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Abstract. The temporal variability of both surface concentrations and column abundances of CO2, CH4 and CO at the Xianghe

site in China are analyzed with the Weather Research and Forecast model coupled with Chemistry (WRF-Chem). Simulations

of these in situ (PICARRO) and remote sensing (TCCON-affiliated) measurements are produced by the model’s passive tracer

option, called WRF-GHG, from September 2018 until September 2019. Our analysis found a good model performance with

correlation coefficients between observations and simulations up to 0.85 for CO2 and 0.69 for CO. Key source sectors for every5

gas are revealed by tracking the anthropogenic fluxes in separate tracer fields. While there are slight variations in the relative

impacts of these source sectors between surface and column observations, owing to differences in the sensitivity footprint

of each observation type, the primary sectors influencing the various species are evident. For CO2 the industry, energy and

biosphere sectors are found to be the primary contributors to the total simulated concentration, whereas CH4 concentrations are

predominantly attributed to the energy, agriculture and residential & waste sectors. For CO, industry is the largest contributing10

sector at Xianghe, followed by residential and transportation sources. Differences among the various observation types were

particularly visible in the contributions of the biosphere to CO2 and the energy sector to CH4, as their largest sources are

located further away from Xianghe. Further, the influence of meteorological factors on the variability observed in the different

time series was analyzed. We found that southwest winds typically bring polluted air masses from the North China Plain to the

site, while northern winds are associated with cleaner conditions. Variability in surface measurements is primarily driven by the15

daily cycle of accumulation and atmospheric mixing linked with the planetary boundary layer height. Furthermore, the study

demonstrates the ability to detect strong regional sources at Xianghe depending on wind direction. To address inconsistencies

between the simulations and observations of CH4, we looked at TROPOspheric Monitoring Instrument (TROPOMI) satellite

observations. We found that the model underestimation of CH4 in summer and overestimation in winter may result from a

combination of a similar bias in the lateral boundary conditions and an incorrect monthly variation of the CH4 emissions in the20

agriculture and/or waste sectors of the CAMS-GLOB-ANT inventory over north China. Additionally, WRF-GHG simulations

indicated a possible overestimation of coal mine emissions nearby Tangshan, which could not be confirmed nor contradicted by

the TROPOMI observations. In summary, our findings highlight the value of WRF-GHG to interpret both surface and column
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observations at Xianghe, offering source sector attribution and insights in the link with local and large-scale winds based on the

simultaneously computed meteorological fields. However, given the long lifetime of the considered species and the fact that25

WRF-GHG is a regional model, accurate initial and lateral boundary conditions remain crucial. The dependence on precise

input emission data on the other hand, can be used to evaluate the existing bottom-up inventories.

1 Introduction

Carbon dioxide (CO2) is the most important anthropogenic greenhouse gas (GHG) and is therefore a key player in climate

change. Driven by human activities, atmospheric CO2 has been increasing since the pre-industrial era to a level that is higher30

than ever (Masson-Delmotte et al., 2021). Methane (CH4) is the second largest anthropogenic contributor to global warming

and overall its global concentration has also been rising the last 200 years to levels that are above the natural changes of the

last millennia (Masson-Delmotte et al., 2021). Moreover CH4 has a 28 times larger global warming potential over a period of

100 year and a 10 times shorter atmospheric lifetime, compared to CO2. Controlling CH4 emissions is therefore a priority to

mitigate climate change in the near future (Saunois et al., 2020).35

Because of rapid industrialization in the past decades and its heavy dependence on coal, China is the world’s largest emitter of

CO2 and CH4 (Friedlingstein et al., 2022; Worden et al., 2022). The main anthropogenic CO2 sources in China are industry,

power generation, residential and commercial activities and transportation (Zhao et al., 2012), while sectors such as coal min-

ing, livestock, rice paddies, landfills and wastewater management are the largest contributors to the CH4 emissions in China

(Chen et al., 2022). China has pledged to reach its carbon peak by 2030 and neutrality by 2060. To help battle climate change40

and reach these goals, it is essential to have accurate observations of the GHG concentrations. Not only does atmospheric

monitoring aid in revealing sources and sinks and controlling the impact of mitigation measures, but by studying temporal

variations a better understanding of the carbon cycle and its interactions with the atmosphere can be achieved.

Since 2018, both ground-based in situ and remote sensing observations of GHGs have been deployed at the Xianghe ob-

servatory, which is located about 50 km southwest of Beijing. Its location in the center of the Beijing-Tianjin-Hebei (BTH)45

megalopolis makes it an interesting site to study the properties and variability of GHGs in a polluted area. The remote sensing

observations are made by a Fourier Transform Infrared (FTIR) spectrometer and are part of the international Total Column

Carbon Observing Network (TCCON), while the in situ concentrations are measured by a PICARRO cavity ring-down spec-

troscopy (CRDS) analyzer that is installed on a tower at an altitude of 60 m above the ground. Some first insights in the

observed time series were made by Yang et al. (2020, 2021) and Ji et al. (2020). The seasonal cycle of CO2 at Xianghe is50

consistent with other sites, with larger values in winter and lower in summer, driven by an increase of fossil fuel from traffic

and heating systems in winter and an uptake by the biosphere in summer due to photosynthesis (Yang et al., 2020, 2021). The

CH4 seasonal cycle however is different from elsewhere, with larger concentrations in summer and autumn and lower values in

spring (Yang et al., 2020; Ji et al., 2020). Furthermore, the column observations of CO2, CH4 and CO show a large day-to-day

variability and are correlated with each other. Yang et al. (2020) showed that the high values are related to both local pollution55

and pollution originating from the south, while low concentrations are corresponding with clean airmasses from more remote
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regions in the north.

This work aims to perform a comprehensive analysis of both in situ and column observations of CO2, CH4 and additionally CO

at Xianghe to complement previous studies and gain a better understanding of the causes of the observed temporal variabilities.

To achieve this goal, we will simulate the time series at a high spatial resolution with the WRF-Chem model for greenhouse60

gases (WRF-GHG). This widely used regional atmospheric transport model simulates the 3-D concentrations together with me-

teorological fields without chemical interactions, which is a valid assumption regarding the regional domain and the relatively

long atmospheric lifetime of the target species (∼ 100 yrs for CO2, ∼ 10 yrs for CH4 and several weeks for CO)(Dekker et al.,

2017). WRF-GHG has already shown to be a useful tool to study CO2 fluxes and variability in China (Dayalu et al., 2018; Liu

et al., 2018; Li et al., 2020; Dong et al., 2021). However, and to our best knowledge, applications to CH4 or CO observations65

in China have not been reported yet. Elsewhere, this model was successfully used to analyze comparable observations (Zhao

et al., 2019; Hu et al., 2020; Park et al., 2020; Callewaert et al., 2022). Therefore, this study will additionally assess the model’s

capability of simulating these time series in north China and highlight its strengths and weaknesses in this region.

The work is structured as follows: in Sect. 2 the Xianghe site and its observations are described, together with the XCH4 prod-

uct of TROPOMI (the TROPOspheric Monitoring Instrument onboard Sentinel-5P), which will give additional insight into the70

results. It is followed in Sect. 3 by an overview of the WRF-GHG model set-up, input data and sensitivity tests. Section 4 de-

scribes how the TROPOMI data is compared with the model output. The model performance at Xianghe is discussed in Sect. 5,

followed in Sect. 6 by an assessment of the different source sectors that impact the Xianghe observations. An detailed analysis

on the found seasonal CH4 bias is given in Sect. 7. Section 8 describes the different factors influencing the observations at

Xianghe and finally, the conclusions are drawn in Sect. 9.75

2 Description of site and observational data sets

2.1 Xianghe

The observation site is situated in Xianghe county (39.75◦ N, 116.96◦ E; 30 m a.s.l.), a suburban area in the Beijing-Tianjin-

Hebei (BTH) region in north China. The center of Xianghe is about 2 km to the east of the site, while the metropolitan cities

of Beijing and Tianjin are located about 50 km to the northwest and 70 km to the south-southeast, respectively (see Fig. 1b).80

Cropland and irrigated cropland are the predominant kind of vegetation in the area. The East Asian Monsoon, which causes

hot, humid summers with plenty of precipitation and cold, dry winters, determines the climate.

Since 1974, atmospheric observations are made at the Xianghe observatory by the Institute of Atmospheric Physics (IAP),

Chinese Academy of Sciences (CAS). In June 2016 a FTIR spectroscopy instrument (Bruker IFS 125HR) was installed on

the roof of the observatory, two years later, a solar tracker was added to the setup and continuous measurements are made85

from June 2018 onwards. This ground-based remote sensing instrument measures spectra in the infrared and is affiliated with

TCCON (Wunch et al., 2011; Zhou et al., 2022), providing total column-averaged dry air mole fractions of CO2, CH4 and CO

(the so-called Xgas). The measurement uncertainty is about 0.6 ppm for XCO2, 6 ppb for XCH4 and 2 ppb for XCO. Further

details about the instrument and retrieval methodology can be found in Yang et al. (2020).
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Figure 1. (a) Location of the WRF-GHG domains, with horizontal resolutions of 27 km (d01), 9 km (d02) and 3 km (d03). All domains

have 60 (hybrid) vertical levels extending from the surface up to 50 hPa. (b) Terrain map including the largest cities in the region of Xianghe,

roughly corresponding to d03. The location of the Xianghe site is indicated by the red triangle in both maps.

Additionally, in situ mole fractions of CO2 and CH4 are measured by a PICARRO cavity ring-down spectroscopy G230190

analyzer since June 2018. The instrument is installed on a tower at 60 m above the ground. More detail about the measurement

setup is given in Yang et al. (2021). The measurement uncertainty is 0.06 ppm for CO2 and 1 ppb for CH4. There are no in situ

observations of CO available at Xianghe.

2.2 TROPOMI

The TROPOMI instrument on board the Sentinal-5 Precursor (S5P) satellite is observing the Earth on a polar sun-synchronous95

orbit. With a daily global coverage, it measures solar backscatter in the near and shortwave infrared absorption bands of

which column-average mixing ratios of CH4 can be retrieved. In our study, we use daily and monthly mean L3 values on a

0.1◦ rectangular lat-lon grid, which were post-processed at BIRA-IASB using the HARP toolset, from the the bias-corrected

reprocessed L2 RemoTec-S5P XCH4 product from SRON, where a quality filter of 1.0 was applied.

The L2 product was evaluated at Xianghe by Yang et al. (2020) and Tian et al. (2022): they found a small negative bias of100

-0.6% and -0.39% with TCCON XCH4, respectively. These values are well within the mission requirements of 1.5 % and

demonstrate the great quality of TROPOMI XCH4 in this part of China.

3 WRF-GHG modelling system

We use the Weather Research and Forecasting model coupled with Chemistry version 4.1.5 (WRF-Chem, Grell et al. (2005);

Skamarock et al. (2019); Fast et al. (2006)) in its passive tracer option, called WRF-GHG (Beck et al., 2011). WRF-GHG is105

a Eulerian atmospheric transport model that simulates the 3-D concentration of trace gases at every time step simultaneously

with meteorological fields. The model configuration consists of three nested domains with increasing resolution in a Lambert

4

https://doi.org/10.5194/egusphere-2023-2103
Preprint. Discussion started: 20 November 2023
c© Author(s) 2023. CC BY 4.0 License.



Conformal projection (see Fig. 1a). The parent domain (d01) has 134 by 130 grid cells of 27×27 km2 and covers a large

part of China, Mongolia, North and South Korea and Japan. The second domain (d02), which has 133 by 121 grid cells of

9×9 km2, mainly covers north China. Finally, the innermost domain (d03) has a resolution of 3×3 km2 over 145 by 124110

grid cells and almost completely covers BTH. There are 60 vertical levels between the surface and 50 hPa. The initial set of

physical parameterization schemes was taken from Li et al. (2020) and Dong et al. (2021) as they have shown good model

performance for simulating CO2 concentrations in China. However, some alternative schemes were tested for the longwave

and shortwave radiation, planetary boundary layer (PBL) and surface layer physics. More detail on these sensitivity tests and

the final configuration is given in Sect. 3.2.115

3.1 Input data

The model was driven by the hourly European Centre for Medium-Range Weather Forecasts (ECMWF) global ERA5 reanal-

ysis data set (0.25◦ × 0.25◦, Hersbach et al. (2023a, b)) for meteorological fields. The concentration fields for CO2 and CH4

are initialized by the 3-hourly Copernicus Atmosphere Monitoring Service (CAMS) global reanalysis for greenhouse gases

(EGG4), while the 6-hourly reactive gases product is used for CO (EAC4, Inness et al. (2019)). These CAMS reanalysis data120

sets are also used at the model domain boundaries to represent influences coming from outside the parent domain (d01). The

evolution of these initial and lateral boundary conditions inside the domain over time is stored in a separate tracer, the so-called

background tracer. Similarly, the evolution of concentrations caused by emissions within the boundaries of d01 is saved in

different tracers, dependent on their source sector. The sum of all tracers, including the background, gives the total simulated

concentrations which can be compared to the observations.125

Because of the large anthropogenic activity in the study region, the choice of anthropogenic flux inventory is likely important

for the accuracy of the simulations. Therefore several options were tested for their capability in simulating the different ob-

servations at the Xianghe site. An overview of which inventories were considered and what the final choice is, can be found

in the next section (Sect. 3.2). Further, biomass burning emissions are coming from the Fire INventory from NCAR (FINN

v2.5, Wiedinmyer and Emmons (2022)) for all species. The observation-based global pCO2 climatology from Landschützer130

et al. (2017) is used to represent the ocean-atmosphere exchange of CO2, while the CH4 fuxes from wetlands are taken from

the WetCHARTS v1.0 climatology (Bloom et al., 2017). Finally, WRF-GHG calculates the biogenic CO2 fluxes online based

on the Vegetation Photosynthesis and Respiration Model (VPRM, Mahadevan et al. (2008); Ahmadov et al. (2007)). It uses

its own calculated 2 m temperature and downward shortwave radiation together with surface reflectance data from the Moder-

ate Resolution Imaging Spectroradiameter (MODIS) onboard the Aqua and Terra satellites. The extra required parameters for135

VPRM are taken from Li et al. (2020).

3.2 Sensitivity tests

As explained in the previous sections, several physical parameterization options and anthropogenic flux inventories were tested

against the observations. Table 1 gives an overview of the five physics combinations that were tested. Note that test E has

exactly the same parameterization set as in the previously mentioned studies (Li et al., 2020; Dong et al., 2021). Further, the140
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model code was adapted to include different anthropogenic emission inventories in separate tracers. As such, one simulation

is sufficient to compare the effect of using different inventories. The anthropogenic flux inventories tested are the following:

EDGAR GHG v6.0 (for CO2 and CH4, Ferrario et al. (2021)), EDGAR Air Pollutants v5.0 (for CO, Crippa et al. (2019)),

CAMS-GLOB-ANT v5.3 (for CO2, CH4 and CO, Granier et al. (2019); Soulie et al. (2023)), PKU v2 (for CO2 and CO, Wang

et al. (2013); Zhong et al. (2017)), REAS v3.2.1 (for CO2 and CO, Kurokawa and Ohara (2020)), MEICv3.1 (for CO2 and145

CO, http://www.meicmodel.org/ ), ODIAC2020b (for CO2, Oda and Maksyutov (2011); Oda and Maksyuto (2015); Oda et al.

(2018)) and FFDAS v2.2 (for CO2, Asefi-Najafabady et al. (2014)). Monthly fluxes are disaggregated into hourly fluxes using

the temporal factors of Crippa et al. (2020), Guevara et al. (2021) and Nassar et al. (2013).

The five simulations, representing different combinations of physical parameterization schemes and anthropogenic fluxes, were

run over three periods of about 2 weeks spread over the year: 1-17 October 2018, 1-17 February 2019 and 10-25 June 2019.150

The first 48h were regarded as spin-up and are not taken into account in the analysis.

The model cell which covers the location of the instrument is selected to compare with the in situ observations. Because the

concentrations are measured at an altitude of 60 m.a.g.l., the WRF-GHG profile is interpolated to this altitude, using the model

surface as ground level. Finally, the observations are averaged over a period of 30 minutes around the hourly model output. The

same model cell is used to compare with the column observations. The five TCCON observations that are closest in time with155

the WRF-GHG output, but deviate no more than 15 minutes, are averaged and used for the comparison. The model profile is

extended above 50 hPa with the TCCON a priori profile and then smoothed by using the averaging kernels in order to account

for the instrument and retrieval characteristics (Rodgers and Connor, 2003).

For each time series the root mean square error (RMSE), mean bias error (BIAS) and Pearson correlation coefficient (CORR)

were calculated. In order to find the most suitable combination of physical parameterization schemes and anthropogenic emis-160

sion inventory, a combined skill score (S) was computed as follows, based on Gbode et al. (2019):

S = (1−RMSEnorm) + (1− |BIASnorm|) +CORRnorm, (1)

where Xnorm = Xi−Xmin

Xmax−Xmin
is the normalized statistical metric. As such, the combination with the highest S will overall

have the lowest RMSE, lowest absolute BIAS and highest CORR. Exact values of the statistical metrics and combined skill

scores for every sensitivity test can be found in Appendix A. Unfortunately, the best combination of physical parameterization165

scheme and anthropogenic flux inventory is different among the five different time series (surface and column CO2 and CH4,

and column CO). Therefore, the final combination was determined through a logical process, which is outlined in Appendix A.

Whenever necessary, preference was given to the surface data, as it is assumed that the physical schemes will have the highest

impact on these simulations. This approach lead to the settings of test B, together with CAMS-GLOB-ANT v5.3 fluxes for

CO2 and CH4 and REAS v3.2.1 (Regional Emission Inventory in Asia) fluxes for CO. Table 2 shows the final set of physical170

parameterization schemes.

Remark that both chosen anthropogenic inventories additionally provide sector-specific information. We decided to include this

information in our simulations by linking different sectors to separate tracers. The 11 sectors from CAMS-GLOB-ANT were

aggregated into five broad sectors to not make the model simulations computationally too expensive. A similar aggregation was
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Test PBL Surface Layer Radiation

A YSU scheme (option 1) Revised MM5 scheme (option 1) RRTMG (option 4)

B MYJ scheme (option 2) Eta similarity scheme (option 2) RRTMG (option 4)

C MYNN3 scheme (option 6) Eta similarity scheme (option 2) RRTMG (option 4)

D MYNN3 scheme (option 6) Revised MM5 scheme (option 1) RRTMG (option 4)

E YSU scheme (option 1) Revised MM5 scheme (option 1) RRTM and Dudhia (option 1)
Table 1. Overview of sensitivity tests on different physical parameterization options. They are a combination of three different PBL schemes:

Yonsei University (Hong et al., 2006), Mellor-Yamada-Janjic (Janjić, 1994) and Mellor-Yamada-Nakanishi Niino Level 3 (Nakanishi and

Niino, 2006, 2009; Olson et al., 2019); two surface layer schemes: Revised MM5 (Jiménez et al., 2012) and Eta similarity (Janjić, 1994); and

two radiation schemes: RRTMG Longwave and Shortwave schemes (Iacono et al., 2008) versus RRTM Longwave and Dudhia Shortwave

schemes (Dudhia, 1989; Mlawer et al., 1997).

Physics Scheme name Option

Microphysics Morrison 2-moment 10

Longwave radiation RRTMG 4

Shortwave radiation RRTMG 4

Planetary boundary layer Mellor-Yamada-Janjic 2

Surface layer Eta similarity 2

Cumulus Grell 3D Ensemble 5

Land surface Unified Noah Land Surface Model 2
Table 2. Overview of physical parameterization options used for final WRF-GHG simulations.

performed on the REAS sectors. The mapping is given in Table 3. This will allow us to track the respective contributions to the175

total simulated concentrations of the following sources: energy, industry, transportation, residential & waste and agriculture.

More detail about what is included in every sub-sector can be found in the documentation of the respective data set.

4 Comparing TROPOMI with WRF-GHG

To compare the spatial XCH4 distribution of TROPOMI with those of WRF-GHG, XCH4 values are calculated from the hourly

3-D model output data as follows:180

XCH4 =
∑

i νiρ
da
i τi∑

i ρ
da
i τi

, with ρda
i =

Pi

RTi

1
1 +1.6075qi

. (2)

In the above equation νi is the CH4 volume mixing ratio (ppb), ρda
i the dry air number density (mol m−3) and τi the thickness

of layer i (m). The dry air number density ρda
i is calculated according to the ideal gas law, where Pi, Ti and qi are the air

pressure (Pa), temperature (K) and water vapour mixing ratio (kg kg−1) in WRF-GHG layer i, respectively. Finally, R is the

ideal gas constant 8.3145 J K−1 mol−1.185
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CAMS-GLOB-ANT (for CO2 and CH4) This study REAS (for CO)

Power generation (ene)

Energy

Power plants point

Fugitives (fef) Power plants non-point

Oil refineries and transformation sector (ref)

Industrial processes (ind) Industry Industry

Road transportation (tro)

Transport

Road transport

Off Road transportation (tnr) Other transport

Ships (shp)

Residential, commercial and other combustion (res) Residential &

Waste

Domestic

Solid waste and waste water (swd)

Agriculture soils (ags)

AgricultureAgricultural waste burning (awb)

Agriculture livestock (agl)
Table 3. Overview of mapping between the emission sectors provided by CAMS-GLOB-ANT v5.3 (first column) and REAS v3.2.1 (third

column) and the five broad sectors used in this study (second column).

TROPOMI has a local overpass time of around 13:30, so we compute the simulated daily mean XCH4 by taking the average

over 12h-15h LT. To take into account the large day-to-day variability in the spatial coverage of the TROPOMI product due

to changing cloud cover (XCH4 is only retrieved on cloud free pixels), we regrid the TROPOMI L3 daily weights (which are

a measure of how much information is in each of the L3 grid cells) to the WRF-GHG model resolution and apply this to the

simulated daily means. As such, the model data at locations where there is no observation will not be included on that day. The190

monthly and seasonal means are then computed as weighted averages of the daily information.

We will compare the TROPOMI data with WRF-GHG XCH4 in domain 2 which has a horizontal resolution of 9×9 km2 as this

is very close to the 0.1◦ resolution of TROPOMI and allows us to make an evaluation on a larger region than only Beijing and

Tianjin. We did not apply a smoothing of the model profiles with the TROPOMI averaging kernels as we only want to make a

qualitative comparison here and focus on the spatial gradients of both products. Remark that in the corresponding figures, we195

have shifted the colour scale of the WRF-GHG concentrations to be 40 ppb higher than those of TROPOMI to have both maps

in comparable colors. The value of 40 ppb should compensate for the model top of WRF-GHG being at 50 hPa, which is lower

than TROPOMI.

5 Model performance

With the model settings as elaborated in Sect. 3, WRF-GHG was run from 15 August 2018 to 1 September 2019. However,200

the first two weeks were regarded as a spin-up phase, so the analysis is made on data of one full year: from 1 September 2018

until 1 September 2019. This conservative spin-up period is implemented to ensure thorough mixing of the tracers within the
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CO2 (ppm) CH4 (ppb) CO (ppb)

surface column surface column column

BIAS 2.52 -1.43 9.43 -3.03 0.42

RMSE 20.94 2.45 251.82 23.96 31.85

CORR 0.68 0.85 0.56 0.56 0.69
Table 4. Statistics for the different observations at Xianghe site: mean bias error (BIAS), root mean square error (RMSE) and Pearson

correlation coefficient (CORR).

domain. The complete data set can be accessed on https://doi.org/10.18758/P34WJEW2 (Callewaert, 2023). The WRF-GHG

output was compared with the observations in the same way as for the sensitivity tests (see Sect. 3.2).

An overview of the simulated and observed time series of the GHG concentrations at Xianghe is shown in Fig. 2, while Fig. 3205

shows the differences between simulated and observed data. In general we find that WRF-GHG is quite accurate in simulating

these measurements: the XCO2 observations are slightly underestimated with a mean bias error of -1.43 ppm (see Table 4),

while the surface CO2 simulations show a small overestimation with a mean bias error of 2.52 ppm. For CH4 we find a model

underestimation of -3.03 ppb for the columns and an overestimation of 9.43 ppb near the surface. Finally, we find no significant

bias for the XCO time series (0.42 ppb). The bias is below the measurement uncertainty only for XCH4 and XCO. Furthermore,210

relatively high correlation coefficients (≥ 0.68) are found for all CO2 and CO time series. For CH4 only a moderate correlation

of 0.56 was found.

In Fig. 3a, we see that WRF-GHG is underestimating XCO2 until May 2019 with about 2 ppm, after which the negative bias

disappears. A similar pattern is found when comparing the CAMS reanalysis data set with the TCCON data at Xianghe and

other sites in that part of the globe (Rikubetsu, Tsukuba, Saga, Hefei). As CAMS reanalysis data was used as initial and lateral215

boundary conditions, we assume that the error pattern detected in the XCO2 time series is the result of the same pattern in the

background information. Moreover, this bias is not found in the in situ CO2 time series (Fig. 3b), likely because the relative

contributions from emission sources in the domain to the in situ concentrations are much larger than they are to the column

data.

Similarly, it can be seen from Fig. 3c that WRF-GHG is underestimating the TCCON XCH4 data in summer (June - November)220

and slightly overestimating them in winter (January - March), leading to the lower correlation coefficient. Again, a comparable

pattern is found in the CAMS - TCCON comparison, however with a much smaller amplitude. Moreover, the same seasonal bias

is found in the time series for the in situ data (Fig. 3d). Therefore, this discrepancy is likely linked to an incorrect seasonality

in the CH4 emissions. More detail on possible sources of this mismatch will be given in Sect. 6.3.

6 Sector contributions225

As explained in Sect. 3, all fluxes that are included in WRF-GHG are tracked in separate tracers. This allows us to disentangle

the total simulated concentrations into the different tracer contributions and evaluate the influence of different source sectors
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Figure 2. Observed (black) and simulated (red) time series at the Xianghe site of (a) XCO2, (b) in situ CO2, (c) XCH4, (d) in situ CH4 and

(e) XCO. Data points are hourly.

on the observations at Xianghe, as well as their respective importance. An overview of the monthly mean values is shown in

Fig. 4. Note that all simulated hours were used for this plot, not just the ones coinciding with observations.

6.1 CO230

According to WRF-GHG, the CO column time series is primarily influenced by sources from the industry, residential and

transportation sectors, of which the industry sector is the largest contributor (Fig. 4e). Energy sources and biomass burning are

not important for the observations at Xianghe. Both residential and transportation tracers show larger values in winter, which

is in agreement with higher emissions in that period of the year due to colder air temperatures. Remark that the emissions from

the industry sectors are relatively constant throughout the year, while the tracer contributions to the simulated concentrations235

in Xianghe show quite some variability with for example larger values in winter and smaller in spring. This is likely because

of the variability in meteorological conditions (wind direction, stagnant air masses etc ...) from month to month, which we will

come back to in Sect. 8.
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Figure 3. Time series of the differences between WRF-GHG simulations and observations of (a) XCO2, (b) in situ CO2, (c) XCH4, (d) in

situ CH4 and (e) XCO. The black dots are hourly values, while the red line indicates the monthly mean differences.

6.2 CO2

The main sectors contributing to the CO2 data at Xianghe are energy, industry and the biosphere (Fig. 4a,b). For both column240

and surface simulations, the largest sectors are energy (which is mainly power plants) and industry. Additionally, the biosphere

contributes significantly to the column data, especially from May to September. In the rest of the year, the biogenic tracer

is a net source. For the surface data the biosphere is a small source throughout the year, except in August. The difference

between column and in situ can be attributed to the fact that the regions with the most pronounced biogenic sink are a bit

further away from Xianghe and are therefore better sensed by the column observations than those near the surface. Likewise,245

the VPRM-computed fluxes indicate that the biosphere in the immediate vicinity of Xianghe predominantly acts a net source,

with the exception of the month of August. Next to the biosphere, industry and energy, also transportation and residential

sources have a small influence on the Xianghe data. During winter, the contribution of residential sources is larger than in the

rest of the year, which is in agreement with the general emissions patterns in China. Finally, no relevant impact was found

from biomass burning and the ocean. As for CO, the tracer contributions from the energy and industry sectors show quite some250

variability despite their relatively constant emissions throughout the year. This can likely be attributed to meteorological factors

as discussed further in a later section.
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Figure 4. Monthly mean tracer contributions above the background for (a) XCO2, (b) in situ CO2, (c) XCH4, (d) in situ CH4 and (e) XCO

simulated concentrations at Xianghe.

6.3 CH4

For CH4 the simulated signal at Xianghe is mainly influenced by three sectors: energy, agriculture and residential & waste

(Fig. 4c,d). Furthermore there is a small contribution from wetlands in summer. Other sectors such as industry, transportation,255

termites and biomass burning seem to be irrelevant at Xianghe. Energy sources appear to have more impact on the column

than on the in situ observations. When looking at the mean vertical profiles of the different tracer contributions above Xianghe

(Fig. B1) we see that the contributions from the energy sector are generally found at a higher altitude compared to other

sectors. High concentrations near the surface are associated with emission sources nearby, while those aloft are likely caused

by long-distance pollutant transport in the free troposphere. Therefore, we assume that this difference between column and260

surface energy contribution is because the strongest energy sources are situated in Shanxi (the largest coal producing province

in China), which is much further away from Xianghe than for example the strongest residential sources (Beijing and Tianjin),

see Fig. B2.

There is a larger residential signal in winter, while for agriculture, the contributions peak in September and are smallest in

spring. This corresponds with the seasonal pattern of emissions within CAMS-GLOB-ANT.265

As for the other species, we see quite some month-to-month variability in the contribution of the energy sector, which is
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probably due to differences in meteorological conditions as the month-to-month variations are quite similar for the different

tracers and the other gases, despite their different sources.

7 Seasonal CH4 bias

In Sect. 5 we discussed that there is a seasonal bias in the CH4 time series of WRF-GHG which is likely caused by incorrect270

emission fluxes. Assuming that the main sectors as simulated by WRF-GHG and discussed in Sect. 6.3 are realistic, we suspect

the following sources of error:

– Agriculture. As presented in Table 3, the agricultural sector is comprised of three subsectors: soils (this is mainly rice

cultivation), agricultural waste burning, and livestock (manure management and enteric fermentation). In China, rice

cultivation plays a vital role but is predominantly concentrated in regions south of 35◦N. According to CAMS-GLOB-275

ANT, the most important agriculture subsector in the region of the Xianghe site is livestock. Unfortunately, the source

of monthly variations in CH4 emissions within the CAMS-GLOB-ANT data set remains somewhat unclear, as the

accompanying data set of temporal factors, CAMS-GLOB-TEMPO (Guevara et al., 2021), references constant factors for

CH4 emissions from agricultural sources. The data set however, shows peak emissions in September in the wide region

around Xianghe and minimum values in March and April. Maasakkers et al. (2016) suggests that manure management is280

dependent on air temperature, which would lead to larger emissions from May to September and lower from December

to February. If this theory holds, it implies we would find an underestimation of CH4 concentrations in the summer

and an overestimation in the winter. Therefore, an incorrect monthly variation in the CH4 agricultural emissions could

potentially account for the observed bias.

– Residential & waste. This sector represents emissions from residential, commercial and other combustion sources to-285

gether with CH4 emissions from solid waste and waste water treatment. In CAMS-GLOB-ANT, the waste sector is the

most important one in the Xianghe region and assumed to be constant throughout the year. In winter, when residen-

tial combustion emissions are higher, they are almost similar in size as the waste emissions. So the seasonality of the

residential & waste sector is coming from the residential part, peaking in winter. This is consistent with the simulated

contributions from this sector (see Fig. 4c,d). However, Hu et al. (2023) showed that CH4 emissions from waste treat-290

ment often follow the seasonality of air temperature. Even though this study is based on observations in the Hangzhou

megacity, their results could possibly be representative for the BTH region as well. This would mean that the waste emis-

sions are underestimated in summer and/or overestimated in winter, which would match the current model-observation

mismatch for CH4.

– Wetlands. Within the WRF-GHG simulations, wetlands only show minor contributions to the surface and column data,295

and only in summer. Emissions are taken from the WetCHARTs v1.0 ensemble data set. In the BTH area, the main

wetland areas are located close to the Bohai Sea (see Fig. B2). However, according to WetCHARTs, these emissions

are relatively small compared to those from wetlands more in the south of China. In an evaluation of the WetCHARTs
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ensemble against GOSAT observations by Parker et al. (2020), a general underestimation of the seasonal amplitude in

China was found. This would mean an underestimation of the wetland CH4 emissions in summer. Furthermore, Chen300

et al. (2022) showed increased posterior wetlands emissions compared to the a priori values when inferring yearly CH4

emissions over China using TROPOMI satellite observations. This could point to an underestimation of the wetland

emissions in the current study.

The observed seasonal error pattern between the WRF-GHG CH4 simulations and the observations at Xianghe could be caused

by one of the reasons mentioned above, or by a combination of them. For a more spatial perspective of this seasonal bias, we305

compared the WRF-GHG XCH4 field with TROPOMI observations. Figure 5 shows the seasonal mean XCH4 from WRF-

GHG and TROPOMI over the wide region around Xianghe. In DJF and MAM both maps agree quite well, however in JJA and

SON there are large differences between WRF-GHG and TROPOMI. WRF-GHG seems to underestimate CH4 from June to

November and this over the entire area. This corresponds with our previous findings in Sect. 5 when comparing WRF-GHG

with TCCON and confirms the good agreement between TROPOMI and TCCON in this region. The largest discrepancies are310

found in JJA, when there are much higher concentrations measured by TROPOMI, especially to the south of 38◦N.

Because Fig. 5 shows differences on a large spatial scale, this indicates that the underestimation by WRF-GHG is linked to

emission sources that are widespread in the region. Since the North China Plain is a livestock-dominated region with strong

urbanization and industrial activities we assume that it is the fluxes of either agriculture (livestock), waste treatment or both,

rather than the fluxes from wetlands, that are underestimated in summer in CAMS-GLOB-ANT.315

More research about the seasonality of CH4 emissions in north China is needed to understand these discrepancies.

8 Meteorological factors influencing variability

The previous sections discussed how emissions from different sources affect the CO2, CH4 and CO observations at Xianghe.

In the current section we want to focus on the meteorological factors that influence the temporal variability of the time series.

More specifically we will discuss the impact of large-scale phenomena, the planetary boundary layer and local winds.320

8.1 Synoptic scale winds

Because FTIR observations generally have a large area of representativeness (generally a few 100 km), column concentrations

are relatively insensitive to local fluxes and vertical mixing, while they are strongly influenced by large-scale patterns (Keppel-

Aleks et al., 2011). We use the winds at 800 hPa to represent horizontal transport in the free troposphere, as this altitude is

generally above the planetary boundary layer height. More specifically, we looked at the daily mean column concentrations325

above the background for every wind direction to see if a clear relationship could be found. This is shown in Fig. 6.

Remark that only southwest (SW) and northwest (NW) wind segments are given because southeast and northeast winds occur

only seldom at 800 hPa: only on 2 and 15 days out of 237, respectively. We find that in general, larger enhancements are

found when winds blow from the SW wind segment compared to the NW segment. To quantify the difference, we performed a

non-parametric Mann-Whitney U test on the two categories. For all species, we find p-values far below 0.05 (see Fig. 6, on top330
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Figure 5. Seasonal mean XCH4 (ppb) over the domain d02 (provinces of Beijing, Tianjin, Hebei, Shanxi and part of Shandong) as simulated

by WRF-GHG (first column) and observed by TROPOMI (second column). The seasons are defined as (a,b) SON: September - November

(autumn), (c,d) DJF: December - February (winter), (e,f) MAM: March - April (spring) and (g,h) JJA: June - August (summer). White pixels

indicate that there are no observations available during the entire period.

15

https://doi.org/10.5194/egusphere-2023-2103
Preprint. Discussion started: 20 November 2023
c© Author(s) 2023. CC BY 4.0 License.



Figure 6. The distribution of the daily mean simulated column tracers above the background per 800 hPa wind direction category and species.

NW is for winds with an angle of 270 to 360 ◦ from north, while SW represents the angles between 180 and 270◦. There are 134 days with

NW winds and 86 days with SW winds. The colored boxes indicate the range between the first and third quartile, while the thick solid line

is the median. Outliers (values that are 1.5 times the interquartile range above (below) the third (first) quartile) are shown by black dots.

of each panel) indicating that indeed the differences are statistically significant. Higher concentrations coincide with 800 hPa

winds coming from the SW while NW winds correspond with lower concentrations. Yang et al. (2020) already showed that

the day-to-day variation of the column observations of the different species are highly intercorrelated, and that clean days are

linked with air from the north, while polluted days are linked with air from the south, which is confirmed here by the WRF-

GHG simulations. Air masses from the north have been moving over rather remote and clean areas such as Inner Mongolia,335

Mongolia and Russia. Meanwhile, southerly air is linked with the highly populated North China Plain (NCP), where many

emission sources are located.

As discussed in Sect. 6, absolute tracer contributions are also affected by the monthly variability in meteorological phenomena.

For example in the winter months, weather conditions are generally more favorable to accumulation leading to high pollution

levels (Li et al., 2022). This could enhance both local plumes as well as those advected with the southwestern winds. The tracer340

concentrations at Xianghe are therefore the result of a complex interaction of local and remote emissions, wind direction and

local and remote weather patterns.

Moreover, the presence of polluted air from the SW is also visible in the surface concentrations. A high correlation coefficient

of 0.79 is found between the daily mean column and surface tracer contributions above the background for both CO2 and CH4

(see Fig. 7). This means that both the surface and column concentrations are influenced by synoptic scale winds, bringing either345

clean or polluted air masses to Xianghe.
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Figure 7. Daily mean surface enhancement with respect to column enhancement for (a) CO2 and (b) CH4. The enhancement is defined as

the difference between the total simulated concentration and the background tracer concentration.

8.2 Planetary boundary layer dynamics

The planetary boundary layer (PBL) is the lowermost layer of the atmosphere which is in direct contact with the Earth’s

surface. The characteristics of this layer vary throughout the day. During the day, under influence of solar radiation, turbulent

motions cause strong vertical mixing of the air within the PBL. These processes allow gases to be dispersed and transported350

upwards, which generally leads to reduced concentrations near the surface. At night, radiational cooling of the surface creates

a temperature inversion close to the ground. This stable nocturnal layer is quite shallow and tends to trap pollutants near the

surface, increasing their concentrations.

Figure 8 shows the diurnal variation of the PBL height as simulated by WRF-GHG and the CO2 and CH4 concentrations near

the surface (both simulated and observed). Indeed, the height of the PBL is largest in the afternoon when solar radiation is355

strongest, reaching its peak at 15h (local time). This corresponds with the lowest observed surface concentrations (Fig. 8b,c).

Right after sunset, the height of the PBL drops to its lowest value, after which it persists during the course of the night, until

sunrise. This period corresponds with slightly increasing CO2 and CH4 concentrations as emissions near the surface accumulate

within this stable shallow layer. The highest concentrations are found in the early morning, around 7-9h local time, when the

PBL is still quite shallow and the emissions are peaking. Afterwards, when turbulent mixing has emerged, the concentrations360

suddenly drop, creating a diurnal cycle. Remark that WRF-GHG is very well capable at simulating this diurnal variation of

both CO2 and CH4 in situ observations. These dynamics are very important for the variability of the surface concentrations,

however they are irrelevant for the column concentrations, as the latter are much less affected by vertical transport (Wunch

et al., 2011). Moreover, the FTIR observations are only available during the day because they require the presence of solar

radiation.365

8.3 Local emissions

Regional emissions are influencing both column and in situ concentrations at Xianghe, as elaborated in Sect. 8.1. However,

emission sources nearby could also have an impact on these values, especially for the in situ observations as they sample the
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Figure 8. Hourly median and interquartile range of the (a) simulated planetary boundary layer height, and observed and simulated surface

(b) CO2 and (c) CH4 concentration at Xianghe.

local air. To analyze which nearby sources influence the Xianghe measurements, we look for correlations between the 10m

wind speed and direction and the simulated concentrations. Figure 9 reveals the mean WRF-GHG tracer contribution per wind370

direction and speed for CH4. To eliminate the influence of polluted plumes from further away, we select only those days on

which the mean daily XCO enhancement (sum of all WRF-GHG tracers above the background) is smaller than 45 ppb. We

use XCO as a tracer for polluted events as it is the species with the shortest atmospheric lifetime. Furthermore, we compute

the mean concentrations separately for day and night to avoid the effects of the PBL. The night hours are defined as those with

the peak concentrations, i.e., between 3h and 8h LT, while the day represents those hours with highest atmospheric mixing375

and lowest concentrations, i.e., between 13h and 18h. During the day most winds are coming from the north and southwest,

while at night the most frequent wind directions are north and east. Higher wind speeds are found during the day than at night.

The northern winds typically have the lowest tracer contributions since there are fewer emission sources in this direction, with

the exception of agriculture (see Fig. 10). In general, we see that wind directions with the largest enhancements correspond

with the largest sources nearby (Fig. 9-10): east and west for energy, all but north for residential, all directions for agriculture,380

southwest for industry and southeast for wetlands. Similar plots for CO2 are given in Fig. B3 and B4. The highest values

overall are found for the energy tracer at night and they are coming from the east. To the east are some very large CH4 point

sources which correspond to coal mine emissions nearby the city of Tangshan (see Fig. 10a). However, when looking closer at

the CH4 time series we see that WRF-GHG is often overestimating the Xianghe in situ CH4 observations at times where the

model shows a large energy contribution. This is also visible in Fig. 11. This makes us to believe that these coal mine emissions385

might be overestimated in CAMS-GLOB-ANT. In the next section we try to verify this assumption by comparing WRF-GHG

concentration fields with TROPOMI observations.

18

https://doi.org/10.5194/egusphere-2023-2103
Preprint. Discussion started: 20 November 2023
c© Author(s) 2023. CC BY 4.0 License.



Figure 9. Mean CH4 simulated tracer concentrations (indicated by colour scale, in ppb) binned per wind speed and direction for the main

sectors (a) energy, (b) residential & waste, (c) agriculture, (d) industry and (f) wetlands on days without strong regional pollution. The first

row represents afternoon hours (13h - 18h LT), while the second row represents nighttime hours (3h - 8h LT). Data is binned per 1 m s−1

and 11.25◦ wind direction. (f) Count of data points in each bin. Only bins with at least 3 points are included in the figure. Remark that the

panels have different colour scales.

8.3.1 Assessing CH4 emission sources

By comparing the TROPOMI XCH4 with WRF-GHG XCH4, we want to assess if the CH4 emissions from coal mines around

Tangshan are indeed overestimated in CAMS-GLOB-ANT or not. Figure 12 shows the maps of the weighted mean XCH4390

during the entire simulation period: September 2018 until September 2019. The yearly mean total CH4 fluxes from CAMS-

GLOB-ANT in the WRF-GHG domain 2 is also given. By taking the average over the complete simulation period we aim to

minimize the influence of meteorological patterns on the XCH4 concentration and expose the main emission sources. When

comparing the WRF-GHG input fluxes in Fig. 12a with the resulting XCH4 concentration field in Fig. 12b, we indeed find a

strong agreement. The largest sources are found to the west of 114◦E, which correspond to the extensive coal mining activities395

in Shanxi. In the same locations on the XCH4 map we find the highest concentration values of the region. Unfortunately due

to the mountainous terrain, TROPOMI observations are sparse in this area. Other sources, such as a hotspot around 36◦N,

117◦E and the slightly smaller emissions around Beijing (40◦N, 116.3◦E) and Tangshan (39.6◦N, 118.4◦E) correspond with

elevated XCH4 values. This suggests that yearly averaged XCH4 maps can indeed reveal the strongest emission sources. The

region below 37◦N shows high simulated XCH4 values as well, however they do not directly correspond to strong sources in400

the inventory. This can likely be explained by the presence of the Taihang mountains on the west which lead to poor dispersion

conditions (Fu et al., 2014). Therefore the larger concentrations in this area are likely more determined by the topography and

associated meteorological conditions than by surface fluxes.

We find slightly elevated XCH4 values nearby the coal mines of Tangshan (∼ 39.6◦N, 118.4◦E) in both WRF-GHG and
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Figure 10. Map of the mean CH4 flux (mol km−2 h−1) in WRF-GHG domain d03 during the entire simulation period from September 2018

until September 2019, for the most important sectors. Remark that the panels have different colour bar scale. The location of the Xianghe

site is indicated by a black cross.

Figure 11. Correlation between energy tracer contribution to simulated CH4 surface concentrations and differences between total simulated

and observed surface concentrations. For this plot, the data was not filtered on day, night or polluted/clean days.
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Figure 12. (a) The CH4 flux from all sectors in CAMS-GLOB-ANT averaged from September 2018 until September 2019 and regrid to

WRF-GHG grid d02 (9 km resolution). Mean XCH4 over the same period as (b) simulated by WRF-GHG in domain d02 and (c) observed

by TROPOMI (regridded to 0.1 ◦).

TROPOMI maps. However, the TROPOMI map shows similar or even stronger elevated concentrations at many other locations405

in the region, indicating a general XCH4 underestimation by WRF-GHG. Remind that we applied a fixed offset of 40 ppb to the

colour scale of the WRF-GHG plot to account for the CH4 concentrations above 50 hPa, this is however an approximation so

comparing both maps in a quantitative way should be avoided. If we consider only the colour gradients instead, we can deduce

that the CH4 sources around Tangshan (and Beijing) are likely overestimated relative to others in the region. To put it differently,

it is possible that either most sources within BTH are accurately represented in the WRF-GHG model, except for those in the410

vicinity of Beijing and Tangshan, which are overestimated. Alternatively, it could be the reverse scenario, where emissions from

Beijing and Tangshan are relatively accurate, but those from the other sources in the region are underestimated. Nevertheless,

it is important to note that this qualitative comparison alone cannot yield a definitive conclusion since the considered sources

are likely too small to be reliably detected by TROPOMI.

9 Conclusions415

We have used the WRF-Chem model in its passive tracer option WRF-GHG to simulate surface concentrations and column

abundances of CO2, CH4 and CO observed at the Xianghe site in China and to improve our knowledge about the origin of

the observed variabilities in the measured time series. Since June 2018, column-averaged concentrations are measured with a

FTIR spectrometer that is part of TCCON, while near-surface concentrations of CO2 and CH4 are measured with a PICARRO

CRDS analyzer at an altitude of 60 m.a.g.l. With WRF-GHG we computed 3-D concentration fields from September 2018420

until September 2019 in three nested domains covering a large part of China and its neighboring countries. The simulations

from the innermost domain covering the Beijing-Tianjin-Hebei megalopolis with a horizontal resolution of 3×3 km2 are com-

pared with the observations. Sensitivity tests were performed to select the most suitable anthropogenic emission inventory and

set of physical parameterization schemes. The CAMS-GLOB-ANT v5.3 inventory was selected to represent anthropogenic

emissions within the model domain for CO2 and CH4, while for CO we have used the REAS v3.2.1 data set. For all species,425
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different subsectors were aggregated into five source sectors to analyze their respective contributions: industry, energy, agri-

culture, transportation and residential & waste. Other sources that were taken into account were biomass burning, wetlands,

termites, and CO2 fluxes from ocean and the biosphere.

Overall, we found a good model performance with correlation coefficients above 0.68 for CO2 and CO and 0.56 for CH4. A

negligible bias was found for XCO while WRF-GHG showed a small underestimation of -1.43 ppm and -3.03 ppb with respect430

to TCCON XCO2 and XCH4, respectively. The in situ time series of CO2 and CH4 are slightly overestimated by WRF-GHG,

by 2.52 ppm and 9.43 ppb, respectively.

For CO2, the most important sectors contributing to the Xianghe observations are industry, energy and the biosphere, followed

by minor contributions from residential and transportation sources. The CH4 signal mainly consists of enhancements from

energy, agriculture and residential & waste sectors. And finally, for CO we found that industry is the largest emission sector435

followed by residential and transportation. For CO2, the biogenic contributions to the column observations are larger in sum-

mer when they are a sink, while they are a net source in winter. Near the surface, the relative biogenic CO2 contributions are

smaller and a source in all months except August. This difference is likely because of the lack of strong photo-synthetically

active vegetation in the neighborhood of Xianghe. For CH4, the energy sector appears to have a larger impact on the col-

umn abundances than on the surface concentrations due to differences in the sensitivity footprints between the remote sensing440

column and in situ observation and the distance between the observation site and the strongest sources. For all species, the

residential and transportation sectors show larger contributions in winter compared to summer, consistent with their emission

patterns. However, all tracers are additionally influenced by monthly variability in meteorological conditions such as horizontal

advection and atmospheric stability. This is especially visible in the contributions of energy and industry sectors which have

relatively constant emissions throughout the year.445

A strong correlation between the column enhancements and the free tropospheric wind direction showed that air masses ad-

vected from the southwest generally carry higher concentrations compared to those from the northwest. Under southwest wind

regimes, pollution from the heavily populated and industrialized North China Plain reaches the Xianghe site. This increases

both the column abundances and surface concentrations. Due to their large spatial footprint, these large-scale phenomena are

the dominant factor influencing the variability of the column data. However for the in situ observations, also the planetary450

boundary layer and local emissions play an important role. The daily cycle of turbulent mixing during the day and accumu-

lation near the surface at night driven by solar radiation leads to lowest CO2 and CH4 concentrations being measured in the

afternoon when atmospheric mixing is strongest. On the other hand, peak values are found in the early morning around sunrise

when local emissions are strongest and species have been accumulated all night in the lowest layer of the atmosphere. Depend-

ing on the local wind speed and direction, plumes from nearby sources are visible in the Xianghe observations.455

Some discrepancies in the model-data comparisons are difficult to explain with WRF-GHG and local observations at Xianghe

alone. Therefore, we additionally compared the simulated XCH4 with observations from TROPOMI to support our initial find-

ings. More specifically we found that WRF-GHG is underestimating CH4 at Xianghe both near the surface and in the total

column from June to September. Part of this seasonal bias can be explained by a similar bias that is already present in the

lateral boundary conditions from the CAMS reanalysis. Additionally we suspect that widespread emission sources such as460
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agriculture and waste have incorrect seasonal cycles in the CAMS-GLOB-ANT inventory as a similar difference pattern was

found between WRF-GHG and TROPOMI, but on a larger scale. Secondly, comparisons between the simulated and observed

CH4 concentrations near the surface identified a possible overestimation of the CH4 emissions around Tangshan which are

associated with coal mining. Because column-averaged concentrations are integrated over multiple atmospheric layers, only

very strong point sources are easily detectable by TROPOMI XCH4 observations and the energy sources around Tangshan465

lead to only minor enhancements in the TROPOMI XCH4 fields. Therefore the TROPOMI observations can not confirm the

overestimation of the CH4 coal mine emissions, nor do they contradict this assumption.

This study showed that high-resolution simulations of WRF-GHG are useful to analyze both remote sensing and in situ obser-

vations of CO2, CH4 and CO column abundances and surface concentrations at Xianghe. The added value of the source sector

separation and the simultaneous calculated meteorological fields yields an extensive data set, enabling us to give a variety of470

new perspectives on the observed time series. The simulated fields, however, strongly rely on accurate boundary conditions

because the considered species have relatively long atmospheric lifetimes, and inaccuracies therein will be transmitted into the

model’s output. The dependence on precise emission data can be both a strength and a weakness, as discrepancies between

simulated and observed fields can be used to identify flaws in bottom-up emission inventories.

Code and data availability. The ERA5 and CAMS reanalysis data set (Hersbach et al., 2023a, b), used as input for the WRF-GHG sim-475

ulations, was downloaded from the Copernicus Climate Change Service (C3S) Climate Data Store (2022). The CAMS-GLOB-ANT v5.3

emissions (Granier et al., 2019; Soulie et al., 2023) and temporal profiles CAMS-GLOB-TEMPO v3.1 (Guevara et al., 2021) are archived and

distributed through the Emissions of atmospheric Compounds and Compilation of Ancillary Data (ECCAD) platform. The REAS emission

inventory is publicly available at https://www.nies.go.jp/REAS/ (Kurokawa and Ohara, 2020). The WRF-Chem model code is distributed by

NCAR (https://doi.org/10.5065/D6MK6B4K, NCAR, 2020). The WRF-GHG simulation output created in the context of this study can be ac-480

cessed on https://doi.org/10.18758/P34WJEW2 (Callewaert, 2023). The TCCON data were obtained from the TCCON Data Archive hosted

by CaltechDATA at https://tccondata.org (Zhou et al., 2022), while the surface observations at Xianghe were received through private com-

munication with the co-authors. TROPOMI Level 2 Methane Total Column data are publicly available online at https://doi.org/10.5270/S5P-

3lcdqiv and the Copernicus Open Access Hub.

Appendix A: WRF-GHG sensitivity tests485

In Sect. 3.2 we explained that different anthropogenic emission inventories and physical parameterization schemes were tested

in the WRF-GHG simulations. More specifically, up to 7 different flux data sets (depending on the species) and 5 different

parameterization configurations were considered (see Table 1). The model output of simulations over three short periods was

combined and compared with the observational data based on the statistical metrics of root mean square error (RMSE), mean

bias error (BIAS) and Pearson correlation coefficient (CORR). An overview of all results, together with the combined skill490

score (S, Eq. 1) is given in Tables A1, A2, A3, A4 and A5 for the time series of in situ CO2, in situ CH4, XCO2, XCH4 and
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XCO, respectively.

As the combination with the highest S is different among the five observation types, we decided on the final set as follows:

– For each statistical metric, we calculate a threshold derived from the mean (µ) and standard deviation (σ) of all occurring

values. Combinations in which one or more of the metrics exceed or fall below these thresholds are excluded from the495

selection process. Specifically, these combinations must conform to the following set of equations:

CORR≥ µCORR−σCORR,

|BIAS| ≤ µ|BIAS|+ σ|BIAS|,

RMSE≤ µRMSE + σRMSE (A1)

The combinations that are discarded after this step are highlighted in dark gray in the tables below.

– For CO2 and CH4, discard the combinations that are only present in the table of either the surface or either the column

data in order to keep only those that are performing good enough on both time series. The combinations that are discarded500

after this step are highlighted in light gray in the tables below.

– From what is left, we see that only combinations with test A, B or C should be considered as those with test D and E

settings have been discarded for CH4. The choice of physical parameterization option should be the same for all species.

When sorting the remaining combinations for CO2 and CO based on S (from the in situ time series for CO2), we find

that options with test B and C are superior to those with test A. Finally, a choice has to be made between options with505

test B and options with test C.

– For both test B and C, we take the emission inventory which has the highest S, for CO2 and CH4 based on the in situ

time series and for CO based on the column. This leads to the following options:

– Test B: CAMS-GLOB-ANT for CH4 and CO2; REAS for CO

– Test C: CAMS-GLOB-ANT for CH4, REAS for CO2 and PKU for CO510

– The final choice between these two options is rather arbitrary since certain combinations yield slightly improved results

for one time series but perform less favorably for another, and vice versa. In our study we have chose the combinations

with test B.

Appendix B: Supplementary figures

This appendix contains figures that give some additional insight to the conclusions given in the sections above and are refer-515

enced in the text.
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Test Flux CORR BIAS RMSE S

B PKU 0.67 -1.62 16.09 2.91

B CAMS 0.63 -0.12 17.50 2.81

B EDGAR 0.63 0.92 17.87 2.72

C PKU 0.64 -3.96 16.91 2.65

C REAS 0.61 -1.19 18.88 2.58

A PKU 0.63 -4.51 17.16 2.57

E PKU 0.61 -3.51 17.65 2.53

D PKU 0.62 -4.84 17.38 2.52

C FFDAS 0.58 -0.92 19.12 2.50

C CAMS 0.59 -2.77 18.06 2.49

C EDGAR 0.58 -1.71 18.53 2.47

D FFDAS 0.58 -1.69 19.19 2.44

B REAS 0.58 1.44 20.14 2.41

B FFDAS 0.60 2.97 20.19 2.41

A CAMS 0.58 -3.46 18.26 2.40

A EDGAR 0.57 -2.46 18.58 2.40

A FFDAS 0.56 -1.36 19.76 2.35

C MEIC 0.63 5.15 20.68 2.34

D CAMS 0.57 -3.74 18.90 2.30

D EDGAR 0.55 -2.73 19.32 2.29

E REAS 0.55 -0.29 22.00 2.27

A REAS 0.55 -1.33 21.49 2.25

A MEIC 0.59 4.60 21.84 2.20

D MEIC 0.58 4.02 21.86 2.19

D REAS 0.54 -1.33 22.02 2.19

E FFDAS 0.51 0.11 21.66 2.17

E CAMS 0.52 -2.21 20.93 2.13

E EDGAR 0.51 -1.11 21.72 2.09

B MEIC 0.64 9.16 22.95 2.07

E MEIC 0.57 5.94 23.34 1.99

D ODIAC 0.52 3.63 22.57 1.96

C ODIAC 0.53 5.04 22.80 1.91

A ODIAC 0.49 4.56 24.46 1.69

B ODIAC 0.54 8.63 24.91 1.63

E ODIAC 0.47 5.81 25.67 1.51
Table A1. Statistical metrics for sensitivity tests, in situ CO2 data at Xianghe. Unit of BIAS and RMSE is ppm. Rows shaded in dark

gray indicate those where one or more statistical metrics surpass the thresholds defined in Eq. A1. Rows shaded in light gray represent

combinations that are rejected due to the XCO2 value falling outside the thresholds. The bold lines represent the final two options as

determined by the methodology outlined in Appendix A. 25
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Test Flux CORR BIAS RMSE S

C CAMS 0.52 2.19 206.50 2.81

C EDGAR 0.52 19.09 208.24 2.67

E CAMS 0.48 3.26 213.26 2.47

A CAMS 0.45 -7.09 210.84 2.31

E EDGAR 0.48 22.33 216.09 2.28

A EDGAR 0.46 12.50 213.59 2.27

B CAMS 0.50 31.39 228.56 2.17

B EDGAR 0.51 52.53 237.75 1.87

D EDGAR 0.41 8.83 237.26 1.70

D CAMS 0.39 -9.19 237.31 1.60
Table A2. Same as Table A1 but for in situ CH4. Unit of BIAS and RMSE is ppb.

Figure B1. Mean vertical profile of the tracer fields in WRF-GHG for (a) CO2, (b) CH4 and (c) CO. All simulated hours were used for this

plot.
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Test Flux CORR BIAS RMSE S

D MEIC 0.77 0.62 1.52 2.87

C MEIC 0.76 0.62 1.54 2.83

E MEIC 0.66 0.95 1.95 1.86

D ODIAC 0.78 -1.27 2.28 1.86

C ODIAC 0.79 -1.32 2.29 1.85

A MEIC 0.62 0.97 2.03 1.62

D FFDAS 0.80 -1.60 2.43 1.58

C FFDAS 0.80 -1.62 2.45 1.55

E ODIAC 0.75 -1.36 2.47 1.54

D EDGAR 0.79 -1.59 2.45 1.54

A ODIAC 0.74 -1.30 2.50 1.49

B ODIAC 0.72 -1.23 2.53 1.47

C EDGAR 0.77 -1.57 2.49 1.45

D CAMS 0.79 -1.70 2.52 1.38

B EDGAR 0.76 -1.54 2.55 1.38

B FFDAS 0.75 -1.52 2.58 1.33

C REAS 0.80 -1.81 2.56 1.33

E FFDAS 0.77 -1.65 2.58 1.32

D REAS 0.79 -1.80 2.56 1.32

E EDGAR 0.77 -1.64 2.59 1.31

C CAMS 0.77 -1.68 2.57 1.30

A FFDAS 0.76 -1.62 2.60 1.28

B CAMS 0.75 -1.64 2.63 1.22

E CAMS 0.76 -1.74 2.66 1.15

D PKU 0.80 -1.98 2.67 1.13

C PKU 0.80 -2.00 2.67 1.13

B REAS 0.75 -1.71 2.69 1.10

A EDGAR 0.72 -1.54 2.71 1.09

E REAS 0.76 -1.85 2.73 1.03

A CAMS 0.72 -1.65 2.76 0.98

A REAS 0.75 -1.84 2.75 0.97

B MEIC 0.55 1.25 2.30 0.95

B PKU 0.76 -1.91 2.77 0.94

E PKU 0.77 -2.02 2.81 0.87

A PKU 0.76 -2.00 2.82 0.84
Table A3. Same as Table A1 but for XCO2.
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Test Flux CORR BIAS RMSE S

B CAMS 0.69 -0.79 20.53 2.94

B EDGAR 0.69 0.65 20.94 2.62

C EDGAR 0.67 -0.96 21.24 1.73

D EDGAR 0.66 -0.80 21.45 1.47

C CAMS 0.67 -2.16 21.31 1.12

A EDGAR 0.65 -1.17 21.72 0.86

E EDGAR 0.65 -1.66 21.76 0.59

D CAMS 0.65 -2.09 21.75 0.55

A CAMS 0.65 -2.75 21.45 0.37

E CAMS 0.65 -3.03 21.42 0.34
Table A4. Same as Table A1 but for XCH4. Unit of BIAS and RMSE is ppb.

Figure B2. Map of the mean CH4 flux (mol km−2 h−1) in WRF-GHG domain d02 during the entire simulation period for the most important

sectors. Remark that different sectors have different ranges in the colorbar.

28

https://doi.org/10.5194/egusphere-2023-2103
Preprint. Discussion started: 20 November 2023
c© Author(s) 2023. CC BY 4.0 License.



Test Flux CORR BIAS RMSE S

B REAS 0.78 -3.99 30.25 2.96

B PKU 0.78 -5.38 30.32 2.94

D REAS 0.76 -5.32 31.54 2.83

E REAS 0.77 -7.12 31.39 2.81

C PKU 0.76 -6.88 31.73 2.79

D PKU 0.76 -6.82 31.75 2.79

C REAS 0.75 -5.53 32.00 2.79

E PKU 0.77 -7.85 31.74 2.77

A REAS 0.75 -7.15 32.35 2.72

A PKU 0.75 -7.51 32.67 2.71

B CAMS 0.68 -24.21 43.48 1.70

E CAMS 0.66 -25.16 44.35 1.61

D CAMS 0.64 -24.34 44.34 1.57

E EDGAR 0.52 3.27 57.84 1.45

A CAMS 0.59 -23.19 44.78 1.44

C CAMS 0.60 -23.77 45.07 1.43

B EDGAR 0.53 5.90 59.57 1.34

A EDGAR 0.50 6.27 62.83 1.16

D MEIC 0.65 -37.13 49.72 1.05

C MEIC 0.61 -37.10 50.26 0.94

B MEIC 0.53 -30.94 47.80 0.93

C EDGAR 0.46 8.30 67.22 0.87

D EDGAR 0.47 8.66 68.01 0.86

E MEIC 0.55 -34.80 49.89 0.82

A MEIC 0.52 -34.49 50.35 0.72
Table A5. Same as Table A1 but for XCO. Unit of BIAS and RMSE is ppb.
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Figure B3. Same as Fig. 9 but for CO2.

Figure B4. Same as Fig. 10 but for CO2.
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