIS (QGIS Development Team 2022) to calculate slope and 

aspect on a spatial resolution of 100 m. The so-called “bucket size”, i.e., the plant-available water storage capacity of the soil, 145 

was derived with a Random Forest model trained with expert assessments of the soil quality of a subset of the plots (cf. Käber 

et al., 2023a). 

The forest gap model ForClim 

ForClim is a dynamic vegetation model that simulates the processes of growth, mortality, and regeneration (often also called 

“establishment”) of individual trees via species-specific size cohorts (Bugmann, 1994). ForClim classifies as a forest gap 150 

model (Shugart, 1984) and simulates forests on independent patches, each of a size of 800 m². By default, 100 patches (i.e., 8 

ha) comprise a forest stand to obtain realistic averages of forest dynamics across patches. The model uses an annual time step 

and represents trees as cohorts with the properties number of trees (Trs), their diameter at breast height (DBH), height, leaf 

area, and stress level. Here, we used two variants of the regeneration module within ForClim v4.0.1 (Huber et al., 2020). 

The two regeneration models 155 

The ForClim regeneration module initiates new cohorts of trees based on a) site variables for climate and soil in combination 

with b) species traits, and c) state variables of forest structure. The species traits of drought tolerance, temperature, and light 

requirements originate from indicator values of Ellenberg (1986) (cf. latest translated edition, Leuschner and Ellenberg, 2017) 

and the FORECE model (Kienast, 1987). They define thresholds (so-called “establishment flags”, EFs) that must be fulfilled 
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for a species to qualify for establishment at a DBH of 1.27 cm. For example, if a species has an EF of 10 % available light to 160 

regenerate the EF will be fulfilled if the available light is >= 10 %, if the available light is <10 % the species EF is not fulfilled 

(cf. the detailed description of establishment flags below). In this study, we focus on a simple and a more complex variant of 

the regeneration model. Below, a brief summary of the two models is provided, followed by an explanation of the EFs 

investigated here. For more details, see Figure 1, Appendix B, and the original documentation of the simple and complex 

model in Bugmann (1994) and Huber et al. (2020), respectively. 165 

The simple model simulates tree regeneration for each species independently and corresponds to the original ForClim 

establishment module in Bugmann (1994), which is the same as model variant 1 in Huber et al. (2020). EFs in this model 

indicate either “suitable” or “not suitable”, i.e., they are binary. In a first step, the annual regeneration probability (kEstP), 

modulated by species-specific EFs, determines whether regeneration for each species takes place. Second, if regeneration of a 

species takes place, the potential maximum number of new trees for that species is calculated from (1) a regeneration intensity 170 

parameter (kEstDens, which is the maximum tree establishment density per species [𝑚−2𝑦𝑟−1]) and (2) the species-specific 

successional strategy (i.e., shade-intolerant species have a higher number of seeds and thus offspring compared to shade-

intolerant species). Third, the actual number of new trees per species is derived by drawing a random number between 1 and 

the potential maximum number of trees for each species.  

The complex model includes a mechanism for competition and was first introduced as variant 11 in Huber et al. (2020). EFs 175 

in this model are continuous, which allows for a more nuanced gradient from “suitable” to “not suitable”. In the first step, 

kEstP as modulated by a drought index and degree-days is used to determine if regeneration for any species takes place. 

Second, if regeneration does take place, the total potential number of new trees over all species is calculated from (1) a 

regeneration intensity parameter (kTrMax, which is the absolute maximum number of trees [ℎ𝑎−1]) and (2) a drought index, 

degree-days, and the continuous EFs. The actual number of new trees over all species is then derived by drawing a random 180 

number between 1 and the potential maximum number of trees over all species. Third, the number of new trees per species is 

calculated by multiplying the actual number of trees over all species by the species-specific ratio of each species’ EF and the 

sum over the EFs of all species. 
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Figure 1: Simplified visual representation of the simple and complex regeneration model variants of ForClim. As full description of 185 
the models is provided below. 

Establishment flags regarding light, temperature, and soil moisture 

In the present study, we focus on three of the five EFs that are used in the two models (Table 1). The definition of these three 

EFs (for light, drought, and degree-days) is given below. 

The available light establishment flag (ALEF) evaluates whether the sunlight available at the forest floor (gAL0, see p. 63 in 190 

Bugmann (1994) for details) matches a parameter for species’ light requirements to regenerate (kLy,s). kLy,s is derived from 

indicator values regarding the light requirements of young trees (Ls) ranging from 1 to 9 (Leuschner and Ellenberg, 2017) with 

kLy,s = {
0.025 ⋅ (Ls − 1)    Ls < 5
0.1 ⋅ Ls − 0.4    else 

. eq. 1) 

For each species s, the binary EF (ALEFb,s) in the simple model is calculated with  

ALEFb,s = {
0    gAL

0
< kLy,s

1    else 
, eq. 2) 

while the continuous EF (ALEFc,s) in the complex model is calculated with 
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ALEFc,s = {

0                                                    gAL
0

< kLy,s

1                                         gAL
0

≥ kLy,s + 0.5

gAL0 − kLy,s

0.5
                 kLy ≤ gAL

0
< kLy,s + 0.5

, eq. 3) 

where the value 0.5 refers to the highest kLy,s (cf. eq. 1) and serves as a buffer for the transition from zero to one. 195 

The degree-days establishment flag (DDEF) evaluates whether the annual degree-day sum (gDD, see p. 81 in Bugmann (1994) 

for details) matches the species’ minimum degree-day requirement (kDDMin). The values of kDDMin originate from Kienast 

(1987), who derived climatic variables from Müller (1982) and Rudloff (1981) for multiple geographic locations and elevations 

within the species’ distribution range (Ellenberg and Klötzli, 1972; Meusel et al., 1965). This approach was further improved 

by applying a site-specific bias correction (Bugmann, 1994). Note that this parameter has never been modified to reflect 200 

possible deviations regarding the regeneration niche. In this study, we distinguish between the original parameter (kDDMin of 

adults) and kDDMiny, which applies to the regeneration. For each species s, the binary EF (DDEFb,s) in the simple model is 

calculated with 

DDEFb,s = {
0    kDDMiny,s ≥ 𝑔𝐷𝐷

1    else 
, eq. 4) 

while the continuous EF (DDEFc,s) in the complex model is calculated with 

DDEFc,s = {

0                                                                               kDDMiny,s ≥ gDD

1                                                                  gDD ≥ kDDMiny,s + 256
gDD − 𝑘𝐷𝐷𝑀𝑖𝑛y,s

256
                     kDDMiny,s < gDD < kDDMiny,s + 256

, eq. 5) 

where the value 256 refers to the lowest 𝑘𝐷𝐷𝑀𝑖𝑛y,s and serves as a buffer for the transition from zero to one. 205 

Lastly, the soil moisture establishment flag (SMEF) evaluates whether the drought index (gDr), defined as the ratio of actual 

evapotranspiration and water demand by the atmosphere (i.e., potential evapotranspiration) matches the species’ threshold for 

this index, i.e., the drought tolerance (kDrTol). The original trait values for drought tolerance range from 1 to 5 (Leuschner 

and Ellenberg, 2017) and were scaled between 0.06 and 0.3 (i.e., 30 %). The evolution of the formulation of the drought index 

is documented in Bugmann (1994); Bugmann and Cramer (1998); and Bugmann and Solomon (2000), including its integration 210 

in the regeneration model (Didion et al., 2009a). Similar to DDEF, the original parameter (kDrTol of adults) and kDrToly are 

distinguished here, and the latter applies to regeneration only. For each species s, the binary EF (SMEFb,s) in the simple model 

is calculated with 

SMEFb,s = {
0    gDr > kDrToly,s

1    else 
, eq. 6) 

while SMEFc,s in the complex model is calculated with 
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SMEFc,s = {

0                                                                             gDr > kDrToly,s

1                                                               gDr ≤ kDrToly,s − 0.08
kDrToly,s−gDr

0.08
                     kDrToly,s > gDr > kDrToly,s − 0.08

, eq. 7) 

where the constant of 0.08 indicates the lowest kDrToly,s and serves as a buffer for the transition from zero to one, i.e., the EF 215 

being fulfilled or not (cf. Huber et al., 2020). 

The two EFs in the model that are not considered here are the winter temperature establishment flag (WTEF), which depends 

on minimum tolerated winter temperature and chilling requirements (Bugmann, 1994; Bugmann and Cramer, 1998; Kienast, 

1987); and the browsing pressure flag, which depends on the species’ susceptibility to ungulate browsing (Didion et al., 2009b). 

WTEF is correlated with DDEF and excluded from the calibration to avoid too many degrees of freedom. We therefore used 220 

the default parameterization for WTEF. Because no site information on browsing pressure was available, we decided against 

using this factor in the calibration. Instead, we kept browsing pressure constant across all sites at its default value of 20 %. 

Table 1: Description of ForClim model parameters that are considered for calibration. 

Model 

variant 

 Description Default Prior Comment 

simple & 

complex 

kDrToly Species drought 

tolerance 

0.08-0.37 0.001-0.02 

 (0.001-0.4) 

The species’ drought tolerance and a 

drought index determine the EF for 

drought (Bugmann, 1994; Huber et al., 

2020). 

kDDMiny Species minimum 

degree-days 

385-1339 100-1500 The species’ minimum degree-day sum 

and degree-days determine the EF for 

temperature (Bugmann, 1994; Huber et al., 

2020). 

kLy Species light 

requirments 

0.03-0.4 0.001-0.5 Species’ light requirements and available 

light on the forest floor determine the EF 

for light (Bugmann, 1994). 

complex kTrMax Maximum Number of 

Trees per ha 

30000 500 – 50000 Maximum number of trees per ha refers to 

the number of trees regardless of the 

species. It also includes the trees that are 

already present on the patch (Huber et al., 

2020). 

simple kEstDens Maximum 

Establishment Density 

[trees/(m2·yr)] 

0.006 0.001- 0.2 Maximum tree establishment density is 

defined per species (Bugmann, 1994) 
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Calibration approach 225 

We used Bayesian inference to estimate the unknown parameters of the two ForClim regeneration models and their 

uncertainties. We estimated three species-specific (kL𝑦,𝑠, kDDMin𝑦,𝑠, and kDrTol𝑦,𝑠) and two general (kEstDens, kTrMax) 

regeneration parameters of ForClim based on recruitment data from the EuFoRIa reserves. The species parameters were 

estimated for 11 out of 30 simulated species for which the data covered sufficient environmental variation. The species not 

considered for calibration were simulated with their default parameters (cf. Huber et al., 2020).  230 

Calibration target  

The calibration target was to obtain recruitment rates in the model that match to observations. Tree recruitment was quantified 

as the number of trees that pass an inventory-specific DBH threshold. Observed decadal tree recruitment rates Ri,s were 

calculated for each plot i and species s with 

Ri,s  =  
∑ Ri,s,p

Nperiods
p=1

Ti×10
, eq. 8) 

where p is the inventory period and Ti is the total number of years between the first and the last inventory at plot i. Simulated 235 

tree recruitment rates R̂ were calculated as 

R̂i,s  =
1

Nrepi
∑

∑ ∑ nTrsi,s,p,k,j

Npatchi,s,p,k
j=1

Nperiods
p=1

Ti×10

Nrepi
k=1  , eq. 9) 

where nTrsi,s,p,k,j is the number of recruited trees for one patch j, inventory period p, and repetition k. Each simulation during 

the calibration was conducted on > 100 patches (i.e., ca. 8 ha) to reduce the variability caused by the k stochastic realizations 

of the ForClim model. The trees in the initial forest inventory were randomly distributed to each of the 100 patches (each with 

a size of 0.08 ha) proportionally to actual plot size until a full repetition exceeded 100 patches. If one repetition was not a 240 

multiple of the patch size of 0.08 ha, the difference in exceeded plot area determined the proportion of additional trees drawn 

from all trees in the initial forest inventory to populate the patches. The number of repetitions Nrepi for each plot i emerges 

from the next higher integer to 
8 ha

Ai
, where Ai is plot size in ha. This resulted in an average of 8 repetitions k across all sites, 

but with a range from plot sizes of 0.2 ha (k = 40) to two sites with plot size > 4 ha (k = 2). The number of patches j (Npatchi,p,k) 

within one repetition k is the next higher integer to 
100 patches

Nrepi
. 245 

Model initialization 

To initiate the calibration runs, we had to resolve the issue that trees below the inventory-specific DBH threshold (i.e., small 

trees), which may have been present in reality, are obviously not contained in the data. Ignoring these trees in the initialization 
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would create a temporal lag of tree recruitment (i.e., trees surpassing the DBH threshold), connected with a potentially 

significant underrepresentation of tree regeneration directly after model initialization. To overcome this problem, we initialized 250 

unobserved trees below the DBH threshold with the model’s steady state (i.e., equilibrium of regeneration).  

This steady state was determined by running the simulation with the stand structure of the initial forest inventory for 50 years, 

suspending all processes affecting trees above or equal to the DBH threshold. During this “spin-up” phase, trees above the 

DBH threshold that are included in the initial forest inventory could neither die nor grow, but still modulated the variables of 

stand structure that affect regeneration (i.e., gAL0, Trs). In contrast, trees below the DBH threshold were allowed to grow and 255 

die under the conditions observed in the initial inventory. If these newly regenerated trees grew larger than the DBH threshold 

during the spin-up, they were removed. This means that these trees did not die from mechanisms that simulate tree mortality 

in the model but were forcefully removed from the simulation to avoid the accumulation of trees with a DBH close to the DBH 

threshold. Visual inspection of the simulation results showed that an equilibrium of the stand structure below the DBH 

threshold was reached after approximately 50 simulation years, which was the reason to fix the spin-up to this time period. 260 

After the spin-up, the simulation was continued with all trees and running all model processes (i.e., regeneration, growth and 

mortality). 

Definition of goodness of fit 

The goodness-of-fit was quantified by a (pseudo)-likelihood. We assumed that the observations 𝑅i,s for site i and species s 

with the parameter vector θ were negatively binomially distributed, leading to a log-likelihood per observation of  265 

log[Ps( Ri,s ∣∣ θ )] = NegBinomial2( Ri,s ∣∣ R̂i,s , ϕ ). eq. 10) 

Here, the mean R̂i,s  is predicted by ForClim and governed by the calibrated values for kL𝑦 , kDDMin𝑦 , kDrTol𝑦  and the 

respective regeneration intensity parameter (kEstDens & kTrMax) of the two models, as explained above, and the dispersion 

parameter ϕ of the negative binomial distribution, which can be interpreted as a measure of residual variation, is a free 

parameter that needs to be estimated in addition to the model parameters.  

We assumed that the dispersion may vary with species, DBH and plot size according to the formula  270 

ϕ =  ϕ𝑠 × 𝑒ϕDBH × DBH𝑖 + ϕA × 𝐴𝑖, eq. 11) 

where ϕ𝑠 is the species-specific dispersion, ϕDBH is the effect of the diameter threshold DBH𝑖  and ϕA the effect of plot size 

𝐴𝑖  on the dispersion. We used an exponential function to only allow for positive values, as required by the negative binomial 

distribution. 

The joint log-likelihood log[ 𝑃𝑠( 𝑦𝑠 ∣∣ θ )] for each species s is the sum of the log-likelihoods over all plots i and species s:  
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log [P( y ∣∣ θ )] =
∑ log[Ps( ys ∣∣ θ )]

Nspecies
s=1

Nspecies
 eq. 12) 

We additionally re-scaled the joint log-likelihood (eq,) by a factor of 1/12. The effect of this re-scaling is that uncertainties get 275 

wider and it reduces the absolute magnitude of (stochastic) likelihood differences. For both reasons, MCMC samplers are less 

prone to get stuck in local optima, whereas the shape of the posterior surface as well as posterior optimum remains unchanged. 

The re-scaling (which essentially corresponds to a down-weighting of the observational evidence by a factor of 12) can be 

interpreted as accounting for possible non-independence of the data and structural model error (see Oberpriller et al., 2021). 

The choice of the value 1/12 was ad hoc, but given that some structural error and non-independence in the observations is 280 

likely present in this case, we believe the factor is in the right order of magnitude. Given the approximate nature of this 

correction, our scaled likelihood is more adequately described as pseudo-likelihood or an informal likelihood (Smith et al., 

2008), and the same labels should be applied to the posterior. For this reason we use the term pseudo-likelihood whenever we 

refer to the measure of goodness of fit which was defined above. 

In total, our pseudo-likelihood depends on a vector θ consisting of 48 parameters, as we estimated three ecological threshold 285 

parameters (kL𝑦 , kDDMin𝑦 , and kDrTol𝑦; cf. Figure 1) and separate dispersion parameter ϕ𝑠 for each of the eleven species, 

plus one extra dispersion parameter for all other species, two parameters for the effect of DBH and plot area (ϕDBH and ϕA), 

and one parameter for the regeneration intensity (kEstDens or kTrMax) for the simple or the complex model, respectively. We 

defined wide uniform priors for each parameter that comprises the full range from the species’ lowest and highest values in 

the default parameterization in ForClim (cf. Table 1). 290 

Posterior estimation 

We calibrated the model using the differential evolution sampler (DEzs, ter Braak & Vrugt, 2008) as implemented in the R 

Package BayesianTools (Hartig et al., 2019). We sampled with two independent sets of three chains (i.e., a total of six chains) 

for all 353 training plots. The z-matrix was re-initialized at the beginning of the sampling procedure (at 5000 to 6800 and 2000 

to 3700 iterations for the simple model and the complex model, respectively) to improve the mixing of the chains. This was 295 

necessary because of the very wide prior range for the dispersion parameters, which led to a degenerated z-matrix. The same 

procedure was applied to improve mixing the chains after 120’000 to 139’300 (simple model) and 120’000 to 145’500 

iterations (complex model). For the simple model, the upper prior range for the kEstDens parameter had to be adjusted from 

0.02 to 0.2 after 139’300 iterations. Ultimately, after 191’600 (simple model) and 200’900 iterations (complex model), one set 

of three independent chains converged, as judged by the visual inspection of the chains and Gelman and Rubin's MCMC 300 

Convergence Diagnostic (cf. Table A4). The other set of independent chains did not fully converge, mostly because of one 

chain being stuck for the species-specific dispersion parameters. Computational constraints did not allow for running the 

sampler even longer. One single simulation took 3 seconds per plot, i.e., 6 chains times 353 calibration plots resulted in a total 

computation time of 1.765 h per iteration without parallelization. Fortunately, the Euler High Performance Computing Cluster 
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of ETH Zürich enabled us to use 1000 cores (500 per model variant) and sufficient memory. The effective computing time, 305 

including the overhead when utilizing all resources, was 10-15 seconds per iteration and ca. 25 days in total for each model 

variant.  

The posterior distribution from the calibration consisted of 1’000 samples drawn from the last 32’300 (simple model) and 

45’400 iterations (complex model). The simulations from the posterior parameter distribution provided posterior estimates of 

decadal tree recruitment rates (R̂i,s) for all 343 test plots i and species s. The Mean Posterior Estimate (MPE) and the 80% 310 

Credible Intervals (CIs) of R̂i,s  from the 1’000 posterior simulations were used to assess residuals and evaluate model 

performance (see Table A4). The MPE and CIs for the parameter estimate of the posterior distribution were used to compare 

the trait based model and the calibrated model.  

Performance comparison using Root mean squared error (RMSE) and marginal pseudo-likelihood (ML) 

Model performance was assessed with the root mean squared error (RMSE) and the marginal pseudo-likelihood (ML) on both 315 

training and hold-out data. The difference between the two metrics is that RMSE is a general metric of fit, while the marginal 

pseudo-likelihood is Bayesian metric that relates to the Bayes Factor and posterior model weights and thus allows to compare 

the support for two alternative models based on a specific likelihood.  

For the simulations from the calibrated and trait-based models the RMSE was calculated for different DBH thresholds: for 

variable thresholds between plots and harmonized DBH thresholds of 7 and 10 cm. This harmonization was done by artificially 320 

increasing the DBH threshold in the observed and simulated data to mimic a consistent inventory design with a common DBH 

threshold. We calculated the RMSE from the training and test data based on the comparison of observed and simulated 

recruitment across the species-unspecific, the species-specific, and as the average over the species-unspecific and species-

specific RMSEs (Table 2). 

The ML was calculated for the simulations from the calibrated models only because the pseudo-likelihood relies on the 325 

dispersion parameters, which were not estimated for the trait based model. The ML is the average pseudo-likelihood of the 

model given the training or the test data, averaged over the posterior parameter uncertainty (cf. Delpierre et al., 2019). We 

evaluated the ML in both cases on the validation data based on the posterior distribution inferred from the training data. This 

approach, which corresponds to the fractional Bayes factor (O’Hagan, 1995), avoids inconsistencies when comparing models 

with weak or uninformative priors. The Bayes Factor is then obtained by taking the ratio between two marginal likelihoods 330 

with 𝑒𝑀1−𝑀2. This provides the relative posterior support of M1/M2 by the data (Kass and Raftery, 1995). 

When interpreting the results, it is important to remember that both RMSE and ML as evaluated here will typically be higher 

for more complex models on the training data, so the comparison of models with these metrics on the training data is of limited 

use. However, models can sensibly be compared by their performance on the hold-out, and it is also informative to look at the 

reduction of performance between training and hold-out, which gives an indication of overfitting.  335 
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Posterior sensitivity 

Global sensitivity analyses allow for the assessment of model behavior across large parameter spaces. However, large 

parameter spaces may also cover unrealistic parameter configurations, and computational requirements are high. Therefore, a 

strategy for constraining the parameter space to a relevant location is required (cf. Huber et al., 2018). We combined the 

benefits of a global and a local sensitivity analysis by constraining the parameter space via deriving a posterior distribution 340 

from the observations. This allowed us to evaluate model sensitivity with respect to the uncertainty derived from observed 

recruitment patterns in European forest reserves. 

To analyze the sensitivity of regeneration to changes in the model parameters within the posterior distribution, we analyzed 

the effect of increased tolerance of trait values (i.e., lower kL𝑦 , higher kDrTol𝑦, and lower kDDMin𝑦) on simulated recruitment 

within the posterior parameter range. This was done by modeling R̂ with a GLM and a negative binomial distribution with z-345 

scaled values of negative kL𝑦 , negative kDDMin𝑦 , and positive kDrTol𝑦 as predictors. This model was implemented using 

glmmTMB (Brooks et al., 2017). 

Results 

Species traits and regeneration intensity 

The trait-based regeneration niche differs from the regeneration niche that emerges from the model which was calibrated with 350 

the observations in unmanaged forest reserves. Variation in these differences is evident between trait types, species, and model 

variants (Figure 2 and Table A2). 

Light requirements stand out from the other traits because they were most sensitive during model calibration, as indicated by 

the narrow posterior distributions compared to the prior parameter range (Figure 2, left and Figure A2a). Most posterior 

estimates were not only narrow, but also supported by the trait values (Figure 3, left). Estimates of the complex model were 355 

generally closer to the trait values, with a good rank correlation (i.e., Spearman’s rho = 0.57). Light requirements defined by 

traits for the simple model were systematically lower compared to the values emerging from the calibration. Nevertheless, a 

Spearman’s rho of 0.94 indicates that the calibration put the species in a plausible order (Figure 3, top left). The estimates of 

the species-specific light requirements were more similar between both approaches for shade-tolerant tree species in general. 

Values from the calibration for Quercus spp., Pinus sylvestris, and Betula spp. were much lower compared to the trait values 360 

in the complex model but more similar in the simple model. For Tilia cordata, the calibration led to much higher light 

requirements compared to the trait based values with either model (cf. Figure 2, left). 

Drought tolerance values from both approaches´ matched moderately well when using the complex model (Spearman’s rho = 

0.46) with relatively large CI, and the expectation was within the CI for eight species (Figure 2, center). The MPE from the 

calibration was close to the definitions of the trait values for five species. However, drought tolerance estimates from the 365 

calibration did not match the trait values well for the simple model (Spearman’s rho = -0.18). Only for six species the wide 



15 

 

CIs included the trait based values, and the MPE matched the trait values in the simple model for two species only. For Quercus 

spp. (complex model), Tilia cordata (simple model) and Pinus sylvestris (both models), the calibration led to much lower 

values compared to the trait values. Conversely, for Alnus glutinosa and Fraxinus excelsior the calibration resulted in higher 

values compared to the trait-based values (cf. Figure 2, center). 370 

Estimates for the minimum degree-days had wide CI for both models and a low rank correlation between the approaches 

(Spearman’s rho = 0.19 for the complex model and -0.3 for the simple model; Figure 2, right). Although the posterior CI of 

the calibration included the trait-based values for many species, the intervals were wide and the MPE values were close to the 

trait-based values only for two and three species in the complex and simple model, respectively. This indicates that the 

calibration values neither fully disagree nor perfectly match the trait-based values. For Tilia cordata (both models) and 375 

Carpinus betulus (simple model), the calibrated values were much lower compared to the trait-based values. Conversely, the 

calibrated degree-day values for Pinus sylvestris (simple model) and Abies alba (both models) were considerably lower 

compared to the trait-based values (cf. Figure 2, right). 

 

Figure 2: Mean Posterior Estimate including the 80 % CI of the species-specific parameters for the complex (red) and the simple 380 
model (blue). Point type indicates the inverse calibration approach (ICA) and the trait-based approach (TBA). The panels show the 

species trait values light requirements (𝒌𝑳𝒚), drought tolerance (𝒌𝑫𝒓𝑻𝒐𝒍𝒚), and minimum degree-days (𝒌𝑫𝑫𝑴𝒊𝒏𝒌𝑳𝒚). The uniform 

prior parameter range (min, max) of each species trait (x-axis) is indicated by the grey rectangle in the background. 
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Figure 3: Comparison of expected values for species-specific establishment thresholds based on ecological knowledge (TBA, trait-385 
based approach; cf. Leuschner and Ellenberg, 2017) and MPE (ICA, inverse calibration approach, this study). The range displays 

the 80 % CI for the complex (top panels) and the simple model (bottom panels). The 1:1 relationship is indicated by the black line. 

Spearman’s rank correlation and the p-values of the MPE and the trait-based approach (TBA) values are shown in each panel. 

The estimates of the calibration for general regeneration intensity were narrow compared to the prior (Figure 4) and therefor 

considerably sensitive. While the species-unspecific parameter kTrMax from the calibration (complex model) was significantly 390 

lower than its default value of the trait-based model, the species-specific parameter kEstDens (simple) was higher than its 

default value of the trait-based model (Table A1). Considering the interaction between kEstP (which was reduced by a factor 

of 1/5) and kEstDens or kTrMax (cf. model description in Appendix B), the overall amount of regeneration is generally lower 

for the calibrated model compared to the trait-based model. Specifically, for the complex model the MPE (kTrMax = 8762) 

suggests 25 times less maximum regeneration compared to the default values of the trait-based models (kTrMax = 50000 · 5 395 

= 250000); and for the simple model the MPA (kEstDens = 0.022) suggests a reduction of ca. 24 % per species compared to 
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the default trait-based model (kEstDens = 0.006 · 5 = 0.03). However, it is noteworthy that these parameters modulate 

regeneration differently and the magnitude of the deviation between the parameters in the calibrated model, the default trait-

based model, and the model variants is not directly translated into the simulated regeneration amount within the model (cf. 

Figure 1 and the full set of equations in Appendix B). 400 

The coefficient for the effect of the DBH threshold in the species-specific dispersion was significantly different from zero, 

with an MPE of -0.39 and -0.41 for the complex and simple model, respectively. This indicates that dispersion increases for 

higher DBH thresholds (Figure 4c). The coefficient for the effect of plot size is slightly negative but not significantly different 

from zero (Figure 4d), which indicates that there is no significant effect of plot size on dispersion. However, a very weak 

positive effect of larger plots on dispersion is visible. On the species level, dispersion effects differed significantly, with the 405 

lowest dispersion for Fagus sylvatica and the highest for Quercus spp. (Figure A1 and Table A3). These findings emerged 

from both the simple and the complex model (cf. Figure 4 c and d). 
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Figure 4: Posterior distribution of the non-species specific parameters determining the amount of regeneration: a) kTrMax (complex 

model, red) and b) kEstDens (simple model, blue). Effects on the dispersion parameter 𝝓: c) DBH threshold and d) plot size. The 410 
prior parameter in a) and b) is given by the extent of the graph. The prior range for the dispersion parameters was -5 to 5 and is not 

shown. Note that lower values of the dispersion parameter indicate higher dispersion. Consequently, negative estimates for 

dispersion are positive effects on the actual dispersion. Species’ dispersion parameters are presented in Table A3. 

Model performance 

The calibration led to somewhat better performance compared to the trait-based approach (Figure 5 and Table 2). Both model 415 

variants performed better when calibrated and revealed the uncertainty of the posterior simulations. However, performance 

differed strongly between species. Most gains in performance coupled with a high degree of uncertainty were evident for Abies 

alba and Tilia cordata with both models (Figure 5). No increase in performance was evident for Quercus spp. and Alnus 

glutinosa, although high uncertainty of the simulations was evident for Alnus glutinosa with the complex model. Slight but 

distinct gains in performance were found for Fagus sylvatica and Picea abies with the complex model. Note that not only the 420 

intercept for the comparison of observations and simulations changed, but also the slope, which indicates that this was not only 

due to the regeneration intensity parameters. Overall performance increased distinctly for the complex model, and considerably 

for the simple model (cf. RMSE in Table 2). In summary, the calibration clearly improved model performance for almost all 

species in the complex model and to a limited extent in the simple model. In addition, the uncertainty based on the posterior 

parameter distribution was clearly visible in the simulations. The RMSE decreased with increasing DBH threshold (Figure 425 

A3) for both models. 

The ML confirmed the higher performance of the complex model (ML = -391.61) compared to the simple model (ML = -

401.86), which was also evident from the RMSE (Table 2 and Figure A2b). According to Kass and Raftery (1995), the Bayes 

Factor from the training data being above 200 suggested strong support for the complex model (Bayes Factor = 28282.54). 

Table 2: RMSE of simulated and predicted R and pseudo-likelihood for the different models and approaches: inverse calibration 430 
approach (ICA); trait-based approach (TBA). The marginal pseudo-likelihood (ML) was derived from the posterior parameter 

distribution of the training data (N=353), and the test data (N=343). Species specific RMSE values are presented in Figure A4. 

 complex  simple 

 ICA  TBA  ICA  TBA 

 test training  test training  test training  test training 

RMSE 5.84 6.19  8.86 9.29  6.32 6.63  6.17 6.47 

ML -391.61 -411.38     -401.86 -419.65    
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Figure 5: Simulated vs. observed recruitment rates at 7 cm DBH of the 11 species for (a) the simple and (b) the complex model. The 435 
red lines show linear regressions from 1000 simulated recruitment rates using the posterior parameter distribution at the 343 test 

plots. The data points used for the regression are indicated by the blue color of the hexagons, where light blue indicates fewer points 

and dark blue indicates more points. The yellow lines are characterizing the recruitment rates for the same test plots based on the 

default parameter setting (TBA, trait-based approach). 

Posterior sensitivity 440 

The variation of the parameter values characterizing the species’ light requirements had the strongest effect on conspecific 

regeneration for either model variant (Figure 6 a and b, respectively). The variation of drought tolerance within the posterior, 

which was rather high, had a much weaker effect on conspecific recruitment, and the minimum degree-days had a very low 

effect on recruitment within the posterior parameter range. Interestingly, positive effects for heterospecific recruitment were 

evident in the case of higher shade tolerance of Quercus spp. and Acer pseudoplatanus, but only in the complex model (Figure 445 

6b). Picea abies (simple model) and Fagus sylvatica (complex model) showed the strongest negative effects on the emergence 

of heterospecific recruitment (Figure 6). 
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Figure 6: Estimates of the effect of increased tolerances for 𝒌𝑳𝒚, 𝒌𝑫𝒓𝑻𝒐𝒍𝒚𝒚, and 𝒌𝑫𝑫𝑴𝒊𝒏𝒚𝒚 on the emergence of conspecific and 

heterospecific recruitment for the simple (a) and the complex model (b). The effect sizes correspond to the coefficients from a GLM 450 
that predicts recruitment with scaled tolerance parameters so that they have a mean of 0 and a standard deviation of 2; an increase 

of the value always indicates an improvement for the species. 

Discussion 

Below, we discuss the research questions with respect to the results and the ecological implications of our findings. First, we 

focus on the differences of the species-specific traits between the calibrated and the trait-based model; second, we evaluate 455 

how the structure of the simple and complex model affected performance; and third, we discuss technical advances and 

methodological aspects. 

Species traits 

The species trait values varied considerably between the calibrated models, the trait based-models, and the two model variants. 

We aim to explain these differences by reflecting on a) the theoretical expectations of the two approaches, and b) the structural 460 

differences between the model variants. 

Differences between the trait-based and calibrated models can be expected based on ecological considerations regarding the 

regeneration niche (Grubb, 1977) and ontogenetic niche shifts (Werner and Gilliam, 1984), as well as methodological aspects 

such as the importance of context for modeling trait-demography relationships (Yang et al., 2018). Specifically, we expected 

high sensitivity and a good match for the shade tolerance of the species because light availability is a key determinant of tree 465 

regeneration on small spatial scales (Collins and Good, 1987), and its context is modeled explicitly and in rather high detail in 

ForClim (cf. the direct link between stand structure and light availability in equations eq. 1 to eq. 3). In contrast, the context 

of trait values related to climate (drought tolerance and temperature requirements) is only vaguely defined by species 

distribution limits (Meusel et al., 1965) along macroclimatic gradients (Rudloff, 1981). In addition, the traits for light 
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requirements are differentiated between juveniles and adults (Leuschner and Ellenberg, 2017), while those related to climate 470 

are not. Therefore, we expected less agreement between the calibrated and trait-based models for these latter drivers. Our 

results supported these expectations, as shown by the mostly good agreement between the light requirement parameters 

compared to climatic parameters in the two approaches. Notably, this pattern was found in both the simple and the complex 

model, and it thus appears to be a robust feature irrespective of the structure of the regeneration model. Furthermore, the 

drought-related parameters matched better between the calibrated and the trait-based models in the complex variant, which 475 

indicates that trait values embedded in a model that connects drought effects and competition during regeneration have more 

support by the data. This interlink of competition and drought has also been demonstrated in grassland communities (Grant et 

al., 2014; Levine et al., 2022) and tree species mixtures (Jucker et al., 2014; Grossiord, 2020; Young et al., 2017; Clark et al., 

2016; Ruiz-Benito et al., 2013; Haberstroh and Werner, 2022). 

Light 480 

The nuanced differences between the model variants in terms of the estimates of the species’ light requirements can be put in 

context with the regeneration intensity parameter. The calibrated trait values from the complex model were almost identical 

for most species to the trait-based values (Larcher, 1996; Lyr et al., 1992), whereas in the simple model the light requirements 

were systematically lower in the calibrated compared to the trait-based models. This indicates that in the simple model, 

excessive recruitment levels (as embodied in the parameter kEstDens) were compensated for by erroneous light requirements 485 

(cf. Figure 2). These inconsistencies may arise from the structure of the simple model, where the amount of recruitment is 

equal for all species that regenerate. Thus, the simple model lacks flexibility to a) generate an appropriate number of recruits 

for the dominant species and b) lower the number of recruits for less dominant species. This explanation is supported by two 

other findings: the estimates of light requirements for the often-dominant species Fagus sylvatica matched the trait-based 

values, while almost all other species had exaggerated estimates (Figure 2); and the sensitivity of Fagus sylvatica to light 490 

within the posterior distribution was close to zero, with considerable uncertainty regarding the modulating effects of light for 

other species (Figure 6). The light-demanding tree species Quercus spp., Pinus sylvestris and Betula spp. along with Tilia 

cordata did not match expectations either, which is in line with this pattern. These findings suggest that structural problems 

regarding competition for light in regeneration models of European forests can be exposed by the behavior of Fagus sylvatica. 

Thus, if the competitive dominance of Fagus sylvatica is not captured appropriately, a calibrated model is likely to compensate 495 

this elsewhere. 

In contrast to the absolute values for light requirements, their ranking of the species was more similar between the approaches 

for the simple model (Figure 3). The lower rank correlation of the complex model is mostly due to much lower estimates for 

light demanding tree species such as Betula spp., Pinus sylvestris, and Quercus spp., thus suggesting that the simple model 

performs better in simulating regeneration of early successional species. One possible reason for this behavior could be that 500 

all establishment factors (i.e., environmental drivers of regeneration) are assumed to be equally important in virtually all 

vegetation models, including ForClim (cf. Bugmann & Seidl 2022). This assumption has different implications for a model 

with competition between species (complex model) compared to a model without competition (simple model). This becomes 
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clear if we consider a stand with high light availability. Then, the light requirements of all species are fulfilled. Within the 

simple model, the species establishment count takes into account their successional strategy, while the complex model lacks 505 

this mechanism and may favor species with higher suitability derived from factors other than light, thus blurring the 

overwhelming effect of the life-history strategies on the amount of tree regeneration under high light conditions (cf. Welden 

and Slauson, 1986). Subsequently, the simple model adjusts excessive regeneration by the processes of growth and mortality. 

By contrast, in the complex model there may be too few early successional trees, and subsequent compensation is insufficient. 

This notion is supported by the fact that RMSE decreased with higher DBH thresholds and suggests that unrealistic 510 

regeneration patterns must be compensated in vegetation models by subsequent growth and mortality (cf. Díaz-Yáñez et al., 

in press) 

In summary, the light niche of most species was recovered considerably well. If the identified inconsistencies regarding light 

requirements are caused by structural problems of the model, our results provide strong support for the quantification and 

ranking of species’ trait based light requirements (i.e., the original parameterization of species light requirements in ForClim). 515 

Drought 

The credible intervals (CIs) of the estimates for drought tolerance were wide in the calibration for both model variants, and for 

the complex model the rank correlation between calibrated and trait-based values was better. The ranking of species trait-based 

drought tolerance values is ecologically plausible and widely accepted (Huber et al., 2020; Bugmann, 1994; Leuschner and 

Ellenberg, 2017). Yet, a key difference between the structure of the simple and complex model is competition during 520 

regeneration, which may explain the better rank correlation for the complex model (cf. Grant et al., 2014; Andivia et al., 2018; 

Käber et al., 2023a). However, the CIs of the calibration estimates were high, and various mismatches were evident. We 

surmise that they arise from and oversimplified representation of drought where nuanced differences between species drought 

tolerances and potential facilitation effects are not reflected (Lortie and Callaway, 2006). A different and more detailed 

perspective on modeling competition for drought is considering the intra- or interannual variability of water availability in 525 

contrast do species phenological requirements (cf. Detto et al., 2022 and Levine et al., 2022). However, mismatches in temporal 

and spatial scales between the representation of drought in the simulations and actual drought conditions at the observed sites, 

coupled with errors in the input variables (climate and soil properties), and observations are possible reasons for high CIs (cf. 

Shoemaker et al., 2020). Consequently, we would expect higher predictive ability of tree species traits for drought on smaller 

scales with clearly defined relations between environmental drivers and outcomes, as shown by Li et al. (2022), who found 530 

that species traits explained more variation in tree seedling performance under controlled conditions in experiments compared 

to large-scale studies (cf. Paine et al., 2015). For the simple model, the estimates did not follow a clear pattern, and it is difficult 

to assess whether the estimates that are close to the expectation (e.g., for Picea abies) are actually providing signal, or are just 

random. Despite these uncertainties, it is noteworthy that some species-specific trait-based values of the were recovered with 

the calibration, thus providing at least some support by the calibrated drought-related regeneration niche as it was defined by 535 

the traits.  
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Temperature 

In contrast to the two other autecological parameters, the calibration estimates for the minimum degree-day requirements rarely 

matched the trait-based values. In general, the species minimum degree-days had wide CIs. We consider three factors to explain 

this. First, the manifold effects of temperature on regeneration at different scales, which cannot reasonably be aggregated into 540 

one single parameter, coupled with the fact that the original source of the trait values did not differentiate juvenile distribution 

ranges (Meusel et al., 1965; Kienast, 1987; Rudloff, 1981). Second, ontogenetic shifts (e.g., Vitasse, 2013) and demographic 

dependencies, i.e., the cumulated survival probability and growth over a trees lifetime (cf., Grubb, 1977; Heiland et al., 2022). 

And third, it is likely that temperature-related processes are limiting regeneration much less often in our data set compared to 

the persistent and strongly varying competition for light (cf. Grime and Mackey, 2002; Vincent and Harja, 2008). 545 

Distinguishing between filters for the macroclimatic factors along with dynamic small-scale filters might be a better conceptual 

basis for more realistic and more accurate tree regeneration models (but see Thakur and Wright, 2017). Consequently, with 

respect to process formulations in dynamic models, valid growth and mortality formulations might be more important for 

temperature-regeneration relations than the formulation of the initiation phase of tree regeneration. 

Model performance 550 

Generally, the calibration resulted in much better performance for the complex and a moderate improvement for the simple 

model compared to the trait-based approach. This is consistent with previous studies using Bayesian calibration of dynamic 

models (Augustynczik et al., 2017; Cailleret et al., 2019; Trotsiuk et al., 2020; Van Oijen et al., 2005). The main reason for 

this improvement in both model variants is the overall lower regeneration amount, which results from the combination of 

establishment probability and regeneration intensity. Thus, our results suggest that calibration can help to sharpen the estimates 555 

of regeneration parameters that are not well-constrained by standard empirical data.  

The somewhat better performance of the complex model is best explained by the way the species-specific amount of 

regeneration is determined. While the simple model does this uniformly, the complex model distributes the regeneration to the 

species according to their environmental suitability. This is also reflected in the more realistic estimates of the regeneration 

niche along the drought gradient. Overall, our findings corroborate the considerations of Huber et al. (2020), who suggested 560 

the simultaneous use of different model variants. In our study, the regeneration patterns across the very heterogeneous forest 

types in our data set was captured much better by the complex model, which implicitly allows for differentiating processes 

(captured via the EFs) in the regeneration layer. In contrast, the ideas underlying the simple regeneration model, which was 

originally developed for multi-species forests with high evenness (Botkin et al., 1972), turned out to be less suitable for 

reproducing the observed regeneration patterns. 565 

In addition to established performance measures such as RMSE or the Bayes Factor, the comparison of the default trait values 

and inversely calibrated trait values allowed us to evaluate whether the calibrated parameters are just ‘degrees of freedom’ that 

are used to make the model fit better to the data, or whether their estimates are plausible from an ecological perspective (cf. 
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Hellegers et al., 2020). Based on the discussion on species trait values above, this leads to the conclusion that the simple model 

is more realistic for the factor light, whereas the complex model captures processes related to drought better. 570 

Methodological considerations 

Spin-up phase 

We used a spin-up phase for dealing with the lack of information on small trees (i.e., the trees that are smaller than the diameter 

threshold, which inevitably has to be used in any inventory) in the initial state of the forest inventory. The spin-up phase proved 

to be a good solution because regeneration amounts were generally in agreement with observations. However, we were unable 575 

to evaluate whether the assumption of a steady state of regeneration below the DBH threshold was realistic. For this, data with 

much higher temporal resolution and a low DBH threshold (≤ 1.27 cm) would be necessary. Theoretically, our approach would 

lead to biased regeneration if actual conditions for regeneration are significantly different from the conditions observed in the 

initial inventory. For example, lower light availability in the actual conditions would lead to a bias towards shade intolerant 

species, conversely higher light availability would lead to a bias towards shade tolerant species. In addition, the overall 580 

regeneration amount could be affected by these biases. Thus, we encourage future studies to test the implications of our 

assumptions to evaluate potential bias introduced by our approach. 

Dispersion 

Processes that are not considered in the models could explain further variation of parameters and performance between 

approaches and model variants. We found that the dispersion parameter of the negative binomial distribution was mostly 585 

determined by ecological processes: large differences of dispersion between species indicate that species-specific factors play 

a key role, as discussed below. 

One such factor is the regeneration strategy, for which light requirements usually are a good predictor (Grime, 1977). Species 

with high light requirements that require disturbances for regeneration (e.g., Betula spp., Pinus sylvestris) featured higher 

dispersion than typical late-successional, shade-tolerant species (e.g., Fagus sylvatica or Picea abies. This pattern was also 590 

reflected for intermediate species on a gradient from low to high light requirements. However, not all species follow this 

pattern. 

Migration limitations are another factor that are likely to contribute to species-specific range limits. Specifically, the range 

limits of Abies alba, Carpinus betulus, and Quercus spp. are potentially determined by lags in postglacial range expansion 

(Mauri et al., 2022; Svenning et al., 2008) and its interplay with long-term demographic processes and competition (Scherrer 595 

et al., 2020). The mismatch between estimated and ecologically plausible parameters could be caused by the model assumption 

that seeds of all species are available all the time, and the associated absence of dispersal limitations in the model. Dispersion 

parameters that are based on real-world observations account for such problems when using likelihood-based approaches for 

model evaluation. Consequently, species-specific clustering (e.g., random draws from a negative binomial distribution) could 

substitute mechanisms that are not explicitly included in dynamic forest models. However, the parameterization of such 600 
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mechanisms would be challenging because it would require a process-based justification, otherwise dispersion parameters are 

only useful as a statistical measure for clustering in observed data (Hartig et al., 2012). 

Overall, whether the incorporation of dispersion is beneficial in a model calibration study depends on the purpose of the study. 

For achieving higher accuracy of stand-level predictions, our study demonstrates that dispersion must be accommodated. 

Especially validation and calibration studies require dispersion components to enable a reliable comparison of simulations 605 

with observations of tree regeneration. From a theoretical point of view, however, the incorporation of dispersion is not 

necessarily required. For example, a study on different management scenarios without considering dispersion can still generate 

valuable insights for silvicultural decisions if the assumptions and context are clearly defined. 

Pseudo-likelihood 

Our approach to derive the likelihood (cf. eq. 8 to 12) proved to be generally useful for our model calibration. Nevertheless, 610 

several aspects regarding the approach applied here can be improved in follow-up research. First, we deal with a stochastic 

likelihood that makes it extremely difficult for the DEzs sampler to efficiently sample the parameter space. We acknowledge 

that theoretically other approaches such as Bayesian Synthetic Likelihood (Wood, 2010) or Approximate Bayesian 

Computation (Csilléry et al., 2010) might solve the issue of intractable likelihoods more elegantly than our approach. However, 

computation time would be a major challenge if one wanted to apply these alternative approaches. Second, we focused on 615 

decadal average tree recruitment rates as a benchmark for evaluating the tree regeneration niche. This aggregates over many 

subprocesses and does not explicitly include the factor time in the pseudo-likelihood. We did not consider early growth or 

mortality just after establishment either. Future studies may consider all three demographic processes simultaneously to 

construct an improved benchmark of model accuracy (Bröcker and Smith, 2007; Dietze, 2017). Third, our study covered only 

very few boreal plots, and rarely the transition towards very dry, Mediterranean-type forest ecosystems. Thus, future studies 620 

could benefit strongly from extending the environmental gradients to more extreme climates, so as to reduce parameter 

uncertainty. Thus, our study also underlines the importance of long-term monitoring of forest ecosystems over a wide range 

of conditions (cf. Hanbury-Brown et al., 2022). 

Conclusion 

This study aimed to compare two tree regeneration models of different complexity and to examine their ability in capturing 625 

the regeneration niche of eleven tree species in unmanaged European forests. Furthermore, we sought to gain a deeper 

understanding of the effectiveness of two approaches to parameterize tree regeneration in dynamic forest models. 

The comparison of the regeneration niche emerging from the inverse calibration approach and the predefined niche of the trait-

based approach revealed that calibration led to better predictions of tree regeneration. The improvements were mostly caused 

by the lower regeneration intensity compared to the trait-based models. Decreases in regeneration intensity were modulated 630 

by competition for light with a subordinate role of drought. Temperature was not sensitive, and based on the EuFoRIa dataset 

it was not possible to recover the temperature-based niche. The mismatches between predefined and inversely calibrated trait 

values led to the conclusion that competition for light is the key processes for tree regeneration along with parameters that 
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modulate tree regeneration amount. We therefore hypothesize that climatic drivers must become more important after initial 

establishment, having pronounced effects on tree growth and, indirectly, on mortality. 635 

Furthermore, we found that a more complex model that incorporates competition during regeneration features a higher 

performance compared to a simple model without competition. This highlights the importance of considering the interactions 

between species during the regeneration process and underscores the potential of adding model complexity for improving 

model performance. 

Future research faces the challenge of identifying the sweet spot between simulating realistic, nuanced regeneration amounts 640 

for individual species on the one hand and excessive regeneration that must be regulated later in tree life by growth and 

mortality on the other hand. While the former might expose more structural problems of the model with the consequence of 

unrealistic species composition and insufficient regeneration intensity, the latter potentially results in overoptimistic 

predictions of forests regenerative capabilities, with consequences e.g. for the assessment of the adaptive capacity of forests 

to climate change. 645 

Overall, we encourage the use of inverse calibration to improve the understanding of the relation of real-world observations 

and tree regeneration models. Our major contribution to improve tree regeneration models lies in the finding that overall 

regeneration intensity and light availability are the most important factors that govern tree regeneration. Conversely, 

macroclimatic drivers (i.e., effects of climate) are not expected to directly alter the emergence of small trees but rather affect 

tree regeneration by modulating the light availability via increased mortality of larger trees. Thus, the accuracy of predictions 650 

of tree regeneration for the resilience of forests under climate change may depend more strongly on the representation of 

within-stand dynamics than the species range limits along large climatic gradients. 

Code and data availability 

The current version of model is available from the project website: https://ites-fe.ethz.ch/openaccess/products/forclim under 

the GNU GENERAL PUBLIC LICENSE v3. The exact version of ForClim used to produce the results used in this paper is 655 

archived on Zenodo (https://doi.org/10.5281/zenodo.8334092), as are input data and scripts to run the model and produce the 

plots for all the simulations presented in this paper (https://doi.org/10.5281/zenodo.8334092). 

Acknowledgements 

We thank all researchers of the European Forest Reserves Initiative (EuFoRIa, www.euforia-project.org) who contributed 

long-term data for this study. EuFoRIa has been invaluable for this study, and we are grateful for their support and trust. In 660 

particular we thank Thomas A. Nagel (University of Ljubljana, Ljubljana, Slovenia), Tuomas Aakala (University of Eastern 

Finland, Joensuu, Finland), Markus Blaschke (Bavarian State Institute for Forestry, Freising, Germany), Bogdan Brzeziecki 

(Warsaw University of Life Sciences, Warszawa, Poland), Marco Carrer (University of Padova, Legnaro, Italy), Eugenie 

https://ites-fe.ethz.ch/openaccess/products/forclim
https://doi.org/10.5281/zenodo.8334092
https://doi.org/10.5281/zenodo.8334092
http://www.euforia-project.org/


27 

 

Cateau (Reserves Naturelles de France, Quetigny, France), Georg Frank (Austrian Federal Research Centre for Forests, Natural 

Hazards and Landscape (BFW), Wien, Austria), Shawn Fraver (School of Forest Resources, University of Maine, Orono, 665 

Maine, USA), Jan Holik (Silva Tarouca Research Institute, Brno, Czech Republic), Stanislav Kucbel (Department of 

Silviculture, Faculty of Forestry, Technical University Zvolen, Slovakia), Anja Leyman (Research Institute for Nature and 

Forest, Brussels, Belgium), Peter Meyer (Northwest German Forest Research Institute, Göttingen, Germany), Renzo Motta 

(University of Torino, Torino, Italy), Pavel Samonil (Silva Tarouca Research Institute, Brno, Czech Republic), Lucia Seebach 

(Forest Research Institute of Baden-Württemberg, Freiburg, Germany), Jonas Stillhard (Swiss Federal Institute for Forest, 670 

Snow and Landscape Research, Birmensdorf, Switzerland), Miroslav Svoboda (Czech University of Life Sciences, Prague, 

Czech Republic), Jerzy Szwagrzyk (University of Agriculture, Krakow, Poland), Kris Vandekerkhove (Research Institute for 

Nature and Forest, Brussels, Belgium), Ondrej Vostarek (Czech University of Life Sciences, Prague, Czech Republic), Kamil 

Kral (Czech University of Life Sciences, Prague, Czech Republic), Tzvetan Zlatanov (Institute of Biodiversity and Ecosystem 

Research, Bulgarian Academy of Sciences, Sofia, Bulgaria). In addition, we thank Hussain Abbas who provided programming 675 

support and facilitated the use of the Euler HPC cluster. This study is part of the PhD project by Yannek Käber and was funded 

by ETH Zurich (Grant ETH-35 18-1). 

Author contribution 

YK, FH, and HB conceived the idea, developed the concept of this study; YK led the writing of the paper, conducted the 

analysis, and created the graphics. FH provided statistical support. HB secured funding. All authors contributed to paper 680 

writing. 

Competing interests 

The authors declare that they have no conflict of interest. 

References 

Andivia, E., Madrigal-González, J., Villar-Salvador, P., and Zavala, M. A.: Do adult trees increase conspecific 685 

juvenile resilience to recurrent droughts? Implications for forest regeneration, Ecosphere, 9, e02282, 

https://doi.org/10.1002/ecs2.2282, 2018. 

Augustynczik, A. L. D., Hartig, F., Minunno, F., Kahle, H.-P., Diaconu, D., Hanewinkel, M., and Yousefpour, R.: 

Productivity of Fagus sylvatica under climate change – A Bayesian analysis of risk and uncertainty using the model 

3-PG, For. Ecol. Manag., 401, 192–206, https://doi.org/10.1016/J.FORECO.2017.06.061, 2017. 690 

Botkin, D. B., Janak, J. F., and Wallis, J. R.: Some Ecological Consequences of a Computer Model of Forest 

Growth, J. Ecol., 60, 849–849, https://doi.org/10.2307/2258570, 1972. 



28 

 

ter Braak, C. J. F. and Vrugt, J. A.: Differential Evolution Markov Chain with snooker updater and fewer chains, 

Stat. Comput., 18, 435–446, https://doi.org/10.1007/s11222-008-9104-9, 2008. 

Bröcker, J. and Smith, L. A.: Scoring Probabilistic Forecasts: The Importance of Being Proper, Weather Forecast., 695 

22, 382–388, https://doi.org/10.1175/WAF966.1, 2007. 

Brooks, M. E., Kristensen, K., Benthem, K. J. van, Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., 

Maechler, M., and Bolker, B. M.: glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated 

Generalized Linear Mixed Modeling, R J., 9, 378–400, 2017. 

Bugmann, H.: On the ecology of mountainous forests in a changing climate: a simulation study, PhD Thesis, 1994. 700 

Bugmann, H. and Cramer, W.: Improving the behaviour of forest gap models along drought gradients, For. Ecol. 

Manag., 103, 247–263, https://doi.org/10.1016/S0378-1127(97)00217-X, 1998. 

Bugmann, H. and Seidl, R.: The evolution, complexity and diversity of models of long-term forest dynamics, J. 

Ecol., 110, 2288–2307, https://doi.org/10.1111/1365-2745.13989, 2022. 

Bugmann, H. and Solomon, A. M.: Explaining Forest Composition and Biomass Across Multiple Biogeographical 705 

Regions, Ecol. Appl., 10, 95–114, https://doi.org/10.1890/1051-0761(2000)010[0095:EFCABA]2.0.CO;2, 2000. 

Chalmandrier, L., Hartig, F., Laughlin, D. C., Lischke, H., Pichler, M., Stouffer, D. B., and Pellissier, L.: Linking 

functional traits and demography to model species-rich communities, Nat. Commun., 12, 2724, 

https://doi.org/10.1038/s41467-021-22630-1, 2021. 

Clark, J. S., Beckage, B., Camill, P., Cleveland, B., HilleRisLambers, J., Lichter, J., McLachlan, J., Mohan, J., and 710 

Wyckoff, P.: Interpreting recruitment limitation in forests, Am. J. Bot., 86, 1–16, https://doi.org/10.2307/2656950, 

1999. 

Clark, J. S., Iverson, L., Woodall, C. W., Allen, C. D., Bell, D. M., Bragg, D. C., D’Amato, A. W., Davis, F. W., 

Hersh, M. H., Ibanez, I., Jackson, S. T., Matthews, S., Pederson, N., Peters, M., Schwartz, M. W., Waring, K. M., 

and Zimmermann, N. E.: The impacts of increasing drought on forest dynamics, structure, and biodiversity in the 715 

United States, Glob. Change Biol., 22, 2329–2352, https://doi.org/10.1111/gcb.13160, 2016. 

Collins, S. L. and Good, R. E.: The Seedling Regeneration Niche: Habitat Structure of Tree Seedlings in an Oak-

Pine Forest, Oikos, 48, 89–98, https://doi.org/10.2307/3565692, 1987. 

Csilléry, K., Blum, M. G. B., Gaggiotti, O. E., and François, O.: Approximate Bayesian Computation (ABC) in 

practice, Trends Ecol. Amp Evol., 25, 410–418, https://doi.org/10.1016/J.TREE.2010.04.001, 2010. 720 

Delpierre, N., Lireux, S., Hartig, F., Camarero, J. J., Cheaib, A., Čufar, K., Cuny, H., Deslauriers, A., Fonti, P., 

Gričar, J., Huang, J.-G., Krause, C., Liu, G., de Luis, M., Mäkinen, H., del Castillo, E. M., Morin, H., Nöjd, P., 

Oberhuber, W., Prislan, P., Rossi, S., Saderi, S. M., Treml, V., Vavrick, H., and Rathgeber, C. B. K.: Chilling and 

forcing temperatures interact to predict the onset of wood formation in Northern Hemisphere conifers, Glob. 

Change Biol., 25, 1089–1105, https://doi.org/10.1111/gcb.14539, 2019. 725 



29 

 

Detto, M., Levine, J. M., and Pacala, S. W.: Maintenance of high diversity in mechanistic forest dynamics models 

of competition for light, Ecol. Monogr., 92, e1500, https://doi.org/10.1002/ecm.1500, 2022. 

Díaz-Yáñez, O., Käber, Y., Anders, T., Braziunas, K. H., Bruna, J., Fischer, S., Hetzer, J., Hickler, T., Hochauer, 

C., Lexer, M., Lischke, H., Mahnken, M., Mairota, P., Merganicova, K., Mette, T., Morin, X., Rammer, W., 

Scheiter, S., Scherrer, D., and Bugmann, H.: Tree regeneration in models of forest dynamics: a key priority for 730 

further research, in press. 

Didion, M., Kupferschmid, A. D., Zingg, A., Fahse, L., and Bugmann, H.: Gaining local accuracy while not losing 

generality — extending the range of gap model applications, Can. J. For. Res., 39, 1092–1107, 

https://doi.org/10.1139/X09-041, 2009a. 

Didion, M., Kupferschmid, A. D., and Bugmann, H.: Long-term effects of ungulate browsing on forest composition 735 

and structure, For. Ecol. Manag., https://doi.org/10.1016/j.foreco.2009.06.006, 2009b. 

Dietze, M. C.: Ecological Forecasting, Princeton University Press, https://doi.org/10.2307/j.ctvc7796h, 2017. 

Ellenberg, H.: Vegetation Mitteleuropas mit den Alpen, 4th ed., Verlag Eugen Ulmer, Stuttgart, Germany, 1986. 

Ellenberg, H. and Klötzli, F.: Waldgesellschaften und waldstandorte der schweiz, Eidgenössische Anstalt f. d. 

Forstl. Versuchswesen, 1972. 740 

Grant, K., Kreyling, J., Heilmeier, H., Beierkuhnlein, C., and Jentsch, A.: Extreme weather events and plant–plant 

interactions: shifts between competition and facilitation among grassland species in the face of drought and heavy 

rainfall, Ecol. Res., 29, 991–1001, https://doi.org/10.1007/s11284-014-1187-5, 2014. 

Grime, J. P.: Evidence for the Existence of Three Primary Strategies in Plants and Its Relevance to Ecological and 

Evolutionary Theory, Am. Nat., 111, 1169–1194, https://doi.org/10.1086/283244, 1977. 745 

Grime, J. P. and Mackey, J. M. L.: The role of plasticity in resource capture by plants, Evol. Ecol., 16, 299–307, 

https://doi.org/10.1023/A:1019640813676, 2002. 

Grossiord, C.: Having the right neighbors: how tree species diversity modulates drought impacts on forests, New 

Phytol., 228, 42–49, https://doi.org/10.1111/nph.15667, 2020. 

Grubb, P. J.: The maintenance of species-richness in plant communities: The importance of the regeneration niche, 750 

Biol. Rev., 52, 107–145, https://doi.org/10.1111/j.1469-185X.1977.tb01347.x, 1977. 

Haberstroh, S. and Werner, C.: The role of species interactions for forest resilience to drought, Plant Biol., n/a, 

https://doi.org/10.1111/plb.13415, 2022. 

Hanbury-Brown, A. R., Ward, R. E., and Kueppers, L. M.: Forest regeneration within Earth system models: current 

process representations and ways forward, New Phytol., 235, 20–40, https://doi.org/10.1111/nph.18131, 2022. 755 

Hart, S. P., Usinowicz, J., and Levine, J. M.: The spatial scales of species coexistence, Nat. Ecol. Evol., 1, 1066–

1073, https://doi.org/10.1038/s41559-017-0230-7, 2017. 



30 

 

Hartig, F., Calabrese, J. M., Reineking, B., Wiegand, T., and Huth, A.: Statistical inference for stochastic simulation 

models - theory and application, Ecol. Lett., 14, 816–827, https://doi.org/10.1111/j.1461-0248.2011.01640.x, 2011. 

Hartig, F., Dyke, J., Hickler, T., Higgins, S. I., O’Hara, R. B., Scheiter, S., and Huth, A.: Connecting dynamic 760 

vegetation models to data - an inverse perspective, J. Biogeogr., 39, 2240–2252, https://doi.org/10.1111/j.1365-

2699.2012.02745.x, 2012. 

Hartig, F., Minunno, F., and Paul, S.: BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for 

Bayesian Statistics, 2019. 

Heiland, L., Kunstler, G., Ruiz-Benito, P., Buras, A., Dahlgren, J., and Hülsmann, L.: Divergent occurrences of 765 

juvenile and adult trees are explained by both environmental change and ontogenetic effects, Ecography, 2022, 

e06042, https://doi.org/10.1111/ecog.06042, 2022. 

Hellegers, M., Ozinga, W. A., Hinsberg van, A., Huijbregts, M. A. J., Hennekens, S. M., Schaminée, J. H. J., 

Dengler, J., and Schipper, A. M.: Evaluating the ecological realism of plant species distribution models with 

ecological indicator values, Ecography, 43, 161–170, https://doi.org/10.1111/ecog.04291, 2020. 770 

Huber, N., Bugmann, H., and Lafond, V.: Global sensitivity analysis of a dynamic vegetation model: Model 

sensitivity depends on successional time, climate and competitive interactions, Ecol. Model., 368, 377–390, 

https://doi.org/10.1016/J.ECOLMODEL.2017.12.013, 2018. 

Huber, N., Bugmann, H., and Lafond, V.: Capturing ecological processes in dynamic forest models: why there is 

no silver bullet to cope with complexity, Ecosphere, 11, https://doi.org/10.1002/ecs2.3109, 2020. 775 

Jucker, T., Bouriaud, O., Avacaritei, D., Dănilă, I., Duduman, G., Valladares, F., and Coomes, D. A.: Competition 

for light and water play contrasting roles in driving diversity–productivity relationships in Iberian forests, J. Ecol., 

102, 1202–1213, https://doi.org/10.1111/1365-2745.12276, 2014. 

Käber, Y., Meyer, P., Stillhard, J., Lombaerde, E. D., Zell, J., Stadelmann, G., Bugmann, H., and Bigler, C.: Tree 

recruitment is determined by stand structure and shade tolerance with uncertain role of climate and water relations, 780 

Ecol. Evol., 11, 12182–12203, https://doi.org/10.1002/ece3.7984, 2021. 

Käber, Y., Bigler, C., HilleRisLambers, J., Hobi, M., Nagel, T. A., Aakala, T., Blaschke, M., Brang, P., Brzeziecki, 

B., Carrer, M., Cateau, E., Frank, G., Fraver, S., Idoate-Lacasia, J., Holik, J., Kucbel, S., Leyman, A., Meyer, P., 

Motta, R., Samonil, P., Seebach, L., Stillhard, J., Svoboda, M., Szwagrzyk, J., Vandekerkhove, K., Vostarek, O., 

Zlatanov, T., and Bugmann, H.: Sheltered or suppressed? Tree regeneration in unmanaged European forests, J. 785 

Ecol., 111, 2281–2295, https://doi.org/10.1111/1365-2745.14181, 2023. 

Kass, R. E. and Raftery, A. E.: Bayes Factors, J. Am. Stat. Assoc., 90, 773–795, 

https://doi.org/10.1080/01621459.1995.10476572, 1995. 

Kienast, F.: FORECE: A forest succession model for southern Central Europe, United States, 1987. 



31 

 

Köhler, P. and Huth, A.: The effects of tree species grouping in tropical rainforest modelling: Simulations with the 790 

individual-based model Formind, Ecol. Model., 109, 301–321, https://doi.org/10.1016/S0304-3800(98)00066-0, 

1998. 

König, L. A., Mohren, F., Schelhaas, M.-J., Bugmann, H., and Nabuurs, G.-J.: Tree regeneration in models of forest 

dynamics – Suitability to assess climate change impacts on European forests, For. Ecol. Manag., 520, 120390, 

https://doi.org/10.1016/j.foreco.2022.120390, 2022. 795 

Larcher, W.: Physiological plant ecology, Acta Physiol. Plant., 18, 183–184, 1996. 

Lett, S. and Dorrepaal, E.: Global drivers of tree seedling establishment at alpine treelines in a changing climate, 

Funct. Ecol., 32, 1666–1680, https://doi.org/10.1111/1365-2435.13137, 2018. 

Leuschner, C. and Ellenberg, H.: Ecology of Central European Forests: Vegetation Ecology of Central Europe, 

Volume I, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-319-43042-3, 2017. 800 

Levine, J. I., Levine, J. M., Gibbs, T., and Pacala, S. W.: Competition for water and species coexistence in 

phenologically structured annual plant communities, Ecol. Lett., 25, 1110–1125, https://doi.org/10.1111/ele.13990, 

2022. 

Li, Y., Jiang, Y., Zhao, K., Chen, Y., Wei, W., Shipley, B., and Chu, C.: Exploring trait–performance relationships 

of tree seedlings along experimentally manipulated light and water gradients, Ecology, 103, e3703, 805 

https://doi.org/10.1002/ecy.3703, 2022. 

Lortie, C. J. and Callaway, R. M.: Re-analysis of meta-analysis: support for the stress-gradient hypothesis, J. Ecol., 

94, 7–16, https://doi.org/10.1111/j.1365-2745.2005.01066.x, 2006. 

Lyr, H., Fiedler, H.-J., and Tranquillini, W.: Physiologie und ökologie der gehölze, Fisch. Jena, 1992. 

Mauri, A., Girardello, M., Strona, G., Beck, P. S. A., Forzieri, G., Caudullo, G., Manca, F., and Cescatti, A.: EU-810 

Trees4F, a dataset on the future distribution of European tree species, Sci. Data, 9, 37, 

https://doi.org/10.1038/s41597-022-01128-5, 2022. 

McDowell, N. G., Allen, C. D., Anderson-Teixeira, K., Aukema, B. H., Bond-Lamberty, B., Chini, L., Clark, J. S., 

Dietze, M., Grossiord, C., Hanbury-Brown, A., Hurtt, G. C., Jackson, R. B., Johnson, D. J., Kueppers, L., Lichstein, 

J. W., Ogle, K., Poulter, B., Pugh, T. A. M., Seidl, R., Turner, M. G., Uriarte, M., Walker, A. P., and Xu, C.: 815 

Pervasive shifts in forest dynamics in a changing world, Science, 368, eaaz9463, 

https://doi.org/10.1126/science.aaz9463, 2020. 

Meusel, H., Weinert, E., and Jäger, E.: Vergleichende chorologie der zentraleuropäischen flora, G. Fischer, 1965. 

Morin, X. and Thuiller, W.: Comparing niche- and process-based models to reduce prediction uncertainty in species 

range shifts under climate change, Ecology, 90, 1301–1313, https://doi.org/10.1890/08-0134.1, 2009. 820 

Müller, M. J.: Selected climatic data for a global set of standard stations for vegetation science, Springer 

Netherlands, Dordrecht, https://doi.org/10.1007/978-94-009-8040-2, 1982. 



32 

 

Oberpriller, J., Cameron, D. R., Dietze, M. C., and Hartig, F.: Towards robust statistical inference for complex 

computer models, Ecol. Lett., 24, 1251–1261, https://doi.org/10.1111/ele.13728, 2021. 

O’Hagan, A.: Fractional Bayes Factors for Model Comparison, J. R. Stat. Soc. Ser. B Methodol., 57, 99–118, 825 

https://doi.org/10.1111/j.2517-6161.1995.tb02017.x, 1995. 

Paine, C. E. T., Amissah, L., Auge, H., Baraloto, C., Baruffol, M., Bourland, N., Bruelheide, H., Daïnou, K., 

Gouvenain, R. C. de, Doucet, J.-L., Doust, S., Fine, P. V. A., Fortunel, C., Haase, J., Holl, K. D., Jactel, H., Li, X., 

Kitajima, K., Koricheva, J., Martínez‐Garza, C., Messier, C., Paquette, A., Philipson, C., Piotto, D., Poorter, L., 

Posada, J. M., Potvin, C., Rainio, K., Russo, S. E., Ruiz‐Jaen, M., Scherer‐Lorenzen, M., Webb, C. O., Wright, S. 830 

J., Zahawi, R. A., and Hector, A.: Globally, functional traits are weak predictors of juvenile tree growth, and we 

do not know why, J. Ecol., 103, 978–989, https://doi.org/10.1111/1365-2745.12401, 2015. 

Price, D. T., Zimmermann, N. E., van der Meer, P. J., Lexer, M. J., Leadley, P., Jorritsma, I. T. M., Schaber, J., 

Clark, D. F., Lasch, P., McNulty, S., Wu, J., and Smith, B.: Regeneration in Gap Models: Priority Issues for 

Studying Forest Responses to Climate Change, Clim. Change, 51, 475–508, 835 

https://doi.org/10.1023/A:1012579107129, 2001. 

Risch, A. C., Heiri, C., and Bugmann, H.: Simulating structural forest patterns with a forest gap model: a model 

evaluation, Ecol. Model., 181, 161–172, https://doi.org/10.1016/j.ecolmodel.2004.06.029, 2005. 

Rudloff, W.: World climates, Wissenschaftliche Verlagsgesellschaft, 1981. 

Rüger, N., Huth, A., Hubbell, S. P., and Condit, R.: Response of recruitment to light availability across a tropical 840 

lowland rain forest community, J. Ecol., 97, 1360–1368, https://doi.org/10.1111/j.1365-2745.2009.01552.x, 2009. 

Ruiz-Benito, P., Lines, E. R., Gómez-Aparicio, L., Zavala, M. A., and Coomes, D. A.: Patterns and Drivers of Tree 

Mortality in Iberian Forests: Climatic Effects Are Modified by Competition, PLOS ONE, 8, e56843, 

https://doi.org/10.1371/journal.pone.0056843, 2013. 

Scherrer, D., Vitasse, Y., Guisan, A., Wohlgemuth, T., and Lischke, H.: Competition and demography rather than 845 

dispersal limitation slow down upward shifts of trees’ upper elevation limits in the Alps, J. Ecol., 108, 2416–2430, 

https://doi.org/10.1111/1365-2745.13451, 2020. 

Seidl, R. and Turner, M. G.: Post-disturbance reorganization of forest ecosystems in a changing world, Proc. Natl. 

Acad. Sci., 119, e2202190119, https://doi.org/10.1073/pnas.2202190119, 2022. 

Seidl, R., Rammer, W., Scheller, R. M., and Spies, T. A.: An individual-based process model to simulate landscape-850 

scale forest ecosystem dynamics, Ecol. Model., 231, 87–100, 

https://doi.org/10.1016/J.ECOLMODEL.2012.02.015, 2012. 

Shoemaker, L. G., Sullivan, L. L., Donohue, I., Cabral, J. S., Williams, R. J., Mayfield, M. M., Chase, J. M., Chu, 

C., Harpole, W. S., Huth, A., HilleRisLambers, J., James, A. R. M., Kraft, N. J. B., May, F., Muthukrishnan, R., 

Satterlee, S., Taubert, F., Wang, X., Wiegand, T., Yang, Q., and Abbott, K. C.: Integrating the underlying structure 855 

of stochasticity into community ecology, Ecology, 101, e02922, https://doi.org/10.1002/ecy.2922, 2020. 



33 

 

Shugart, H. H.: A Theory of Forest Dynamics: The Ecological Implications of Forest Succession Models, 1984. 

Smith, P., Beven, K. J., and Tawn, J. A.: Informal likelihood measures in model assessment: Theoretic development 

and investigation, Adv. Water Resour., 31, 1087–1100, https://doi.org/10.1016/j.advwatres.2008.04.012, 2008. 

Svenning, J.-C., Normand, S., and Skov, F.: Postglacial dispersal limitation of widespread forest plant species in 860 

nemoral Europe, Ecography, 31, 316–326, https://doi.org/10.1111/j.0906-7590.2008.05206.x, 2008. 

Thakur, M. P. and Wright, A. J.: Environmental Filtering, Niche Construction, and Trait Variability: The Missing 

Discussion, Trends Ecol. Evol., 32, 884–886, https://doi.org/10.1016/j.tree.2017.09.014, 2017. 

Trotsiuk, V., Hartig, F., Cailleret, M., Babst, F., Forrester, D. I., Baltensweiler, A., Buchmann, N., Bugmann, H., 

Gessler, A., Gharun, M., Minunno, F., Rigling, A., Rohner, B., Stillhard, J., Thuerig, E., Waldner, P., Ferretti, M., 865 

Eugster, W., and Schaub, M.: Assessing the response of forest productivity to climate extremes in Switzerland 

using model‐data fusion, Glob. Change Biol., gcb.15011-gcb.15011, https://doi.org/10.1111/gcb.15011, 2020. 

Van Oijen, M., Rougier, J., and Smith, R.: Bayesian calibration of process-based forest models: bridging the gap 

between models and data, Tree Physiol., 25, 915–927, https://doi.org/10.1093/treephys/25.7.915, 2005. 

Vincent, G. and Harja, D.: Exploring Ecological Significance of Tree Crown Plasticity through Three-dimensional 870 

Modelling, Ann. Bot., 101, 1221–1231, https://doi.org/10.1093/aob/mcm189, 2008. 

Vitasse, Y.: Ontogenic changes rather than difference in temperature cause understory trees to leaf out earlier, New 

Phytol., 198, 149–155, https://doi.org/10.1111/nph.12130, 2013. 

Welden, C. W. and Slauson, W. L.: The Intensity of Competition Versus its Importance: An Overlooked Distinction 

and Some Implications, Q. Rev. Biol., 61, 23–44, https://doi.org/10.1086/414724, 1986. 875 

Werner, E. E. and Gilliam, J. F.: The Ontogenetic Niche and Species Interactions in Size-Structured Populations, 

Annu. Rev. Ecol. Syst., 15, 393–425, https://doi.org/10.1146/annurev.es.15.110184.002141, 1984. 

Wood, S. N.: Statistical inference for noisy nonlinear ecological dynamic systems, Nature, 466, 1102–1104, 

https://doi.org/10.1038/nature09319, 2010. 

Yang, J., Cao, M., and Swenson, N. G.: Why Functional Traits Do Not Predict Tree Demographic Rates, Trends 880 

Ecol. Evol., 33, 326–336, https://doi.org/10.1016/j.tree.2018.03.003, 2018. 

Young, D. J. N., Stevens, J. T., Earles, J. M., Moore, J., Ellis, A., Jirka, A. L., and Latimer, A. M.: Long-term 

climate and competition explain forest mortality patterns under extreme drought, Ecol. Lett., 20, 78–86, 

https://doi.org/10.1111/ele.12711, 2017. 

Zell, J., Rohner, B., Thürig, E., and Stadelmann, G.: Modeling ingrowth for empirical forest prediction systems, 885 

For. Ecol. Manag., 433, 771–779, https://doi.org/10.1016/j.foreco.2018.11.052, 2019. 

 



34 

 

Appendix A 

 

Figure A1: Posterior distribution of species-specific parameters for the complex model (red) and the simple model (blue). The first 

column a) shows the species-specific dispersion parameter 𝝓. The other columns show the ecological regeneration thresholds: b) 890 
light requirements (kLy), c) drought tolerance (kDrToly), and d) degree-days (kDDMiny). The species are sorted row-wise 

according to their average dispersion across both models. The prior parameter range and the expected value are indicated by the 

dashed and solid yellow lines, respectively.  
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 895 

Figure A2: a) Sensitivity of the parameters expressed by the percentage of the prior range that is covered by the 80% CI. b) 

Likelihood distribution of the posterior simulations form the simple model (blue) and the complex model (red). The results for the 

complex and the simple model are shown in red and blue, respectively.  
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Figure A3: Relationship between RMSE and DBH threshold. “flexible” refers to the individual DBH thresholds applied during 900 
model calibration. 7 and 10 cm comprise the subset of sites which had at least 7 or 10 cm DBH, respectively. 
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Figure A4: Root mean squared error (RMSE) of the difference between posterior predictions (𝑹̂) and observations (R). Axis 

scaling differs between a) log10 scaled, b) varying x axis range with the trait-based approach TBA (default) RMSE, c) varying x 

axis only inverse calibration (ICA) posterior. 905 

Table A1: Posterior values of the recruitment amount parameters kTrMax (complex model) and kEstDens (simple model), and the 

effects of DBH 𝝓𝑫𝑩𝑯 and plot area 𝝓𝑨 on dispersion. Where the outer values refer to the 80 % CIs and the middle values refers to 

the MPE. 10%CI | MPE | 90%CI 

 ϕDBH ϕA kTrMax  kEstDens  

   ICA TBA ICA TBA 

complex -0.439|-0.388|-0.346 -0.345|-0.171|-0.002 7372|8762|10210 50000 - - 

simple -0.473|-0.405|-0.345 -0.261|-0.120|0.017 - - 0.017|0.022|0.027 0.006 

 

Table A2: Species posterior parameter values for light requirements (kLy), drought tolerance (kDrToly), and degree-days 910 
(kDDMiny) including its default values. Where the outer values refer to the 80 % CIs and the middle values refers to the MPE. 

10%CI | MPE | 90%CI. * Default values for Betula spp. are those of Betula pendula, default values for Quercus spp. are those of 

Quercus petraea.  

species 

kLy kDrToly kDDMiny 

 ICA  ICA  ICA 

TBA 
10%CI | MPE | 90%CI 

TBA 
10%CI | MPE | 90%CI 

TBA 
10%CI | MPE | 90%CI 

simple complex simple complex simple complex 

Abies alba 0.03 0.02|0.07|0.12 0.01|0.07|0.15 0.23 0.10|0.17|0.25 0.11|0.22|0.34 641 810|1058|1301 844|1072|1292 

Acer pseudoplatanus 0.05 0.11|0.14|0.16 0.05|0.07|0.10 0.25 0.15|0.22|0.30 0.08|0.18|0.29 898 927|1148|1365 305| 677|1091 

Alnus glutinosa 0.2 0.18|0.27|0.37 0.13|0.19|0.25 0.08 0.19|0.27|0.35 0.02|0.08|0.14 898 661| 997|1325 576| 827|1092 

Betula spp.* 0.5 0.25|0.32|0.38 0.07|0.19|0.33 0.16 0.11|0.20|0.29 0.06|0.17|0.28 610 512| 892|1265 427| 752|1054 

Carpinus betulus 0.075 0.17|0.20|0.24 0.11|0.14|0.18 0.25 0.22|0.29|0.36 0.21|0.30|0.37 898 260| 496| 736 260| 626|1051 

Fagus sylvatica 0.03 0.03|0.05|0.06 0.01|0.02|0.03 0.25 0.26|0.32|0.38 0.14|0.24|0.34 723 506| 811|1094 204| 454| 745 

Fraxinus excelsior 0.075 0.12|0.15|0.19 0.05|0.08|0.12 0.16 0.26|0.31|0.37 0.08|0.16|0.26 980 443| 737|1040 293| 635| 996 

Picea abies 0.05 0.10|0.12|0.14 0.03|0.05|0.08 0.15 0.04|0.15|0.28 0.16|0.25|0.33 385 416| 603| 782 208| 461| 720 

Pinus sylvestris 0.4 0.20|0.31|0.42 0.11|0.20|0.30 0.37 0.02|0.06|0.09 0.15|0.25|0.34 610 828|1147|1419 180| 432| 719 

Quercus spp.* 0.2 0.28|0.39|0.47 0.04|0.05|0.06 0.33 0.24|0.31|0.38 0.05|0.11|0.19 785 394| 820|1213 787|1056|1328 

Tilia cordata 0.075 0.20|0.30|0.39 0.23|0.33|0.43 0.33 0.09|0.15|0.22 0.20|0.29|0.37 1339 260| 512| 752 246| 487| 735 
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Table A3: Species dispersion parameter posterior values. Where the outer values refer to the 80 % CIs and the middle values 915 
refers to the MPE. 10%CI | MPE | 90%CI 

species complex simple 

Abies alba 0.010|0.018|0.025 0.011|0.019|0.028 

Acer pseudoplatanus 0.043|0.072|0.102 0.038|0.064|0.092 

Alnus glutinosa 0.008|0.018|0.031 0.008|0.018|0.030 

Betula spp. 0.001|0.004|0.008 0.001|0.004|0.009 

Carpinus betulus 0.028|0.052|0.077 0.028|0.048|0.069 

Fagus sylvatica 0.141|0.199|0.257 0.117|0.161|0.208 

Fraxinus excelsior 0.035|0.055|0.080 0.029|0.047|0.064 

Picea abies 0.087|0.135|0.182 0.081|0.121|0.165 

Pinus sylvestris 0.013|0.026|0.040 0.009|0.021|0.032 

Quercus spp. 0.000|0.003|0.006 0.001|0.005|0.010 

Tilia cordata 0.026|0.051|0.080 0.019|0.036|0.054 
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Table A4: Gelman-rubin diagnostics for the simple and complex model split by the two sets of in independent chains. For visual 

inspection of the chains see the traceplots in the dedicated file. 920 

 simple model complex model 

 chains 1-3 chains 4-6 chains 1-3 chains 4-6 

 Point est. Upper C.I. Point est. Upper C.I. Point est. Upper C.I. Point est. Upper C.I. 

kEstDens/kTrMax 1.001 1.002 1.034 1.050 1.004 1.015 1.073 1.090 

dispdbh 1.000 1.000 1.232 1.657 1.002 1.003 1.274 1.761 

disppsize 1.000 1.000 1.058 1.146 1.002 1.009 1.238 1.672 

kDDMiny_0 1.001 1.003 1.053 1.153 1.004 1.011 1.044 1.050 

kDDMiny_2 1.002 1.006 1.115 1.239 1.000 1.001 1.022 1.056 

kDDMiny_5 1.005 1.011 1.251 1.780 1.000 1.000 1.212 1.597 

kDDMiny_9 1.003 1.008 1.124 1.255 1.001 1.005 1.245 1.719 

kDDMiny_10 1.001 1.005 1.096 1.175 1.002 1.006 1.057 1.091 

kDDMiny_13 1.002 1.006 1.074 1.098 1.002 1.006 1.034 1.055 

kDDMiny_14 1.007 1.022 1.204 1.618 1.002 1.008 1.067 1.168 

kDDMiny_17 1.002 1.005 1.065 1.171 1.003 1.013 1.156 1.444 

kDDMiny_18 1.001 1.003 1.108 1.274 1.004 1.014 1.164 1.474 

kDDMiny_21 1.001 1.001 1.034 1.035 1.005 1.017 1.031 1.053 

kDDMiny_27 1.002 1.005 1.314 1.995 1.001 1.002 1.211 1.640 

kDrToly_0 1.004 1.010 1.080 1.088 1.003 1.007 1.025 1.030 

kDrToly_2 1.000 1.000 1.092 1.244 1.012 1.038 1.027 1.040 

kDrToly_5 1.004 1.011 1.138 1.325 1.000 1.001 1.101 1.228 

kDrToly_9 1.002 1.006 1.082 1.218 1.002 1.006 1.057 1.114 

kDrToly_10 1.001 1.004 1.108 1.273 1.003 1.009 1.324 2.116 

kDrToly_13 1.001 1.003 1.058 1.091 1.001 1.004 1.041 1.052 

kDrToly_14 1.001 1.002 1.222 1.681 1.000 1.001 1.071 1.167 

kDrToly_17 1.005 1.011 1.156 1.435 1.001 1.002 1.039 1.057 

kDrToly_18 1.004 1.007 1.284 1.981 1.002 1.008 1.176 1.504 

kDrToly_21 1.000 1.001 1.003 1.005 1.001 1.006 1.083 1.195 

kDrToly_27 1.001 1.006 1.182 1.530 1.002 1.006 1.228 1.676 

kLy_0 1.003 1.007 1.252 1.876 1.005 1.009 1.403 2.317 

kLy_2 1.002 1.005 1.138 1.280 1.002 1.003 1.030 1.039 

kLy_5 1.003 1.007 1.090 1.194 1.002 1.007 1.142 1.389 

kLy_9 1.007 1.014 1.190 1.559 1.000 1.001 1.037 1.060 

kLy_10 1.004 1.010 1.072 1.074 1.009 1.032 1.232 1.754 

kLy_13 1.002 1.004 1.110 1.235 1.004 1.012 1.112 1.289 

kLy_14 1.001 1.005 1.243 1.819 1.000 1.001 1.077 1.091 

kLy_17 1.000 1.001 1.034 1.093 1.001 1.002 1.037 1.062 

kLy_18 1.002 1.003 1.145 1.164 1.001 1.003 1.042 1.053 

kLy_21 1.006 1.013 1.210 1.643 1.001 1.004 1.066 1.115 

kLy_27 1.001 1.002 1.137 1.345 1.001 1.002 1.059 1.098 

disp_0 1.000 1.001 1.238 1.747 1.001 1.001 1.234 1.726 

disp_2 1.000 1.000 1.237 1.727 1.002 1.004 1.343 2.168 

disp_5 1.001 1.002 1.214 1.635 1.006 1.011 1.296 2.079 

disp_9 1.001 1.001 1.222 1.700 1.001 1.002 1.239 1.725 

disp_10 1.000 1.001 1.267 1.992 1.003 1.008 1.287 1.934 

disp_13 1.004 1.009 1.228 1.730 1.030 1.060 1.230 1.727 

disp_14 1.000 1.000 1.290 1.966 1.002 1.005 1.236 1.723 

disp_17 1.000 1.000 1.246 1.740 1.007 1.015 1.358 2.096 

disp_18 1.002 1.003 1.140 1.389 1.006 1.020 1.343 2.229 

disp_21 1.012 1.022 1.276 2.006 1.004 1.008 1.174 1.501 

disp_27 1.003 1.008 1.237 1.761 1.001 1.002 1.309 2.242 
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disp_999 1.002 1.002 1.342 2.195 1.002 1.005 1.397 2.197 
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Appendix B Model description 
 

This Appendix provides a detailed description of the two model variants used in this study. It complements the description in 

the main script (Figure 1) but only covers the regeneration module of ForClim. Note that this model incorporates some minor 

changes compared to the original formulations in Bugmann (1994) for the simple model and Huber et al. (2020) for the 925 

complex model. However, these changes do not affect the functioning of the model. 

Table B1: Description of ForClim all model variables and parameters used in this study. Calibrated parameters are explained in 

more detail in Table 1 in the main text. 

group variable unit description model reference 

establishment 

flags  

ALEF boolean Light availability establishment flag  simple Bugmann, 1994 

ALEFc %/100 continuous light availability establishment flag  complex Bugmann, 1994 

BPEF boolean Browsing pressure establishment flag  simple Bugmann, 1994 

BPEFc %/100 continuous browsing pressure establishment flag  complex Bugmann, 1994 

DDEF boolean Degree-days establishment flag  simple Bugmann, 1994 

DDEFc %/100 continuous degree-days establishment flag  complex Bugmann, 1994 

SMEF boolean Soil moisture establishment flag  simple Didion et al., 2009a 

SMEFc %/100 continuous soil moisture establishment flag  complex Didion et al., 2009a 

WTEF boolean Winter temperature establishment flag  simple Bugmann, 1994 

WTEFc %/100 continuous winter temperature establishment flag  complex Bugmann, 1994 

general  

parameter  

kDDLL °C⋅d annual DD below which DDsum prevents 

establishment 

complex Bugmann, 1994 

kDDUL °C⋅d annual DD above which DDsum is not reducing 

kTrMax 

complex Bugmann, 1994 

kDrLL %/100 mDrAn bewlow which drought is not reducing kTrMax complex Bugmann, 1994 

kDrUL %/100 mDrAn above which drought prevents establishment complex Bugmann, 1994 

kEstDens m-2·yr-1 Maximum number of tree establishment density both Bugmann, 1994 

kEstP %/100 general probability of regeneration both Bugmann, 1994 

kPatchSize m2 size of a forest patch both Bugmann, 1994 

kTrMax ha-1 Maximum number of trees per ha both Huber et al., 2020 

kDDMin °C⋅d minimum degree-day sum for adults both Bugmann, 1994 

kDDMiny °C⋅d minimum degree-day sum for regeneration both - 

kDrTol %/100 drought tolerance for adults both Bugmann, 1994 

kDrToly %/100 drought tolerance for regeneration both - 

kLa [1-9] adult light requirements as proxy for seed production simple Risch et al., 2005 

kLy %/100 light requirements of regeneration both Bugmann, 1994 

state variable  

(regeneration)  

EFc %/100 minimum continuous establishement flag complex  Huber et al., 2020 

EFSum - sum over all continuous establishment flags complex - 

gEstMax - annual potential maximum number of established trees both Bugmann, 1994 

kEstMax - maximum regeneration for a species simple Bugmann, 1994 

nTrs - the number of trees that are being recruited both Bugmann, 1994 

PEst %/100 realized regeneration probability both - 

uEFMax %/100 helper variable to ensure that Efc is not smaller than 0 complex - 

ukEstP %/100 helper variable to calculate PEst in the complex model complex - 

state variable  

(site) 

gDD °C⋅d mean annual degree days from weather generator both Bugmann, 1994 

gDr %/100 mean annual drought index from weather generator both Bugmann, 1994 

gRedFac %/100 overall reduction factor complex Huber et al., 2020 

gRedFacDD %/100 reduction of kTrMax caused by degree days complex Bugmann, 1994 

gRedFacDI %/100 reduction of kTrMax caused by drought index complex Bugmann 1996 

mDDAn °C⋅d mean annual degree days from weather generator complex Bugmann 1996 



43 

 

mDrAn %/100 mean annual drought index from weather generator complex Bugmann 1996 

state variable  

(stand) 

gAL0 %/100 avalaible light at the forest floor both Bugmann 1996 

Trs - N of trees of all species in current simulation year both Bugmann 1996 
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Step 1 – Does regeneration take place? 930 

First, it is determined whether regeneration takes place at all in any given year; this is done for each species on each patch. 

The probability of regeneration (kEstP) was set to 2% for the calibration, lower than the default value of kEstP of the default 

model (trait-based approach) (10%). This was done to reduce the number of cohorts and thus computational costs. The 

reduction, however, does not reduce effective regeneration because it can be compensated by the parameters for the 

regeneration amount (kEstDens and kTrMax; cf. Table B1 and eq. eq. A3 and eq. A4), in the sense that a reduction of kEstP 935 

by a factor of 1/5, for example, can be compensated by an increase of kEstDens or kTrMax by a factor of 5. 

PEsts = kEstP × WTEFs × ALEFs × BPEFs × DDEFs × SMEFs 

PEsts = {
1, U(0,1) < PEsts

0, else
, 

eq. A1) 

where U is a function that draws a random number from a uniform distribution ranging from 0 to 1. The complex model 

determines whether regeneration takes place (PEst = 1) or not (PEst = 0) regardless of the species but depending on the site 

factors degree-days (mDDAn), and drought (mDrAn). Specifically, PEst is calculated with 

kDrLL =  0.1;  kDrUL =  0.5 

kDDUL =  1225;  kDDLL =  0 

gRedFacDI =  
mDrAn −  kDrLL

kDrUL −  kDrLL
 

gRedFacDD =  1.0 − 
mDDAn −  kDDLL

kDDUL −  kDDLL
 

gRedFac = Max(gRedFacDI, gRedFacDD) 

ukEstP = kEstP × (1 −  gRedFac) 

PEst = {
1, U(0,1) < ukEstP
0, else

. 

eq. A2) 

 940 

Step 2 – How much regeneration? 

Second, the number of new trees is calculated.  

The simple model simulates the maximum regeneration amount per species based on the establishment intensity parameter 

(kEstDens), but also based on kLas which is used as a proxy for seed production (Huber et al., 2020; Risch et al., 2005). 

Specifically, the maximum regeneration kEstMaxs for species s is calculated with 945 

kEstMaxs = PEsts × kEstDens × kPatchSize ∗ kLa,s , eq. A3) 

where kPatchSize is patch size, which was set to 800 m². 
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In the complex model, regeneration amount is regulated by the continuous establishment flag (EFc) of the most suitable 

species, site factors (see calculation of gRedFac in eq. A2), and the regeneration intensity parameter kTrMax, Specifically 

the regeneration amount over all species (nTrs) is calculated with 

EFcs = MIN(WTEFcs, ALEFcs, BPEFcs, DDEFcs, SMEFcs)  

uEFMax = MAX(0, EFcs)  

gEstMax =  PEst ∗ uEFMax ×  (
kTrMax × (1 − gRedFac)

10000 ×  kPatchSize
 − Trs) 

nTrs =  U(1, gEstMax) 

eq. A4) 

Step 3 – What species? 950 

Third, the final number of new trees for each species (nTrss) is determined. 

In the simple model, for each species s a random number between 1 and kEstMaxs is drawn with 

nTrss = U(1, kEstMaxs). eq. A5) 

In the complex model, nTrss is calculated for each species s based on its suitability for regeneration (EFcs) and relative to 

the suitability of all other species (EFSum) with 

EFSum = ∑ EFcs

n

s=1

  

nTrss =  
nTrs × EFcs

EFSum
 

eq. A6) 

Ultimately, nTrss denotes the number of trees with a DBH of 1.27 cm in a new cohort per species s on one patch and serves 955 

as a basis for calculating the likelihood (see below). After a new cohort has established, it follows the rules of adult growth 

and mortality, which remain unchanged throughout this study by keeping all model parameters that directly affect trees 

above a DBH of 1.27 cm at their default (Bugmann, 1994; Huber et al., 2020). 
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