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Abstract. Land-surface models represent exchange processes between soil and atmosphere via the land surface by coupling

water, energy and carbon fluxes. As a strong mediator between these cycles, vegetation is an important component of land

surface models. Some land surface models include modules for vegetation dynamics, which allow the adjustment of veg-

etation biomass, especially leaf area index, to environmental conditions. Here, we conducted a model-data comparison to

investigate whether and how vegetation dynamics in the models improve the representation of vegetation processes and related5

surface fluxes in two specific models, ECLand and Noah-MP, in contrast to using prescribed values from look-up tables or

satellite-based products. We compared model results with observations across a range of climate and vegetation types from

the FLUXNET2015 dataset and the MODIS leaf area product, and used on-site measured leaf area from an additional site.

Yet, switching on the dynamic vegetation did not enhance representativeness of leaf area index and net ecosystem exchange in

ECLand, while it improved performance in Noah-MP only for some sites. The representation of energy fluxes and soil moisture10

was almost unaffected for both models. Interestingly, the performance regarding variables of the carbon and water cycle was

unrelated for both models, such that the weak performance of e.g. leaf area index did not deteriorate the performance of e.g.

latent heat flux. We show that one potential reason for this could be that the implemented ecosystem processes diverge from

the observations in their seasonal patterns and variability. Noah-MP includes a seasonal hysteresis in the relationship between

leaf area index and gross primary production that is not found in observations. The same relationship is represented by a strong15

linear response in ECLand, which substantially underestimates the observed variability. For both water and carbon fluxes, the

currently implemented dynamic vegetation modules in these two models did not result in better model performance compared

to runs with static vegetation and prescribed leaf area climatology.

Copyright statement.
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1 Introduction20

Land-surface models (LSMs) represent the energy, water and biogeochemical cycles at the land surface. Traditionally, their

main purpose has been to provide a surface component in coupled atmosphere-land models. LSMs are applied in meteorolog-

ical models, reanalysis products or in the Coupled Model Intercomparison Project (CMIP). However, their scope is widening

and new fields of application like historical land cover change simulations (Lawrence et al., 2018) or flood alert services (Har-

rigan et al., 2020) are arising. There is active development within the land surface modeling community, with more and more25

features being added to existing models to make them more realistic (Blyth et al., 2021).

Given the wide use of these models and the implications of their results, extensive model validation has been done already.

Model validation covers a wide range of water, energy and carbon fluxes at global, regional and site scale (e.g. Niu et al., 2011;

Haverd et al., 2018; Lawrence et al., 2019; Boussetta et al., 2021). Such works that introduce individual evaluation schemes are

often accompanied by studies that perform comparisons between models (e.g. Best et al., 2015; Krinner et al., 2018). Compar-30

isons like those are conducted for different reasons. For example, one aim is to create a ranking between models that allows the

assessment against alternative schemes. Using this method, Best et al. (2015) reported that simple statistical methods achieve

a higher performance in energy partitioning at eddy-covariance sites than any single LSM tested. One limitation of that study

is that they did not report metrics of individual model performance, but only normalized ones. This procedure does not allow

to judge whether the investigated methods have achieved a (dis-)satisfactory performance, since all methods might have a poor35

individual model performance. Other challenges in these activities are to maintain a standard protocol for model comparison,

while not creating a superficial performance contest among them, and to minimize human errors (Menard et al., 2021).

Haughton et al. (2016) more closely explored the cause of poor model performance of LSMs shown in the PLUMBER study by

Best et al. (2015), which they presented as the bias for the evaporative fraction (EF) derived from various tower sites exemplar-

ily. From all investigated aspects they concluded that mismatches between modeled and observed heat fluxes are most likely40

caused by calculations within the models and not related to errors in the observations. Yet, specific reasons for this mismatch,

for example over-parameterization, missing processes, calibration issues etc., cannot be identified by benchmarking studies

or model rankings alone, but requires further investigation of individual model performance. At the same time, the causes of

poor model performance can be multifaceted, rendering their identification challenging (Haughton et al., 2018b). Nonetheless,

further LSM development needs understanding of how individual process implementation and parameterization affect model45

performances.

A wealth of studies evaluated different LSMs with respect to radiation, heat fluxes or surface temperature, and carbon fluxes.

Carbon fluxes like gross primary production (GPP) are often validated by using global gridded fluxes like FLUXCOM (Ma

et al., 2017; Jung et al., 2019; Lawrence et al., 2019). The correct implementation of ecosystem processes and related vari-

ables is crucial for using LSMs in assessing impacts due to climate change for example in drought evaluation (Ukkola et al.,50

2016; Dirmeyer et al., 2021) because plant transpiration directly links the terrestrial carbon and water cycle. For example, a

substantial underestimation of evapotranspiration by eight LSMs during drought conditions was shown across different plant

communities (Ukkola et al., 2016). De Kauwe et al. (2015) concluded from their simulations of drought responses for the
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European FLUXNET sites with the Community Atmosphere Biosphere Land Exchange (CABLE) model that accounting for

differing drought sensitivity of plant communities into LSMs may be required to correctly capture drought impacts. Currently,55

most LSMs are not able to represent direct vegetation control on surface exchange, in part because they under-represent bio-

physical responses to changing water availability and oversimplify vegetation dynamics, in particular leaf area index (LAI)

(Forzieri et al., 2020). LSMs typically work with climatological LAI, e.g. seasonality read from look-up table files, or calculate

LAI as a prognostic variable internally. At the same time, LAI has a large impact on both water and carbon fluxes (e.g. Fisher

et al., 2014), and an understanding of how its parameterization impacts flux estimates by LSMs would help to shed light on the60

known discrepancies in representing vegetation.

Here, we investigate model performance for water and carbon fluxes with a focus on vegetation processes. We additionally

check the reasons for model-data mismatch, by analysis of the underlying computer source code of the models (as stated by

Dirmeyer et al. (2018)), which can only be done for a limited set of models due to the large effort that is needed. For this scope,

we chose ECLand and Noah-MP as frequently used and continuously developing LSMs with available modules for vegetation65

dynamics. In this manuscript, we aim to answer the following research questions: (1) Does the representation of net ecosystem

exchange (NEE) and LAI improve, if ECLand or Noah-MP represent vegetation dynamically? (2) How does dynamic vegeta-

tion in ECLand or Noah-MP impact other variables like heat fluxes and soil moisture? Do improvements in model performance

for one variable compromise performance for other variables? (3) What are the mechanics behind modeled temporal patterns

in vegetation dynamics and occurring misfits to the observations?70

2 Methods

2.1 Data basis

Site selection

The FLUXNET2015 dataset (Pastorello et al., 2020) provides measurements from globally distributed eddy covariance sites.

We selected a subset from all available FLUXNET sites, focusing on sites with long observation periods, covering different75

vegetation types and a gradient in aridity within each vegetation type. Vegetation types within FLUXNET rely on the IGBP

Land Classification (National Center for Atmospheric Research, 2022). The aridity index of all sites was retrieved from the

CGIAR-CSI Global-Aridity and Global-PET Database (Trabucco and Zomer, 2018) and inverted afterwards, bringing it back to

the definition as the ratio of the long-term mean annual potential evapotranspiration to the long-term mean annual precipitation

by Budyko (1974). We excluded sites with observation periods less than six years because they might not represent the local80

climate (Haughton et al., 2018a) and extreme years could create a systematic bias. Due to the small number of sites per

vegetation type with long observation periods, the vegetation types savanna (SAV), woody savanna (WSA) and open shrubland

(OSH) were merged into one savanna group before continuing with the selection procedure. For each vegetation type or group,

first, we chose the site with the longest observation record. Next, other sites with similar aridity (�0:1 logarithmic aridity

index) were dropped to avoid an overrepresentation of some vegetation type-aridity combinations due to heterogeneous site85
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distribution within FLUXNET. We used logarithmic values to create a linear scale of the aridity index so that a selection of too

many dry sites was prevented. Afterwards, we repeated these steps for the remaining sites and continued until no more sites

were available for selection in this vegetation type or group. For the selected sites, we double-checked data availability and

quality and replaced with an alternative site if necessary. The most common reasons for discarding sites were missing or poor

quality soil moisture data or low-quality gap-filling, which reduced the length of the observation record below the threshold90

of six years. By doing so, only two sites with mixed forests (MF) were left which is critically few. Thus, we included all MF

sites into the deciduous broadleaf forest (DBF) vegetation type and repeated the selection for this group. We were left with 24

sites, covering a wide range of site characteristics as recommended by Haughton et al. (2018a) including aridity, vegetation

types and observation periods (Fig. 1). Additionally, we also used data of the eddy covariance site "Hohes Holz" (Rebmann

and Pohl, 2023) which is part of the TERENO Harz/Central German Lowland Observatory (Wollschläger et al., 2016) and is95

included in the ICOS network since 2019, because on-site measured LAI data was available for that DBF site.

Figure 1. Selected FLUXNET sites grouped by their vegetation type. For each group, sites were chosen to cover a gradient in aridity (y-axis)

if available. The vegetation types are: GRA - grassland, SAV - savanna, WSA - woody savanna, EBF - evergreen broadleaf forest, CRO -

cropland, MF - mixed forest, DBF - deciduous broadleaf forest, ENF - evergreen needleleaf forest. The color scale represents the duration of

the available time series in years.

Variables used and data pre-processing

From the FLUXNET (Pastorello et al., 2020) and Hohes Holz (Rebmann and Pohl, 2023) datasets, air temperature, downward

short- and long-wave radiation, wind speed, relative humidity, air pressure and precipitation were used for model forcing.

4



Turbulent �uxes, i.e. latent heat �ux (LE) and sensible heat �ux (H), as well as net ecosystem exchange (NEE), gross primary100

production (GPP) and volumetric soil water content in10 cm depth were used for model evaluation. All data were provided

and used at half-hourly resolution. FLUXNET data was retrieved from their website (�uxnet.org, 2020).

LE and H in FLUXNET2015 are available in two different variables: One is a product that corrects the turbulent �uxes for

energy balance closure, while the other one provides a continuous time series �lled by Marginal Distribution Sampling. We

decided to use the �rst one as long as they were available in the dataset since LSMs also consider for energy balance. Missing105

data in the "Hohes Holz" meteorological dataset was �lled using a Kalman �lter (Sayed, 2003) for short gaps up to3 h, except

for precipitation which was set to 0. For longer gaps, the Kalman procedure tends to overestimate the observations which

resulted in offsets at the end of the �lling periods. Thus, �lling data for these gaps was retrieved from the ERA5 (Hersbach

et al., 2020) data product (Copernicus, 2018) with0:1° spatial and1 h temporal resolution.

For calculation of the evaporative fractionLE
LE + H , all time steps withH � 0 were excluded. The same time steps were left out110

for LE to focus the comparison of turbulent �uxes on periods with evaporative demand. For estimation of model performance,

we excluded gap �lled periods that were longer than one month.

2.2 Model description

We investigated how dynamic vegetation affects model outputs in two land-surface models capable of representing both static

and dynamic vegetation: ECLand (Balsamo et al., 2009; Dutra et al., 2010; Boussetta et al., 2021) and Noah-MP (Chen and115

Dudhia, 2001; Ek et al., 2003; Niu et al., 2007, 2011).

ECLand

The European Centre for Medium-range Weather Forecasts (ECMWF) developed a Carbon-Hydrology Tiled Scheme for Sur-

face Exchanges over Land (CHTESSEL) (Balsamo et al., 2009; Dutra et al., 2010; Boussetta et al., 2013) which represents the

land component of the Integrated Forecasting System (IFS). As part of the IFS, CHTESSEL has evolved into a more �exible120

system ECLand (Boussetta et al., 2021), which also allows for several modular extensions. Among these, a dynamic vegetation

module simulates the temporal evolution of vegetation. Therein, LAI, vegetation biomass and vegetation coverage are calcu-

lated from the daily carbon budget, instead of taking them from the climatological LAI. However, LAI climatology can still be

used for fully static or partly dynamic simulations.

In ECLand (IFS version “CY46R1”), each of the 19 vegetation types receives its own parameter values (e.g. for roughness125

lengths, stomata resistance, root distribution) from look-up tables (Boussetta et al., 2012, 2021). These vegetation types are

categorized into high or low vegetation. Each grid-cell has one dominant high and one dominant low vegetation type, together

forming the vegetation of a grid-cell (Balsamo et al., 2009). Surface �uxes are computed for the high and low vegetation tiles

separately then merged for the whole grid-cell according to their fractional cover. The vegetation coverage is calculated from

a prescribed climatological vegetation fraction (part of input) and a vegetation type dependent density (from look-up table)130

and corrected by current LAI (Boussetta et al., 2021). Net assimilation results from carbon uptake of atmosphericCO2 by

the current leaf area (de�nes absorbed radiation) and is restricted by environmental factors such as soil moisture and nitrogen

5



availability (important equations can be found in section A.01). Together with the dark respiration and after scaling with a

quantum use ef�ciency factor, potential gross assimilation is calculated. This value, then, is linearly linked to LAI and the

humidity-corrected air density, resulting in gross primary productivity (GPP). With activated vegetation dynamics, a poten-135

tial net assimilation, together with LAI, forms a damping factor for biomass senescence. Biomass senescence is determined

from current biomass, linearly linked to current LAI, and the damping factor. The change in biomass results from this updated

biomass and the net assimilation. Then, biomass is updated again and linearly transferred into updated LAI by using speci�c

leaf area from a look-up table (Boussetta et al., 2021). For static ECLand, the prescribed climatological LAI is used. LAI in

ECLand determines the canopy resistance for water vapour transport and thus, the evapotranspiration as well as the interception140

(Boussetta et al., 2012, 2013, 2021).

Noah-MP

Noah-MP is the widely used community Noah land-surface model (Chen and Dudhia, 2001; Ek et al., 2003) with multi-

parameterization options (Niu et al., 2007, 2011). Predicted LAI in Noah-MP is calculated based on leaf carbon allocation and

speci�c leaf-area per vegetation type (Ma et al., 2017). In contrast to ECLand, Noah-MP can either use prescribed LAI values145

per vegetation type or depend solely on dynamic LAI estimates, without the option to mix between the two.

In Noah-MP (version “HRLDAS 3.9”), parameter values (e.g. value range of stomatal resistance, number of rooted soil layers,

speci�c leaf area) of the 27 vegetation types are taken from look-up tables. The vegetated sub-grid area of each grid cell is

dominated by one vegetation type forming a one-layer canopy. Calculation of canopy interception and transpiration consider

aerodynamic and stomatal resistances for the water vapour and carbon �uxes within the canopy and between the canopy150

and the atmosphere (Ma et al., 2017). Among others, stomatal resistance is predominantly controlled by photosynthesis (Niu

et al., 2011) which depends on leaf area, and is limited by light and root zone soil moisture (important equations can be

found in section A.02). Assimilation depends on LAI and is constrained by physiology and light availability. Assimilated

carbon is allocated to different plant tissues (leaf, stem, wood, root), forming GPP, and reduced by respiration, dying and

turnover processes such as drought stress and senescence representing leaf dynamics (Dickinson et al., 1998). Respiration rate155

is determined by LAI, GPP, temperature and soil moisture stress. Carbon that is allocated to leaves together with biomass losses

forming an updated leaf biomass which converts into the LAI by using speci�c leaf area (Ma et al., 2017). Carbon assimilation

and allocation and, thus, also GPP and NEE estimation are usually deactivated for the static Noah-MP since a prescribed LAI

is given. We adapted the model code in a way that GPP and NEE for the static simulations are calculated anyways, but resetting

all variables that would be dynamically predicted within the same function.160

2.3 Model setup and simulations

Simulations with activated modules that predict LAI time series will beactivated vegetation dynamicsor dynamic ECLand

anddynamic Noah-MPhereafter. For both models, the reference height (level of the forcing input) was set to the �ux tower

height of the sites which depends on the vegetation type. The models were set up as closely as possible to the available site

information but there are some technical differences in the structure of the model input, i.e. in the initial �les. Forcing and165
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model calculation were done in 30 minutes resolution if available, otherwise, hourly resolution was applied. We used four

layered soil representation and used the uppermost layer for evaluation of soil moisture which is7 cm and10 cm deep for

ECLand and Noah-MP, respectively. Every simulation started with a ten year spin-up phase by recalculating the �rst year.

ECLand

We used ERA5-based (Hersbach et al., 2020) global initial data for ECLand and selected the grid cells where the �ux towers170

are located. These initial �les contain information on albedo, orography, soil type, surface roughness and monthly LAI which

is not available in the FLUXNET metadata. For the simulations that use alternative LAI forcing, monthly LAI in the initial

�les was replaced by the scenario speci�c alternative values (see section 2.3). We de�ned the vegetation on that grid-cell to be

either high or low vegetation (and not a mixture) depending on the site information. Forests and savannas were treated as high

vegetation types while grasslands and croplands were allocated to low vegetation types. The vegetation type that �ts most to the175

FLUXNET characterization was selected (see Tab. 1). The coverage of that vegetation type was set to100 %. Meteorological

forcing was taken from the FLUXNET/TERENO data sets mentioned above (section 2.1). The ECLand simulations were done

with van Genuchten soil hydrologic parameters (van Genuchten, 1980), activated sub-grid surface runoff and activated snow

parameterization.

Table 1. Assignment of vegetation types used in ECLand and in Noah-MP and referred initial LAI. The values in brackets for Noah-MP

initial LAI refer to sites on the Southern Hemisphere due to shifted seasons.

Fluxnet vegeta-

tion type

ECLand vegetation type ECLand veg-

etation class

Noah-MP USGS Noah-MP veg-

etation class

Noah-MP ini-

tial LAI

ENF Evergreen Needleleaf Trees 3 (high) Evergreen Needleleaf Forest 14 4.0

MF Mixed Forest/Woodland 18 (high) Mixed Forest 15 2.0 (4.3)

DBF Deciduous Broadlead Trees 5 (high) Deciduous Broadleaf Forest 11 0.0 (4.5)

EBF Evergreen Broadleaf Trees 6 (high) Evergreen Broadleaf Forest 13 4.5

SAV Interrupted Forest 19 (high) Savanna 10 0.3 (3.8)

WSA Interrupted Forest 19 (high) Savanna 10 0.3 (3.8)

CRO Crops, Mixed Farming 1 (low) Mixed Dryland/Irrigated

Cropland and Pasture

4 0.0 (3.0)

GRA Tall Grass 7 (low) Grassland 7 0.4 (3.5)

Noah-MP180

Soil type for Noah-MP was taken from a global soil grid (Hengl et al., 2014) by selecting the grid cell including the �ux tower

location. Initial values for temperatures and soil moisture were taken as the FLUXNET/TERENO observations at January 1st

00:00 h in the �rst year of the simulation period. Vegetation types were chosen to match as closely as possible the USGS

vegetation types (University Corporation for Atmospheric Research, 2023) and the initial LAI values were set according to
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the defaults in the parameter �le (see Tab. 1). Vegetation cover fraction was set to100 %so that the entire grid-cell represents185

the vegetation type of the observation site. Minimum green vegetation fraction was set to1 % to ensure that not the whole

vegetation cover dies during winter which would hinder temperate short vegetation from growing in spring. For the simulations

with alternative LAI forcing, the monthly LAI in the look-up table was replaced by the scenario speci�c alternative values

(see section 2.3). The Noah-MP simulations were done with soil parameterization from look-up tables, Ball-Berry stomatal

resistance approach (Ball et al., 1987; Bonan, 1996) with using matric potential limitation. All other selected options can be190

found in Table 2.

Table 2.Options chosen for Noah-MP parameterization.

Physical process Noah-MP Option

Runoff and groundwater TOPMODEL with groundwater (Niu et al., 2007)

Surface layer roughness Monin-Obukhov

Supercooled water no iteration (Yang and Niu, 2006)

Radiative transfer two-stream (vegetated vs. vegetation-free)

Snow albedo fresh snow with aging effects

Rain/snow partitioning threshold temperature at2:2 � C

Lower boundary for soil temperature temperature at8 m depth (part of input)

Snow/soil temperature time scheme fully implicit (original Noah)

Surface resistance for evaporation Sakaguchi and Zeng (2009)

Glacier treatment phase change of ice included

Leaf area index data and scenarios

Monthly LAI values are part of the initial input of both models via look-up tables. These tables contain annual cycles of LAI

for each vegetation type separately. Thisdefault climatologyis already based on values from MODIS. For ECLand, the gridded

values of LAI were disaggregated to the high and low vegetation type of the grid cell for the time span 2000-2008 (Boussetta195

et al., 2013). For alternative LAI inputs, these values in the look-up tables were replaced manually.

LAI values were taken from the MOD15A2H data product from NASA's EarthData portal (Myneni et al., 2015). One grid cell

of 500 m x 500 m was selected per eddy covariance tower according to the site coordinates and LAI values with temporal

resolution of eight days were extracted for the years 2000 to 2014. To assure reliability of the values, the "MODIS15A2H"

data product comes with numeric quality �ags. Although Fang et al. (2012) recommend using all values with quality �ags less200

than 64, we excluded data with quality �ag 8 because many of these LAI values were extremely low during the vegetation

period which is unrealistic. Then again, due to lacking LAI values during winter or wet seasons, values with quality �ags of

73 (empirically �lled with clouds present), 81 (empirically �lled with mixed cloudiness) and 97 (empirically �lled for other

reasons) were included as a trade-off between excluding as much bad-�agged data as possible and keeping roughly the same

amount of data values for each month (see MODIS documentation for more details). Afterwards, we smoothed the remaining205
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values by using a Savgol �lter (window length: 11, polyorder: 2) (similarly done by e.g. Xiao et al., 2011; Huang et al.,

2021) from the scipy-package (Savitzky and Golay, 1964; Luo et al., 2005) and prepared a mean annual LAI cycle for all

available years with monthly resolution, further namedMODIS climatology. For an additional experiment, the monthly LAI

from MODIS of each year within the simulation period separately was used as input, calledMODIS single-yearfrom this point

on. Missing LAI values for a month were �lled by the average value of the adjacent months. If LAI values for at least two210

consecutive months were not available, the LAI values from the default look-up table were used for those months.

For the "Hohes Holz" site, on-site measured LAI data was available from Digital Cover Photography (DCP), which was shown

to yield comparable results to established methods (Piayda et al., 2015). For each measurement date, we averaged the values

from the whole plot area and, afterwards, calculated monthly means over time span 2014-2019. This alternative LAI forcing

will be calledon-site LAIhereafter. The nomenclature of all LAI scenarios can be found in Table 3.

Table 3.Nomenclature of all model scenarios using LAI data sources.

Term LAI source

default climatology default monthly LAI for the dominant high and low vegetation type on respective grid cell (ECLand) or default

monthly values per vegetation type from look-up table (Noah-MP)

MODIS climatology mean annual cycle of monthly LAI values derived from MODIS dataset from 2000 to 2014

MODIS single-year same as before but without averaging, resulting in an annual cycle for each year separately within the observation

period

on-site LAI mean annual cycle of monthly LAI values based on on-site measured LAI

215

The MODIS LAI was also applied for model evaluation but in high temporal resolution of eight days. Due to the usage of

single day values, we solely used data with quality �ags 0 (no issues) and 32 (saturated) to lower the uncertainty. Additionally,

we refrained from smoothing to avoid an offset of the LAI values and left gaps as they were. For the static runs, comparison

with MODIS LAI on daily basis provides the information how well a LAI climatology represents the local LAI evolution and

whether an incorporation of more site-speci�c climatology can improve the representativeness. For the dynamic simulations,220

comparing modeled LAI with daily MODIS values is used to examine whether the models are able to capture inter- and

intra-annual LAI dynamics.

2.4 Performance evaluation

Model outputs and observational data from the �ux towers were averaged/summed to daily values for direct comparison. For

LAI, we calculated the eight-day mean of the LAI model output to correspond to the temporal resolution of the MODIS225

LAI estimates. As performance criteria we used the Pearson's correlation coef�cient, the normalized standard deviation and

a modi�ed relative bias for the model-observation relationship. Pearson's correlation coef�cientR describes the �t between

model and observation values (Benesty et al., 2009) and is calculated from the numpy-package. The normalized standard

deviationsn is the ratio of the standard deviation of the model predictions and the standard deviation of the observations. It

is used to describe the models' ability to reproduce the variability of the observations. The relative biasb applied here was230
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adapted to the domain of the variable to avoid division by zero or by values very close to zero (especially important for NEE).

For this purpose, the distribution of the observed values was shifted by their minimum, resulting in only positive values with a

minimum of zero:

b=
y � x
x � �x

(1)

wherebyy represents the model predictions,x the observations,x the mean and�x the minimum of the observed values. To235

compare the model performance of simulations with static and dynamic vegetation, we determined the change in relative bias

as follows:

� b= jbstatic j � j bdynamic j (2)

Negative values mean that the relative bias of the dynamic simulation was greater than that of the static simulation and, thus,

that the performance was reduced by activating vegetation dynamics.240

To investigate the sensitivity of dynamically modelled vegetation on the model performance, we checked how strongly the

quality of the model simulation of one target variable (e.g. LE) depends on the model quality of another one (e.g LAI). For

this, we used theelasticityas a metric. Elasticity is calculated as ratio of the change in one statistical measure (analogous to

equation 2) for two different target variables:

E =
� mi

� mj
(3)245

wherem is one of the statistical measures mentioned above, i.e.R, sn or b, while i andj denote different target variables, e.g.

GPP or LE. For variables that are strongly related, like LAI and GPP, we expect elasticity to be positive. Two variables are

considered independent if� 0:1 � E � 0:1 because the change inmj then would need to be larger than one order of magnitude

to cause a change inmi . Changes in model performances of the target variables were plotted in Taylor diagrams (Copin, 2021).

3 Results250

3.1 Effect of dynamic or prescribed leaf area index on leaf area and carbon uptake prediction

Figure 2 shows the quality metrics for the model performance regarding LAI in a Taylor diagram. The location an optimal model

simulation would occupy is indicated with a star. The model performance of the dynamic run is shown with the symbols, while

the static runs can be read from the start of each arrow. The direction and length of each arrow highlights the difference in the

performance metrics between static and dynamic runs. Shown are simulations started (dynamic) or run (static) withdefaultvs.255

MODIS climatology.

While in the Noah-MP simulations with static vegetation the model performance depended on the LAI forcing applied, the

simulation results were unaffected by the type of LAI forcing with vegetation dynamics switched on since the symbols in Fig-

ure 2 c and d have the same positions. For ECLand, this was also the case for many sites but not all, e.g.AT-NeuandAU-How

(Fig. 2 a+b). Initializing ECLand withdefault climatology(Fig. 2 a) and activating vegetation dynamics generally increased260
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the variance of simulated LAI compared to static simulations but it also decreased model performance, e.g., mean Pearson

correlation decreased from0:72 to 0:62. At the same time, whether the predicted LAI �t better to MODIS observations than

default climatologywas ambiguous, as can be seen by the shift in relative bias which ranged between� 0:5 and1:3. On the

contrary, the results for Noah-MP showed a different pattern (Fig. 2 c) because there was no clear shift to higher variances or

worse correlation when activating vegetation dynamics. Especially short (GRA+CRO) or sparse (SAV+WSA) vegetation types265

had the highest changes towards decreased but also enhanced model performance for LAI. For other sites (mostly forests),

modelled dynamic LAI correlated well with the observations.

For both models, usingMODIS climatologyinstead ofdefault climatologyin static simulations resulted in the best perfor-

mances with regard to LAI of all simulations (start of the arrows in Fig. 2 b+d), e.g., the mean correlation coef�cient increased

to 0:83 and0:84 and mean relative bias (Tab. A1) improved to� 16%and� 2% for ECLand and Noah-MP, respectively. This270

can be expected because MODIS was also used as reference dataset for LAI evaluation. With activated vegetation dynamics,

the performance of both models decreased, as all quality metrics shift away from the point indicating best performance in the

Taylor diagram (Fig. 2 b+d). The same applied to the relative biases of LAI since their shift was predominantly negative. In

other words, switching on vegetation dynamics did not result in improved LAI representation compared to just usingMODIS

climatology.275

Forest ecosystems, in general, were better represented by model predictions with vegetation dynamics than short or sparse

vegetation. Figure 3 shows the results of the forest site “Hohes Holz” in more detail. Although the representation of LAI

variability detoriated when simulating dynamic vegetation with Noah-MP, those runs resulted in LAI predictions that closely

match MODIS observations (Fig. 3 d-f), represented by a relative bias of� 18%and a correlation coef�cient of0:78. ECLand

more generally suffered from larger relative biases in LAI, especially when simulating with vegetation dynamics (� 30%on280

average, Fig. 3 c). The only scenario where model performance generally increased for ECLand, was through switching on

vegetation dynamics compared to static runs withdefault climatology.

In contrast to LAI, the model performance of ecosystem exchange variables in ECLand was less affected by activating vege-

tation dynamics. A common feature is that the variance predominantly increased when using dynamic vegetation (Fig. 4 a+b).

Mostly, sites with short or sparse vegetation reacted more sensitively to dynamic vegetation modeling in their NEE and GPP285

representation especially when forcing withMODIS climatology, which is indicated by the longer arrows in Figure 4 a and b

(for GPP see Fig. A1 in Appendix). For forest ecosystems in general, the changes in the model performance of NEE and GPP

were small, as also shown for the site “Hohes Holz” (Fig. 3 a-c). Nevertheless, the performance of NEE (and GPP) decreased

when activating vegetation dynamics, mainly driven by lowered correlation coef�cients, on average from0:41 to 0:37 (0:72 to

0:68). Only three sites showed improvements in NEE representation when predicting with dynamic ECLand and just one did290

so for GPP. Relative bias changed in both directions, towards lower and higher model performance. Dynamic ECLand mainly

overestimated NEE by11%on average, indicating that ecosystems were predicted to be a smaller carbon sink than observed

(Tab. A2). Instead, dynamic Noah-MP estimated on average10%lower NEE compared to the observations for the most sites

(Fig. 4 c+d, Fig. 3 c+f).

Activating the dynamic vegetation affected the model performance of NEE and GPP for Noah-MP heterogeneously. Some sites295
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Figure 2. Change of model quality metrics for LAI when switching on vegetation dynamics for all included sites and by usingdefault

climatology(left) or MODIS climatology(right). The star (“Observ”) marks the location of the perfect correlation between observation and

model and perfect agreement between observed and modelled variance. The model performance of the static runs can be read from the start

of each arrow. When no arrow appears, either no correlation could be calculated (e.g. for evergreen forests where default climatological LAI

is constant) or values could not be placed on the logarithmic axis. The symbol colors indicate the site aridity (top right legend) as following:

very humid - aridity index(AI ) < 0:6, humid -AI < 1:25, sub-humid -AI < 1:54, dry sub-humid -AI < 2, semi-arid -AI < 5, arid -

AI � 5 (Ashaolu and Iroye, 2018). Vegetation types are symbolized by different marker types (bottom right legend).

showed very small changes (e.g.IT-Lav andIT-Ren, Fig 4 c+d) while model performance of NEE was largely impacted by

vegetation dynamics for other sites (e.gUS-VarandAU-DaS). In contrast to ECLand, no evidence could be found that certain

vegetation types or aridity classes were more sensitive to activated vegetation dynamics in Noah-MP and even forests showed

larger changes in model performance (Fig. 3 e). While, for GPP, the variance predominantly enlarged by activating vegetation

dynamics in Noah-MP (Fig. A1 c+d), the normalized standard deviation of NEE changed in opposing directions which is300

another difference compared to ECLand. Despite the higher sensitivity of NEE model performance to Noah-MP vegetation
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dynamics, the overall model performance was barely affected since relative bias shifted from� 12 %to � 11 %and correlation

coef�cient from 0:50 to 0:53 on average. Changes of statistical measures can be in opposing directions as can be seen for

normalized standard deviation and relative bias of the forest site "Hohes Holz" (Fig. 3 e+f) which eliminated trends towards

improved or reduced model performance. Only the siteAU-Stpclearly improved regarding NEE representation by activating305

vegetation dynamics in Noah-MP by initializing with eitherdefault or MODIS climatology. The GPP performance showed

small improvements by activating vegetation dynamics in Noah-MP as the mean correlation coef�cient shifted from0:68 to

0:74and the range of the relative bias was lowered from� 32 %� +69 % to � 28 %� +42 %.

Figure 3. Statistical measures for the variables LAI, NEE and GPP of the model runs for the site "Hohes Holz". The categories on the y-axis

mark the different LAI forcings. Statistical measure of the static and dynamic simulations of the same variable are connected by a horizontal

line. The red dotted vertical line marks the optimum of each measure.

In general, Noah-MP seemed to capture NEE representations better as the mean deviance from a normalized standard devia-

tion of 1 was0:33 (ECLand:0:39) and showed with0:51 a higher correlation coef�cient on average than ECLand (Fig. 4 c).310

13



Remarkably, the four and the nine best sites regarding NEE correlation and variance were forests for ECLand and Noah-MP,

respectively. At the same time, all evergreen broadleaf forests suffered from low performance in both models. GPP represen-

tation in both models was better than for NEE (Fig. A1, Tab. A3). Overall, static and dynamic Noah-MP performed well in

representing NEE and GPP for most forest sites apart the evergreen broadleaf forests.

In line with the �nding that model performances of dynamic Noah-MP were independent of the prescribed LAI forcing, the315

availability of on-site LAIdata for the site “Hohes Holz” yielded no improvement in the representation of NEE or GPP com-

pared to other LAI climatology (Fig. 3). The same appeared for dynamic ECLand. Forcing static ECLand withon-site LAIdata

resulted in NEE and GPP correlation and relative bias comparable to the forcing withMODIS climatology, only variability was

lower.

Figure 4. Same as Taylor diagram before but with NEE evaluation.
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3.2 On the sensitivity of heat �uxes and soil moisture in LSMs to vegetation dynamics320

For both models, activating vegetation dynamics had a small impact on the representation of turbulent �uxes and soil moisture.

The strongest changes occurred for short or sparse vegetation types or for drier climates which had the largest arrows in the

Taylor diagrams (Fig. 5, Fig. 6). In ECLand, activating vegetation dynamics enhanced the variance of latent heat �ux for the

most sites (from0:80 and0:84 to 0:94 on average fordefaultandMODIS climatology, respectively), but correlation between

simulated and observed values remained unaffected or even diminished (mean change smaller than� 0:03). For several sites,325

LE estimates from dynamic ECLand better represented the observations as shown by the positive shift in relative bias (reduction

from � 32%to � 21%) (Fig. 5 a, Tab. A4), but no relationship regarding vegetation type or site aridity can be seen and changes

are small in general. The big exception appeared forCH-Oe2which was caused by its default LAI climatology that did not �t

the vegetation type.

Activating vegetation dynamics in Noah-MP hardly affected model performance of LE (mean change in correlation was0:02,330

in standard deviation0:00 and in relative bias0:02). Sites that showed some sensitivity predominantly have drier climate (e.g

AU-Stp, US-Var, see Fig. 5 c). Several sites showed less bias in LE predictions when using dynamics vegetation predictions in

Noah-MP. When usingMODIS climatologyas LAI forcing, activating vegetation dynamics could be advantageous for some

sites regarding LE representation (AU-Stp, CH-Fru, US-GLE), but mostly it would not lead to higher model performance.

Model performance regarding the evaporative fraction (EF) was lower compared to LE as points are further away from the335

point of optimal model performance (Fig. 6). Running ECLand with activated vegetation dynamics lowered the representation

of the evaporative fraction which is demonstrated by many points in the Taylor diagram drifting away from the star indicating

best performance. Thereby, the mean standard deviation changed from0:95 to 1:08 and correlation coef�cient was reduced

slightly from 0:48 to 0:46 on average (Fig. 6 a+b). Exceptions wereBE-Lon, US-SRMandUS-Tonwhere model performance

slightly improved regarding correlation and variability. Again, relative bias of EF changed in both directions without any340

trend regarding vegetation type or aridity for both models (see also Tab. A5). For Noah-MP, eight sites showed an improved

representation of the evaporative fraction when running the model with vegetation dynamics. This amount was reduced to six

when the model was initialized withMODIS climatology. But changes were very small on average.

Regarding soil moisture, the model performance was almost insensitive to the used vegetation dynamics option or the type of

LAI forcing for both models (Fig. A2). Some sites showed improvement of soil moisture prediction by activating vegetation345

dynamics for both models although the improvement was very weak. Interestingly, no humid site was among them. However,

the simulation of soil moisture resulted in a broad range of model performances starting with very well-�tting predictions

(R > 0:9, b� 0%) up to very poor-�tting predictions (R < 0:2, b < � 40%or b > 100%, see Tab. A6).

To investigate the sensitivity of dynamically modeled vegetation on the model performance, we checked how strongly the

quality metrics of NEE, GPP, LE and soil moisture change with the quality metrics of LAI. For this, we used the elasticity350

(de�ned in equation 3) as a metric which is summarized for all sites in Figure 7. Surprisingly, the quality metrics of those

closely related variables were independent from each other, i.e. the elasticity was very low (within grey band) or randomly

distributed around zero. The strongest connection of all pairs tested could be found for the correlation coef�cient between LAI
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