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Abstract.

In an iceberg-choked fjord, meltwater can drive circulation. Down-fjord of the ice, buoyancy and rotation

lead to an outflowing surface coastal current hugging one side of the fjord with an inflowing counter

current below. To predict the structure and evolution of these currents, we develop an analytical model—

complemented by numerical simulations—that involves a rectangular fjord initially at rest. Specifically,5

we (i) start with the so-called Rossby adjustment problem, (ii) reconfigure it for a closed channel with

stratification, and (iii) generalize the conventional ‘dam-break’ scenario to a gradual-release one that

mimics the continual, slow injection of meltwater. Implicit in this description is the result that circulation is

mediated by internal Kelvin waves. The analytical model shows that if the total meltwater flux increases

(e.g., a larger mélange, warmer water, or enhanced ice–ocean turbulence), then circulation strength increases10

as would be expected. For realistic parameters, a given meltwater flux induces an exchange flow that is

∼50 times larger. This factor decreases with increasing water column stratification and vice versa. Overall,

this paper is a step toward making Greenland-wide predictions of fjord inflows and outflows induced by

icebergs.

1 Introduction15

‘Nowhere in the sea could a melting iceberg be expected to have a more pronounced effect on its environment

than in the enclosure of a fjord’ (Gade, 1979). In Greenland, many fjords house hundreds or thousands of

icebergs. For example, Sermilik Fjord—a 100 km long fjord in southeast Greenland—is home to O(10 000)

icebergs at any given time. Their cumulative freshwater flux of ∼500 m3 s−1 is equivalent to a moderately

large river (Moon et al., 2018; Moyer et al., 2019; Rezvanbehbahani et al., 2020).20
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The obvious consequences of iceberg melt are cooling and freshening of near-surface waters. Less

obvious are the consequences for circulation. As Enderlin et al. (2016) noted, fjord circulation studies

‘have largely ignored the contribution of iceberg melt’. Similarly, Beaird et al. (2017) noted a lack of work

on the impact of ‘distributed buoyancy forcing on fjord circulation’ in Ilulissat Icefjord.

By comparison, there is an abundance of information on how glacial fjords respond to their other25

dominant source of freshwater, namely subglacial discharge. We know the influence of discharge strength

(Cowton et al., 2015; Slater et al., 2016), discharge geometry (Kimura et al., 2014; Carroll et al., 2015;

Slater et al., 2015; Jackson et al., 2017), water column stratification (De Andrés et al., 2020), ocean thermal

forcing (Xu et al., 2012, 2013), numerical model grid resolution (Sciascia et al., 2013), fjord geometry

(Carroll et al., 2017), and the difference between subglacial discharge and river runoff (Bendtsen et al.,30

2015). With this much accumulated understanding, one can make credible, continent-wide predictions of

the total outflow induced by subglacial discharge (Slater et al., 2022).

Perhaps the same level of understanding is possible for iceberg-melt-induced flows. Davison et al. (2020)

were the first to address the issue by developing a model of Sermilik Fjord that parameterized iceberg

thermodynamics at the sub-grid scale. They predicted that the outflow velocity over the top ∼200 m is35

a few cm s−1, and that the compensating inflow over the 200–500 m depth range increases advection of

warm Atlantic Water toward the glaciers at the head of the fjord. Subsequent studies have used the same

parameterization in other realistic and idealized settings (Davison et al., 2022; Kajanto et al., 2023; Hager

et al., 2023).

It is easy to intuit the idea that meltwater is buoyant and therefore rises up and out of the fjord at the40

surface and that a compensating inflow is needed at depth. But this does not help with more quantitative

questions. Why are the currents the speeds they are? What controls the depths of the inflow and outflow?

What would happen in wider or narrower channels? How would results change with different stratification

or a different melt parameterization? These questions have yet to be addressed in detail.

The core contribution of this paper is an analytical model explaining the first-order dynamics of a45

fjord’s response to hundreds of melting icebergs. To gain process-level insight and make the problem

tractable, we use a semi-realistic approach. For example, the fjord has a realistic width and depth but is

idealized as a rectangle. And the icebergs have realistic sizes, but are distributed such that there is a clear

line separating mélange and open water. Further, we ignore other forcings like subglacial discharge and
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shelf-driven baroclinic flow, and we investigate the initial value problem of a fjord starting from rest. These50

simplifications let us best illustrate the role of waves in setting the circulation.

Before presenting the analytical model, we develop and run a high-resolution numerical model of the

same semi-realistic scenario (Section 2). This provides a specific realization, or answer, that we then

reverse-engineer. After developing the analytical model in ten steps (Section 3), we test its skill against the

numerical model (Section 4), and then use it in a parameter space study (Section 5).55

2 The numerical model

2.1 Numerical model setup

We simulate the dynamics of a rectangular fjord that is 600 m deep (H) and 5 km wide (half-width

W = 2.5 km) using the MITgcm (Marshall et al., 1997; Adcroft et al., 2004). The domain extends 200 km

in the along-fjord (east–west) direction, and in the first 8 km there is a mélange that comprises ∼120060

icebergs covering 10% of the ocean surface (Figure 1a). Melting of these icebergs is the only forcing.

The cooling and freshening of the adjacent ocean cells is calculated with the three-equation formulation

(Appendix A).

The icebergs each extend over many grid cells horizontally and together act as upside-down topography

(Losch, 2008). Each iceberg is assumed to be a stationary cuboid. Although there are limitations with this65

approach, it is their cumulative meltwater flux, rather than their movement, that matters most here. Further

detail and justification of our approach is given by Hughes (2022).

The icebergs follow a power-law size distribution: the number of icebergs of a given horizontal area

goes as A−1.9 (Sulak et al., 2017), which means that smaller icebergs are more numerous than larger ones.

Horizontally, iceberg dimensions are rounded to multiples of 40 m and a maximum of 320 m×240 m is70

imposed. Vertically, most icebergs have a keel depth of 30–80 m.
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Figure 1. Numerical model setup. (a) A long rectangular fjord contains a 8 km×5 km mélange in which 10% of the

surface area is covered by icebergs. Note the coordinate system with x = 0 at the end of the mélange, y = 0 in the

fjord center, and z = 0 at the surface. (b) Volume-occupying icebergs are explicitly resolved in the model.

The ambient water initially has a constant potential temperature and linear salinity profile, and hence

constant buoyancy frequency:

Sa(z) = 35−∆S
(

1+
z
H

)
(1)

θa(z) = 2◦C (2)75

N =

√
gβ

∆S
H

(3)

where ∆S = 3 is the salinity increase between the surface and the seafloor, which is representative of values

of 2–4 observed in Greenland fjords (e.g., Straneo et al., 2011; Sciascia et al., 2013), and β ≈ 7.8×10−4

is the saline contraction coefficient. The 2°C value equates to approximately 4°C above the freezing, an
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average thermal forcing for Greenland fjords (Wood et al., 2021). Constant temperature precludes local80

warming at mid depths caused by upward advection of warm water (cf. Davison et al., 2022).

The coordinate system has x = 0 at the end of the mélange, y = 0 in the center, and z = 0 at the surface.

Within the mélange (x < 0), ∆x = ∆y = 10 m. Outside the mélange (x > 0), ∆x increases 3% per cell. There

are 64 vertical levels, with the highest resolution of ∆z = 3 m at the surface. The time step is 2 s and

simulations are run in hydrostatic mode for one week. Using nonhydrostatic simulations makes negligible85

difference because—in a cumulative sense—meltwater is injected into a low aspect ratio layer (iceberg

drafts are much smaller than the horizontal dimensions of the mélange).

Vertical mixing is parameterized with the Klymak and Legg (2010) overturning scheme with a back-

ground viscosity and diffusivity of Av = Kv = 10−4 m2 s−1. Horizontal viscosity is parameterized with a

Smagorinksy viscosity with the viscC2Smag coefficient set to 2.5 together with a background value of90

Ah = 10−3 m2 s−1. Temperature and salinity are advected with a third-order flux limiter scheme (Hunds-

dorfer et al., 1995, designated as scheme 33 in the MITgcm).

The Coriolis parameter is set for 70◦N ( f = 1.37×10−4 s−1). The channel width 2W = 0.6LR, where

LR = c1/ f = 8.6 km is the mode-1 internal Rossby radius. The mode-1 internal wave speed c1 has a

realistic value of 1.2 m s−1 (e.g., Sutherland et al., 2014)95

2.2 Numerical model results

The simulated icebergs melt at 0.3–0.4 m d−1, which is at the upper end of typical observed values (Enderlin

and Hamilton, 2014; Enderlin et al., 2018; Schild et al., 2021). This melt creates flows of order 5 cm s−1

(Figure 2). The fastest flows occur in (i) near-surface hotspots where currents are squeezed through gaps

between icebergs and (ii) the coastal current down-fjord at x > 20 km. This current hugging the ‘right-hand100

side’ is the most obvious consequence of Coriolis.

Most of the surface flow within the mélange is down-fjord as expected. The up-fjord flow in the southwest

corner (Figure 2a) is perhaps unintuitive and will be explained in Section 3. When averaged over the whole

mélange region, the outflow is down-fjord in the top 50 m and up-fjord below that (Figure 2e). Notably,

this up-fjord flow occurs despite an appreciable release of meltwater down to 100 m.105

Averaged over the week-long simulation, fluxes of freshwater and heat are 110 m3 s−1 and 36 TW. By

the end of the week, the near-surface salinity and temperature have fallen by ∼0.3 and ∼1°C (Figure 2g–h).
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Figure 2. Dynamics of the top half of the fjord after one week of simulation. A simple description is of surface

outflow in the top 50 m and inflow at 50–150 m, but Coriolis and advection complicate the picture. (a, b) A plan view.

(c) An along-fjord slice. (d) A cross-fjord slice. (e–h) Properties averaged or integrated over the mélange region.
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Starting from rest, the coastal current down-fjord of the mélange is the first major feature to form

(Figure 3). As with the averaged flows described earlier, the coastal current flows down-fjord in the top

50 m and up-fjord over the 50–150 m range. Within 12 h, the current reaches x = 10 km (Figure 3b). This110

is too fast to be explained by advection because the currents themselves are only 1–3 cm s−1. Instead, a

faster wave mechanism is at play. This mechanism also explains why the coastal current extends over only

a small fraction across the channel despite the channel width being only 0.6LR. Specifically, the decay

away from the wall is faster than exp(−(y+W )/LR) because the current has a structure comprising many

modes, not just mode 1, and the higher modes have shorter Rossby radii.115

Advection is responsible for the increasingly long channel-wide jet. Between t = 2 and 4 days, the

easternmost end of the jet moves from x = 2 to 7 km (Figure 3d–e) at 3 cm s−1. However, except for this

jet, the evolving system that we have simulated numerically can be explained and quantified in terms of

wave mechanics with an analytical model.

3 The analytical model120

We will build the core of our analytical model in nine steps (Sections 3.1–3.9). Each step is based on wave

mechanics in a certain scenario for which its section is named. The role of melt is added as a tenth step.

The first three sections consider the Rossby adjustment problem in a channel (also called geostrophic

adjustment). We start with a two-dimensional problem of flow generated by an abrupt release of a region

of high sea surface height in an open channel (Section 3.1), which is the simplest case mathematically125

and conceptually. We then make the geometry more realistic by closing one end (Section 3.2). Finally, we

change the forcing for this closed case from abrupt to gradual (Section 3.3), which is a better analogue for

a melting ice system. Note that in these Sections 3.1–3.3, ‘downstream’ will be to the left because it will

simplify Figure 4. In later sections in which flow velocity may change sign with depth, we will use the

terms ‘up-fjord‘ and ‘down-fjord’. Down-fjord will be to the right.130

The middle three sections consider a different two-dimensional problem: baroclinic adjustment in the x–z

domain without rotation. Again, we first consider abrupt releases in open and closed settings (Sections 3.4

and 3.5, respectively) and then look at the closed case with gradual forcing (Section 3.6)
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Figure 3. Development of fjord circulation from rest as depicted by vertical and horizontal slices at the southernmost

side and surface, respectively (y =−W and z = 0). The vertical axes are enlarged in the top 200 m where currents are

fastest.
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The last three sections consider the three-dimensional problem with rotation. For the third time, we start

with open and closed settings with abrupt releases (Sections 3.7 and 3.8, respectively) and then the closed135

setting with gradual forcing (Section 3.9)

3.1 Barotropic, open channel, abrupt release, rotating

A sea surface height discontinuity in a fluid at rest is unbalanced. When released, the discontinuity generates

waves and currents that restore equilibrium. Here we consider this evolution toward equilibrium for a

rotating, shallow water system in a channel. The dominant signals will be Kelvin waves propagating along140

the boundaries and leaving behind steady boundary currents with e-folding scales equal to the Rossby

radius. (Poincaré waves, which have a channel-wide signature, will also arise but will be much weaker.)

Consider a single discontinuity perpendicular to the channel axis (Figure 4a). Fluid initially accelerates

from higher to lower sea surface height. On a time scale of O( f−1), this down-channel flow turns to the

right (northern hemisphere) to form a cross-channel jet centered about the original discontinuity. On the145

wall where the jet converges, a Kelvin wave of elevation is generated; on the opposite wall, a Kelvin wave

of depression. Over time, these two waves propagate away and leave behind two coastal currents moving

in the same direction, but on opposite sides of the channel. The two currents are connected by the original

cross-channel jet.

Hermann et al. (1989) give analytical expressions for this wave-adjusted state (i.e., the linear solution150

that sets up before slower advective dynamics develop). Well downstream of the initial discontinuity

(x ≪ 0), the sea surface height η , along-channel velocity u, and total down-channel flux Q are

η = η0 [1− sech(W/LR)exp(y/LR)] (4)

u = η0
√

g/H sech(W/LR)exp(y/LR) (5)

Q =−2η0
√

gH tanh(W/LR)LR (6)155

where η0 is half height of the initial surface discontinuity, W is the half width of the channel, and H is the

depth. Hermann et al. (1989) also provide expressions for u and v close to the discontinuity, but these are

more elaborate and overkill for our purposes.
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(a) Open channel

Kelvin and Poincaré waves propagating

Steady state

(b) Closed channel

Kelvin and Poincaré waves propagating
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Figure 4. Rossby adjustment in a channel for three different scenarios. (a) The conventional problem with a sea

surface height discontinuity in the middle of an open channel. (b) The same as panel a, but with one end of the

channel closed. (c) The same as panel b, but with the sea surface being continually pushed upward from zero rather

than having an initial discontinuity. Height anomalies are exaggerated in all panels.

Evaluating Eq. (5) at the boundary gives

u(x ≪ 0,y =+W ) = η0
√

g/H(1+ tanh(W/LR)) (7)160

For an infinitely narrow channel (W → 0), the tanh term goes to zero and gives the non-rotating limit. For

a wide channel (W ≫ LR), the tanh term goes to one and the maximum velocity is double the non-rotating

limit. Regardless of channel width, the cross-channel integral of the change in potential energy is equal to

the cross-channel integral of kinetic energy:∫
0.5g(η −η0)

2dy =
∫

0.5u2Hdy = gη
2
0 LR tanh(W/LR) (8)165
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3.2 Barotropic, closed channel, abrupt release, rotating

If the channel is closed on the high surface end as in Figure 4b, then the wave of depression cannot

propagate toward x = ∞. Instead, the wave propagates around the closed boundary and—after turning

two corners—starts propagating in the same direction and on the same side of the channel as the wave

of elevation. When this second wave passes back beyond x = 0, it starts to cancel the effects of the first.170

Hence, for x < 0, the down-channel flux is nonzero only between the arrival times of the two waves.

Hermann et al. (1989) did not consider this closed channel case, but it is easy to extend their formulation

(quoted here as Eqs. (4)–(6)) by adding the destructive interference caused by the trailing wave. Assuming

the trailing wave keeps its shape as it navigates the two corners, then the extra distance that it travels is

2L+2W . A time series of the flux at a given location x becomes a top-hat function with nonzero values175

over a period ∆t where

∆t = (2L+2W )/c (9)

3.3 Barotropic, closed channel, gradual forcing, rotating

In Figure 4c there is no initial discontinuity. Instead the sea surface is continually pushed upward in the

x > 0 region. This upward movement can be treated as a sum of sequential infinitesimal perturbations.180

Hence, the system’s response can also be treated as a sum of sequential infinitesimal solutions (assuming

linearity). In contrast to the abrupt closed case, η ,u, and Q are nonzero in the x < 0 region for all values of

t. Expressions for these three quantities are the same as Eqs. (4)–(6), but with

η0 →
dη0

dt
∆t (10)

where dη0/dt is the rate at which the sea surface is pushed upward and ∆t is the wave delay from Eq. (9).185

3.4 Baroclinic, open channel, abrupt release, non-rotating

We turn now to a depth dependent scenario: a non-rotating, open channel in two dimensions (x–z) with the

left half having a low-density anomaly near the surface (Figure 5a). In practice, the density anomaly would

vary with depth as a function of meltwater input; for now, we impose a constant anomaly in the top third of

the water column.190
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Figure 5. Baroclinic adjustment in a stratified fluid of a density anomaly near the surface of a non-rotating, open

channel. (a) The initial density field. (b–d) Velocity and vertical displacement fields depicted by arrows and color

shading, respectively, at three successive times. (e) The final density and velocity fields. The available potential

energy in the initial, motionless state is all converted to the kinetic energy of the final, steady state. When the initial

pressure anomaly is considered as a sum of internal modes, the final state—and the evolution toward it—can be

predicted from the known behavior of those modes.
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The density field of the final, steady state is easy to predict. Assuming no mixing occurs, the final state

must contain the same fluid parcels as the initial state, but sorted vertically such that no available potential

energy remains. Hence, the final density field is horizontally homogeneous (Figure 5e).

Provided the initial density anomaly is small relative to the background stratification, it will not slump

as if it were a gravity current (e.g., Simpson, 1982). Rather, each unstable fluid parcel only travels a short195

vertical distance before it reaches its neutral buoyancy level. Indeed, throughout this paper we are assuming

that the vertical movement of meltwater is limited by stratification and hence vertical scales are a few tens

of meters at most (e.g., Huppert and Turner, 1980; Yang et al., 2023).

The rearranging of fluid parcels produces pressure perturbations that lead to internal waves with a range

of mode numbers spreading out in both directions from the location of the initial density discontinuity200

(Figure 5b–d). For constant buoyancy frequency N and a fjord depth H, the speed of a mode-n internal

wave is

cn =
NH
nπ

(11)

Details on this expression can be found in the Appendix of Kelly et al. (2010) or Section 6.11 of Gill

(1982). Throughout the main text, we are using constant stratification for its simplicity. The generalization205

of the analytical model to any stratification profile is described in Appendix B.

The two mode-1 waves spread out rapidly from the initial discontinuity. On the right-hand side, there is

a wave with positive vertical displacements (green shades in Figure 5b–d). On the left-hand side, there is a

corresponding wave with negative vertical displacements. The horizontal velocity induced by these waves

is the same on either side: eastward flow near the surface and westward flow deeper down. For points210

between the mode-1 and mode-2 wavefronts, the velocity profile is

u(z) = Au1 cos
(

πz
H

)
for c2t < |x|< c1t (12)

where Au1 is a Fourier coefficient to be determined later. Once the mode-2 wavefront passes the same

location, its velocity superimposes on that already there. Hence,

u(z) = Au1 cos
(

πz
H

)
+Au2 cos

(
2πz
H

)
for c3t < |x|< c1t (13)215

Similarly, the vertical displacement has both mode 1 and 2 components (see, e.g., the location labeled

‘mode 1+2’ in Figure 5d)
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In the long-time limit, the velocity at any horizontal location is given by the generalization of Eq. (13):

u(z) =
∞

∑
n=1

un(z) =
∞

∑
n=1

Aun cos
(nπz

H

)
(14)

In the example in Figure 5, the final velocity is 17% mode-1, 25% mode-2, 22% mode-3, 12% mode-4,220

and 24% higher modes.

The coefficients Aun can be derived from the initial density profiles. To start, define the density anomaly

ρ ′ as

ρ
′(z) = (ρR −ρL)/2 (15)

where ρL and ρR are the density profiles for the initial state on the left- and right-hand sides. Then, integrate225

this with depth to get a hydrostatic pressure anomaly p′ that is the same on both the left- and right-hand

sides:

p′(z) =
g
ρ0

0∫
z

ρ
′(z∗)z∗dz∗ (16)

where z∗ is a dummy variable used to avoid ambiguity with the integral’s lower limit. The value of p′(z) is

zero at the surface and negative below.230

Like u(z), the profile p′(z) can be described as a cosine series:

p′(z) =
Ap0

2
+

∞

∑
n=1

Apn cos
(nπz

H

)
(17)

where

Apn =
2
H

0∫
−H

p′(z)cos
(nπz

H

)
dz (18)

Following Kelly et al. (2010), specifically their Eqs. (A12) and (A14) with ω = 0, there is a simple link235

between the coefficients Aun and Apn:

Aun =C nApn. (19)
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has lower-mode components. Hence, the associated u(z) also has lower-mode components (Eq. (19)). Conversely, the

light blue example is more surface-intensified and has higher-mode components. In all cases, the initial available

potential energy is the same.

Therefore,

u(z) =C
∞

∑
n=1

nApn cos
(nπz

H

)
(20)

If ρ ′(z) is spread out with depth, then p′(z) and u(z) are shaped more by low mode components. If ρ ′(z) is240

surface intensified, then p′ and u have higher mode components (Figure 6).
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The proportionality constant C in Eq. (20) is found implicitly by equating the available potential energy

Ep of the initial state to the kinetic energy Ek based on the velocity in the final state uF , where

Ep =
g2

2ρ0

0∫
−H

ρ ′2

N2 dz (21)

Ek =
ρ0

2

0∫
−H

u2
F dz (22)245

Eq. (21) follows from what Kang and Fringer (2010) call APE3. It is a good approximation here because

vertical perturbations are small.

3.5 Baroclinic, closed channel, abrupt release, non-rotating

Baroclinic adjustment in a closed channel follows the same steps as for an open channel, but the boundary

breaks the symmetry and means that no steady state arises. Consider the scenario in Figure 7a of a near-250

surface, low-density anomaly of width L beside the closed end, where L is much smaller than the channel

length. Initially, the transient behavior of the system matches that in the open channel case in Figure 5b: for

each mode, two waves spread out from x = 0. After reaching the boundary and reflecting back to x = 0, the

originally westward waves destructively interfere with their counterparts. Because the eastward waves had

an effective headstart of distance 2L, the velocity field tends toward a series of stripes, each of width 2L255

(Figure 7b). The lower, faster modes are further to the right; the higher, slower modes trail behind. (Note

the difference in presentation between Figure 5, which shows velocities as arrows, and Figure 7, which

shows velocities with a red–blue colormap.)

The potential and kinetic energy in the closed case are similar to Eqs. (21) and (22) but, due to the loss

of symmetry, we must now compare Eqs. (23) and (24) below, which are the globally integrated potential260

energy at t = 0 and the globally integrated kinetic energy as t → ∞, respectively.

With our assumption that the low-density region is small compared to the channel length, the final

equilibrium state can be approximated as ρR, not (ρL +ρR)/2 as it was for the open case. Hence, the
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Figure 7. Baroclinic adjustment of density anomalies near the closed end of a stratified channel. (a–b) When released

abruptly, the density anomaly generates two waves for each mode that spread out in each direction from x = 0, just as

in Figure 5. However, the originally westward waves reflect at the closed end and destructively interfere with the

eastward waves, except for the 2L-wide portion of the waves that had a headstart. (c–d) If the density anomaly is

gradually built up from nothing, then the outcome is the sum of sequential and infinitesimal versions of the solution

in panel b.
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potential energy at t = 0 is nonzero only in the x < 0 region:

∞∫
−L

Ep(t = 0)dx =
0∫

−L

Ep(t = 0)dx =
g2L
ρ0

0∫
−H

ρ ′2

N2 dz (23)265

The right-hand side is Eq. (21) multiplied by 2L where L comes from the x integration and the factor of 2 is

associated with the change to the equilibrium state for ρ . (ρ ′ remains as it was defined in Eq. (15).)

The globally integrated kinetic energy expression involves un as defined in Eq. (14), and is best under-

stood by considering Figure 7b. That is, the total kinetic energy is the sum of all of the 2L-wide bands of

nonzero velocity, each of which are a single mode provided they have had time to sufficiently spread out270

from each other:

∞∫
−L

Ek(t = ∞)dx = ρ0L
∞

∑
n=1

0∫
−H

u2
n dz (24)

The kinetic energy of the system increases monotonically in time and approaches Eq. (24) as t → ∞.

The velocity field at any given time, depth, and position (assuming x > 0) can be summarized as the

total velocity induced by the eastward-propagating waves minus that of the waves that initially propagated275

westward and then reflected:

u(x,z, t) =
nE

∑
n=1

un(z)−
nW

∑
n=1

un(z)

=
nE

∑
n=nW+1

un(z) (25)

The integer nE is the maximum n for which cnt > x, and similarly for nW for cnt > x+2L.

3.6 Baroclinic, closed channel, gradual forcing, non-rotating280

Consider now the same closed system, but with the low-density anomaly gradually added (Figure 7c). As

in Section 3.3, we can treat this as a series of sequential and infinitesimal versions of the closed system

that we just solved. For example, let the density everywhere be ρR at t = 0 and let the left side reduce at a

constant rate (ρL −ρR)/τ . In other words, τ is the time it would take for the left-hand side to reach ρL if

the system were held in place so that it could not respond.285
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If we want to know the velocity field at any time t, then we sum a large number m (e.g., 100) solutions

to the abrupt-release, closed case (Eq. (25)) that are evenly spaced in time up until t. Specifically,

u(x,y,z, t) =
m

∑
i=1

u(x,y,z, i t/m) (26)

with the effective ρL reduced accordingly

ρL → ρR − t
mτ

(ρR −ρL) (27)290

For example, if m= 100, then we effectively sum 100 abrupt-release cases that start at 0.00t,0.01t,0.02t, . . . ,0.99t,

with each having values of ρR−ρL that are scaled down by a factor of 100. Although we could also express

this more formally in the limit m → ∞, doing so does not provide extra insight.

With this gradual release in a stratified channel, we can start to see a resemblance between the analytical

and numerical models (e.g., compare Figure 7d to Figure 3c).295

3.7 Baroclinic, open channel, abrupt release, rotating

Three-dimensional baroclinic Rossby adjustment in a channel combines concepts from the x–y and x–z

cases from Sections 3.1–3.6. We will use the same initial density field as in Sections 3.4–3.6 and make it

constant in the across-channel direction (Figure 8a).

When the density discontinuity is released, it generates two counter-propagating families of Kelvin300

waves (Figure 8b): westward ones on the far side of the channel (y =+W ) and eastward ones on the closer

side (y =−W ), just as occurred in the simpler form with barotropic waves in Figure 4a. Individually, each

mode behaves like the barotropic case, except with a depth-dependent velocity and a much reduced Rossby

radius. The latter for a given mode n is

LRn =
NH
nπ f

(28)305

which follows from the wave speed expression in Eq. (11). Mode-1 Rossby radii are typically 5–10 km in

Greenland fjords.

For regions away from the initial discontinuity, the velocity is parallel to the walls and the expression

for u(x,y,z, t) is separable in three dimensions. In x and z, we use the two-dimensional baroclinic solution
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Figure 8. Baroclinic Rossby adjustment in an open-ended, stratified channel predicted by analytical and numerical

models. The values of velocity are unimportant here, but the initial densities and the colormaps for panels b and c are

identical. The MITgcm simulation shows two slight additions that do not arise with a semi-geostrophic approximation:

advection of the discontinuity and Poincaré waves. For this particular example, the channel width is equal to the

mode-1 internal Rossby radius.
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from Section 3.4. In y, velocities decay exponentially and follow the scaling in Eq. (5). More specifically,310

the velocity field is

u(x,y,z, t) =
nE

∑
n=1

Aun cos
(nπz

H

)
sech(W/LRn)exp(−sgn(x)y/LRn) (29)

where Aun are the velocity coefficients derived for the non-rotating x–z solution, and nE is defined in

Section 3.5.

A curious consequence of the superposition in Eq. (29) is that, at certain points, u does not decay315

monotonically away from the boundary. Instead, the differing scales and phases of the individual modes

can lead to local maxima or minima in u(y) within the channel. However, a clear example of this does not

arise in Figure 8b.

To confirm that the sum of Kelvin waves is a good approximation of the true system, we test it against

an MITgcm simulation with the same initial conditions. (This simulation is separate to those described in320

Sections 2 and 4.) In Figure 8, panels b and c clearly agree, and the same is true for wider and narrower

channels (not shown). The MITgcm simulation does contain additional physics—vorticity advection and

Poincaré waves—but the effect on along-channel velocity is small. (See Hutter et al. (2011) for further

details on Poincaré waves in channels of constant depth.)

Not shown in Figure 8 are the cross-channel velocities. It would be possible, albeit cumbersome, to325

derive v(x,y,z, t) from linear wave dynamics as we have done for u(x,y, t,z); the starting point would be

the solution for the barotropic case (Eq. (2.22) of Hermann et al. (1989)). From the MITgcm simulations,

we find as expected that v (not shown) peaks near x = 0, goes to zero at |x| ≫ 0, and is negative at the

surface: water flows from y =+W to −W . A counterflow from −W to +W occurs at the depth z =−H/3

where the discontinuity goes to zero.330

3.8 Baroclinic, closed channel, abrupt release, rotating

In a closed channel, the baroclinic Kelvin waves propagating toward the closed end start at (x,y) = (0,+W ),

travel a distance L westward, turn a corner, travel a distance 2W southward, turn another corner, and travel

a distance L eastward to arrive at (0, −W ). Thereafter, they destructively interfere with their counterparts.

This is the same argument as in the barotropic case in Section 3.2. Ultimately, Eq. (25) can be applied here335

to the three-dimensional channel with nW now being the maximum value of n for which cnt > x+2L+2W .
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Figure 9. Iceberg (and glacier) melt in the numerical model. (a) Melt rates are ∼0.3 m d−1 and decrease over time,

especially near the surface, as the surrounding water cools. (b) Total ice surface area in units equivalent to a width.

(c) The product of panels a and b in units that are suitable for the analytical model.

3.9 Baroclinic, closed channel, gradual forcing, rotating

The final step before incorporating melt is anticlimactic because the hard work has been done. To adapt

the closed, abrupt release case from the previous section to the gradual release case, we simply repeat the

methodology described by Eqs. (26) and (27).340

3.10 Incorporating ice melt into the analytical model

In Sections 3.4–3.9, there is a low-density anomaly in the upper third of the water column in the x < 0

region that either exists at t = 0 or develops gradually as t increases. The numerical model from Section 2

is set up similarly in that meltwater is continually injected into the x < 0 region.

In a glacier context, melt rates are often discussed in velocity units, with a convenient unit being m d−1345

as in Figure 9a. In iceberg-choked fjords, the total surface area of ice in contact with water can be an

order of magnitude larger (Sulak et al., 2017). Indeed, expressing this surface area per unit depth gives a

quantity that is equivalent to a glacier width, but much bigger, especially near the surface (e.g, ∼200 km in

Figure 9b).
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Let M(z) denote the total, time-averaged meltwater input per unit depth with units of m2 s−1. (The depth350

integral of M(z) is the volume flux of meltwater.) Many remote sensing studies provide methods to estimate

M(z) from either observed rates of change of iceberg freeboard or parameterizations of melting (Enderlin

and Hamilton, 2014; Enderlin et al., 2018; Moon et al., 2018; Moyer et al., 2019; Rezvanbehbahani et al.,

2020). We, however, have the benefit of the exact value of M(z) being a model output, so we will use this

hereafter (Figure 9c).355

To use the analytical model, we need an expression for ρL(z) that plugs into Eq. (27). We start with

meltwater’s properties (see, e.g., Jenkins, 1999):

S = 0 (30)

θeff ≈−L
c
+

ci

c
θ i (31)

where θeff is the effective potential temperature of meltwater, θ i is the ice temperature, L is the latent heat360

of fusion, and ci and c are the specific heat capacities of ice and water, respectively. The value of θeff is

approximately −85◦C and is dominated by the first term, which accounts for the heat extracted from the

water to induce the phase change; the second term accounts for sensible heating of the ice to its freezing

point.

In Section 3.6, we defined the profile ρL together with the time scale τ that defined how long it took for365

the left side to reduce from ρR to ρL at a constant rate. Here, we set a somewhat arbitrary value for τ of

7 days and calculate ρL at this time based on the meltwater input. The value of τ later cancels when used in

Eq. (27).

At time τ , the volume of meltwater per unit depth added over the mélange will have reached ∆A(z) =

M(z)τ . If the fjord did not respond dynamically to this meltwater, then the average properties throughout370

the mélange region—based on weighted averages of the ambient water and meltwater—would become

SL =
A0 SR

A0 +∆A
(32)

θL =
A0θR +∆Aθeff

A0 +∆A
(33)

ρL = ρ(SL,θL) (34)

23



where SR and θR are the initial salinity and potential temperature profiles, and A0(z) = 2WLφ(z) is the375

mélange area scaled by the water fraction φ(z). In our numerical model, we have φ = 0.9 at the surface

because 10% of the surface is covered by icebergs.

4 Comparing the analytical and numerical models

The analytical model should work in regions governed by linear wave dynamics; it is not expected to work

where advection dominates (e.g., at x ≲ 15 km in Figure 2a). We will start by testing it at x = 20 km by380

comparing its prediction to the numerical model from Section 2.

Consider first the cross-channel structure. At t = 1 day, the analytical model correctly predicts that the

flow (i) has peak velocities of 1 cm s−1, (ii) has a zero-crossing at 100 m depth, and (iii) has a decay scale

comparable to the width of the channel (Figure 10a–b). Also correctly predicted, albeit a minor detail, is

the small outflowing patch centred near 350 m depth. Later, at t = 3 and 7 days (Figure 10c–f), there is a385

larger contribution from higher-modes, and the flows are consequently more concentrated in the top 100 m.

The analytical model still predicts well the velocity fields at both of these times.

When compared carefully, the analytical model slightly overpredicts the velocities. This is best quantified

by evaluating the total outflow Qout, which is the area integral of all outflowing fluid:

Qout =
∫

u>0

udydz (35)390

Between 3 and 7 days (once a quasi-steady state is approached), the analytical model overpredicts Qout at

x = 20 km by 25% (compare the grey and black lines in Figure 11a). At t = 7 days, the analytical model

predicts that Qout is approximately independent of distance from the melange—at least for x < 100 km

(Figure 11b). The same approximate independence arises in the numerical model results, except in the

aforementioned advective region of x < 15 km.395

Given the number of approximations and assumptions that go into the analytical model, we deem that it

agrees reasonably well with the numerical model. One notable assumption not yet discussed is that the

icebergs have no dynamical effect as obstacles. In the numerical model, the icebergs are stationary and

induce drag on near-surface flows (Hughes, 2022), which includes the set of Kelvin waves that initially

travel westward from x = 0 and then anti-clockwise around the fjord boundary.400
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Figure 10. Snapshots at x = 20 km after 1, 3, and 7 days show that the analytical predictions in the left column agree

with the numerically simulated velocities in the right column. Note that the color limits increase from the top to

bottom and that the vertical axes are enlarged in the top 200 m as in Figure 3.

To further test the analytical model, we repeat the Qout comparisons for two other model scenarios. The

first scenario has stronger stratification: the salinity difference between the surface and seafloor is doubled

(∆S in Eq. (1) is 6, not 3). The second scenario has weaker melt rates: the turbulent transfer coefficients for

heat and salt are four times smaller than the default case (γT and γS in Eqs. (A3) and (A4)). In these two

further tests, the analytical model still predicts well the numerically simulated flow both in terms of total405

outflow (Figure 11) and cross-channel structure (not shown). In fact, the agreement is better in these two
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Figure 11. The analytical model predicts well the outflow (Eq. (35)) for three different scenarios. (a) Outflow at a

specific location: 20 km. (b) Outflow at a specific time: 7 days. The discrepancies are discussed in the main text.

scenarios compared to the default settings because the relative role of linear wave dynamics (compared to

nonlinear advection) is larger when the outflow is weaker or the stratification is stronger.

Three comparisons is, of course, far from an exhaustive test of the plausible parameter space. Yet given

the agreement in all cases, there is no reason not to trust the analytical model.410

5 Discussion

5.1 What parameters does melt-induced circulation depend on?

There are several obvious ways that melt-induced fjord circulation could increase: warmer ambient water,

a larger mélange, or enhanced turbulent transfer at the ice–ocean interface.

To examine these dependencies in detail—and the less intuitive role of stratification—we undertake a415

parameter space study using the analytical model to predict Qout(x = 20km) under a range of conditions.

For simplicity, we will change one parameter at a time; all others will have the default values used

previously (L = 8000 m, 2W = 5000 m, H = 600 m, ∆S = 3, and θa = 2◦C). We will also assume a total
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Figure 12. Predictions from the analytical model of how outflow (Qout) depends on geometrical parameters, ice–ocean

turbulent transfer, and water column properties. In each panel, single quantity is varied; the others are fixed at the

values highlighted by the triangles in the other five panels. Note how the total meltwater flux, which is shown for

reference, is multiplied by a factor of ten to make it visible on the same scale.

melt rate profile similar to that in Figure 9c. Specifically,

M(z) = 2.5×10−8WL
(

1+ tanh
(

z+100
25

))
(36)420

where 100 m is the depth at which M(z) drops to half of its surface maximum and 25 m is a vertical length

scale. For the default fjord geometry, M(z = 0) = 1 m2 s−1.

Qout increases monotonically with channel width (Figure 12a). For narrower channels there is a de-

pendence on ∑n Qntanh(W/LRn) where Qn are coefficients. This follows from generalizing Eq. (6) to the

baroclinic case involving a sum of modes, each with their own internal Rossby radius LRn. (Presumably425

the coefficients Qn could be derived from the analytical model, but that is not our goal here.) For wider

channels Qout ∝ W +L because the distance 2L+ 2W is the distance a Kelvin wave travels around the
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perimeter of the fjord to move from (0,+W ) to (0,−W ), and this distance governs the total flux (see

Sections 3.2 and 3.8). For the same reason, a Qout ∝ W + L scaling also arises when varying L while

keeping W constant (Figure 12b). The other geometrical parameter—fjord depth H—has no significant430

effect on Qout (Figure 12c).

If the fjord geometry is fixed, but the ice–ocean interface conditions are changed, then Qout scales

approximately linearly with the meltwater flux. In Figure 12d, we alter the ice–ocean turbulent transfer

coefficients γT and γS (see Appendix A). In Figure 12e, we alter the ambient temperature. In both cases,

linearity dominates; slight deviations from this arise from nonlinearities in the equation of state and the435

melt rate derived from the three-equation formulation. Note, however, that for this analysis we assumed a

fixed ambient velocity of 0.04 m s−1 (see Appendix A). Different melt formulations (e.g., Greisman, 1979;

Magorrian and Wells, 2016; Malyarenko et al., 2020) may lead to different dependencies for Qout, but we

do not investigate these here.

Qout vs water column stratification N is the scaling needing the most steps to explain. First, recall the open440

channel, non-rotating system from Section 3.4. There, u and hence Qout are ∝ N−1 because Ep = Ek ∝ N−2

(Eq. (21)). However, Qout ∝ N−2 for the equivalent closed, gradual-release system (Section 3.6). The

additional factor of N−1 arises because internal wave speed c ∝ N (Eq. (11)). Specifically, recall Figure 7 in

which the gradual-release case was described as the sum of sequential versions of the abrupt-release case,

with the latter consisting of 2L-wide bands of nonzero velocity. These bands move and separate at a rate445

∝ N, and so the magnitude of their sum is ∝ N−1. This already elaborate explanation is further complicated

by rotation because the internal Rossby radii LRn = cn/ f ∝ N/n. With increasing LRn, flow occupies a

wider portion of the channel and hence Qout increases. Ultimately, in the full system, Qout has a scaling

that tends to fall between N−1 and N−2 (Figure 12f).

All panels in Figure 12 include a line showing the total meltwater flux. In many cases, Qout is ∼50 times450

larger than the meltwater flux, but in some cases the ratio is as large as 200 (small L or small N) or as small

as 20 (large W or large N).

5.2 The value of simple scaling laws in Greenland fjords

An ambitious goal for our analytical model would be to make large-scale predictions like those that exist for

the role of subglacial discharge. These start with classic buoyant plume theory (Morton et al., 1956), extend455
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it to a salinity-stratified system, and then apply it on a large scale. For example, Slater et al. (2016) show

that outflow in a fjord is proportional to Q3/4
sg /N5/8, where Qsg is the subglacial discharge rate. Slater et al.

(2022) applies this scaling to more than 100 fjords around Greenland to predict that a total of 20 000 m3 s−1

of meltwater discharge gets amplified by a factor of ∼50 due to entrainment and that the outflow is spread

over the top ∼200 m.460

A more immediate goal is to help interpret observations or numerical models for specific settings. For

example, as part of ongoing related work, we are analyzing multi-year simulations of Sermilik Fjord with

and without icebergs (using a setup like Davison et al. (2020), but with seasonal variability included).

Iceberg effects are isolated by looking at the difference between the two simulations. One plausible but

counter-intuitive hypothesis stemming from the analytical model is that melt-induced circulation will be465

larger in winter than in summer. Why? Because in winter the water column is less stratified (hence larger

iceberg-melt-induced outflow) and this may overcome the effect of slower melting in cooler waters.

5.3 Next steps

The analytical model is built on linear wave dynamics; nonlinear advection and instabilities are ignored.

In parts of the domain, this can quickly become a limitation. In the numerical model we saw advection470

dominating in the 0 < x < 10 km region after only one week of spin up (Figure 2a). In principle, it may

be possible to extend the analytical model to predict this advective component. The approach would

follow Hermann et al. (1989) from who we borrowed the analytical expressions for the barotropic wave-

adjusted state in Section 3.1. For Hermann et al., the wave-adjusted state was merely the starting point

for predicting the slower advective dynamics. In our baroclinic setting, however, the math would quickly475

become cumbersome.

Instead, it makes more sense to simply ask whether the analytical model would remain skillful after

several months? Without running simulations to properly answer this, our best guess follows from Carroll

et al. (2017) who simulated circulation induced by subglacial discharge on time scales of months. Their

Figures 2 and 3 imply that spin up of the linear circulation (i.e., boundary currents) happens within the480

first five days. Thereafter, eddies form via instabilities and advection, especially in the wider channels.

Nevertheless, their outflow metric seems mostly unaffected by these nonlinearities.
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Other obvious uncertainties surround whether the analytical model still works in fjords that feature sills

or have realistic coastlines, whether it remains useful in the presence of competing forcings such as shelf

waves and subglacial discharge, and how it should be adapted for the case where there is not a convenient485

demarcation of mélange and open water, but rather where iceberg concentration varies along the fjord.

6 Conclusion

The analytical model involved many steps. A summarizing example helps bring all of these steps together.

The continual input of meltwater generates a continual fjord response. Discretizing the problem in time

makes this response easier to understand. In Figure 13, we divide the problem into 100 pieces: 1% of the490

meltwater is released at t = 0.00t0, another 1% is released at t = 0.01t0, and so on up to t = 0.99t0. The

circulation at t = t0 is the sum of these (Figure 13b).

For the response to the last 1% released at t = 0.99t0, we see the lower modes move away quickly

from x = 0 with the higher modes trailing behind (Figure 13c). In front of the mode-1 wavefronts on

each side of the fjord, velocities are zero. Behind the mode-1 wavefronts, but in front of the mode-2495

wavefronts, the velocities are down-fjord in the top half and up-fjord in the bottom half. These velocities

decay exponentially from the wall but, being mode-1, they extend a reasonable distance. Wavefronts for

the higher modes trail behind and their associated velocities decay rapidly with distance from the wall. The

same general velocity structure is present for the case with meltwater released at t = 0.98t0, except that the

mode-1 wavefront on the far side has turned the corner (Figure 13d).500

For the t = 0.95t0 case (Figure 13e), the mode-1 wave that originated on the far side travels around the

fjord perimeter and starts to interfere with the velocity field generated by the other set of Kelvin waves.

The mode-2 wave does the same in the t = 0.90t0 case (Figure 13f). With enough time, this interference

occurs for all modes. Indeed, for the t = 0.00t0 case, the velocity field shown in Figure 13g is zero for

x > 0. This motionless region therefore has no influence on the total velocity field in Figure 13b.505

Figure 13 implicitly illustrates that, down-fjord of x = 0, melt-induced fjord circulation reaches a quasi-

steady state in which it is only responding to the ‘recent’ input of meltwater, with ‘recent’ linked to the

time it takes for the relevant modes (say modes 1 through 10) to travel around the boundary. For most most

Greenland fjords, this will be only a few days.
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Figure 13. Summary of the analytical model. To predict the total fjord circulation at a given time t = t0 as in panel b,

we approximate the continual forcing as, say, 100 sequential, abrupt release cases, examples of which are shown in

panels c–g. See Section 6 for a complete description. For clarity, velocities are shown only at the fjord edges and only

the lowest four modes are considered. Color scales in panels c–g are the same, but they are different to that in panel b.
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Ultimately, the analytical model—and the scalings that follow from it (Section 5.2)—can help to tame510

the daunting problem of predicting the dynamics of fjords that are subject to numerous forcings, of which

iceberg melt is only one. Of course, there is still much to do in extending our analytical model to one that

is directly applicable to a realistic fjord. But we have taken the first steps to predicting flows induced by

iceberg melt that could be applied to fjords across Greenland.
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Appendix A: Ice–ocean thermodynamics515

In our simulations, icebergs produce meltwater through only subsurface melting; wave erosion and melting

at the ice–air interfaces are ignored. Thermodynamics at all ice–ocean interfaces are treated with the

three-equation formulation, and the same velocity-dependent turbulent transfer coefficients are used for the

vertical sides and the basal face. Specifically, we adapt the ‘icefront’ package implementation from Xu

et al. (2012). Turbulent heat fluxes to the ice–ocean interface are520

heat transfer [W m−2] = ρcpγT |u|∆T (A1)

salt transfer [m s−1] = γS|u|∆S (A2)

where ∆T is the difference between the temperature at the ice–ocean interface and the temperature in

the adjacent ocean cell, and similarly for ∆S. The interface conditions come from the solution to the

three-equation formulation. The transfer coefficients for heat and salt in units of m s−1 are γT |u| and γS|u|525

where

γT = 4.4×10−3 (A3)

γS = 1.24×10−4 (A4)

|u|= min
(√

u2 + v2 +w2,0.04ms−1
)

(A5)

The values of γT and γS are far from well constrained; the decimal places are shown only to help preserve a530

link to previous studies that used γT = 1.1×10−3 and γS = 3.1×10−5 (e.g., Xu et al., 2012; Sciascia et al.,

2013). Observations suggest these values are too low at vertical or near-vertical ice faces in Greenland

(Jackson et al., 2020; Schulz et al., 2022). We have increased γT and γS by a factor of four following the

suggestion of Jackson et al. (2020, 2022)1 based on their scenario in which a resolved horizontal velocity

is incorporated into the calculation of the transfer coefficients (rather than just vertical velocity). In our535

case, |u| values are calculated in the cells adjacent to ice–water interfaces. At each interface, two of the

three velocity components will be nonzero. For example, v ̸= 0 and w ̸= 0 for an ice face in the y–z plane.

The 0.04 m s−1 lower limit follows Slater et al. (2015) and is intended to represent unresolved melt-driven

convection.
1Jackson et al. (2020) and some other studies define the conventional values of γT and γS in an alternate way. Namely,

γT =
√

CdΓT and γS =
√

CdΓS where Cd = 2.5×10−3, ΓT = 2.2×10−2, and ΓS = 6.2×10−4.
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Appendix B: Extension to arbitrary stratification540

Conceptually, the analytically model does not change if the reference density is nonlinear. The only

difference is that mode shapes and internal wave speeds need to be calculated numerically with matrix

methods.

Mode shapes for vertical velocity, denoted φ w
n , are the eigenvectors of the following equation:

∂ 2

∂ z2 φ
w
n +

N2

c2
n

φ
w
n = 0 (B1)545

with boundary conditions requiring that φ w
n = 0 at the surface and seafloor. The internal wave speeds cn are

derived from the eigenvalues. We are interested in the horizontal velocity mode shapes, which we denote

φn without a superscript:

φn =
∂φ w

n
∂ z

(B2)

It is easy to confirm that φn = cos(nπz/H) and cn =NH/nπ are eigensolutions to the above set of equations550

if N is constant. Extending the analytical model to nonlinear stratification simply involves replacing all

appearances of cos(nπz/H) and NH/nπ with φn and cn, respectively.

Code availability. The archive at doi.org/10.5281/zenodo.8339482 includes (i) the analytical model written in

Python, (ii) all the code and configuration files necessary to recreate the MITgcm results, and (iii) snapshots of these

results in netCDF format. The analytical model is also available at github.com/hugke729/IcebergMeltCirculation.555
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