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Abstract. Land-surface models represent exchange processes between soil and atmosphere via the surface by coupling wa-

ter, energy and carbon fluxes. As it strongly mediates the link
:
a

:::::
strong

::::::::
mediator

:
between these cyclesand, vegetation is an

important component of land-surface models. In doing so, some
::::
land

::::::
surface

:::::::
models.

:::::
Some of these models include modules

for vegetation dynamicswhich allow adaptation
:
,
:::::
which

:::::
allow

:::
the

::::::::::
adjustment of vegetation biomass, especially leaf area in-

dex, to environmental conditions. Here, we conducted a model-data comparison to investigate whether and how vegetation5

dynamics in the models improves
:::::::
improve the representation of vegetation processes and related surface fluxes in two spe-

cific models,
:

ECLand and Noah-MP,
:
in contrast to using prescribed values from look-up tables or satellite-based products.

We compare
::::::::
compared model results with stations from the FLUXNET 2015 dataset covering a range in

::::::::::
observations

::::::
across

:
a
:::::
range

::
of

:
climate and vegetation types

::::
from

:::
the

:::::::::::::
FLUXNET2015

::::::
dataset, the MODIS leaf area product, and use

::::
used

:
more

detailed information from the TERENO site“Hohes Holz". With the current implementation, switching vegetation dynamics10

on
:::::::
regarding

::::
leaf

:::
area

:::::
from

::
an

:::::::::
additional

::::
site.

:::
Yet,

:::::::::
switching

::
on

:::
the

:::::::
dynamic

:::::::::
vegetation

:
did not enhance representativeness of

e.g. leaf area index and net ecosystem exchange in ECLand, while
:
it

::::::::
improved

:::::::::::
performance

::
in Noah-MP improved it only for

some sites. The representation of energy fluxes and soil moisture was almost unaffected for both models. Interestingly, for both

models, the performance regarding vegetation- and hydrology-related variables was unrelated
:::
for

::::
both

::::::
models, such that the

weak performance regarding
::
of

:
e.g. leaf area index did not detoriate the performance regarding

:::::::::
deteriorate

:::
the

:::::::::::
performance

::
of15

e.g. latent heat flux. One reason , we showed here, might be that
::
We

:::::
show

::::
that

:::
one

::::::::
potential

:::::
reason

:::
for

::::
this

:::::
could

::
be

::::
that

:::
the

implemented ecosystem processes diverge from the observations in their seasonal patterns and variability. Noah-MP includes

a seasonal hysteresis of
::
in the relationship between leaf area index and gross primary production that cannot be

:
is
::::
not found in

observations. The same relationship is represented by a strong linear response in ECLand,
:
which substantially underestimates

the variability seen in observations
:::::::
observed

:::::::::
variability. For both , water and carbon fluxes, the current implemented modules20

for vegetation dynamics
:::::::
currently

:::::::::::
implemented

::::::::
dynamic

::::::::
vegetation

::::::::
modules in these two models yielded no

:::
did

:::
not

:::::
result

::
in

better model performance compared to runs with static vegetation and prescribed leaf-area
:::
leaf

::::
area climatology.
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Copyright statement.

1 Introduction

Land-surface models (LSMs) represent the energy, water and biogeochemical cycles at the land surface. The
:::::::::::
Traditionally,25

::::
their main purpose has been to provide a surface component in coupled atmosphere-land models, but .

::::::
LSMs

:::
are

:::::::
applied

::
in

::::::::::::
meteorological

:::::::
models,

::::::::
reanalysis

::::::::
products

::
or

::
in
:::

the
::::::::

Coupled
::::::
Model

:::::::::::::
Intercomparison

:::::::
Project

:::::::
(CMIP).

::::::::
However,

:
their scope

is widening and new fields of application like historical land cover change simulations (Lawrence et al., 2018) or flood alert

services (Harrigan et al., 2020) are arising. Active
:::::
There

::
is

:::::
active development within the land-surface modelling communityis

ongoing, adding
::::
land

::::::
surface

::::::::
modeling

::::::::::
community,

::::
with

:
more and more features

::::
being

:::::
added

:
to existing models

:
to
:::::
make

:::::
them30

::::
more

:::::::
realistic (Blyth et al., 2021).

Given the wide use of these models and the implications of their resultsas they are used in the Coupled Model Intercomparison

Project (CMIP), extensive model validation has been done already. Model validation covers a wide range of water, energy and

carbon fluxes at globaland point scale (a.o. Niu et al., 2011; Haverd et al., 2018; Lawrence et al., 2019; Boussetta et al., 2021)

:
,
:::::::
regional

:::
and

::::
site

::::
scale

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Niu et al., 2011; Haverd et al., 2018; Lawrence et al., 2019; Boussetta et al., 2021). Such works35

that introduce individual evaluation schemes are
::::
often accompanied by studies that perform comparisons between them like

Best et al. (2015) or Krinner et al. (2018)
::::::
models

:::::::::::::::::::::::::::::::::::
(e.g. Best et al., 2015; Krinner et al., 2018). Comparisons like those are con-

ducted for different reasons. For example, one aim is to create a ranking between models that allows the assessment against

alternative schemes. Using this method, Best et al. (2015) reported that simple statistical methods achieve a higher performance

in energy partitioning at eddy-covariance sites than an ensemble of LSMs
:::
any

::::::
single

::::
LSM

:::::
tested. One limitation of that study40

is that they did not report metrics of individual model performance, but
::::
only normalized ones. This

::::::::
procedure

:
does not allow

to judge whether the investigated methods
::::
have achieved a (dis-)satisfactory performance

:
,
::::
since

:::
all

:::::::
methods

:::::
might

::::
have

::
a

::::
poor

::::::::
individual

::::::
model

::::::::::
performance. Other challenges in these activities are to maintain a standard protocol for model comparison,

while not creating a superficial performance contest among them, and to minimize human errors (Menard et al., 2021).

Haughton et al. (2016) had a closer look on
::::
more

::::::
closely

::::::::
explored the cause of poor model performance of LSMs shown in the45

PLUMBER study by Best et al. (2015), which they presented as the bias for the evaporative fraction (EF) across
::::::
derived

:::::
from

various tower sites exemplarily. From all different investigated aspects they concluded that mismatches between modelled

:::::::
modeled

:
and observed heat fluxes are most likely caused by calculations within the models and not related to

::::
errors

:::
in

:::
the

observations. Yet, the
::::::
specific reasons for this mismatch, for example over-parameterization, missing processes, calibration is-

sues etc., cannot be identified by benchmarking studies
::
or

:::::
model

:::::::
rankings

:::::
alone, but requires further investigation

:
of

:::::::::
individual50

:::::
model

:::::::::::
performance. At the same time, the causes of poor model performance can be multifaceted, rendering their identification

challenging (Haughton et al., 2018b). Nonetheless, there is no way around further understanding
:::::
further

:::::
LSM

:::::::::::
development

:::::
needs

:::::::::::
understanding

:::
of how individual process implementation and parameterization affect model performances, if LSMs are

expected to be further evolved.

A wealth of studies evaluated different LSMs with respect to radiation, heat fluxes or surface temperature, and carbon fluxes.55
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Carbon fluxes like gross primary production (GPP) , thereby, are often validated by using global gridded fluxes like FLUXNET

Multi-Tree Ensembles
::::::::::
FLUXCOM

:
(Ma et al., 2017; Jung et al., 2019; Lawrence et al., 2019). The correct implementation of

ecosystem processes and related variables is crucial to make use of LSMs in an assessment of
::
for

:::::
using

:::::
LSMs

:::
in

::::::::
assessing

impacts due to climate change for example in drought evaluation (Ukkola et al., 2016; Dirmeyer et al., 2021) because plant

transpiration directly links the terrestrial carbon and water cycle. Over the past decades, vegetation dynamics became more60

strongly determined by soil moisture (Li et al., 2022b) and the sensitivity of heat flux partitioning to vegetation enlarged

in turn (Forzieri et al., 2020), in particular in water-limited regions. At the same time, Li et al. (2022b) reported that LSMs

do misrepresent water-sensitive regions. Especially during drought events, predictions by LSMs appear to deviate from the

observations. For example, a substantial underestimation of evapotranspiration (ET) by eight LSMs during drought conditions

was shown across different plant communities (Ukkola et al., 2016). De Kauwe et al. (2015) concluded from their simulations65

of drought responses for the European FLUXNET sites with the Community Atmosphere Biosphere Land Exchange (CABLE)

model that accounting for differing drought sensitivity of plant communities into LSMs may be required to correctly capture

drought impacts. Currently, most LSMs are not able to represent a direct vegetation control on surface exchange, amongst

others because
::
in

:::
part

:::::::
because

::::
they

:::::::::::::
under-represent

:
biophysical responses to changing water availability are underrepresented

and vegetation, more specifically
:::
and

::::::::::
oversimplify

:::::::::
vegetation

:::::::::
dynamics,

::
in
:::::::::

particular
:
leaf area index (LAI) , dynamics are70

simplified (Forzieri et al., 2020). LSMs typically work with climatological LAI, e.g. seasonality read from look-up table

(LUT) files
::::
files,

:
or calculate LAI as a

:
prognostic variable internally. At the same time, LAI has a large impact on both water

and carbon fluxes (e.g. Fisher et al., 2014), and an understanding
:
of

:
how its parameterization impacts flux estimates by LSMs

helps
:::::
would

::::
help to shed light on the known discrepancies

::
in

::::::::::
representing

:::::::::
vegetation.

Here, we investigate model performances
::::::::::
performance for water and carbon fluxes especially with

:::
with

::
a focus on vegetation75

processes. We additionally check the reasons for model-data mismatch, by analysis of the underlying computer source code of

the models (as stated by Dirmeyer et al. (2018)), that
:::::
which

:
can only be executed

::::
done

:
for a limited set of models

:::
due

::
to

:::
the

::::
large

:::::
effort

::::
that

::
is

::::::
needed. For this scope, we chose ECLand and Noah-MP as frequently used

:::
and

:::::::::::
continuously

::::::::::
developing

LSMs with available vegetation dynamics modules
:::::::
modules

::
for

:::::::::
vegetation

::::::::
dynamics. In this manuscript, we aim to answer the

following research questions: (1) Does the representation of net ecosystem exchange (NEE) and leaf area index (LAI )
::::
LAI im-80

prove, if LSMs represent vegetation dynamically? (2) How does dynamic vegetation in those
::
the

:
LSMs impact other variables

like heat fluxes and soil moisture? Does improving one variable , compromise performance in the other or improves it along

with it
:::
Do

:::::::::::
improvements

::
in
::::::
model

::::::::::
performance

:::
for

::::
one

::::::
variable

:::::::::::
compromise

::::::::::
performance

:::
for

:::::
other

:::::::
variables? (3) What are the

mechanics behind different
:::::::
modeled

:::::::
temporal

:
patterns in vegetation dynamics and possible misrepresentations of

::::::::
occurring

:::::
misfits

::
to
:
the observations?85

2 Methods

2.1 Data basis
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For this study, observational data is required for two purposes: first, as model input and, second, for performance evaluation.

We used readily available data products.

Site selection90

The FLUXNET 2015
:::::::::::::
FLUXNET2015 dataset (Pastorello et al., 2020) provides measurements from globally distributed eddy

covariance sites. We selected a subset from all the available FLUXNET sites, focusing on sites with long observation periods,

covering different vegetation types and a gradient in aridity within each vegetation type.
:::::::::
Vegetation

::::
types

::::::
within

::::::::::
FLUXNET

:::
rely

:::
on

:::
the

:::::
IGBP

::::
Land

::::::::::::
Classification

::::::::::::
(NCAR, 2022).

:
The aridity index

::::
(AI) of all sites was retrieved from the closest grid cell

on a global map
::::::::::
CGIAR-CSI

:::::::::::::
Global-Aridity

:::
and

::::::::::
Global-PET

::::::::
Database (Trabucco and Zomer, 2018) and inverted afterwards.

:
,95

:::::::
bringing

:
it
:::::
back

::
to

:::
the

:::::
initial

::::::::
definition

::
as

:::
the

::::
ratio

:::
of

::
the

:::::::::
long-term

:::::
mean

::::::
annual

:::::::
potential

:::::::::::::::
evapotranspiration

::
to
:::
the

:::::::::
long-term

::::
mean

::::::
annual

:::::::::::
precipitation

:::
by

::::::::::::
Budyko (1974)

:
.
:
We excluded sites with observation periods less than 5

::
six

:
years because they

might not represent the local climatology (Haughton et al., 2018a) .
::::::
climate

::::::::::::::::::::
(Haughton et al., 2018a)

:::
and

:::::::
extreme

:::::
years

:::::
could

:::::
create

:
a
:::::::::
systematic

::::
bias.

::::
Due

::
to

:::
the

::::
small

:::::::
number

::
of

::::
sites

:::
per

::::::::
vegetation

::::
type

::::
with

::::
long

::::::::::
observation

:::::::
periods,

::
the

:::::::::
vegetation

:::::
types

::::::
savanna

::::::
(SAV),

::::::
woody

:::::::
savanna

::::::
(WSA)

:::
and

:::::
open

::::::::
shrubland

::::::
(OSH)

::::
were

:::::::
merged

:::
into

:::
one

:::::::
savanna

:::::
group

::::::
before

:::::::::
continuing

::::
with100

::
the

::::::::
selection

:::::::::
procedure.

:
For each vegetation type (or groupe.g. for savannas)

::
or

:::::
group, first, we selected

::::
chose

:
the site with the

longest observation record. Next, other sites with similar aridity (±0.1 logarithmic aridity index
::
AI) were dropped to avoid

including more than one representative site for each combination of aridity and vegetation type.
::
an

:::::::::::::::
overrepresentation

::
of

:::::
some

::::::::
vegetation

::::::::::
type-aridity

::::::::::::
combinations

:::
due

:::
to

::::::::::::
heterogeneous

:::
site

::::::::::
distribution

::::::
within

::::::::::
FLUXNET.

::::
We

::::
used

::::::::::
logarithmic

::::::
values

::
to

:::::
create

::
a

:::::
linear

::::
scale

:::
of

:::
the

:::
AI,

::::::::
avoiding

::
an

::::::::::::::::
overrepresentation

::
of

:::::
drier

::::
sites

::::::
within

:::
the

:::::::
selection

::::::::
process. Afterwards, we105

repeated these steps for the remaining sites and continued until no more sites were available for selection
:
in

::::
this

:::::::::
vegetation

:::
type

:::
or

:::::
group. For the selected sites, we double-checked data availability and quality and replaced with an alternative site

if necessary.
:::
The

::::
most

::::::::
common

:::::::
reasons

:::
for

:::::::::
discarding

::::
sites

:::::
were

::::::
missing

:::
or

::::
poor

::::::
quality

::::
soil

::::::::
moisture

::::
data

::
or

::::::::::
low-quality

:::::::::
gap-filling,

:::::
which

:::::::
reduced

:::
the

::::::
length

::
of

:::
the

::::::::::
observation

::::::
record

:::::
below

:::
the

::::::::
threshold

:::
of

:::
six

:::::
years.

:::
By

:::::
doing

:::
so,

::::
only

::::
two

::::
sites

::::
with

:::::
mixed

::::::
forests

:::::
(MF)

::::
were

::::
left

:::::
which

::
is

::::::::
critically

:::
few.

::::::
Thus,

::
we

::::::::
included

::
all

::::
MF

::::
sites

::::
into

:::
the

::::::::
deciduous

:::::::::
broadleaf

:::::
forest110

:::::
(DBF)

:::::::::
vegetation

::::
type

:::
and

::::::::
repeated

:::
the

:::::::
selection

:::
for

::::
this

:::::
group.

:
We were left with 22

::
24

:
sites, covering a range of aridity and

vegetation types with varying observation periods, as shown in Fig. 1 , and
:::::
Figure

::
1
::::
and, thus, we assumed them to be neither

very predictable nor very unpredictable in total, as recommended by Haughton et al. (2018a). Additionally, we also used data

of the eddy covariance site "Hohes Holz" (Rebmann and Pohl, 2022) which is part of the TERENO Harz/Central German

Lowland Observatory (Wollschläger et al., 2016)
:::
and

::
is

:::::::
included

:::
in

:::
the

:::::
ICOS

:::::::
network

::::
since

::::::
2019, because on-site measured115

LAI data was available for that site.
::::
DBF

::::
site.
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Figure 1. Selected FLUXNET sites grouped by their vegetation type. For each group, sites were chosen to cover a gradient in aridity (y-axis)

if available. The vegetation types are: GRA - grassland, SAV - savanna, WSA - woody savanna, EBF - evergreen broadleaf forest, CRO -

cropland, MF - mixed forest, DBF - deciduous broadleaf forest, ENF - evergreen needleleaf forest.
:::
The

::::
color

::::
scale

::::::::
represents

::
the

:::::::
duration

::
of

::
the

:::::::
available

::::
time

::::
series

::
in

:::::
years.

Variables used and data pre-processing

From the FLUXNET (Pastorello et al., 2020) and Hohes Holz (Rebmann and Pohl, 2022) datasets, air temperature, downward

short- and long-wave radiation, wind speed, relative humidity, air pressure and precipitation were used for model forcing.

Turbulent fluxes, e.g.
::
i.e.

:
latent heat flux (LE) and sensible heat flux (H), as well as net ecosystem exchange (NEE), gross120

primary production (GPP) and volumetric soil water content in 10 cm
:::::
10 cm

:
depth were used for model evaluation. All data

were provided and used at half-hourly resolution.
:::::::::
FLUXNET

::::
data

:::
was

::::::::
retrieved

::::
from

:::::
their

:::::::
website.

::
LE

::::
and

::
H

::
in

::::::::::::::
FLUXNET2015

:::
are

::::::::
available

::
in

::::
two

:::::::
different

:::::::::
variables:

::::
One

::
is

:
a
:::::::
product

:::
that

:::::::
corrects

::::
the

:::::::
turbulent

::::::
fluxes

:::
for

:::::
energy

:::::::
balance

:::::::
closure,

:::::
while

:::
the

:::::
other

:::
one

::::::::
provides

:
a
::::::::::

continuous
::::
time

:::::
series

:::::
filled

:::
by

:::::::
Marginal

:::::::::::
Distribution

::::::::
Sampling.

::::
We

::::::
decided

::
to

:::
use

:::
the

::::
first

:::
one

:::
as

::::
long

::
as

::::
they

::::
were

::::::::
available

::
in

:::
the

::::::
dataset

::::
since

::::::
LSMs

::::
also

:::::::
consider

:::
for

::::::
energy

:::::::
balance. Missing125

data in the Hohes Holz
:::::
"Hohes

::::::
Holz" meteorological dataset was filled using a Kalman filter (Sayed, 2003) for short gaps up to

3 h
::
3 h, except for precipitation which was set to 0. For longer gaps, filling data

::
the

:::::::
Kalman

:::::::::
procedure

:::
tent

::
to

:::::::::::
overestimate

:::
the

::::::::::
observations

:::::
which

:::::::
resulted

::
in
::::::

offsets
::
at
:::
the

::::
end

::
of

:::
the

:::::
filling

:::::::
periods.

:::::
Thus,

::::::
filling

:::
data

:::
for

:::::
these

::::
gaps

:
was retrieved from the

ERA5 (Hersbach et al., 2020) data product (via Climate Data Store API from Copernicus, ©2018 ECMWF)
:::
with

::::
0.1°

::::::
spatial

:::
and

:::
1 h

::::::::
temporal

::::::::
resolution.130

For calculation of the evaporative fraction LE
LE+H , all time steps with H ≤ 0 were excluded. We adopted the same procedure
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to the LE values to focus
:::
The

:::::
same

::::
time

:::::
steps

::::
were

:::
left

:::
out

:::
for

:::
LE

::
to

:::::
focus

:::
the comparison of turbulent fluxes on periods with

evaporative demand. For performance evaluation
:::::::::
estimation

::
of

:::::
model

:::::::::::
performance, we excluded longer gap filled periods

:::
that

::::
were

:::::
longer

::::
than

::::
one

:::::
month.

2.2 Model description135

We investigated how dynamic vegetation affects model outputs in two land-surface models capable of representing both

static and dynamic vegetation: ECLand (Balsamo et al., 2009; Dutra et al., 2010; Boussetta et al., 2021) and Noah-MP

(Chen and Dudhia, 2001; Dutra et al., 2010; Niu et al., 2007, 2011)
:::::::::::::::::::::::::::::::::::::::::::::::::::
(Chen and Dudhia, 2001; Ek et al., 2003; Niu et al., 2007, 2011)

.

ECLand140

The European Centre for Medium-range Weather Forecasts (ECMWF) developed a Carbon-Hydrology Tiled Scheme for Sur-

face Exchanges over Land (CHTESSEL) (Balsamo et al., 2009; Dutra et al., 2010; Boussetta et al., 2013) which reprents

::::::::
represents

:
the land component of the Integrated Forecasting System (IFS). As part of the IFS, CHTESSEL has evolved into

a more flexible system ECLand (Boussetta et al., 2021), which also allows for several modular extensions. Among these, an

under-development vegetation dynamic
:
a
:::::::
dynamic

:::::::::
vegetation

:
module simulates the temporal evolution of vegetation. Therein,145

LAI, vegetation biomass and vegetation coverage are calculated from the daily carbon budget, instead of taking them from

the climatological LAI. However, climatological values
:::
LAI

::::::::::
climatology

:
can still be used for fully static or in partly dynamic

simulations.

In ECLand (IFS cycle
::::::
version “CY46R1”), each of the 19 vegetation types receives its own parameter

::::::
values (e.g. for roughness

lengths, stomata resistanceto water and carbon flux, root distribution) from LUTs
::::::
look-up

:::::
tables

:
(Boussetta et al., 2012, 2021).150

These vegetation types are categorized into high or low vegetation. Each grid-cell has one dominant high and one dominant

low vegetation type, together forming the vegetation of a grid-cell (Balsamo et al., 2009). Surface fluxes are computed for the

high and low vegetation tiles separately then merged for the whole grid-cell according to their respective coverto be used for

the vertical exchange with the atmosphere
::::::::
fractional

:::::
cover. The vegetation coverage is calculated from a prescribed climato-

logical vegetation fraction (part of input) and a vegetation type dependent density (from LUT
:::::::
look-up

::::
table) and corrected by155

current LAI (Boussetta et al., 2021). Leaf biomass growth
:::
Net

::::::::::
assimilation

:
results from carbon accumulation

:::::
uptake

:
of atmo-

spheric CO2 by the available leaf area
::::::
current

:::
leaf

::::
area

:::::::
(defines

::::::::
absorbed

::::::::
radiation)

:
and is restricted by environmental factors

such as soil moisture and nitrogen availability .
:::::::::
(important

::::::::
equations

:::
can

:::
be

:::::
found

::
in
:::::::

section
::::::
A.01).

:::::::
Together

::::
with

::::
the

::::
dark

:::::::::
respiration

:::
and

::::
after

:::::::
scaling

::::
with

:
a
::::::::
quantum

:::
use

::::::::
efficiency

::::::
factor,

::::::::
potential

::::
gross

:::::::::::
assimilation

::
is

:::::::::
calculated.

::::
This

:::::
value,

:::::
then,

:
is
:::::::
linearly

:::::
linked

:::
to

:::
LAI

::::
and

:::
the

::::::::::::::::
humidity-corrected

::
air

:::::::
density,

::::::::
resulting

::
in

::::
gross

:::::::
primary

:::::::::::
productivity

::::::
(GPP). With activated160

vegetation dynamics, LAI depends on the built up green biomass and a LUT value of
:
a
:::::::
potential

:::
net

:::::::::::
assimilation,

:::::::
together

::::
with

::::
LAI,

:::::
forms

:
a
::::::::
damping

:::::
factor

:::
for

:::::::
biomass

::::::::::
senescence.

:::::::
Biomass

:::::::::
senescence

::
is
::::::::::
determined

::::
from

::::::
current

::::::::
biomass,

::::::
linearly

::::::
linked

::
to

::::::
current

::::
LAI,

::::
and

:::
the

::::::::
damping

:::::
factor.

::::
The

::::::
change

:::
in

:::::::
biomass

::::::
results

::::
from

::::
this

:::::::
updated

:::::::
biomass

::::
and

:::
the

:::
net

:::::::::::
assimilation.

:::::
Then,

:::::::
biomass

::
is

:::::::
updated

:::::
again

::::
and

::::::
linearly

::::::::::
transferred

::::
into

:::::::
updated

::::
LAI

::
by

:::::
using

:
specific leaf area

::::
from

:
a
:::::::
look-up

:::::
table
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(Boussetta et al., 2021). For static ECLand, the prescribed climatological LAI is used. LAI in ECLand determines the canopy165

resistance for water vapour transport and thus, the evapotranspiration as well as the interception (Boussetta et al., 2012, 2021)

::::::::::::::::::::::::::::
(Boussetta et al., 2012, 2013, 2021).

Noah-MP

Noah-MP is the widely used community Noah land-surface model (Chen and Dudhia, 2001; Dutra et al., 2010)
::::::::::::::::::::::::::::::::::
(Chen and Dudhia, 2001; Ek et al., 2003)

with multi-parameterization options (Niu et al., 2007, 2011). Predicted LAI in Noah-MP is calculated based on leaf carbon170

allocation and specific leaf-area per vegetation type (Ma et al., 2017). In contrast to ECLand, Noah-MP can either use LAI

values from LUT
:::::::::
prescribed

:::
LAI

::::::
values per vegetation type or depend solely on dynamic LAI estimates, without the option to

mix between the two.

In Noah-MP (version “HRLDAS 3.9”), parameterization (e.g. value range of stomatal resistance, number of rooted soil layers,

specific leaf area) of the 27 vegetation types is taken from LUT
::::::
look-up

:::::
tables. The vegetated sub-grid area of each grid cell175

is dominated by one vegetation type forming a one-layer canopy. Calculation of canopy interception and transpiration con-

sider aerodynamic and stomatal resistances for the water vapour and carbon fluxes within the canopy and between
::
the

:
canopy

and the atmosphere (Ma et al., 2017). Thereby
::::::
Among

::::::
others, stomatal resistance is

::::::::::::
predominantly controlled by photosyn-

thesis
::::::::::::::
(Niu et al., 2011) which depends on leaf area, and is limited by light and root zone soil moisture . Assimilated carbon,

afterwards,
:::::::::
(important

::::::::
equations

:::
can

::
be

::::::
found

::
in

::::::
section

:::::
A.02).

:::::::::::
Assimilation

:::::::
depends

::
on

::::
LAI

::::
and

:
is
::::::::::
constrained

::
by

::::::::::
physiology180

:::
and

::::
light

::::::::::
availability.

:::::::::::
Assimilated

::::::
carbon

:
is allocated to different plant tissues (leaf, stem, wood, root),

:::::::
forming

:::::
GPP,

:
and

reduced by
:::::::::
respiration,

:
dying and turnover processes such as drought stress and senescence representing leaf dynamics (Dick-

inson et al., 1998).
:::::::::
Respiration

:::
rate

::
is
::::::::::
determined

::
by

:::::
LAI,

::::
GPP,

::::::::::
temperature

::::
and

:::
soil

::::::::
moisture

:::::
stress.

:
Carbon that is allocated

to leaves
:::::::
together

::::
with

:::::::
biomass

:::::
losses

:::::::
forming

:::
an

::::::
updated

::::
leaf

:::::::
biomass

:::::
which

:
converts into the LAI by using specific leaf area

(Ma et al., 2017). Carbon assimilation and allocation and, thus, also GPP and NEE estimation are deactivated for the static185

Noah-MP since a prescribed LAI is given.

2.3 Model setup and simulations

Simulations with activated modules that predict LAI time series will be activated vegetation dynamics or dynamic ECLand

and dynamic Noah-MP hereafter. For both models, the reference height (level of the forcing input) was set to the flux tower

height of the sites which depends on the vegetation type.
:::
The

::::::
models

:::::
were

:::
set

::
up

:::
as

::::::
closely

::
as

:::::::
possible

:::
to

:::
the

:::::::
available

::::
site190

:::::::::
information

::::
but

::::
there

:::
are

:::::
some

::::::::
technical

::::::::::
differences

::
in

:::
the

::::::::
structure

::
of

:::
the

::::::
model

:::::
input,

:::
i.e.

::
in
:::

the
::::::

initial
::::
files.

:
Forcing and

model calculation were done in 30 minutes resolution if available, otherwise, hourly resolution was applied. We used four

layered soil representation and used the uppermost layer for evaluation of soil moisture
:::::
which

::
is
:::::
7 cm

::::
and

:::::
10 cm

:::::
deep

:::
for

:::::::
ECLand

:::
and

:::::::::
Noah-MP,

::::::::::
respectively. Every simulation started with a ten year spin-up phase by recalculating the first year.
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ECLand195

We used ERA5-based (Hersbach et al., 2020) global initial data for ECLand and selected the grid cells where the flux towers

are located.
:::::
These

:::::
initial

::::
files

::::::
contain

::::::::::
information

:::
on

::::::
albedo,

:::::::::
orography,

:::
soil

:::::
type,

::::::
surface

:::::::::
roughness

:::
and

:::::::
monthly

::::
LAI

::::::
which

:
is
:::
not

::::::::
available

::
in

:::
the

::::::::::
FLUXNET

::::::::
metadata.

:
For the simulations that use alternative LAI forcings

::::::
forcing, monthly LAI in the

initial files was replaced by the scenario specific alternative values ,
:
(see section 2.3). We defined the vegetation on that grid-cell

to be either high or low vegetation (and not a mixture) depending on the site information. Forests and savannas were treated200

as high vegetation types while grasslands , crops and shrublands
:::
and

:::::::::
croplands were allocated to low vegetation types.

:::
The

::::::::
vegetation

::::
type

::::
that

:::
fits

::::
most

::
to

:::
the

:::::::::
FLUXNET

::::::::::::::
characterization

:::
was

:::::::
selected

::::
(see

::::
Tab.

::
1).

::::
The

:::::::
coverage

:::
of

:::
that

:::::::::
vegetation

::::
type

:::
was

:::
set

::
to

::::::
100 %.

:
Meteorological forcing was taken from the FLUXNET/TERENO data sets mentioned above (section 2.1).

The ECLand simulations were done with van Genuchten soil hydrologic parameters
:::::::::::::::::::
(van Genuchten, 1980), activated sub-grid

surface runoff and activated snow parameterization.

Table 1.
:::::::::
Assignment

::
of

::::::::
vegetation

::::
types

::::
used

::
in

::::::
ECLand

:::
and

::
in

::::::::
Noah-MP

:::
and

::::::
referred

:::::
initial

:::
LAI.

::::::
Fluxnet

:::::::
vegetation

:::
type

:

::::::
ECLand

::::::::
vegetation

:::
type

: ::::::
ECLand

:::::::
vegetation

:::
class

:

:::::::
Noah-MP

:::::
USGS

: :::::::
Noah-MP

:::::::
vegetation

::::
class

:::::::
Noah-MP

::::
initial

::::
LAI

:::
ENF

: :::::::
Evergreen

:::::::::::
Needleleaf

::::
Trees

:
3
:::::
(high)

:::::::
Evergreen

:::::::::
Needleleaf

::::
Forest

::
14

::
4.0

:::
MF

:::::
Mixed

::::::::::::
Forest/Woodland

: ::
18

:::::
(high)

:::::
Mixed

:::::
Forest

::
15

::
2.0

::::
DBF

::::::::
Deciduous

::::::::::
Broadlead

::::
Trees

:
5
:::::
(high)

::::::::
Deciduous

:::::::
Broadleaf

:::::
Forest

::
11

::
0.0

:::
EBF

: :::::::
Evergreen

:::::::::::
Broadleaf

::::
Trees

:
6
:::::
(high)

:::::::
Evergreen

::::::::
Broadleaf

:::::
Forest

::
13

::
4.5

:::
SAV

: ::::::::
Interrupted

:::::
Forest

::
19

:::::
(high)

::::::
Savanna

::
10

::
0.3

::::
WSA

::::::::
Interrupted

:::::
Forest

::
19

:::::
(high)

::::::
Savanna

::
10

::
0.3

::::
CRO

:::::
Crops,

:::::
Mixed

::::::
Farming

: :
1
::::
(low)

: :::::
Mixed

:::::::::::::::
Dryland/Irrigated

:::::::
Cropland

:::
and

:::::
Pasture

:

:
4

::
0.0

::::
GRA

:::
Tall

::::
Grass

: :
7
::::
(low)

: :::::::
Grassland

: :
7

::
0.4

:

205
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Noah-MP

Soil type for the Noah-MP was taken from the global soil grid by PLOS ONE (Hengl et al., 2014) . The soil types of the

grid-cell itself and its surrounding four neighbors were averaged
::::::::::::::::
(Hengl et al., 2014)

::
by

::::::::
selecting

:::
the

::::
grid

:::
cell

:::::::::
including

:::
the

:::
flux

:::::
tower

:::::::
location. Initial values for temperatures and soil moisture were taken as the FLUXNET/TERENO observations at

January 1st 00:30
::
00 h in the first year of the simulation period. Vegetation types were chosen to match as closely as possible210

the USGS vegetation types (©2023 UCAR)1
::::::::::::
(UCAR, 2023) and the initial LAI values were set according to the defaults in

the parameter file (Table
::
see

::::
Tab. 1). Vegetation cover fraction was set to 100%

:::::
100 %

:
so that the entire grid-cell represents the

vegetation type of the observation site. Green
::::::::
Minimum

:::::
green

:
vegetation fraction was set to 1 because otherwise

:::
1 %

::
to

::::::
ensure

:::
that

:::
not

:::
the

::::::
whole

:::::::::
vegetation

:::::
cover

::::
dies

:::::
during

::::::
winter

::::::
which

:::::
would

::::::
hinder

:
temperate short vegetation did not re-grow

::::
from

:::::::
growing in spring. For the simulations with alternative LAI forcing, the monthly LAI in the LUT

::::::
look-up

:::::
table was replaced by215

the scenario specific alternative values , (see section 2.3
:
). The Noah-MP simulations were done with LUT soil parameterization

:::
soil

::::::::::::::
parameterization

::::
from

:::::::
look-up

:::::
tables, Ball-Berry stomatal resistance approach

::::::::::::::::::::::::::
(Ball et al., 1987; Bonan, 1996) and using

matric potential therefor and fully implicit
::::::
canopy

::::::
surface temperature time schemes. Other options were used as their defaults.

Assignment of vegetation types used in Noah-MP according to USGS classification and referred initial LAI.Fluxnet vegetation

type Noah-MP USGS Noah-MP vegetation class Noah-MP initial LAI ENF Evergreen Needleleaf Forest 14 4.0MF Mixed220

Forest 15 2.0DBF Deciduous Broadleaf Forest 11 0.0EBF Evergreen Broadleaf Forest 13 4.5SAV Savanna 10 0.3WSA Savanna

10 0.3OSH Mixed Shrubland 9 0.2CRO Mixed Dryland/Irrigated Cropland and Pasture 4 0.0GRA Grassland 7 0.4

Leaf area index data and scenarios

Leaf area index (LAI )
::::::
Monthly

::::
LAI

::::::
values

:::
are

:::
part

::
of

:::
the

::::::
initial

::::
input

::
of

::::
both

:::::::
models

:::
via

::::::
look-up

::::::
tables.

:::::
These

:::::
tables

:::::::
contain

:::::
annual

::::::
cycles

::
of

::::
LAI

:::
for

::::
each

:::::::::
vegetation

::::
type

:::::::::
separately.

:::::
This

::::::
default

::::::::::
climatology

::
is

::::::
already

:::::
based

:::
on

::::::
values

::::
from

::::::::
MODIS.225

:::
For

::::::::
ECLand,

:::
the

::::::
gridded

::::::
values

::
of

::::
LAI

:::::
were

:::::::::::
disaggregated

:::
to

:::
the

::::
high

:::
and

::::
low

:::::::::
vegetation

::::
type

::
of

:::
the

::::
grid

::::
cell

::
for

::::
the

::::
time

::::
span

:::::::::
2000-2008

:::::::::::::::::::
(Boussetta et al., 2013).

::::
LAI

:::::
values

::
in
:::
the

:::::::
look-up

::::
table

::
of

:::::::::
Noah-MP

:::
are

::::::
defined

:::
for

::::
each

::::
plant

:::::::::
functional

::::
type

:::
and

::::
were

:::::::
created

::
by

::::::::::::
disaggregating

:::::::
MODIS

:::::::::::
observations

:::::::::::::::::
(Oleson et al., 2010).

::::
For

:::::::::
alternative

:::
LAI

::::::
inputs,

:::::
these

::::::
values

::
in

:::
the

::::::
look-up

:::::
tables

:::::
were

:::::::
replaced

::::::::
manually.

:::
LAI

:
values were taken from the MOD15A2H data product from NASA’s EarthData portal (Myneni et al., 2015). One grid cell230

::
of

:::::
500 m

::
x
::::::
500m was selected per eddy covariance tower according to the site coordinates and LAI values were extracted. We

used LAI values with respective quality flags of 0, 32, 48 and 65 (see MODIS documentation for more details) as
:::
with

::::::::
temporal

::::::::
resolution

::
of

:::::
eight

::::
days

:::::
were

::::::::
extracted

:::
for

:::
the

:::::
years

::::
2000

:::
to

:::::
2014.

::
To

::::::
assure

::::::::
reliability

:::
of

:::
the

::::::
values,

:::
the

:::::::::::::::
"MODIS15A2H"

:::
data

:::::::
product

::::::
comes

::::
with

:::::::
numeric

::::::
quality

::::
flags.

::::::::
Although

::::::::::::::::
Fang et al. (2012)

:::::::::
recommend

:::::
using

::
all

::::::
values

::::
with

::::::
quality

::::
flags

::::
less

:::
than

::::
64,

:::
we

:::::::
excluded

::::
data

:::::
with

::::::
quality

::::
flag

:
8
:::::::
because

:::::
many

:::
of

::::
these

::::
LAI

::::::
values

:::::
were

::::::::
extremely

::::
low

::::::
during

:::
the

:::::::::
vegetation235

:::::
period

::::::
which

::
is

:::::::::
unrealistic.

:::::
Then

:::::
again,

::::
due

::
to

::::::
lacking

::::
LAI

::::::
values

::::::
during

:::::
winter

::
or
::::

wet
:::::::
seasons,

::::::
values

::::
with

::::::
quality

::::
flags

:::
of

::
73

::::::::::
(empirically

:::::
filled

::::
with

::::::
clouds

::::::::
present),

::
81

:::::::::::
(empirically

::::
filled

:::::
with

:::::
mixed

::::::::::
cloudiness)

:::
and

:::
97

::::::::::
(empirically

:::::
filled

:::
for

:::::
other

1data can be found here:
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:::::::
reasons)

::::
were

::::::::
included

::
as

:
a
:
trade-off between excluding as much bad-flagged data as possible and keeping roughly the same

amount of data values for each month
:::
(see

:::::::
MODIS

:::::::::::::
documentation

::
for

:::::
more

::::::
details). Afterwards, we smoothed the remaining

values by using a Savgol filter (window length: 11, polyorder: 2)
:::::::::::::::::::::::::::::::::::::::::::::::::
(similarly done by e.g. Xiao et al., 2011; Huang et al., 2021)240

from the scipy-package (Savitzky and Golay, 1964; Luo et al., 2005) and prepared a mean annual LAI cycle for all available

years with monthly resolution, further name
:::::
named

:
MODIS climatology. For an additional experiment, the monthly LAI of

the first year of
::::
from

:::::::
MODIS

::
of

::::
each

::::
year

::::::
within the simulation period was used

::::::::
separately

::::
was

::::
used

::
as
:::::

input, called MODIS

single-year from this point on. Each following year was then forced by the monthly MODIS LAI for that specific year. In case

the LAI value for a month in that year was missing, we set it to be the mean
::::::
Missing

::::
LAI

::::::
values

:::
for

:
a
::::::
month

::::
were

:::::
filled

:::
by245

::
the

:::::::
average

:::::
value

:
of the adjacent months. If LAI values for more than one month

::
at

::::
least

:::
two

::::::::::
consecutive

:::::::
months

:
were not

available, the LUT LAI values
:::
LAI

::::::
values

::::
from

:::
the

::::::
default

:::::::
look-up

::::
table

:
were used for those months.For the Hohes Holz site,

also

:::
For

:::
the

:::::::
"Hohes

:::::
Holz"

::::
site,

:
on-site measured LAI data from Digital Hemispheric Photography was available

:::
was

::::::::
available

::::
from

::::::
Digital

::::::
Cover

::::::::::
Photography

:::::::
(DCP),

:::::
which

::::
was

::::::
shown

::
to

:::::
yield

::::::::::
comparable

:::::
results

:::
to

:::::::::
established

::::::::
methods

:::
(?). For each250

measurement date, we averaged the values from the whole plot area and, afterwards, calculated monthly means over time span

2014-2019. This alternative LAI forcing will be called on-site LAI hereafter. The nomenclature of all LAI scenarios can be

found in Table 2.

Table 2. Nomenclature of all model scenarios using LAI data sources.

Term LAI source

default climatological LAI
::::::::
climatology

:

global gridded initial files
:::::
default

::::::
monthly

::::
LAI

:::
for

:::
the

:::::::
dominant

::::
high

:::
and

:::
low

::::::::
vegetation

:::
type

::
on

::::::::
respective

:::
grid

:::
cell

:
(ECLand) or look-up table

:::::
default

:::::::
monthly values per vegetation

type
:::

from
::::::
look-up

::::
table (Noah-MP)

MODIS climatological LAI
::::::::
climatology

:
mean annual cycle of monthly LAI values derived from MODIS dataset

::::
from

::::
2000

:
to
:::::

2014

MODIS single-year

::::
same

::
as

:::::
before

:::
but

::::::
without

::::::::
averaging,

:::::::
resulting

::
in

::
an

:::::
annual

::::
cycle

:::
for

::::
each

::::
year

:::::::
separately

:::::
within

::
the

:::::::::
observation

:::::
period

:::::
on-site

:
LAI

::::
mean annual cycle of distinct years of monthly LAI values derived from MODIS dataset

::::
based

::
on on-site

::::::
measured

:
LAI on-site measured LAI values

The MODIS LAI was also applied for model evaluation
::
but

::
in

:::
its

::::
high

::::::::
temporal

::::::::
resolution

:::
of

::::
eight

:::::
days. Due to the usage

of single day values, we solely used data with good quality flags (
:::::
quality

::::
flags

:
0

::
(no

::::::
issues)

:
and 32

::::::::
(saturated) and refrained255

from smoothing. Gaps were left as they were.
:::
For

:::
the

:::::
static

::::
runs,

::::::::::
comparison

::::
with

:::::::
MODIS

::::
LAI

:::
on

:::::
daily

::::
basis

::::::::
provides

:::
the

:::::::::
information

::::
how

::::
well

::
a

:::
LAI

::::::::::
climatology

:::::::::
represents

:::
the

::::
local

::::
LAI

::::::::
evolution

:::
and

:::::::
whether

:::
an

:::::::::::
incorporation

::
of

:::::
more

::::::::::
site-specific

::::::::::
climatology

:::
can

:::::::
improve

:::
the

::::::::::::::::
representativeness.

::::
For

:::
the

:::::::
dynamic

:::::::::::
simulations,

:::::::::
comparing

::::::::
modeled

::::
LAI

::::
with

:::::
daily

:::::::
MODIS

:::::
values

::
is

::::
used

::
to

:::::::
examine

:::::::
whether

:::
the

:::::::
models

::
are

::::
able

::
to
:::::::
capture

:::::
inter-

:::
and

::::::::::
intra-annual

::::
LAI

:::::::::
dynamics.
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2.4 Performance evaluation260

We transferred model
:::::
Model

:
outputs and observational data from the flux towers into

::::
were

:::::::::::::::
averaged/summed

:::
to daily values

for direct comparison. For LAI, we calculated the eight-day mean of the LAI model output , to correspond to the temporal

resolution of the MODIS LAI estimates. As performance criteria we used the Pearson’s correlation coefficient, the normalized

standard deviation and a modified relative bias for the model-observation relationship. Pearson’s correlation coefficient R

describes the fit between model and observation values (Benesty et al., 2009) and is calculated from the numpy-packageas265

Rxy =
Covxy√

Covxx ·Covyy

where Cov refers to the covariance of the observations x and the model predictions y. The normalized standard deviation
::
sn

is the ratio of the standard deviation of the model predictions and the standard deviation of the observations. It is used to

describe the models’ ability to reproduce the variability of the observations. The relative bias b
:

applied here was adapted to

the co-domain
::::::
domain of the variable to avoid division by zero or by values very close to zero (especially important for NEE).270

Therefor, the basis of the relative bias
::::::::
Therefore,

:::
the

::::::::::
distribution

::
of

:::
the

::::::::
observed

::::::
values

:
was shifted by the minimumof the

observations
::::
their

:::::::::
minimum,

:::::::
resulting

::
in

::::
only

:::::::
positive

:::::
values

::::
with

::
a
::::::::
minimum

::
of

::::
zero:

b=
y−x

x− x̌
(1)

whereby y represents the model predictions, x the observational data
::::::::::
observations, x the mean and x̌ the minimum of the

observed values. To compare the model performance of
:::::::::
simulations

:::::
with static and dynamic simulations

::::::::
vegetation, we deter-275

mined the shift
::::::
change

:
in relative bias as follows:

∆b= |bstatic| − |bdynamic| (2)

Negative values mean that the relative bias of the dynamic simulation was greater than that of the static simulation and, thus,

that the performance was reduced by activating vegetation dynamics.To account for the dependence of

::
To

:::::::::
investigate

:::
the

:::::::::
sensitivity

::
of

:::::::::::
dynamically

:::::::
modelled

:::::::::
vegetation

:::
on the model performanceof

:
,
:::
we

:::::::
checked

::::
how

:::::::
strongly

:::
the280

::::::
quality

::
of

:::
the

:::::
model

:::::::::
simulation

::
of

:
one target variable to that

:::
(e.g.

::::
LE)

:::::::
depends

:::
on

::
the

::::::
model

::::::
quality

:
of another one

:::
(e.g

:::::
LAI).

:::
For

::::
this, we used the slope of their correlation, called elasticity in the following. This allows an evaluation of the impact of, for

example, changing LAI representation on the GPP model performance.
:
as

::
a

::::::
metric. Elasticity is calculated as ratio of the shift

::::::
change in one statistical measure (analogous to equation 2) for two different target variables:

E =
∆mi

∆mj
(3)285

where m is one of the statistical measures mentioned above, e.g.
::
i.e.

:
R, normalized standard deviation

::
sn:or b, while i and

j denote different target variables, e.g. GPP or latent heat flux
::
LE. For variables that are strongly related, like LAI and GPP,

we expect elasticitiy
:::::::
elasticity to be positive. Two variables were considered as

::
are

:::::::::
considered

:
independent if −0.1≤ E ≤ 0.1
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because the change in mj then would need to be larger than one order of magnitude to cause a change in mi. We plotted the

shifts
:::::::
Changes in model performances of the target variables

::::
were

::::::
plotted in Taylor diagrams . The class design for drawing290

the Taylor diagrams in Python was adapted from Yannick Copin2.
:::::::::::
(Copin, 2021)

:
.

3 Results

3.1 Using LAI climatology for ECLand and Noah-MP runs is the best way to reproduce
:::::
Effect

:::
of

:::::::
dynamic

:::
or

:::::::::
prescribed

:
leaf area

:::::
index

:::
on

:::
leaf

:::::
area and carbon uptake

::::::::
prediction

Figure ?? shows the model
:
2
:::::
shows

:::
the

:
quality metrics for the LAI model performance

:::::
model

::::::::::
performance

:::::::::
regarding

:::
LAI

:
in a295

Taylor diagram. The point of optimal model performance
::::::
location

:::
an

::::::
optimal

::::::
model

:::::::::
simulation

:::::
would

::::::
occupy

:
is indicated with

a star. The model performance of the dynamic run is shown with the symbol
:::::::
symbols, while the static runs can be read from the

start of each arrow. The direction and length of each arrow highlights the difference in the performance metrics between static

and dynamic runs. Shown are simulations started (dynamic) or run (static) with default vs. MODIS climatological LAI
::::::
default

::
vs.

:::::::
MODIS

::::::::::
climatology.300

While in
::
the

:::::::::
Noah-MP simulations with static vegetation in Noah-MP the model performance depended on the applied LAI

forcing ,
:::
LAI

::::::
forcing

::::::::
applied,

:::
the simulation results were unaffected by the type of LAI forcing with vegetation dynamics

switched on (Fig. ??
:
2 c+d). This

:::
For

:::::::
ECLand,

::::
this was also the case for ECLand, as for the TERENO site “Hohes Holz”, but

not necessarily for allsites
::::
many

::::
sites

:::
but

::::
not

:::
all,

:::
e.g.

:::::::
AT-Neu

:::
and

::::::::
AU-How (Fig. ??

:
2 a+b). Initializing ECLand with default

climatological LAI forcing
::::::
default

::::::::::
climatology (Fig. ??

:
2 a) and activating vegetation dynamics generally increased the vari-305

ance of simulated LAI
::::::::
compared

::
to

:::::
static

::::::::::
simulations but it also decreased model performance, e.g., mean Pearson correlation

decreased from 0.72 to 0.62. At the same time, whether the predicted LAI fit better to MODIS observations than default

climatological LAI was random
:::::
default

::::::::::
climatology

:::
was

:::::::::
ambiguous, as can be seen by the shift in relative bias which ranged

between −0.5 and 1.9
:::
1.3. On the contrary, the results for Noah-MP showed a different pattern (Fig. ??

:
2 c) , because there

was no clear shift to higher variances or worse correlation when activating vegetation dynamics. Especially short or sparse310

:::::::::::
(GRA+CRO)

::
or

::::::
sparse

:::::::::::
(SAV+WSA)

:
vegetation types had the highest changes towards decreased but also enhanced model

performance for LAI. For other sites (mostly forests), modelled dynamic LAI correlated well with the observations.

For both models, using MODIS-based forcings
:::::::
MODIS

::::::::::
climatology in static simulations resulted in the best performances

with regard to LAI of all simulations (
::::
start

::
of

:::
the

::::::
arrows

::
in

:
Fig. ??

:
2 b+d), e.g., the mean correlation coefficient increased to

0.83 and 0.84 and mean relative bias
::::
(Tab.

::::
A1) improved to −16% and −2% for ECLand and Noah-MP, respectively. This315

can be expected because MODIS was also used as reference dataset for LAI evaluation. With activated vegetation dynamics,

the performance of both models decreased, as all quality metrics shift away from the point indicating best performance in the

Taylor diagram .
::::
(Fig.

:
2
:::::
b+d).

:
The same applied to the relative biases of LAI since their shift was predominantly negative. In

other words, switching on vegetation dynamics did not contribute to improve
:::::
result

::
in

::::::::
improved LAI representation compared

2, 2023-02-14
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to just using MODIS climatology.
::::::
MODIS

::::::::::
climatology.

:

Figure 2.
:::::
Change

::
of
::::::

model
:::::
quality

::::::
metrics

:::
for

::::
LAI

::::
when

::::::::
switching

::
on

::::::::
vegetation

::::::::
dynamics

:::
for

::
all

:::::::
included

::::
sites

:::
and

:::
by

::::
using

::::::
default

::::::::
climatology

::::
(left)

::
or

::::::
MODIS

:::::::::
climatology

:::::
(right).

:::
The

::::
star

::::::::
(“Observ”)

:::::
marks

:::
the

::::::
location

::
of

:::
the

:::::
perfect

::::::::
correlation

:::::::
between

:::::::::
observation

:::
and

:::::
model

::::
and

:::::
perfect

::::::::
agreement

::::::
between

:::::::
observed

:::
and

::::::::
modelled

:::::::
variance.

:::
The

:::::
model

:::::::::
performance

::
of
:::
the

::::
static

::::
runs

:::
can

::
be

::::
read

:::
from

:::
the

::::
start

:
of
::::

each
::::::

arrow.
::::
When

:::
no

:::::
arrow

::::::
appears,

:::::
either

::
no

:::::::::
correlation

::::
could

:::
be

::::::::
calculated

:::
(e.g.

:::
for

::::::::
evergreen

:::::
forests

:::::
where

::::::
default

:::::::::::
climatological

:::
LAI

::
is

:::::::
constant)

::
or
::::::

values
::::
could

:::
not

:::
be

:::::
placed

:::
on

:::
the

:::::::::
logarithmic

::::
axis.

:::
The

:::::
point

:::::
colors

::::::
indicate

:::
the

:::
site

::::::
aridity

:::
(top

::::
right

:::::::
legend)

::
as

:::::::
following:

::::
very

:::::
humid

:
-
::::::::
AI < 0.6,

:::::
humid

:
-
:::::::::
AI < 1.25,

::::::::
sub-humid

:
-
:::::::::
AI < 1.54,

::
dry

:::::::::
sub-humid

:
-
::::::
AI < 2,

:::::::
semi-arid

:
-
:::::::
AI < 5,

:::
arid

:
-
::::::
AI ≥ 5

:::::::::::::::::::
(Ashaolu and Iroye, 2018).

:::::::::
Vegetation

::::
types

::
are

:::::::::
symbolized

::
by

:::::::
different

::::::
marker

::::
types

::::::
(bottom

::::
right

::::::
legend).

320

Forest ecosystems, in general, were better represented by model predictions with vegetation dynamics than short or sparse
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vegetation. Figure ?? shows in more detail
:
3
::::::

shows
:
the results of the forest site “Hohes Holz”

:
in

:::::
more

:::::
detail. Although the

representation of LAI variability detoriated when simulating dynamic vegetation with Noah-MP, those runs resulted in LAI

predictions that closely match MODIS observations (Fig. ??
:
3 d-f), represented by the

:
a
:
relative bias of −16%

:::::
−18%

::::
and

:
a
:::::::::
correlation

:::::::::
coefficient

:::
of

::::
0.78. ECLand more generally suffered from large

::::
larger

:
relative biases in LAI, especially when325

simulating with vegetation dynamics (
:::::
−30%

:::
on

:::::::
average,

:
Fig. ??

:
3 c).

::::
The

::::
only

:::::::
scenario

:::::
where

::::::
model

:::::::::::
performance

::::::::
generally

::::::::
increased

::
for

::::::::
ECLand,

::::
was

::::::
through

:::::::::
switching

::
on

:::::::::
vegetation

::::::::
dynamics

::::::::
compared

:::
to

::::
static

::::
runs

::::
with

::::::
default

::::::::::
climatology

:
.

In contrast to LAI, the model performance of ecosystem exchange variables in ECLand was less affected by activating vege-

tation dynamics. A common feature is , however, that the variance
:::::::::::
predominantly

:
increased when using dynamic vegetation

(Fig. ??
:
4 a+b). Mostly, sites with short or sparse vegetation reacted more sensitively to dynamic vegetation modeling in their330

NEE and GPP representation especially when forcing with MODIS climatology
::::::
MODIS

::::::::::
climatology, which is indicated by

the longer arrows in Fig. ??
:
4
:
a and b (for GPP see Fig. A1 in Appendix). For forest ecosystems in general, the changes

in the model performance of NEE and GPP were small, as also shown for the TERENO site “Hohes Holz” (Fig. ??
:
3 a-c).

Nevertheless, the performance of NEE and GPP
::::
(and

::::
GPP)

:
decreased when activating vegetation dynamics, mainly driven by

lowered correlation coefficients
:
,
::
on

:::::::
average

:::::
from

::::
0.41

::
to

::::
0.37

:::::
(0.72

::
to

:::::
0.68). Only three sites showed improvements in NEE335

representation when predicting with dynamic ECLand and just one did so for GPP.
::::::
Relative

::::
bias

:::::::
changed

:::
in

::::
both

:::::::::
directions,

::::::
towards

:::::
lower

::::
and

::::::
higher

:::::
model

::::::::::::
performance. Dynamic ECLand mainly overestimated NEE by 11% on average, indicating

that ecosystems were predicted to be a smaller carbon sink than observed .
::::
(Tab.

::::
A2). Instead, dynamic Noah-MP estimated on

average 10% lower NEE compared to the observations for the most sites (Fig. ??
:
4

:::
c+d, Fig. ??

:
3 c+f).

Overall, Noah-MP seemed to capture NEE representations better as the values scattered more closely to a normalized stan-340

dard deviation of 1
:
1
:
in the Taylor diagram and showed with 0.51 a higher correlation coefficient on average than ECLand

(Fig. ??
:
4 c). Remarkably, the seven

:::
four

::::
and

:::
the

::::
eight

:
best sites regarding NEE representation in both models were forests

::::
were

::::::
forests

:::
for

:::::::
ECLand

:::
and

:::::::::
Noah-MP,

::::::::::
respectively. At the same time, both tropical

::
all

:::::::::
evergreen

::::::::
broadleaf forests suffered

from low performance in both models. GPP representation in both models was better than for NEE (Fig. A1),
::::
Tab.

:::::
A3).

::::::::
However,

:::::::
whether

::::::::
switching

:::
on

:::::::::
vegetation

::::::::
dynamics

::
in

:::::::::
Noah-MP

::::::::
improves

::::::
carbon

:::::
fluxes

::::::
cannot

:::
be

::::::::
evaluated

:::::::
because

::::
they345

::
are

:::::
only

::::::::
calculated

:::
for

::::::::
dynamic

:::
but

:::
not

:::
for

:::::
static

::::::::::
simulations

::::
(see

::::
also

::::::
section

:::::
2.2).

:::::::
Overall,

:::::::
dynamic

:::::::::
Noah-MP

:::::::::
performed

:::
well

:::
in

::::::::::
representing

::::
NEE

::::
and

::::
GPP

:::
for

::::
most

:::::
forest

::::
sites

:::::
apart

:::
the

::::::::
evergreen

::::::::
broadleaf

::::::
forests. Considering the opposing biases

in NEE indicates that the models differ in their estimates of ecosystem respiration.

Consistent with model performances of dynamic Noah-MP being independent of the prescribed LAI forcing, the availabil-

ity of on-site LAI data
::::::
on-site

:::
LAI

:::
data

:::
for

:::
the

::::
site

::::::
“Hohes

::::::
Holz” yielded no improvement in the representation of NEE or350

GPP . Interestingly, forcing ECLandwith on-site LAI data even decreased model performances for
::::::::
compared

::
to

:::::
other

::::
LAI

::::::::::
climatology

::::
(Fig.

:::
3).

:::
The

:::::
same

::::::::
appeared

:::
for

:::::::
dynamic

::::::::
ECLand.

:::::::
Forcing

::::
static

::::::::
ECLand

::::
with

::::::
on-site

:::
LAI

:::
data

:::::::
resulted

::
in

:
NEE

and GPP regardless of the choice in vegetation dynamics for the TERENO site “Hohes Holz”, where on-site LAI data was

available to us (Fig. ??).
:::::::::
correlation

:::
and

:::::::
relative

:::
bias

::::::::::
comparable

::
to

:::
the

::::::
forcing

::::
with

:::::::
MODIS

::::::::::
climatology,

:::::
only

::::::::
variability

::::
was

:::::
lower.355
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3.2 Modelled turbulent
::
On

:::
the

:::::::::
sensitivity

:::
of

::::
heat fluxes and soil moisture were almost unaffected by vegetation

dynamics in both LSMs
:
to

::::::::::
vegetation

::::::::
dynamics

For both models, activating vegetation dynamics had a negligible
::::
small

:
impact on the representation of turbulent fluxes and

soil moisture. The strongest changes occurred for short or sparse vegetation types or for drier climates as these points appeared

to have
:::::
which

::::
had the largest arrows in the Taylor diagrams (Fig. ??

:
5, Fig. ??

:
6). In ECLand, activating vegetation dynamics360

enhanced the variance of latent heat flux for the most sites ,
:::::
(from

::::
0.80

:::
and

:::::
0.84

::
to

::::
0.94

:::
on

::::::
average

:::
for

::::::
default

:::
and

:::::::
MODIS

:::::::::
climatology

:
,
:::::::::::
respectively),

:
but correlation between simulated and observed values remained unaffected or even diminished

:::::
(mean

::::::
change

:::::::
smaller

::::
than

::::::
−0.03). For several sites, latent heat

::
LE

:
estimates from dynamic ECLand better represented the

observations as shown by the positive shift in relative bias (
:::::::
reduction

:::::
from

::::::
−32%

::
to

::::::
−21%)

:
(Fig. ?? a

:
5

::
a,

::::
Tab.

:::
A4), but no

trend
:::::::::
relationship

:
regarding vegetation type or site aridity can be seen and changes are small in general.

:
,
::::::
except

::
for

::::::::
CH-Oe2.365

Activating vegetation dynamics in Noah-MP hardly affected model performance of latent heat flux. Only sites with short or

sparse vegetation types
:::
LE

:::::
(mean

:::::::
change

::
in

:::::::::
correlation

::::
was

::::
0.02,

::
in
::::::::

standard
::::::::
deviation

::::
0.00

:::
and

:::
in

::::::
relative

::::
bias

:::::
0.02).

:::::
Sites

:::
that

:
showed some sensitivity

:::::::::::
predominantly

:::::
have

::::
drier

:::::::
climate (e.g AU-Stp, US-Var

::::::
AU-Stp,

:::::::
US-Var, see Fig. ??

:
5 c). Several

sites showed slightly enhanced fit of latent heat predictions to the observations due to vegetation dynamics
:::
less

::::
bias

:::
in

:::
LE

:::::::::
predictions

:::::
when

:::::
using

::::::::
dynamics

::::::::
vegetation

::::::::::
predictions in Noah-MPas can be seen by the positive shift in relative bias. When370

using MODIS climatology
::::::
MODIS

::::::::::
climatology as LAI forcing, activating vegetation dynamics could be advantageous for

some sites regarding latent heat flux representation
::
LE

::::::::::::
representation

:
(
::::::
AU-Stp,

:::::::
CH-Fru,

:::::::
US-GLE

:
),
:
but mostly it would not lead

to higher model performance.

Model performance regarding the evaporative fraction appeared to be
::::
(EF)

::::
was lower compared to latent heat flux

::
LE

:
as

points are further away from the point of optimal model performance (Fig. ??). Forest ecosystems thereby showed the lowest375

performance which is interesting since their prediction in NEE was the best.
::
6).

:
Running ECLand with activated vegetation

dynamics lowered the representation of the evaporative fraction which is demonstrated by many points in the Taylor diagram

drifting away from the star indicating best performance.
:::::::
Thereby,

:::
the

:::::
mean

::::::::
standard

:::::::
deviation

::::::::
changed

::::
from

::::
0.95

::
to

::::
1.08

::::
and

:::::::::
correlation

:::::::::
coefficient

:::
was

:::::::
reduced

:::::::
slightly

::::
from

::::
0.48

::
to

::::
0.46

:::
on

::::::
average

:::::
(Fig.

:
6
:::::
a+b).

:::::::::
Exceptions

:::::
were

::::::
BE-Lon

:
,
:::::::
US-SRM

:::
and

::::::
US-Ton

::::
where

::::::
model

:::::::::::
performance

::::::
slightly

::::::::
improved

:::::::::
regarding

:::::::::
correlation

:::
and

:::::::::
variability.

::::::
Again,

:::::::
relative

:::
bias

:::
of

:::
EF

:::::::
changed380

::
in

::::
both

::::::::
directions

:::::::
without

::::
any

::::
trend

:::::::::
regarding

:::::::::
vegetation

::::
type

::
or

::::::
aridity

:::
for

::::
both

::::::
models

::::
(see

::::
also

::::
Tab.

:::::
A5). For Noah-MP,

some
::::
eight

:
sites showed an improved representation of the evaporative fraction when running the model with vegetation

dynamicseven
:
.
::::
This

::::::
amount

::::
was

:::::::
reduced

:::
to

:::
six when the model was initialized with MODIS climatological LAI.

::::::
MODIS

:::::::::
climatology

:
.
:::
But

:::::::
changes

:::::
were

::::
very

::::
small

:::
on

:::::::
average.

:

Regarding soil moisture, the model performance was almost insensitive to the used vegetation dynamics option or the type385

of LAI forcing for both models (results not shown).
:::
Fig.

::::
A2).

:::::::
Despite

:::::
being

::::
low,

:::::
some

:::::
sites

::::::
showed

::::::::::::
improvement

::
of

::::
soil

:::::::
moisture

:::::::::
prediction

::
by

::::::::
activating

:::::::::
vegetation

::::::::
dynamics

:::
for

::::
both

::::::
models.

:::::::::::
Interestingly,

:::
no

:::::
humid

:::
site

::::
was

::::::
among

:::::
them. However,

the simulation of soil moisture resulted in a broad range of model performances starting with very well-fitting predictions

(correlation coefficient > 0.9, relative bias ≈ 0%
:::::::
R> 0.9,

::::::
b≈ 0%) up to very poor-fitting predictions (correlation coefficient
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< 0.2, relative bias <−40% or > 100%
:::::::
R< 0.2,

::::::::::
b <−40%

::
or

:::::::::
b > 100%, see Tab. A6).Change of statistical measures for390

latent heat modeling when switching on dynamic vegetation for all included sites and by using default climatological LAI

forcing (left) or MODIS climatological LAI forcing (right). Same as before but for evaporative fraction which represents the

turbulent flux partitioning.

To investigate the sensitivity of dynamically modelled
:::::::
modeled vegetation on the model performance, we checked how strongly

the quality of the model simulation of latent heat flux
::::::
metrics

::
of

:::
LE and soil moisture depends on the model quality

::::::
change

::::
with395

::
the

:::::::
quality

::::::
metrics

:
of LAI and NEE. For this, we used the elasticity (defined in section 2.4) as

:::::::
equation

::
3)

::
as

::
a metric which

is summarized for all sites in the bar plots of Fig. ??
:::::
Figure

::
7. Surprisingly, the model quality of those actually

:::::
quality

:::::::
metrics

::
of

::::
those

:
closely related variables was independent

::::
were

::::::::::
independent

:::::
from

::::
each

:::::
other, i.e. the elasticity was very low (within

grey band) or randomly distributed around zero. The strongest connections
:::::::::
connection of all pairs tested are between NEE and

latent heat flux and GPP and latent heat flux
::::
was

:::::::
between

::::
GPP

:::
and

:::
LE

:
in ECLand. Here, the mean elasticity of correlation and400

normalized standard deviation is positive, meaning that, as expected, an increased model performance in LE co-occurs with

enhanced performance for NEE and GPP , respectively
::::
GPP

::
in

:::
the

:::::
same

::::
order

:::
of

:::::::::
magnitude. For the GPP-LE relation, even

the elasticity of the relative bias is positive which underlines the co-relation of GPP and LE performances in ECLand. The fact

that this is not the case for NEE might be caused by uncertainties in the predictions of respiration in the model. But
::::::::
However,

elasticity values that include LAI were small predominantly. Only the correlation coefficient as model performance metric of405

LAI and
::::
GPP

::
or LE in ECLand seems to be coupled

::::
when

:::::
using

::::::
MODIS

::::::::::
climatology but without affecting normalized standard

deviation of
::
or relative bias. In other words, changes in the model quality for LAIdo

:
, for most of the sites

:
,
::
do

:
not affect the

model performance of latent heat flux
::
LE

:
or soil moisture .

:::
and

::::
even

:::
not

:::
that

::
of
::::::
carbon

::::::
fluxes.

:
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Figure 7. Box
:::::
Density

:
plots showing the elasticity of correlation (left column), normalized standard deviation (middle column) and relative

bias (right column) for different variable relationships in both models when activating dynamic vegetation
:::
and

::::
using

::::::
default

:::::::::
climatology

::::
(blue)

::
or
:::::::

MODIS
:::::::::
climatology

::::::
(orange)

::
as
::::::

forcing. For reasons of practicability, elasticity is used reciprocal. Accordingly, the explanatory

variable is the first one of each relationship showed on the y-axis. The grey shaded area marks the range between the thresholds of indepen-

dence.
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3.3 Observed and simulated relationships between ecohydrological variables

One possible explanation for the small contribution of model quality of LAI to that of the turbulent fluxes could be a weak410

relation between LAI and carbon exchange in the model. However, this is not the case as illustrated in Fig. ??
::::::
Figure

:
8. On

the contrary, the relationships between GPP and LAI is much more scattered in the observations (top row) compared to the

models (other rows), and this is true for both models, across biomes and vegetation types. In general, ECLand shows a linear

relationship with considerable less uncertainty compared to the observations. The slope and intercept of the linear regression

is dependent on the choice of static or dynamic vegetation. In contrast, Noah-MP shows a non-linear relationship with a pro-415

nounced hysteresis. This hysteresis is related to the partitioning of GPP to the carbon pools in the plants. Noah-MP uses a

non-linear function for allocation of GPP to the leaves that limits the maximum LAI the model can grow. Scatter plots of

the relationship between LAI on the x-axes and GPP on the y-axes as 8-day averages for four selected sites (columns). The

rows from top to down show observations, static ECLand, dynamic ECLand, and dynamic Noah-MP. Seasons are represented

by different dot colors. A simple linear regression model was applied as additional information (blue dashed line) and its420

correlation coefficient (R), slope and standard deviation of the residuals (σr) are given for each relationship.

Figure ??
:
8
:

shows the relation between GPP and LAI for four exemplary sites: DE-HoH
:::::::
DE-HoH is a deciduous broadleaf

forest in a humid climate, IT-Ren is a
::::::
IT-Ren

::
is

::
an

:
evergreen needleleaf forest in a semi-arid climate, GF-Guy is a

:::::::
GF-Guy

:
is
:::
an evergreen broadleaf forest in a tropical climate, and US-Var

::::::
US-Var is a grassland in a semi-arid climate. The two Eu-

ropean sites (left columns, De-HoH and IT-Ren
:::::::
De-HoH

:::
and

::::::
IT-Ren) reach maximum LAI and GPP in JJA and minimum425

values in DJF, leading to a correlation that is mainly governed by the seasonal cycle. Similarly, at the U.S. site, with an over-

all tighter relation, vegetation productivity and LAI peak together in spring (i.e., MAM). For these three sites, correlation

coefficients range between 0.78 to 0.90
:::
0.80

::
to

:::::
0.86 indicating a clear but not perfect relation between LAI and GPP. How-

ever, the scatter of the observed relation is considerable with
::
the

::::::::
standard

::::::::
deviation

::
of

:::
the

:::::::
residuals

::
(σrvalues between 53 and

105 · 10−6 gCO2m
−2s−1

:
)
:::::
being

:::::::
between

::
58

::::
and

::::::::::::::::::::::
102 · 10−6 gCO2m

−2s−1. The variance is highest for the peak of the grow-430

ing season, when GPP quickly responds to environmental conditions (e.g., cloudiness, precipitation, and soil moisture stress)

that LAI responds much slower to. The tropical site in French Guiana (GF-Guy
::::::
GF-Guy) shows, as expected, no seasonal cycle,

leading to an extremely weak relation between LAI and GPP. The latter is comparatively high all year round (GPP 0.0002 and

0.0006 gCO2m
−2s−1

:::::::
between

:::
250

:::
and

::::::::::::::::::::::
600 · 10−6 gCO2m

−2s−1) although LAI values from the MODIS dataset
::::::::::
surprisingly

varied between 1 and 7 m2m−2. In fact, the MODIS dataset generates some uncertainty through cloud coverage especially in435

the tropics.We tried to minimize this uncertainty by excluding all days from the dataset that were flagged with the value for

significant cloudiness. For this
:::
For

:::
this

:::::::
tropical

:::
site,

:::::
GPP

:::
and

::::
LAI

::::::::
dynamics

:::::
seem

::::::::
decoupled

:::::
(Fig.

:
8
:::
c).

::::::::
Noah-MP

::::::
shows

:
a
:::::::

marked
:::::::::
hysteresis

:::::
effect

::
at

:::
all

::::
sites

::::::
except

::::
the

::::::
tropical

::::
one

:::::
(Fig.

::
8

::::
e-h),

::::
with

:::::
GPP

:::::::
linearly

:::::::::
increasing

::::
with

:::
LAI

::::::
during

:::::::
biomass

:::::::
built-up

:::
up

::
to

:
a
:::::
point

::::::
where

::::::::
allocation

::
to

::::::
leaves

:::::::
becomes

:::::::
minimal

::::::::::
(vegetation

::::
type

::::::::
specific),

:::
and

::
a

:::::::::
substantial

::::
drop

::
in

::::
GPP

::::::
without

::::
any

:::::::::
substantial

:::::::::
reductions

::
in

:::
LAI

:::::::
towards

:::
the

:::
end

:::
of

::
the

::::::::
growing

:::::
season

:::::
(e.g.,

:::
Fig.

::
8
::
e).

::::::
When440

::::
GPP

:::::
values

::::::
reduce

::::::
below

::::::::::::
approximately

::::::::::::::::::::::
100 · 10−6 gCO2m

−2s−1,
::::
then

::::
LAI

:::::::
reduces

::::
from

::::::
values

:::::
about

::::
three

:::::::
towards

:::::
zero.

::::
This

::::::::
hysteresis

::
is

::::::
shifted

::
in

::::::
seasons

::::
due

::
to

::::
local

:::::::
climate

::
as

:::
for

:::
the

:::
site

::::::
US-Var

::::
(Fig.

:
8
:::
h).

::
At

:::
the

:::::::
tropical

::::
site,

::::::::
Noah-MP

::::::
shows
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::::
some

:::::::::
variability

::
in

::::
GPP,

:::
but

::::::
almost

:::
no

::::::
change

::
in

::::
LAI

:::::
which

::
is

::::::
around

:
a
:::::
value

::
of

::::
five.

:::::::
Dynamic

:::::::
ECLand

::::::
shows

:
a
::::
very

::::
tight

:::::
linear

::::::
relation

:::::::
between

::::
LAI

:::
and

::::
GPP

::::
with

:::::
much

:::::
lower

::::::
scatter

::::::::
compared

::
to

:::
the

::::::::::
observations

::::
(Fig.

:
8
::::::
fourth

::::
row)

::
as

::
R

::
is

:::::
larger

::::
than

::::
0.99

::::
and

::
σr::

is
:::::::
between

:::
10

:::
and

:::::::::::::::::::::
14 · 10−6 gCO2m

−2s−1
:::
for

::
all

:::::::::::
non-tropical

::::
sites.

:::::
With445

::::
slope

::::::
values

::
of

:::
104

::
to

:::::::::::::::::::::::
254 · 10−6 gCO2m

−2s−1,
:::
that

::::::::::
relationship

::
is

:::::
much

::::::
steeper

::::
than

::
in

:::
the

:::::::::::
observations.

::::
Even

:::
for

:::
the tropi-

cal site, GPP and LAI dynamics seem decoupled
:::
the

::::::::::
relationship

:::::::
between

::::
LAI

:::
and

::::
GPP

::
is

::::::
clearly

:::
and

::::::
tightly

:::::
linear (Fig. ??c).

:
8
:::
o).

19



Figure 8.
:::::
Scatter

::::
plots

::
of

:::
the

:::::::::
relationship

:::::::
between

:::
LAI

:::
on

:::
the

:::::
x-axes

:::
and

::::
GPP

:::
on

:::
the

:::::
y-axes

::
as

:::::
8-day

:::::::
averages

:::
for

:::
four

:::::::
selected

::::
sites

::::::::
(columns).

:::
The

::::
rows

:::::
from

:::
top

::
to

::::
down

:::::
show

::::::::::
observations,

::::
static

:::::::
ECLand

:::::
model

::::::
output,

:::::::
dynamic

:::::::
ECLand

:::::
model

::::::
output,

:::
and

:::::::
dynamic

:::::::
Noah-MP

:::::
model

::::::
output.

::::::
Seasons

:::
are

:::::::::
represented

::
by

:::::::
different

:::
dot

::::::
colors.

:::
The

:::::
arrows

::::::::
represent

:::
the

::::
range

::
of

::::
GPP

:::
and

::::
LAI

:::::
values

:::
for

:::
the

:::::::
individual

:::::::
seasons.

:
A
::::::

simple
::::
linear

::::::::
regression

:::::
model

:::
was

::::::
applied

::
as

::::::::
additional

:::::::::
information

::::
(blue

:::::
dashed

::::
line)

:::
and

::
its

:::::::::
correlation

::::::::
coefficient

:::
(R),

::::
slope

:::
and

:::::::
standard

:::::::
deviation

::
of

::
the

:::::::
residuals

::::
(σr)

::
are

:::::
given

::
for

::::
each

::::::::::
relationship.
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4 Discussion

4.1 Using LAI climatology for ECLand and Noah-MP runs is the best way to reproduce leaf area and carbon uptake450

::::::::::
Comparison

:::::::
between

:::::
model

::::::
output

:::
and

:::::::::::
observational

::::
data

::
of

::::
LAI,

:::::
NEE

::
or

::::
GPP

::
on

:
a
:::::
daily

::::
basis

::
is

:::::
rarely

:::::
done. The ability of the

two models to reproduce
::::
these

:
observed ecosystem variables , i.e. LAI, NEE and GPP, was in line with results in the available

literature
:::::::
previous

::::::
results. For Noah-MP, model quality metrics were in the range of other studies

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Brunsell et al., 2020; Li et al., 2022a; Xu et al., 2021; Liang et al., 2020)

, although LAI and NEE in our assessment were
:::
was more biased.

::::::::::::::
Ma et al. (2017)

::::::
reported

::
a
:::::::
relative

:::
bias

:::
in

::::
GPP

::
of

:::::
40%

::
on

:::::::
average

:::::
which

::
is
::::::

higher
::::
than

:::
the

:::::::
relative

::::
bias

:::::
found

:::::
here. For ECLand, we could not find any comparable study report-455

ing the performance of daily LAI or NEE/GPP specifically, neither for dynamic nor static simulations. However, correlation

coefficients
::
for

:::::
static

:::::::
ECLand,

::::::::::
correlation

:::::::::
coefficients

::::::::
between

:::::::
modeled

:::
and

::::::::
observed

::::
NEE

::::
and

::::
GPP

:
were in line with values

for 10 day averages of NEE and GPP from static ECLand for a bunch of FLUXNET sitesanalyzed by Boussetta et al. (2013)

and, by looking at
::::
those

:::::::
obtained

:::
by

:::::::::::::::::::
Boussetta et al. (2013)

::
for

::::::
10-day

:::::::
averages

::
at
::::::
several

::::::::::
FLUXNET

:::::
sites.

::::
Also,

:::
for

:::
the mean

annual cycles
::
of

::::
NEE

::::
and

::::
GPP, Stevens et al. (2020) found a lower prediction error (RMSD) when using MODIS LAI forcing460

compared to LUT
:::::
default

:::::::::
prescribed

:
LAI, and, like in our study, a substantial bias

::
in

:::
LAI.

Activating vegetation dynamics decreased the model
:::
For

::::
both

:::::::
models,

:::::
using

:::::::
MODIS

:::::::::
climatology

::
in

::::
static

::::::::::
simulations

:::::::
resulted

::
in

::
the

::::
best

:::::::::::
performances

::::::::::
concerning

::::
LAI.

::::
This

::::::
agreed

::::
with

:::::::::::
expectations.

:::::
Since

::
all

:::
our

::::::::::
simulations

::::
were

::::::::
validated

::::
with

:::::::
MODIS

::::
data,

:
a
:::::
better

:::::::::::
performance

:::::
using

:::::
static

::::
runs

:::::
using

:::::::
MODIS

::::::::::
climatology

::::
itself

::::::
would

:::::
likely

:::::
yield

:::::
better

::::::
results

::::
than

:::
the

::::::
default

:::::
values

::
in

:::::
either

::::::
model.

:::
For

:::::::::
Noah-MP,

:::::
static

:::::::::
simulations

::::
with

:::::::
MODIS

::::::::::
climatology

:::::
indeed

::::::
yielded

:::
the

::::
best performance regard-465

ing LAI for both models, especially for short and sparse vegetationtypes. For static ECLand, changing LAI input to MODIS

climatology instead of default LAI values improved LAI representations which is expected. The default climatological LAI in

ECLand is
::
in

::::
some

:::::
sites,

::::
but,

:::::::::::
interestingly,

::::
using

:::
the

:::::::
default

::::::::::
climatology

::::::::
performed

::::
also

::::
well

:::
for

::::::
others.

::::
LAI

:::::::::
deviations

::::
with

::
the

:::::::
default

::::::::::
climatology

:::::::
occurred

::::::::::
specifically

::
in

:::::
short

:::::::::
vegetation,

::::::
which

::::
was

:::
also

::::
true

:::
for

:::
the

::::::::
dynamic

::::
runs

::::
(see

::::::
below).

::::
For

:::::::
ECLand,

::::::
where

::
the

::::::
default

::::::::::
climatology

:
is

:
already based on MODIS data (Boussetta et al., 2012). Differing model performance470

regarding LAI between static runs of ECLand with default and MODIS climatological LAI, thus, has two reasons: First, the

default climatological LAI ,
:::
the

:::::::::::
performance

::
of

:::
the

::::
static

:::
run

::::
was

::::::::
generally

::::::::
improved

::::::::
compared

::
to

:::
the

::::::::
validation

:::::::
dataset,

::
as

:::
the

:::::
higher

::::::
spatial

::::::::
resolution

:::::::
allowed

:::
for

:
a
:::::
better

:::::::::::
geographical

::::::::
mapping.

:::::
Also,

:::::::
ECLand

::::::
default

::::::::::
climatology was created by the dis-

aggregating the total LAI in the MODIS data to the low and high vegetation type on the grid cell. Second, these LAI values for

high and low vegetation are gridded with 10 km x 10 km resolution and for the MODIS climatological LAI , here, we used data475

from the 500 m x 500 m grid cell in the MODIS dataset which was closest to the flux tower. As a result, a comparison of the

performance of static ECLand with either using default or MODIS climatological LAI rather shows how representative the LAI

climatology is for the vegetation on that grid cell.However, in this study, adding more detailed information by using MODIS

single-year LAI forcing did not further improve modelperformance (not shown). Updating the LAI forcing on annual time

scale is far from being a near real-time data assimilation which has been shown to improve the model performance of turbulent480

fluxes, GPP and soil moisture for roughly 50% of the chosen sites (Boussetta et al., 2015).
::::
Both

:::::
points

:::::::
together

:::
can

:::::::
explain

:::
the

:::::
better

::::::::::
performance

:::
for

::::
LAI

::
of

:::::
static

:::::::
ECLand

::::::::::
simulations

::::
with

::::::
MODIS

::::::::::
climatology

::::::::
compared

::
to

::::::
default

::::::::::
climatology.
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For
::::::::
Dynamic

::::::::
vegetation

:::::::
yielded

::
no

:::::
better

::::
LAI

::::::
results

::::::::
compared

::
to

:::::
using

::::
static

::::
runs

::::
with

:::::::
MODIS

::::::::::
climatology

:::
for

:::::
either

::::::
model.

::::::::
Evergreen

::::::::
broadleaf

::::::
forests

:::::::
showed

:::
the

::::::
lowest

::::::::::
correlation

:::::::::
coefficients

:::
for

::::::::
dynamic

::::
LAI

::::::::::
predictions

:::::
which

::::
was

::::
also

::::::
shown

::
by

::::::::::::::::
Yang et al. (2011)

::
for

:::::::
tropical

::::::
regions

:::::::::
simulated

::
by

:
Noah-MP, static simulations with MODIS climatology had the best485

performance regarding LAI .
:::::::::::
Additionally,

::::::::::::::::::
Brunsell et al. (2020)

:::::::
reported

:::::::::::::
overestimation

::
of

::::
LAI

::::
with

:::::::
dynamic

:::::::::
Noah-MP

:::
for

::
the

:::::::
Eastern

::::::::::
Amazonian

::::::
Forest

:::::
which

:::
we

:::::
could

::::
not

:::
find

:::::
here.

:::::::
ECland

:::::::
suffered

::::
from

:::::::
overall

:::::
strong

:::::::
relative

:::::
biases

:::::::::
regarding

:::
LAI

::
in
::::::::
dynamic

::::::::::
simulations.

::::
The

:::::::::::::
underestimation

::
of

:::::::::
prognostic

::::
LAI

::::
was

::::::
already

::::::
shown

:::
by

::::::::::::::::::
Boussetta et al. (2021). However,

default LAI approach was performing equally well for some sites. Substantial biases occurred for simulations with and without

vegetation dynamics especially
:::
also

::::::::
occurred

::
in

::::::::
Noah-MP

:::::::::::::::::::::::::::::
(also shown by Huang et al., 2022)

:
,
:::
but

:::::::::
especially

::
so

:
for short or490

sparse vegetation types, which
:
.
:::
The

:::::
latter could be due to LAI overestimation in the early growing season as reported by Cai

et al. (2014). Also, Liu et al. (2016) found that neither look-up table LAI nor predicted dynamic LAI annual cycles seemed to

reproduce LAI observations for short vegetation. On the other hand, Pilotto et al. (2015) achieved satisfactory model predic-

tions also for crop sites without vegetation dynamics. For
:::::
Thus,

:::
for

:
short vegetation such as grasslands, the Noah-MP Crop

module probably
:::::
maybe

:
better represents LAI dynamics but we did not use this option here

::::::::::::::
(Liu et al., 2016),

::::::
which

:::::
should

:::
be495

:::::
tested

::
in

:::
the

:::::
future.

Whether switching on vegetation dynamics in Noah-MP improves NEE cannot be evaluated because it is only calculated for

dynamic but not for static simulations there (see also section 2.2). Overall,
:::
The

:::::::::::
performance

::
of

::::
NEE

::::
and

::::
GPP

::
in

:::::::
ECLand

::::
was

:::
not

::::
very

:::::::
sensitive

:::
to

:::::::
different

:::::::::
vegetation

:::::::::
dynamics.

:::::::::
Generally,

:::::
using

:::::
static

:::::::
MODIS

::::::::::
climatology

::::::
yielded

:::
the

::::
best

::::::::::
predictions

::
of

::::
GPP

:::
and

:::::
NEE,

::::::::
although

:::
the

:::::::::
correlation

:::::::
between

::::::::
modeled

:::
and

::::::::
observed

::::
NEE

::::
was

::::::::
generally

:::
low

::::::
(mean

:::::::
Pearson

:::::::::
correlation500

::::::::
coefficient

::::
was

::::::
0.44).

::
In

:::::
many

:::::
sites,

::::
even

:::::
static

::::::::::
simulations

::::
with

::::::
default

::::::::::
climatology

::::::
resulted

:::
in

::::::::::
comparable

::::::::::::
performances.

::::::::::
Interestingly,

:::::::
adding

:::::
more

:::::::
detailed

::::::::::
information

:::
by

:::::
using

:::::::
MODIS

::::::::::
single-year

:::
LAI

:::::::
forcing

:::
did

:::
not

:::::::
further

:::::::
improve

::::::
model

::::::::::
performance

::::
(not

::::::
shown),

::
as
:::
we

::::::
would

::::
have

:::::::
expected

::
if

:::
LAI

::::::::
dynamics

::::::::::
contributed

::::::::::
substantially

::
to

:::::::::
enhancing

:::::
model

:::::::::::
performance

::
for

:::
the

::::::
carbon

::::::
fluxes.

::::::::
However,

:::::
other

:::::::
authors

:::::
found

::::::::
improved

::::::
model

::::::::::
performance

::
of

::::::::
turbulent

::::::
fluxes,

::::
GPP

::::
and

:::
soil

::::::::
moisture

::
for

:::::::
roughly

::::
50%

::
of

::::
their

:::
set

::
of

::::
sites

:::
by

:::::::
updating

:::
the

::::
LAI

::::::
forcing

:::::
using

::::
near

::::::::
real-time

::::
data

::::::::::
assimilation

:::::::::::::::::::
(Boussetta et al., 2015)505

:
.
::
In

::::
other

::::::
words,

:
a
:::::
more

:::::::
frequent

::::
reset

::
of

::::
LAI

::
to

:::
the

::::::
correct

:::::
value

:::
can

:::::::
improve

:::
the

:::::::
ECLand

:::::::::::
performance

::
in

:::::::
general,

:::
but

:::
did

:::
not

::::
have

::
an

:::::
effect

:::::
here.

::::::::::
Assimilation

:::
of

:::
LAI

::::::
during

::::::
model

::::
runs

::::
and

::::::
instead

::
of

:::::
fixed

::::::
forcing

:::
(as

::
in

::
a
:::::
static

::::
case)

::::
also

::::::::
improved

::::
LAI

::::
and

::::
GPP

::::::
model

::::::
quality

::
in

:
a
:::::
study

::
by

::::::::::::::
Xu et al. (2021)

::::
using

:
dynamic Noah-MPperformed well in representing NEE for most forest sites. Thus,

although some previous studies found substantial overestimation in GPP for the continental U. S. (Ma et al., 2017), predicting510

NEE using
:
.
:::
We,

::::::::
therefore,

::::::
expect

::::
that

:::
LAI

:::::::::
dynamics

:::::::::
potentially

:::::::
improve

:::::
model

::::::
quality

::::::::
regarding

::::::
carbon

::::::
fluxes,

:::
but

:::
we

:::::
could

:::
not

:::
test

::::
this

::::
here,

:::::
since

::::::
carbon

::::::
fluxes

:::
are

:::
not

::::::::
modeled

:::
for

:::::
static

::::::::::
vegetation.

::::::::
However,

:
dynamic Noah-MP could be useful

in studies when LAI climatology cannot be used such as climate change impact studies. Nevertheless,
:
is

::::::
already

::::::
known

:::
to

::::::::::
overestimate

::::
GPP

:::::::::::::::::::::::::::::::::::::::::::::::
(Ma et al., 2017; Liang et al., 2020; Brunsell et al., 2020).

:::::::::
Especially

:
short and sparse vegetation types suf-

fered from low predictive efficiencies by dynamic Noah-MP which is in accordance with findings from Yang et al. (2021) for515

ChinaFLUX. There, none
::::::
mainly

::
in

:::::
NEE

:::::::::
correlation

::::::::::::::::
(Yang et al., 2021)

:::
and

::
in

::::
GPP

:::::::
relative

::::
bias

::::::::::::::
(Li et al., 2022a).

:::::
None

:
of

the parameter sets they
::::::::::::::
Yang et al. (2021) tested for simulations with dynamic Noah-MP resulted in well fitting predictions
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of diurnal
:::::::::
well-fitting

:::::::::
predictions

::
of

:::::
daily

:
changes in NEE for three of the four sites with short vegetation .An assimilation

of LAI during model runs and not only as fixed forcing (as in our case) might improve LAI and NEE representation which

Xu et al. (2021) showed in their investigation with dynamic Noah-MP. Though
:::::
within

:::::::::::
ChinaFLUX.

:::::
Note,

:::::::
however,

::::
that

::::
LAI

::
of520

::::
short

::::
and

:::::
sparse

:::::::::
vegetation

::::
was

::::
also

:::
not

::::::::::::::
well-represented

::
in

:::::
static

::::
runs

:::::
either.

:::::
Also, Kumar et al. (2019) could only achieve

marginal improvements in GPP representation by dynamic Noah-MP due to LAI assimilation which supports our detected

limited effect of LAI
:::
for

:::::
crops

:::
and

:::::::::
grasslands

:::::
which

::::::::
suggests

:::
that

::::
LAI

::::::::
dynamics

::::
had

::::
only

:
a
::::::
limited

:::::
effect

:
on simulated NEE

. Similarly,
::::
there.

:::::::::::
Nonetheless,

::
it
::::
was

::::::
shown

::::
here

::::
that

:::::::::
correlation

::::::::::
coefficients

:::
for

:::::
GPP

::::::::
simulated

::::
with

::::::::
dynamic

:::::::::
Noah-MP

::::
were

::::
high

::::::::::::::::::::::::::::::::::::::::::
(also found by Liang et al., 2020; Li et al., 2022a)

:::
and,

:::
at

:::
the

:::::
same

:::::
time,

::::::
relative

:::::
bias

:::
was

::::::
small

:::
for

:::
all

::::::
forests525

:::::
except

:::
the

:::::::::
evergreen

::::::::
broadleaf

::::::
forests

:::
(see

:::::::
section

:::
3.1

:::
and

::::
Fig.

::::
A1).

:::::
Thus,

::::::::
although

:::::
some

:::::::
previous

::::::
studies

::::::
found

:::::::::
substantial

::::::::::
uncertainties

::
in
::::::::

modeled
:::::
GPP

:::
for

:::::::
different

:::::::::
vegetation

:::::
types

::::::::::::::::::::::::::::::::::::::::::
(Ma et al., 2017; Liang et al., 2020; Li et al., 2022a)

:
,
:::::::::
predicting

::::::::
ecosystem

::::::::
variables

:::::
using

:::::::
dynamic

:::::::::
Noah-MP

:::::
could

::
be

::::::
useful

::
at

::::
least

:::
for

::::::
forests

::
in

::::::
studies

:::::
when

::::
LAI

::::::::::
climatology

::::::
cannot

:::
be

::::
used

::::
such

::
as

::::::
climate

:::::::
change

:::::
impact

:::::::
studies.

::::::::::
Considering

:::
the

::::::::
opposing

:::::
biases

::
in

::::
NEE

::::
(and

:::::
GPP)

::::::::
indicates

:::
that

:::
the

::::::
models

:::::
differ

::
in

::::
their

::::::::
estimates

::
of

:::::::::
ecosystem

::::::::::
respiration.530

:::
One

:::::::::
important

::::::::
difference

::
is
:::
the

::::::::
sequence

::
of

:::
the

::::::::::
calculation

::
of

:::::
GPP,

::::
NEE

::::
and

:::::::::
respiration.

:::::::
ECLand

::::::::
estimates

:::
net

:::::::::::
assimilation

:::
and

:::::::::
respiration

:::
first

:::::::::
separately

:::::::
whereby

:::::::::
respiration

::
is

:::
set

:
to
:::
be

::::
11%

::
of

:::
net

::::::::::
assimilation

::::
and,

::::
then,

::::
both

:::
are

::::
used

::
to

:::::::
calculate

:::::
GPP.

::
In

::::::::
Noah-MP,

:
the performance of NEE and GPP in ECLand was not very sensitive to different vegetation dynamics. Short or

sparse vegetation types thereby were more affected by differing LAI estimates. Hence, a sensitivity analysis with respect to the

impact of LAI and vegetation dynamics itself would be meaningful. In our investigation, using static ECLand simulations with535

MODIS climatology forcing seemed reliable in representing NEE although the correlation between modelled and observed

NEE was generally low (mean Pearson correlation coefficient was 0.44). For many sites, even using the default climatological

LAI for simulations with static ECLand resulted in equally good performances in simulating NEE andGPP. For modelling LAI

and NEE
::::
first

:::::::
estimate

::
is

:::
for

::::
GPP

::::::
which

::
is

:::::::
reduced

::
by

::::::::::
respiration

::
to

::::
gain

::
a

:::::
values

:::
for

:::::
NEE

::::
and,

::::::::::
additionally,

::::::::::
respiration

::
is

:::::
scaled

:::
by

::::
GPP

:::
and

::::::::
available

:::::::
biomass

:::::::::
inclusively

:::::
LAI.

::::::::
Including

:::
our

::::::::
findings,

:::
for

:::::::
dynamic

::::::::
ECLand,

:::
the

:::::::::::::
underestimated

::::
LAI540

::::::
directly

::::::::
transfers

:::
into

::::::
lower

::::
NEE

::::::
values

::::
and,

::::
thus,

::::
also

::
to

:::::
GPP

::::
since

::::::::::
respiration

::
is

:
a
:::::
fixed

:::::::
fraction

::
of

:::::
NEE.

:::::
Apart

:::::
from

:::
the

::::::
fraction

::
of

:::::
GPP

:::
that

::
is

:::::::
directly

::::::
needed

:::
for

::::::::::
metabolism,

:::
the

:::::::::
estimation

::
of

:::::::::
respiration

::
in
::::::::
dynamic

::::::::
Noah-MP

::::
also

::::::::
considers

::::
leaf

::::::::::
maintenance

::::::
which

::
is

::::::
another

:::::::::
difference

::::::::
compared

:::
to

:::::::
ECLand.

:::
As

::
a

:::::
result,

:::::::::
respiration

::
is
:::::::
slightly

::::::::::::
overestimated

::
in

:::::::
ECLand,

using dynamic vegetation modules in their current implementation in either model is not yet efficient because they increase

model complexity encompassing more dynamic processes and parameters without improving fluxes predictive skill. As the545

dynamic vegetation components in ECLandis still under development, findings from this study will help better understand and

represent the processes involved to improve its performance in modeling carbon and energy fluxes
:::
and

::::::
slightly

:::::::::::::
underestimated

::
in

::::::::
Noah-MP. Overall, we recommend using MODIS climatology forcing or alternative remote sensing LAI products for static

simulations which yields reliable model performances for NEE and GPP.

4.2 Modelled turbulent fluxes and soil moisture were almost unaffected by vegetation dynamics in both LSMs550

Statistical measures for
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4.2
:::::

Model
:::::::::::
performance

:::
of

::::::::
turbulent

::::::
fluxes

:::
and

::::
soil

::::::::
moisture

::::
were

::::::
almost

::::::::::
unaffected

::
by

::::::::::
vegetation

::::::::
dynamics

:::
in

::::
both

:::::
LSMs

:::
The

:::::
model

:::::::::::
performance

::
of

:::::::
ECLand

:::
and

:::::::::
Noah-MP

::::::::
regarding

:::
heat

:::::
fluxes

::::
and

:::
soil

:::::::
moisture

::::::
seems

:::::
almost

:::::::::
insensitive

::
to

:::::::::
vegetation

::::::::
dynamics.

::::::::::
Correlation,

:::::::::
variability

:::
and

::::
bias

::
of

:
turbulent fluxes in this study were comparable to other studies.

:::::
While

:::::::::
evaluating555

::::
static

::::::::
ECLand

::::
with

::::::::::
FLUXNET

:::::
data, Stevens et al. (2020) found correlation coefficients of 0.79 and 0.77 for

:::
the

::::::
annual

::::
cycle

::
of

:
latent and sensible heat, respectively, when evaluating static ECLand simulations of the mean annual cycle with data

from 17 FLUXNET stations, and Boussetta et al. (2013) showed a mean correlation coefficient of 0.81 for 10 day
::::::
10-day

averages of latent heatfor 32 FLUXNET sites modelled with static ECLand. We found no other studies looking explicitly

at daily values for ECLand. .
:
For Noah-MP, statistical measures for turbulent fluxes and soil moisture were mostly in line560

with other studies (Niu et al., 2011; Yang et al., 2021; Xu et al., 2021). We found no pronounced underestimations of latent

heat fluxes for humid sites as Liang et al. (2020) did in their application of Noah-MP using static vegetation representation

over China
:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Niu et al., 2011; Ma et al., 2017; Yang et al., 2018; Xu et al., 2021)

:::::::
although

:::::::::::::::::
Pilotto et al. (2015)

:::::::
presented

::::::
lower

:::::::::
correlation

:::::::::
coefficients

:::::::
between

::::
0.20

:::
and

:::::
0.43.

:::::::::::
Interestingly,

::::::::::::::
Ma et al. (2017)

::::::
showed

:::::::
opposing

:::::::
relative

:::
bias

:::
for

:::::::::::::::
evapotranspiration

::
on

::::::
annual

::::
time

::::
scale

::::
over

:::
the

::::::::::
continental

::::
U.S.

::
of

:::
4%

:::
and

:::::
22%

::
for

:::::
static

::::
and

:::::::
dynamic

::::::::::
simulations,

::::::::::
respectively.565

The impact of simulating vegetation dynamically on ECLand turbulent fluxes was small
:::
For

:::::::
ECLand,

::
it
::::
had

::::
little

::::::
impact

:::
on

:::::::
turbulent

::::::
fluxes

:::::::
whether

:::::::::
vegetation

:::
was

:::::::::
simulated

::::::::::
dynamically

:::::::
instead

::
of

::::::::
statically. Model performance for latent heat flux

and evaporative fraction
:::
LE

:::
and

:::
EF

:
changed only for some sites and towards lower performance

::::
(see

::::::
section

::::
3.2). The pre-

dominant underestimation of latent heat flux agrees with
::
LE

::::::
agrees

::::
with

:::
the

:
findings of Stevens et al. (2020). For dynamic

ECLand, the underestimation of GPP and LAI and might be also
:::::::::::::::::::::::::
(also in Boussetta et al., 2021)

:::::
could

:::
also

:::
be

:
the reason for570

::
the

:
poor correlation of evaporative fraction between modelled

:::
EF

:::::::
between

:::::::
modeled and observed values . However, at the same

time,
::::::
because

:::
the

::::::
energy

:::::::
fraction

:::
that

::
is
:::::
used

:::
for

::::::::::
transpiration

::
is
::::::::::::::
underestimated. Boussetta et al. (2021) found that dynamic

vegetation in ECLand improved near surface temperature, sensible and turbulent heat fluxes and, hence, has the potential in

improving numerical weather predictions
::::::::
numerical

:::::::
weather

::::::::::
predictions.

:::::
There,

:::
the

:::::
main

::::::::::::
improvements

::
in

:::::
model

:::::::::::
performance

::::
were

::::::::
achieved

:::::::
through

:::::::
updating

::::
land

:::::
cover

:::::
maps

::::
and

:::
the

::::
LAI

::
in
::::

the
:::::::
look-up

::::
table

:::
or

::
by

::::::::
including

:::::
LAI

:::::::::
seasonality

::::::
which575

::::
both

:
is
::::::::::
comparable

::::
with

::::
our

:::::::::
experiment

:::::
using

:::::::
MODIS

::::::::::
climatology

::
in

:::::
static

:::::::
ECLand

::::::::::
simulations.

:::::
Here,

:::
we

:::::
could

:::
not

:::::::
confirm

:::::
theses

:::::::
findings

:::::
being

::::::
related

:::
to

::::::::
improved

:::::::::::
performance

::
in

::::
heat

::::::
fluxes

::::
since

::::::
model

:::::::::::
performance

::
of

:::
LE

::::
and

:::
EF

:::::
were

::::::
almost

::::::::
unaffected

:::
by

:::
the

:::::
used

::::
LAI

:::::::
forcing,

:::::
which

::::
was

:::::::
already

::::::::::
experienced

:::
by

::::::
others

:::::::::::::::::::::::::::::::::::
(Stevens et al., 2020; Nogueira et al., 2021)

:
.

:::
The

::::::
reason

:::::
might

::
be

::::
that

:::::::::
parameters

:::
are

:::::::
adapted

::
to

:::
the

::::
prior

:::::::::
vegetation

::::::::::
information

:::::::::::::::::::::::
(Ruiz-Vásquez et al., 2023)

:::
and,

:::::
thus,

:::
the

:::::
model

::::::
needs

:
a
::::::::::::
re-calibration.580

Activating vegetation dynamics or changing LAI forcing had a small impact on latent heat and evaporative fraction predictionswith

Noah-MP. Slight
:::
Also

::::
for

:::::::::
Noah-MP,

::::::::
activating

:::::::::
vegetation

:::::::::
dynamics

:::
had

:::::::
mostly

::::
little

:::::::
impact

::
on

::::
LE

:::
and

::::
EF

::::::::::
predictions.

:
A
::::::

slight
:
improvement in model performance was found for some sites with short vegetation types or semi-arid climate.

Ma et al. (2017) already concluded
:::::::
climates.

::::::::::::::
Ma et al. (2017)

:::::
found that using LAI climatology resulted in better model per-

formances for latent heat flux
::
LE

:
than simulations with activated vegetation dynamics for Noah-MP using the monthly585
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FLUXNET Multi-Tree Ensemble data over the US.
::::
U.S..

:
However, here, we did not find enhanced biases in latent heat flux

::
LE

:
predictions with dynamic Noah-MP compared to the static simulations as they did

::::
which

::::::
could

::
be

::::
due

::
to

:::
the

::::::::
differing

::::::::
timescales

:::
for

:::::
model

::::::::::
evaluation.

::::
Both,

:::::::::::::
overestimation

:::
and

:::::::::::::
underestimation

::
of

:::
LE

::::::::
predicted

::
by

::::::::
dynamic

::::::::
Noah-MP

::
is

:::::::
reported

::
in

::
the

::::::::
literature

:::::::::::::::::::::::::::::::::::::::::::::
(Brunsell et al., 2020; Ma et al., 2017; Cai et al., 2014).

::::::::::::::::::
Brunsell et al. (2020)

::::::
showed

::
a

::::::
positive

::::
bias

::
of
::::::::

monthly

:::::::::::::::
evapotranspiration

::
in

:::
the

::::::
Eastern

::::::::::
Amazonian

::::::
Forest

::::::::
simulated

::::
with

::::::::
dynamic

::::::::
Noah-MP

:::::
while

:::
we

:::::
found

::
a

:::::::
negative

::::
bias

::
of

:::
LE590

::
for

:::
the

::::::::::
FLUXNET

::::
site

:::::::
GF-Guy. For short vegetation types, using the Noah-MP Crop module with activated vegetation dy-

namics might be more sufficient in predicting surface fluxes (Liu et al., 2016).
::::::::
Achieved

:::::::::::
improvement

:::
for

:::
LE

:::::
might

::
be

::::
not

::
as

::::
large

::
as

:::
for

:::::::
sensible

::::
heat

:::
flux

:::::::::::::::
(Liu et al., 2016)

:::::
which

:::::
could

::
be

:
a
::::::
reason

:::
for

::::
poor

::::::::::::
performances

::
in

::
EF

:::::::::
presented

::::
here.

Although vegetation and soil moisture state variables are directly coupled within land-surface models, we found almost no

impact of different vegetation modelling
:::::::
modeling

:
on soil moisture predictions for both models. Activating vegetation dynam-595

ics or changing LAI forcing did not improve soil moisture representation . Moreover, modelled soil moisture
::
on

:::::::
average.

::::
The

:::::
reason

:::::
might

:::
be

:::
due

::
to
:::
the

:::::::::::
implemented

:::::::::
interaction

:::
of

::::::
carbon

:::
and

:::::
water

:::::::::
processes.

::::
First,

:::
the

::::::::
potential

::::::::::::
photosynthetic

:::::::
activity

::
in

::::::::::
dependence

::
of

:::
leaf

::::
area

::::
and

:::::::
radiative

:::::::::
conditions

::
is

:::::::::
calculated.

:::::
Then,

:::
the

:::::::::
limitation

:::::
factor

::
of

::::::::::
extractable

:::::
water

:
is
:::::::::

estimated

::::::::
according

::
to

::::::::
available

:::
soil

:::::
water

::::
and

:::::
roots.

::::::
Lastly,

:::
the

:::::::::::::
photosynthetic

::::::
activity

::
is

:::::::
adapted

::
to

::::
that

::::::::
restriction

::::
and

:::::::::::
transpiration

:::
rate

:::::::
adapted

::
to

:::::::::::
conductivity

::::
and

::::::::::
atmospheric

::::::::::
conditions.

:::
As

:
a
::::::

result,
:::
the

:::::
only

:::::::
included

::::
path

:::
is

:::
that

::::
soil

::::::::
moisture

:::::::
impacts600

::::::::::::
photosynthetic

::::::
activity

::::
and

:::::::
biomass

::::::::
build-up.

:::
But

::::
there

::
is
:::
no

::::::::
feedback

:::
that

:::::
more

:::::::
biomass

::::::::::
needs/loses

::::
more

:::::
water

::::
that

:::
will

:::
be

::::
taken

:::::
from

:::
the

:::
soil

:::::::
because

::::::::::::
photosynthetic

:::::::
activity

::
in

:::
the

::::::
models

::::::
relates

::::
only

::
to

:::
the

::::::
carbon

:::::
fluxes

:::
but

:::
not

::
to

:::
the

:::::
water

::::::
fluxes.

::::::::::
Additionally,

::::::::
modeled

::::
soil

:::::::
moisture

:
suffers from substantial biases in both directions which was also found by Liang et al.

(2020) for Noah-MP and by Garrigues et al. (2021) for ECLand although in the latter case correlation between observed and

modelled soil moisture was satisfactory (Beck et al., 2021)
:::::::
modeled

::::
soil

:::::::
moisture

:::
can

::
be

::::::::::
satisfactory

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Beck et al., 2021; Xu et al., 2021; Pilotto et al., 2015; Liang et al., 2019)605

. The reason might be underlying LUT
::::::
default values for soil characteristics such as field capacity and permanent wilting point

that possibly deviate from on-site soil conditions and optimal values
::
for

:::
soil

::::::::::
parameters are still uncertain (Li et al., 2020).

Alternatively, it could be an effect of differing scales since the observation from FLUXNET refers to point measurements. The

Multiscale parameter regionalization (MPR) might provide an improved way to estimate soil parameters by applying pedo-

transfer function on local soil characteristics and, recently, has been applied to Noah-MP in a proof-of-concept (Schweppe610

et al., 2022).

Notwithstanding that van den Hurk et al. (2003) at least
:::::::
Overall,

:::
the

::::::
model

:::::::::::
performance

:::
of

:::
soil

::::::::
moisture

::::
and

::::
heat

::::::
fluxes

:::
was

::::::
barely

:::::::
affected

:::
by

:::::::::
vegetation

::::::::
dynamics

::
or

:::::::
applied

::::
LAI

:::::::
forcing.

::::::::
However,

::::
the

::::::::
sensitivity

:::
to

::::
LAI

:::::
might

:::
be

:::::
given

:::::
since

::::::::::::::::::::::
van den Hurk et al. (2003) found some effect of changed LAI values given into TESSEL, a predecessor of ECLand, as well as

Ma et al. (2017)
:::
and

::::::::::::::::
Zhang et al. (2016) did for Noah-MP, indicating that a certain sensitivity on evapotranspiration existed

:
.615

:::::::::::::
Xu et al. (2021)

::::::
showed

::::::::
improved

::::
LE

:::
and

::::
soil

:::::::
moisture

::::::::::
simulations

::::
with

:::::
more

:::::::
realistic

::::
LAI

::::::::
although,

::::
also

:::::
there,

::::
the

:::::
effect

:::
was

:::
not

::::
only

::::::::::::
site-dependent

:::
but

::::
also

:::::::
differed

::::
with

:::::
season

::::
and

::::
year. But those authors also highlighted that transpiration is only

partly determined by LAI and controls through
::::
other

::::::
factors

:::::::::
controlling

:
the canopy conductance for water vapour

::
to

:::::
water

:::::
vapor

might play a larger role. However, canopy conductance is also scaled by LAI in ECland. Therefore, other compensating mech-

anisms may explain low elasticity between LAI and latent heat flux
::
LE

:
or soil moisture because the estimation of transpiration620
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in the model remained almost the same as in older model versions and we also did not change any of the parameters that

affect the canopy conductance.Overall, model performance regarding latent heat flux or soil moisture are independent of how

LAI is represented
:::
(see

::::::
section

:::::
3.2).

:::::::::::::::
Yang et al. (2011)

:::::::::::
demonstrated

:::
that

:::
the

:::::::
applied

:::::
runoff

:::::::
scheme

::::
more

:::::::
strongly

::::::::::
determined

:::::
model

:::::::::::
performance

::
of

:::
soil

::::::::
moisture

:::
and

::::::::::::::::
evapotranspiration

::::
than

:::
the

:::::::
schemes

:::
for

:::::::
dynamic

::::::::::
vegetation,

:::::::
stomatal

::::::::
resistance

::::
and

:::
soil

::::::::
moisture

:::::
stress.

:::::
Still,

:::::::::
optimizing

:::::::::
parameters

::::
can

::
be

::::::::
effective

::
in

:::::::::
improving

::::::
model

:::::::::
predictions

::::::
which

:::::
could

::
be

::::::
shown

:::
by625

::::::
several

::::::
studies

:::::::::::::::::::::::::::::::::
(Bohm et al., 2020; Li et al., 2021, 2020)

:
.
::::
Even

:::::
more,

:::
the

:::::::::
sensitivity

::
of

::::
soil

:::::::
moisture

:::
to

::::::::
vegetation

::::::::::
parameters

:::
was

::::::
shown

::
to

::::::
enlarge

::::
with

:::::::
dynamic

:::::::::
vegetation

::::::::::::
representation

:::::::::::::::::::
(Arsenault et al., 2018).

::::
Yet,

:::::::::
uncertainty

:::::
about

:::
the

::::::
optimal

::::::
values

::
for

:::::::::
especially

:::
soil

::::
and

::::::::
vegetation

::::::::::
parameters

::::::
remains

:::::::::::::
(Li et al., 2020)

:
.

::::::
Overall,

::::
the

::::::
impact

::
of

:::::::::
vegetation

::::::::
dynamics

:::
and

::::
LAI

:::
on

::::::::
turbulent

::::
heat

:::::
fluxes

:::
and

::::
soil

::::::::
moisture

::
in

:::
this

:::::::::::
investigation

::::
was

::::
slim

:::::
across

::::
sites

::::
and

::::::
seasons

:::
for

:::::
both

::::::
models. Thus, modelers who are mainly interested in

::
the

:
performance of carbon processes630

should be careful using performance metrics for hydrological variables as a proxy (e.g. latent heat flux
:::
LE) because the

:::::
model

:::::::::
formulation

:::
for

:::
the

:
latter might have controlling processes other than LAI or NEE which dominate the result. In conclusion, an

impact of vegetation dynamics and LAI on turbulent fluxes and soil moisture in this investigation was slim when considered

across sites and seasons. However, the sensitivity to LAI might be given in some situations, since Xu et al. (2021) showed

improving latent heat flux and soil moisture simulations with more realistic LAI although also there, the effect was not635

only site-dependent but also differed with season and year
:::::::
Whether

::::::::
applying

:::::::::
vegetation

:::::::::
dynamics

::
in

::::::
model

::::::::::
simulations

::
is

:::::::::::
advantageous

:::::
might

:::::::
depend

:::
on

:::
the

:::::
target

:::::::::
variables.

::::::
While,

:::
for

::::
heat

::::
flux

::::::::::
predictions,

:::::
using

:::::::
MODIS

:::::::::::
climatology

:::::
might

:::
be

::::::::
sufficient,

::::::::
activating

:::::::::
vegetation

::::::::
dynamics

:::::
could

::::
play

:
a
::::
role

:::
for

:::::::
improve

::::::
carbon

:::
flux

::::::::::
predictions

:
at
::::::::
seasonal

::
or

::::::
annual

::::::::
timescale

:::::::::::::::
(Jarlan et al., 2008).

4.3 Observed
:::::::::::
Discrepancy

:::::::
between

::::::::
observed

:
and simulated relationships between ecohydrological640

variables
::::::::
GPP-LAI

:::::::::::
relationship

::
is

::::::
caused

::
by

::::::
model

::::::::
structure

The substantial scatter in the observed relation between GPP and LAI is in close agreement with previous work, showing that

GPP depends next to LAI also
:::
also

:::::::
depends on the short-term availability of resources (e.g., light, soil water) (Hu et al., 2022).

Additionally, Zhang et al. (2021) found that in LSMs the relation between LAI and GPP was too tight. We therefore checked

the underlying relations in the models causing this.645

::::::::
GPP-LAI

::::::::::
relationship

::
in Noah-MP shows a marked hysteresis effect at all sites except the tropical one (Fig. ?? e-h), with GPP

linearly increasing with LAI during biomass built-up up to a point where allocation to leaves becomes minimal (vegetation

type specific), and a substantial drop in GPP without any substantial reductions in LAI towards the end of the growing season

(e.g., Fig. ?? e). When GPP values reduce below approximately 0.0001 gCO2m
−2s−1, then LAI reduces from values about

three towards zero. A similar behaviour is observed at the grassland site in the U.S. with a shift in seasons due to local climate650

(Fig. ?? h). At the tropical site, Noah-MP shows some variability in GPP, but almost no change in LAI which is around a value

of five.
::::::
showed

:
a
::::
clear

::::::::::
exponential

:::::::::
hysteresis

:::
(see

::::::
section

:::::
3.3). The LAI dynamics in Noah-MP depend on a number of

::::::
several

processes. Allocation of carbon to the leaves increases LAI, while leaf turnover and leaf die-back reduce LAI. Leaf turnover

due to leaf aging is implemented as a linear function of leaf mass. Leaf die-back due to environmental limitations follows
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exponential functions. Taken together, leaf die-back dominates ,
::
in

:::
the

::::
later

:::::::
growing

:::::
season

:
which results in the hysteresis. The655

reduction of LAI (i.e., leaf die-back) is implemented to be dependent both on water and temperature stress, but temperature

stress is the main driver. In the specific implementation used here, water stress only occurs at a
:

very low soil saturation of

0.1 vol% for silt loam exemplarily which is even below the permanent wilting point of this soil texture type according to the

LUT
:::::::
look-up

::::
table value. These values are rarely reached and, thus, water stress is negligible most of the time. In contrast, tem-

perature stress is implemented as an exponential function causing the late growing season non-linear decline of GPP observed660

throughout the non-tropical sites. Temperature stress is at maximum at 5 ◦C
::::
5 ◦C for forest ecosystems resulting in no active

biomass below this threshold. For this reason, LAI values are almost constant at the tropical forest site because temperature is

never limiting there.

ECLand shows a very tight linear relation between LAI and GPP with much lower scatter compared to the observations (Fig. ??

third and fourth row). ECLand with
:::::::
ECLand

::::
with static vegetation shows

:
a
:
similar pattern of seasonal dynamics as Noah-MP665

with vegetation dynamics
:::
but

::::
with

:::
less

::::::::::
pronounced

::::::::::
exponential

::::::::::
relationship. In contrast, dyanmic

:::::::
dynamic ECLand simulates

LAI that is strongly coupled to daily meteorological conditions, leading to higher daily fluctuations of LAI than expected,

including strong drops of LAI in summer. Three processes govern this
::::
these

:
daily LAI dynamics: GPP, respiration and senes-

cence. GPP relates linear
:
is

:::::::
linearily

::::::
related

:
to LAI and varies with environmental and meteorological conditions causing the

variability in static runs. In dynamic runs, losses in biomass due to high or low daily GPP linearly affect LAI. In other words,670

unfavourable GPP can reduce LAI almost immediately. The second process affecting LAI is senescence. ECLand distinguishes

growing and senescence phase
::::::
phases by comparing active biomass due to assimilation with biomass from

::
the

:::::::
biomass

:::::
from

::
the

:
previous time step. If active, then senescence is a linear function of active biomass and a folding-factor. The folding-factor

reduces part of
:::
the senescent biomass, depending on photosynthesis (reduced in

:::
the case of high assimilation) and LAI. Over-

all, the folding-factor changes only slightly with LAI. Additionally, a reduction of LAI and, thus, active biomass due to reduced675

GPP (as explained before) causes the model to trigger senescence because the active biomass of the previous time step was

higher. The third process is respiration. About 11% of physiologically possible assimilation is used for dark respiration without

considering actual light conditions. This might cause high values of dark respiration compared with possible assimilation based

on meteorological conditions and, thus, minimize
:::::
reduce

:
net primary productionor even produce ,

:::::
even

::::::::
producing

:
negative val-

ues. Notably, no aboveground biomass storage is built up and there is no turnover. Most locations show a linear relationship680

comparable to ECLand but with a higher variability (Fig. ??
:
8
:
first and fourth row). This might be due to the fact that leaf

growth and leaf fall, in particular for trees, happen on longer timescales than the daily one as implemented in ECLand which

inhibits immediate effects of GPP on LAI.

Overall, the current implementations of leaf dynamics in both models use very different approaches to represent LAI dynamics.

In Noah-MP it is mainly temperature-driven, and GPP depends little on LAI once the canopy is fully developed. In contrast,685

in ECLand, LAI and GPP are coupled very tightly
:::
and, thus, the LAI dynamics follow almost the same sensitivities to water

limitation and radiation as turbulent fluxes, which is unrealistic. However, real
:::::::
Realistic

:
LAI is less dynamic and less sensi-

tive to environmental conditions, as also indicated by the observations. Hence for very different reasons, in both models the

performance regarding LAI and turbulent and carbon fluxes is disconnected.
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4.4
::::::::::

Implications
::::
and

::::::::::
limitations690

:::
For

::::::::
modeling

::::
LAI

:::
and

::::::
carbon

::::::
fluxes,

::::
using

::::::::
dynamic

:::::::::
vegetation

:::::::
modules

::
in

::::
their

::::::
current

:::::::::::::
implementation

::
in

:::::
either

::::::
model

::
is

:::
not

::
yet

:::::::
efficient

:::::::
because

::::
they

:::::::
increase

:::::
model

::::::::::
complexity

:::::::::::
encompassing

:::::
more

:::::::
dynamic

::::::::
processes

:::
and

::::::::::
parameters

::::::
without

:::::::::
improving

::
the

:::::::::
predictive

::::
skill.

:::
As

:::
the

:::::::
dynamic

:::::::::
vegetation

::::::::::
components

::
in

:::::::
ECLand

:::
are

:::
still

:::::
under

:::::::::::
development,

:::::::
findings

::::
from

::::
this

:::::
study

:::
can

:::
help

:::::
better

::::::::::
understand

:::
and

::::::::
represent

:::
the

::::::::
processes

:::::::
involved

:::
to

:::::::
improve

::
its

:::::::::::
performance

::
in

::::::::
modeling

::::::
carbon

:::
and

::::::
energy

::::::
fluxes.

:::
But

::::
also

::
for

:::::::::
Noah-MP,

:::
we

:::::::
showed

:::
that

:::
the

:::::::
dynamic

:::::::::
vegetation

:::::::
module

:::
has

:::::::
potential

:::
for

:::::::::::
improvement

:::::::::
especially

::::::
related

::
to

:::
the695

:::::::::
relationship

::::::::
between

::::
GPP

::::
(and

::::
thus

:::
also

:::::
NEE)

::::
and

::::
LAI.

::::::::::
Underlying

::::::::
processes

::::
such

::
as

::::::
carbon

:::::::::
allocation,

::::
root

::::::::
dynamics,

:::::
plant

:::::::::
hydraulics,

:::::::::
feedbacks

::
on

:::::::::::::
photosynthesis

:::
and

:::::
their

::::::::::::::
parameterization

:::
can

::::
still

:::
be

::::::
worked

:::
on

::::::::::::::::::::::::::
(Ma et al., 2017; Li et al., 2021)

:
.

::::::
Overall,

:::
we

::::::::::
recommend

:::::
using

:::::::
MODIS

::::::::::
climatology

::::::
forcing

::
or

:::::::::
alternative

::::::
remote

:::::::
sensing

::::
LAI

:::::::
products

:::
for

:::::
static

::::::::::
simulations

:::::
which

::::::
yielded

:::
the

::::
best

:::::
model

::::::::::::
performances

:::
for

::::::
carbon

:::
and

:::::
water

::::::
fluxes.

:::
The

:::::
value

::
of

:
a
::::::
model

:::::::::
evaluation

:::
like

::
in

:::
this

:::::
study

:::::::
depends

:::
on

:::
the

::::::::
reliability

::
of

:::
the

:::::::
included

::::::::
datasets.

::::::::::
Uncertainty

::
in

::
the

:::::::
forcing700

:::
data

:::::
might

::::
have

::
a
:::::
larger

::::::
impact

::
on

:::
the

:::::
model

::::
runs

::::
than

::::::::
processes

:::::
within

:::
the

::::::
models

:::::::::::::::::
(Zhang et al., 2016),

:::
but

:::::::::::::::::::
Haughton et al. (2016)

:::::::::::
demonstrated

:::
that

:::::::::::
observational

::::::
errors

:::
are

:::::::
unlikely

::
to

:::::
cause

::::
poor

:::::
model

:::::::::::
performance.

:::::::::::
Nonetheless,

::::::
model

:::::::::
evaluations

:::
are

::::
also

:::::::
restricted

:::
by

:::::::::
uncertainty

::
in

:::
the

::::::::
reference

::::
data

::::::::::::::
(Li et al., 2022a)

::::::::
especially

:::::
when

:::::::::
considering

::::
flux

::::::::::::
measurements

:::::::::::::
(Li et al., 2019)

:
.
:::
We

::::
tried

::
to

:::::::
address

::
by

::::::::
carefully

:::::::::
inspecting

:::
the

::::
time

:::::
series

::::
data

::::
from

::::::::::::::
FLUXNET2015

::::::
before

::::
their

::::::
usage.

::::::::
However,

::
as

::
in

:::
all

::::::::::::
measurements,

::::
there

:::
are

::::
still

:::::::::::
uncertainties,

:::
e.g.

:::::
from

::::::::::
instrumental

::::::
errors

::
or

:::::::::
incomplete

::::::
energy

:::::::
balance

::::::
closure.705

::::
Also,

:::
the

:::::::
MODIS

::::::
dataset

:::::::
harbors

:::::::::
uncertainty

::::::::::
originating

::::
from

:::::
cloud

::::::::
coverage,

:::::::::
especially

::
in

:::
the

::::::
tropics.

:::
We

:::::
tried

::
to

::::::::
minimize

:::
this

:::::::::
uncertainty

:::
by

::::::::
excluding

:::
all

::::
days

::::
from

:::
the

::::::
dataset

::::
that

::::
were

:::::::
flagged

::::
with

:::::::::
significant

:::::::::
cloudiness.

::::
But

::::::::
saturation

::::
also

:::::
limits

::
the

::::::::::::::::
representativeness

::
of

:::
the

::::
LAI

::::::::::::
measurements.

:::::
Even

:::::
when

:::::
using

::::
only

::::
data

::::
with

:::
the

::::::
highest

:::::::
possible

:::::::
quality

::::
flag,

::
we

::::::
found

::::::::::
suspiciously

::::
low

::::
LAI

:::::
values

::
in
::::::::

summer
:::
for

::::::::
temperate

::::::
forests

::::
and

:::::::::
grasslands,

::::
and

::::::::
especially

:::
for

:::::::
tropical

::::::
forests

::::::::::
throughout

::
the

::::
year

:::::
(Fig.

::
8

::
c).

:::::
Thus,

::::
also

:::
the

::::::::
reference

::::
data

:::
are

::::::::
uncertain

::::
and

:
a
::::::::
deviation

:::::
from

::::
them

::
is
::::::::
expected.

:::
In

:::
any

:::::
case,

::::::::
reference710

:::
data

::
is
::::::::
essential

::
for

::::::
model

::::::::::
verification,

::::::::::
calibration,

:::
and

::::::::
validation

:::
but

::::::
should

:::
be

::::::
treated

:::::::
carefully

::::::::::
concerning

::
its

::::::::
reliability

::::
and

:::::::::
uncertainty.

:

5 Conclusions

Land-surface models often include modules for dynamic vegetation processes. However
:::
Yet, an evaluation of the representa-

tiveness of key variables like
::::
such

::
as

:
leaf area index or net ecosystem exchange is rarely done

::
on

::::
high

::::::::
temporal

::::::::
resolution.715

The impact of different parameterization of vegetation processes on water and carbon flux estimates by land-surface models is

still poorly understood. Additionally, multi-model comparison studies mainly focus on internal performance rankings without

deeper investigations into the reasons of performance results. Therefore, we evaluated the change in model performance of eco-

hydrological target variables when dynamic vegetation processes are included for two land-surface models and further gained

insight into critical process implementations that lead to the observed patterns.720

Surprisingly, neither for ECLand nor for Noah-MP, including modules for dynamic vegetation in their implementation im-

proved the model predictions of ecohydrological variables. We expected vegetation dynamics in
::::
these land-surface models

28



to better capture the higher variability in the ecosystem exchangeespecially of
::::::::
ecosystem

:::::::::
exchange,

::::::::
especially

::::
that

::
of

::::::
highly

:::::::
dynamic short or sparse vegetation

::::
types,

:
but this was predominantly not the case. Using alternative input for leaf area index

other than default climatological values also had an
:::::::::
climatology

::::
also

::::
had

::
a negligible effect on the model performance but725

this needs to be evaluated in more detail. Moreover, model performances of carbon and hydrological fluxes appeared to be

weakly coupled. Therefore, the question arose whether exchange fluxes themselves in these land surface models are sensitive

to changes in leaf area index estimates and not only to changing parameter sets. Indeed, different leaf area index estimates lead

to different predictions in exchange fluxes but without affecting the overall model performance of these variables. This might

be caused by the mismatch in the seasonal patterns between observation
::::::::::
observations

:
and models for the relationship of gross730

primary productivity and leaf area index. While this relation
:::::::::
relationship

:
in dynamic Noah-MP showed a logarithmic hystere-

sis, mainly driven by temperature, both variables are tightly linear
::::::
linearly

:
coupled in dynamic ECLand without allowing for

LAI
::
the

::::
leaf

::::
area

:::::
index to remain unchanged in suboptimal conditions for photosynthesis.

This deeper analysis of the model performance for ecohydrological fluxes that pinpoints to the reasons of
:::
for model behavior

was only possible with a reduced number of models. We used specific setups for the two land surface models evaluated here.735

Adapting or changing parameters and investigating the effect of other processes within the models were beyond the scope of

this study. At this point, it remains unclear how representative our model selection is for the performance and process evaluation

of other land surface models. Nonetheless, we highlighted some crucial relationships in the implementation of vegetation pro-

cesses that have the potential for further improvement. Additionally, they might be a good starting point for a similar intensive

investigation with other land surface models.740

Code and data availability. Observational data from the FLUXNET2015 dataset were accessed via FLUXNET data portal at https://fluxnet

.org/data/fluxnet2015-dataset/. Observational data for TERENO observatory "Hohes Holz" can be found at https://doi.pangaea.de/10.1594

/PANGAEA.940760. IGBP Land Classification is available at https://climatedataguide.ucar.edu/climate-data/ceres-igbp-land-classification.

Aridity index was taken from https://csidotinfo.wordpress.com/2019/01/24/global-aridity-index-and-potential-evapotranspiration-climate

-database-v2/. Gap-filling of meteorological data was done by using ERA5 re-analysis product: https://cds.climate.copernicus.eu/, accessed745

by Climate Data Store API. USGS vegetation types can be found at https://ral.ucar.edu/model/noah-multiparameterization-land-surface-m

odel-noah-mp-lsm. Global gridded soil information is available at https://soilgrids.org. MODIS Leaf area index was retrieved via Earth Data

Portal from NASA at https://search.earthdata.nasa.gov/search?q=C2222147000-LPCLOUD.
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Appendix

A.01
::::::::
Dynamic

:::::::
ECLand

:::::::::
processes750

:::
For

::::
more

:::::::
details,

:::
see

:::
the

::::::::
published

::::::
model

::::::::::
descriptions

:::::::::::::::::::::::::::::
(Boussetta et al., 2012, 2013, 2021).

:::::::::::::
Photosynthesis

:::::
model

::
is

:::::
based

:::
on

:::::::::::::::
Calvet et al. (1998)

:
.
:::::::
Therein,

::::::::
potential

:::
net

::::::::::
assimilation

:::
An::

is
::::::::
estimated

::::
from

:::::::::::
physiological

:::::::::
constrains

::
as

:

An =Amax · (1− e
−
gmeso · (ci − ccomp)

Amax )
::::::::::::::::::::::::::::::::::

(A.1)

:::::
where

:::::
Amax::

is
:::
the

:::
leaf

:::::::::::::
photosynthetic

:::::::
capacity,

:::::
gmeso::

is
:::
the

:::::::::
mesophyll

:::::::::::
conductance,

::
ci::

is
:::
the

::::::::::
leaf-internal

::::
CO2::::::::::::

concentration

:::
and

:::::
ccomp::

is
:::
the

::::
CO2::::::::::::

compensation
:::::
point.

::::::::
Potential

::::
gross

:::::::::::
assimilation

:::
Ag ,

::::
then,

::
is
:::::::::
calculated

::
as

:
755

Ag = (An +Rd) · ϵ
:::::::::::::::

(A.2)

:::::
where

:::
Rd::

is
:::
the

::::
dark

:::::::::
respiration

::::
from

:

Rd =An · fR
::::::::::

(A.3)

::::
with

::::::
fR = 1

9::
as

::::
dark

:::::::::
respiration

::::::
factor,

:::
and

::::::
where

:
ϵ
::
is

:
a
::::::::
quantum

:::
use

::::::::
efficiency

::::::
factor,

::::::::
estimated

::
as

:

ϵ= 1− e
−
ϵ0 ·EPAR

An +Rd
:::::::::::::::::

(A.4)760

:::::
where

::
ϵ0::

is
:::

the
:::::::::

maximum
::::::::

quantum
:::
use

:::::::::
efficiency

::::
and

:::::
EPAR::

is
::::

the
::::::::
absorbed

::::::::::::
photosynthetic

:::::
active

:::::::::
radiation.

::::::
Actual

:::::
gross

::::::::::
assimilation

:::::
GPP

::::::
results

::::
from

GPP =Ag ·LAI · ρa
:::::::::::::::::

(A.5)

:::::
where

::::
LAI

::
is

:::
the

::::
leaf

:::
area

:::::
index

::
of
:::
the

:::::
prior

::::
time

::::
step

:::
and

::
ρa::

is
:::
the

:::
air

::::::
density

::::::::
corrected

:::
for

::::::::
humidity.

:::
An :

is
:::::
used

::
as

:::
the

::::::::
maximum

::::
leaf

::::::::::
assimilation

:::
for

:::
the

:::::::::
senescence

::::::
model

:::::::::::::::::::::::
(Calvet and Soussana, 2001)

:
.
::
To

:::::
avoid

:::::::::
immediate

::::
leaf765

:::::::
die-back,

::
a
:::::::
damping

:::::
factor

:::
for

::::::::::
senescence

::
fs::

is
:::::::::
introduced

::
as

:

fs =max(
τlim · ts

100 ·Nday
,max(10−8,

ts
Nday

·min(1,
An

Amax
) · max((rmeso · 1000)0.321 ·LAI

fLAI
,1)))

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(A.6)

:::::
where

::::
τlim ::

is
:
a
:::::::
limiting

:::::
factor

::
for

:::::::::
immediate

:::::::
biomass

::::
loss,

::
ts::

is
:::
the

:::::::
damping

::::
time

:::
for

::::::::::
senescence,

:::::
which

::::::::
basically

:
is
:::
the

:::::::
amount

::
of

::::::
seconds

:::
per

:::::
year,

::::
Nday::

is
:::
the

:::::::
amount

::
of

::::::
seconds

:::
per

::::
day,

:::::
Amax::

is
:::
the

:::::::::
maximum

::::::::::::
photosynthesis

:::
rate

::::
with

:::::::
optimal

:::::::::
conditions

:::
and

:::::
fLAI ::

is
:
a
::::
LAI

:::::::::
correction

::::::::
parameter

::::
that

::::::
reduces

::::::::
mortality

::
at

::::
high

::::
LAI

::::::
values

:::::
which

::::::
would

:::::
occur

:::
due

::
to
::::::::::
shadowing.

::::
The770

::::::
amount

:::
of

:::::::
biomass

::::
loss

:::::
Bloss ::::

then
::
is

Bloss =min(B−LAImin · fLAI−B ,B · (1− e
−
1

fs ))
:::::::::::::::::::::::::::::::::::::::::::

(A.7)
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:::::
where

::
B

::
is

:::
the

:::::::
biomass

:::
of

:::
the

::::
prior

::::
time

::::
step

::::
and

:::::::
fLAI−B::

is
::
a

:::::::::
conversion

:::::
factor

:::::::
between

:::::
LAI

:::
and

:::
B.

:::::
Then,

::::::::
biomass

::
B

::
is

::::::
updated

:::
by

:::::::::
subtracting

::::::
Bloss.

:::
The

::::::
change

::
in
::::::::
biomass

:::
due

::
to

::::::::::
assimilation

::::::
Bgain :::::

results
:::::
from

Bgain =max(LAImin · fLAI−B −B,An · fCbiom)
:::::::::::::::::::::::::::::::::::::::::

(A.8)775

:::::
where

::::::::::::
fCbiom ≈ 0.68

::
is

:
a
:::::
factor

:::::::::
converting

:::
the

:::::::
amount

::
of

::::
CO2::::::

uptake
::::
from

:::::::::::
assimilation

::
to

::::::
carbon

::
in

:::
dry

:::::::
biomass.

::::::::
Biomass

::
B

:
is
:::::::
updated

:::::
again

::
by

::::::
adding

::::::
Bgain.

::
In
:::
the

::::
end,

::::
this

:::::::
updated

:::::::
biomass

:
is
::::::::::
transferred

:::
into

:::
an

::::::
updated

::::
LAI

:::::
value

:::
by

LAI =
B

fLAI−B
:::::::::::::

(A.9)

:::
LAI

::::::::::
determines

:::
the

::::::::::
interception

:::::::
reservoir

:::
W

::
by

:

W =Wmax · (cB + cH ·LAIH + cL ·LAIL)
::::::::::::::::::::::::::::::::::::

(A.10)780

:::::
where

::::::
Wmax ::

is
:::
the

::::::::
maximum

::::::::
thickness

:::
of

:::
the

:::::
water

::::
layer

:::
on

::::
leafs

:::
or

::::
bare

:::::::
ground,

:::
cB ,

:::
cH :::

and
:::
cL:::

are
:::
the

::::::::
fractions

:::
for

::::
bare

:::
soil,

:::::
high

::::::::
vegetation

::::
and

:::
low

:::::::::
vegetation

:::
on

:
a
::::
grid

::::
cell

:::
and

::::::
LAIH :::

and
::::::
LAIL :::

are
:::
the

::::
LAI

:::::
values

:::
for

::::
high

::::
and

:::
low

::::::::::
vegetation,

::::::::::
respectively

:::::::::::::::::::
(Boussetta et al., 2012).

:::::::::::
Additionally,

::::::
canopy

:::::::::
resistance

::
rc:::::::

depends
::
on

::::
LAI

:::
via

:

rc = f1f2f3 ·
rs,min

LAI
::::::::::::::::

(A.11)

:::::
where

::::::
rs,min ::

is
:::
the

::::::::
minimum

:::::::
stomatal

:::::::::
resistance

:::
and

:::
fn:::

are
:::
the

:::::::::
restriction

::::::
factors

:::
for

:::
low

:::::
input

::
in

:::::::::
shortwave

::::::::
radiation,

::::
soil785

:::::::
moisture

:::::
stress

:::
and

::::::::
saturated

::::::::::
atmospheric

:::::::::
conditions

:::::::::::::::::::
(Boussetta et al., 2012)

:
.

A.02
::::::::
Dynamic

::::::::
Noah-MP

:::::::::
processes

:::
For

::::
more

:::::::
details,

:::
see

:::
the

::::::::
published

::::::
model

::::::::::
descriptions

::::
(Niu

::
et

:::
al.,

:::::
2011;

::::
Ma

::
et

:::
al.,

:::::
2017;

::::::
Oleson

::
et

:::
al.,

::::::
2012).

:::
The

::::::
model

:::
for

:::
leaf

::::::::
dynamics

::::::
within

::::::::
Noah-MP

::
is

:::::
based

:::
on

::::::::::::::::::
Dickinson et al. (1998)

:
.
::::
Leaf

:::::::
biomass

:::::
Cleaf::

is
::::::::
balanced

::::
over

::::
time

::::
with

δCleaf

δt
= fleaf ·Atot − (dstress + dturnover +Rleaf ) ·Cleaf

:::::::::::::::::::::::::::::::::::::::::::::::::

(A.12)790

:::::
where

::::
Atot::

is
:::
the

::::
total

::::::
carbon

::::::::::
assimilation

::::
rate,

:::::
fleaf :

is
:::
the

:::::::
fraction

::
of

:::::::::
allocation

::
to

:::
the

:::::
leaves,

::::::
dstress::

is
:::
the

:::::
dying

::::
rate

::::::
caused

::
by

::::
cold

:::
and

:::::::
drought

::::::
stress,

::::::::
dturnover ::

is
:::
the

:::::::
turnover

:::
rate

::::
due

::
to

::::::::::
senescence,

::::::::
herbivory

::
or

::::::::::
mechanical

:::
loss

::
as

::
a
:::::::::::::
vegetation-type

::::::::
dependent

:::::::::
parameter

:::
and

:::::
Rleaf::

is
:::
the

:::::::::
respiration

::::
rate

::
of

:::
the

:::
leaf

::::::::
biomass.

::::
fleaf::

is
::::::::::
determined

::
by

::::
LAI

:::
via

:

fleaf = e0.01·LAI(1−eχ·LAI)

::::::::::::::::::::::
(A.13)

:::::
where

::::::::
χ= 0.75

::
is

::
a

::::::::
parameter

::::::::
defining

:::
the

::::::::::
partitioning

::
of

:::::::
carbon

::::::::
allocation

::::::::
between

:::::
leaves

::::
and

:::::
stem.

::::
Atot::

is
:::::

split
::
up

:::
to795

::::::::::::
photosynthesis

::::
rates

:::::
from

::::
sunlit

::::
and

::::::
shaded

::::::
leaves,

:::::::::::
respectively:

Atot = 12 · 10−6 · (Asunlit ·LAIsunlit +Ashaded ·LAIshaded)
::::::::::::::::::::::::::::::::::::::::::::::::::

(A.14)
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:::::
where

:::
the

::::
first

:::::
factor

::
is
:::
for

::::
unit

::::::::::
conversion.

::::
The

::::::::::
partitioning

::
of

:::::
sunlit

::::
and

::::::
shaded

::::
LAI

::::::
results

:::::
from

:
a
::::::::::
two-stream

::::::::
radiation

::::::
transfer

:::::::
scheme

::::::::::::::
(Niu et al., 2011).

:::::::::::
Assimilation

::::
rate

:::
for

:::::
sunlit

:::
and

::::::
shaded

::::::
leaves,

:::::::::::
respectively,

:
is
:::::::::
estimated

::::
with

:
a
::::::::::
bottle-neck

:::::::
principle

::
as

:
800

A= Igmin(AL,AC ,AS)
::::::::::::::::::::

(A.15)

:::::
where

::
Ig::

is
::

a
:::::::
growing

::::::
season

:::::
index

:::::::::
according

::
to

::::
leaf

::::::::::
temperature

:::
and

::::
AL,

::::
AC ,

::::
AS :::

are
:::
the

::::::::::::
photosynthesis

:::::
rates

::::::
limited

:::
by

::::
light,

:::::::
Rubisco

::::
and

::::::
export,

::::::::::
respectively

:::::::
(Bonan,

:::::
1996).

::::
AL :::::

results
:::::
from

AL =
4.6 · ϵ ·EPAR(ci − ccomp)

ci +2ccomp
::::::::::::::::::::::::::

(A.16)

::::
with

:
ci:::::

being
:::
the

::::::::::
leaf-internal

:::::
CO2 :::::::::::

concentration,
::::::
ccomp ::::

being
:::
the

:::::
CO2 :::::::::::

compensation
:::::
point,

:
ϵ
:::::
being

:::
the

:::::::
quantum

::::
use

::::::::
efficiency805

:::
and

::::::
EPAR :::::

being
:::
the

:::::::
absorbed

::::::::::::
photosynthetic

::::::
active

::::::::
radiation.

:::::::::::
Additionally,

::::::::::::::
AS = 0.5 ·Vmax :::

and
:

AC =
Vmax(ci − ccomp)

ci +Kc(1+
co
Ko

)
::::::::::::::::::::

(A.17)

:::::
where

::
co::

is
:::
the

::::::::::
atmospheric

:::
O2::::::::::::

concentration,
:::
Kc:::

and
:::
Ko:::

are
:::
the

:::::::::::::::
Michaelis-Menton

::::::::
constants

:::
for

:::::
CO2 :::

and
:::
O2:::::::

(Collatz
::
et

:::
al.,

:::::
1991),

:::::::::::
respectively,

:::
and

:::::
Vmax::

is
:::
the

::::::::
maximum

::::::::::::
carboxylation

::::
rate,

::::::
defined

:::
by

Vmax = Vmax,25 ·α
Tv−25

10
max · fNfTv

β
::::::::::::::::::::::::::::

(A.18)810

:::::
where

:::::::
Vmax,25::

is
:::
the

:::::::::
maximum

::::::::::::
carboxylation

:::
rate

:::
at

::::::
25 °C,

:::::
αmax::

is
:
a
:::::::::::

temperature
:::::::::
conversion

::::::
factor,

:::
Tv ::

is
:::
the

:::::::::
vegetation

::::::::::
temperature,

:::
fN::

is
:
a
:::::
factor

:::
for

:::::::
nitrogen

:::::::::
limitation

::
of

:::
the

::::::
leaves,

:::
fTv::

is
:
a
::::::
factor

::
for

::::::::::
temperature

:::::::::
limitation

:::::::
(Collatz

::
et

:::
al.,

:::::
1991)

:::
and

::
β

::::::::
represents

:::
the

::::::::
limitation

:::
by

::::::::
available

:::
soil

::::::::
moisture.

::::::
dstress ::

for
:::
the

::::
leaf

::::
mass

:::::::
balance

::
is

::::::::
estimated

::::
from

:

dstress = dcold · e−0.3·max(0,Tv−Tmin)
Cleaf

120
+ ddry · e−100β

::::::::::::::::::::::::::::::::::::::::::::::::

(A.19)815

:::::
where

:::::
Tmin::

is
::
a

::::::::
vegetation

:::::
type

:::::::::
dependent

::::::::
threshold

::::::::::
temperature

:::
for

::::
leaf

:::::::
survival,

::
β
::

is
::::

the
:::
soil

::::::::
moisture

::::::::
limitation

::::::
factor

:::
and

:::::
dcold :::

and
:::::
ddry:::

are
:::::::::
vegetation

::::
type

::::::::::
dependent

:::::
dying

::::
rates

::::::::::
(prescribed

::::::::::
parameter)

:::
for

::::::::::
temperature

::::
and

:::::::
dryness

::::::
stress,

::::::::::
respectively.

::::
Leaf

:::::::::
respiration

:::::
Rleaf::

is
:::::::::
calculated

::::
with

Rleaf = fres((fleaf −
LAI

χ · fleaf
) ·Atot −Rl

:::::::::::::::::::::::::::::::::::

(A.20)

:::::
where

::::
fres::

is
::

a
:::::
factor

::::::::
defining

:::
the

:::::::
fraction

:::
of

::::::::::
assimilation

::::
that

::
is
:::::

used
:::
for

:::::::::
respiration

::::
and

:::
Rl::

is
:::
the

::::::::::
respiration

:::
for

::::
leaf820

::::::::::
maintenance

::::
from

:

Rl =min(
Cleaf −Cleaf,min

∆t
,0.5 · 12 · 10−6 · rl(Tv) ·LAI ·β · cN

cN,max
)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(A.21)
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:::::
where

:::::::::
Cleaf,min :

is
::::

the
::::::::
minimum

::::
leaf

:::::::
biomass,

:::
∆t

::
is
::::

the
::::
time

::::
step

:::::::
duration,

::::
0.5

::
is

:
a
::::::::
reduction

::::::
factor

:::
for

:::::::::
respiration

::::::
during

::::::::::
non-growing

:::::::
season,

::::::
rl(Tv)::

is
:::
the

:::::::::
vegetation

::::
type

:::::::::
dependent

:::::::::
respiration

::::
rate

:::
for

::::
leaf

:::::::::::
maintenance

::
at

:::
Tv :::

and
:::::::

cN
cN,max ::

is
:::
the

:::::::
nitrogen

::::::::
saturation

::::::
within

:::
the

::::::
leaves.

::::::::::
Afterwards,

::
net

:::::::
primary

:::::::::
production

::::::
NPP

::
is

::::::::
estimated

::
as

:
825

NPP = (fleaf −
LAI

χ · fleaf
) ·Atot −Rleaf −Rl

::::::::::::::::::::::::::::::::::::::

(A.22)

:::::
GPP

::
is

::
set

::
to

::::
Atot::::

and
::::
LAI

::
is

:::::::
updated

::::
with

LAI = Cleaf · fLAI−B
::::::::::::::::::

(A.23)

:::::
where

:::::::
fLAI−B::

is
:::
the

:::
leaf

::::
area

:::
per

::::::::
biomass.

::::::::::
Assimilation

::::
rate

::
A

:::::::::
determines

:::
the

:::::::
stomatal

:::::::::
resistance

::
rs::

by
:

830

1

rs
= gmin +

m · pair ·A
cair

eair
esat(Tv)

:::::::::::::::::::::::::::

(A.24)

:::::
where

::::
gmin::

is
:::
the

::::::::
minimum

::::::::
stomatal

:::::::::::
conductance,

::
m

::
is

::
an

::::::::
empirical

:::::::::
parameter

:::
for

:::
the

::::::::::
relationship

:::::::
between

::::::::::
transpiration

::::
and

::::
CO2::::

flux,
::::
pair ::

is
::
the

:::::::
surface

::
air

::::::::
pressure,

:::
cair::

is
:::
the

:::::
CO2 :::::::::::

concentration
::
at

:::
leaf

:::::::
surface,

::::
eair :

is
:::
the

:::::
vapor

:::::::
pressure

::
at

::::
leaf

::::::
surface

:::
and

:::::::
esat(Tv)::

is
:::
the

::::::::
saturation

:::::
vapor

:::::::
pressure

:::::
inside

:::
the

::::::
leaves

:::::::::::::::::::::::::
(Ball et al., 1987; Bonan, 1996)

:
.
::
rs::::

then
::
is

::::
used

::
to

:::::::
estimate

:::::
latent

:::
heat

::::
flux

::::
and,

::::
thus,

::::::::::::::::
evapotranspiration.835
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A.03
:::::::::
Additional

::::::
figures

Figure A1. Change of model quality metrics for GPP prediction when switching on dynamic vegetation for all included sites and by using

LUT LAI forcing
:::::
default

:::::::::
climatology (left) or MODIS LAI clomatology

::::::
MODIS

:::::::::
climatology (right). The star (“Observ”) marks the location

of the perfect correlation between observation and model and perfect agreement between observed and modelled variance. The model

performance of the static runs can be read from the start of each arrow. The point colors indicate the site aridity (top right legend). Vegetation

types are symbolized by different marker types (bottom right legend). Since GPP is not generated as variable from Noah-MP when running

the model without dynamics, no change in statistical measures can be presented.Additionally, because all the simulations with dynamic

vegetation created the same output for Noah-MP, only one Taylor diagram is shown.
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Figure A2.
::::
Same

::
as

:::::
before

::
but

:::
for

:::
soil

:::::::
moisture.

A.04
:::::::::::
Performance

:::::::
metrics

:::::
tables
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Table A1.
::::::
Relative

:::
bias

:::
for

::::
LAI.

:::
The

::::
word

:::::::::
climatology

::
is

:::::::
shortened

::::
with

::::
clim..

::::::
MODIS

:::::
single

:::::
refers

::
to

::
the

:::::::
MODIS

::::::::
single-year

:::::
setup.

ECLand Location Noah-MP

sim00 default clim. sim02 MODIS clim. sim40 MODIS single sim42 sim50 default clim. sim52 MODIS clim. sim00 sim02 sim40 sim42 sim50 sim52 MODIS single

0%
::::
static 0%

::::::
dynamic

:
0%

::::
static 0%

::::::
dynamic

:
0%

::::
static 0%

::::::
dynamic

:
Obs 0%

::::
static 0%

::::::
dynamic

:
0%

::::
static 0%

::::::
dynamic

:
0%

::::
static 0%

::::::
dynamic-11

:::
-68% -34

::
-77% -26

:::
-28% -73% -32

:::
-31% -74

::
-73% AT-Neu -54% -14% 6

:
5% -14% 3

:
0% -14%

0% 18
::
22% -22

:::
-24% 20% -36

:::
-42% 19% AU-DaS -54% 21% -4

::
-9% 21% -1

::
-3% 21%

-8
::
-7% -2

:
0% -15

:::
-17% 0

:
-1% -16

:::
-17% -1% AU-How -75% 91% 1

::
-3% 91% 0

::
-1% 91%

153% -24% -49
:::
-51% -36% -49

:::
-50% -36% AU-Stp 176% 214% -5

::
-4% 214% -4

::
-5% 214%

-31% -74% -3
::
-1% -72% -2

:
0% -72

::
-71% AU-Tum 0% -5% -2

:
0% -5% 0

:
1% -5%

27
::
29% 48

::
51% -10

::
-7% 48% -9

:::
-10% 48

::
47% BE-Lon -28% 110% 0

:
3% 110% 1

:
0% 110%

-18
:::
-26% -23

::
-19% -8

:::
-16% -18% -9

:::
-15% -18% BE-Vie 3% 9% 1

::
-6% 9% 0

::
-6% 9%

-4% -13
::
-10% -12% -11% -13

:::
-14% -11% CA-Oas -3% -7% -2

::
-3% -7% -3

::
-5% -10%

5
::
51%

:::
52%

: ::::
-17%

:::
47%

: ::::
-17%

:::
47%

: :::::
CA-Qfo

: ::::
200%

:::
92%

:
-7% -33

::
92%

:::
-7%

:::
92%

::::
-19% -67% -32

:::
-35% -67%

::::
-34%

::::
-67%

:
CH-Fru -44% -3% -3

::
-5% -3% -2

::
-4% -3%

127
:::
-95% 133

:::
141% -8

:::
-10% 148% -6

:::
-10% 148% CH-Oe2 6% 146% 2

:
0% 146% 4

:
0% 146%

51
::
56% 47

::
30% -4

::
-8% 26% -6

:::
-11% 26% DE-Geb -20% 99% 8

:
3% 99% 5

::
-1% 99%

-51
:::
-52% -35

::
-32% -15

:::
-20% -32

::
-30% -11

:::
-10% -32

::
-29% DE-HoH -45% -18

::
-16% -6

::
-9% -18

::
-16% -1

:
0% -18

:::
-16%

5
::
21% 16

::
44% -9

:::
-11% 42% -9

:::
-11% 42% DK-Sor 13% 62% 1

::
-1% 62% 2

::
-1% 61%

-8% -9% -11
:::
-16% -10% -10

:::
-15% -9

::
-10% FI-Hyy 62% -11% -1

::
-6% -11% 0

::
-5% -10%

-5% -16% 6
:
4% -16% 12

:
1% -15

::
-16% GF-Guy -7% 4% 8

:
5% 4% 7

:
3% 4%

31
:::
-32% -14

:
-9% -10

:
5% -25

:
-7% -10

::
-1% -25

:
-7%

:::::
IT-Cpz

:::
57%

:::
21%

: :::
5%

:::
21%

: :::
0%

:::
20%

:::
32%

::::
-22%

: :::
0%

::::
-24%

: :::
-3%

::::
-24%

:
IT-Lav 109% 14% 2

::
12% 14% 2

:
8% 14%

5
:
2% 4

:
-9% -12

:::
-15% -9% -12

:::
-14% -9% IT-Ren 129% 29% -1

::
-5% 29% -2

::
-4% 29%

-4
::
78% -46

:
-1% -13% -7% -13

:::
-14% -8% IT-Ro2 -38% 22% -1

:
0% 22% -1

::
-2% 22%

32
::
-9% -1

::
-51% -36% -53% -37

:::
-36% -53% US-ARM 12% 144% 0

:
1% 144% -2

::
-3% 144%

263
:::
266% 150

:::
152% -15

:::
-14% 135% -15

:::
-16% 136

:::
135% US-GLE 872% 348% -6

::
-3% 348% -5% 348%

162
:::
182% 11

:::
231% -14

:::
-13% 221% -14% 220% US-SRM 365% 186% -6% 186% -2

::
-1% 186%

29
:::
149% -28

::
87% -14

:::
-15% 77% -13

:::
-14% 77% US-Ton 38% 93% -2

::
-3% 93% 0% 93%

8
::
18% -44

::
-57% -39

:::
-40% -61% -40% -61% US-Var -2% 100% 3

::
-2% 100% 0

::
-1% 100%

Relative bias for LAI.
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Table A2.
:::::
Relative

::::
bias

:::
for

:::::
NEE.

::::
Note

::::
that

:
a
:::::::

positive
::::
bias

::
in

::::
NEE

::::::
means

::
an

:::::::::::::
underestimation

::
of

::::::
carbon

:::::
uptake

:::
by

:::
the

:::::::::
ecosystem.

::::::::::
Abbreviations

::
in

:::
the

:::::::
headings

::
are

::
as

::::::
before.

::::
Note

:::
that

::
for

::::
static

::::::::
Noah-MP

::
no

::::
NEE

:::::
output

::
is

::::::
created.

ECLand Location Noah-MP

sim00 default clim. sim02 MODIS clim. sim40 MODIS single sim42 sim50 default clim. sim52 MODIS clim. sim00 sim02 sim40 sim42 sim50 sim52 MODIS single

0%
::::
static 0%

::::::
dynamic

:
0%

::::
static 0%

::::::
dynamic

:
0%

::::
static 0%

::::::
dynamic

:
Obs 0%

::::
static 0%

::::::
dynamic

:
0%

::::
static 0%

::::::
dynamic

:
0%

::::
static 0%

::::::
dynamic-10

:::
-21% -9

::
-20% -33

:::
-34% -22% -33% -22% AT-Neu - -23% - -23% - -23%

65
::
67% 61

::
62% 68

::
69% 62% 70

::
72% 62% AU-DaS - -4% - -4% - -4%

64
::
70% 60

::
65% 62

::
68% 60

::
65% 62

::
68% 60

::
65% AU-How - 3

:
7% - 3

:
7% - 3

:
7%

56
::
57% 59% 65% 59

::
60% 64

::
65% 59

::
60% AU-Stp - 4

:
2% - 4

:
2% - 4

:
2%

-2% 2% -3% 2% -3% 2% AU-Tum - -32% - -32% - -32%

-6% -6% -3% -6% -3% -6% BE-Lon - -17% - -17% - -17%

-8
::
18% -6

::
16% 14

::
15% 16% 15% 16% BE-Vie - -6% - -6% - -7%

-6% -6% -6
::
-5% -5% -5% -5% CA-Oas - -9% - -9% - -10%

-4
::
-1% -2% -14

::
10% -4

:
-1% -14

::
11% -4

:
-1%

:::::
CA-Qfo

: :
-

::::
-31%

: :
-

::::
-31%

: :
-

::::
-31%

::::
-17%

:::
-6%

: ::::
-15%

:::
-6%

: ::::
-15%

:::
-6%

:
CH-Fru - -4

:
-6% - -4

:
-6% - -4

::
-6%

-12
:
5% -11

::
-20% -9% -20% -9% -20% CH-Oe2 - -26% - -26% - -26%

-6
::
-7% -6

:
-7% -5

::
-4% -7% -4% -7% DE-Geb - -18% - -18% - -18%

8
:
7% 5

:
3% 3% 5

:
3% 3

:
2% 4

:
3% DE-HoH - -6% - -6% - -6%

-11
::
-1% -11

:
-4% 0% -4% 0% -4% DK-Sor - -7% - -7% - -9%

5% 6% 5
:
6% 6% 6% 6% FI-Hyy - -4% - -4% - -6%

13% 14% 13% 14% 13
::
14% 14% GF-Guy - -54% - -54% - -54%

44
::
15% 47

::
10% 49

:
7%

::
9%

: :::
8%

::
9%

: :::::
IT-Cpz

:
-

::::
-30%

: :
-

::::
-30%

: :
-

::::
-33%

:::
45% 49%

:::
46% 49%

:::
47% 49% IT-Lav - 32% - 32% - 32%

3
::
20% 2

::
20% 13

::
20% 14

::
20% 13

::
20% 14

::
20% IT-Ren - 0

:
5% - 0

:
5% - -1

:
5%

12
::
14% 14

::
19% 22% 19% 22% 19

::
20% IT-Ro2 - 3% - 3% - 3%

4
::
-3% 3

:
-1% -1% -1% -2% -1% US-ARM - -9% - -9% - -9%

-1% -1
:
0% 1

:
2% 0% 1

:
2% 0% US-GLE - -19% - -19% - -19%

28
::
60% 30

::
59% 59% 59% 59% 59% US-SRM - -6% - -6% - -6%

2
::
10% 2

:
8% 15% 9% 15% 9% US-Ton - -9% - -9% - -9%

-2
:::
-11% -2

:
-7% -8

::
-9% -6

:
-7% -8

::
-9% -6

:
-7% US-Var - -13% - -13% - -13%

Relative bias for NEE. Note that for static Noah-MP no NEE output is created.
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Table A3.
::::::
Relative

:::
bias

:::
for

::::
GPP.

::::::::::
Abbreviations

::
in

:::
the

:::::::
headings

::
are

::
as

::::::
before.

::::
Note

:::
that

::
for

:::::
static

:::::::
Noah-MP

::
no

::::
GPP

:::::
output

::
is

:::::::
produced.

ECLand Location Noah-MP

sim00 default clim. sim02 MODIS clim. sim40 MODIS single sim42 sim50 default clim. sim52 MODIS clim. sim00 sim02 sim40 sim42 sim50 sim52 MODIS single

0%
::::
static 0%

::::::
dynamic

:
0%

::::
static 0%

::::::
dynamic

:
0%

::::
static 0%

::::::
dynamic

:
Obs 0%

::::
static 0%

::::::
dynamic

:
0%

::::
static 0%

::::::
dynamic

:
0%

::::
static 0%

::::::
dynamic

-25% -26
::
-25% -15% -24

::
-23% -15% -24% AT-Neu - -20% - -20% - -20%

-36
:::
-38% -30

::
-31% -38

:::
-39% -31% -41

:::
-42% -31% AU-DaS - -21% - -21% - -21%

-41
:::
-44% -35% -38% -34

:::
-41% -38% -34

:::
-42%

::::
-38%

:
AU-How - 3

:
-1% - 3

:
-1% - 3

::
-1%

21
::
16% 17

::
12% 5

:
0% 16

::
10% 6

:
0% 16

::
10% AU-Stp - 32

::
30% - 32

::
30% - 32

::
30%

-8% -14% -6% -14% -6% -14% AU-Tum - 23% - 23% - 23%

-10
::
-8% -6

:
-5% -19

:::
-18% -6% -19% -6% BE-Lon - 42% - 42% - 42%

-19
:::
-27% -21

::
-24% -22

:::
-23% -24% -22

:::
-24% -24% BE-Vie - -3% - -3% - -3%

-14
:::
-13% -15

::
-14% -13% -14% -14

:::
-15% -14% CA-Oas - 8% - 8% - 5%

-27
::
-4%

:::
-3%

: ::::
-21%

:::
-4%

: ::::
-22%

:::
-4%

: :::::
CA-Qfo

: :
-

:::
41%

: :
-

:::
41%

: :
-

:::
41%

::::
-15% -29% -19

:::
-17% -31

::
-29% -18

:::
-17% -31

::
-29% CH-Fru - -25

::
-23% - -25

::
-23% - -25

:::
-23%

-5
:::
-49% -5

::
15% -17% 16% -17% 16% CH-Oe2 - 35% - 35% - 35%

-5
::
-6% -4

:
-5% -12% -5% -13% -5% DE-Geb - 42% - 42% - 42%

-24
:::
-25% -18

::
-17% -15% -18

::
-16% -14

:::
-13% -18

::
-16% DE-HoH - 0% - 0% - 0%

-36
:::
-34% -34

::
-27% -37

:::
-38% -27% -37

:::
-38% -27% DK-Sor - 11

::
-11% - -11% - -11%

-25% -25% -25
:::
-26% -25% -25

:::
-27% -25% FI-Hyy - -8% - -8% - -8%

-12% -12% -6
::
-8% -11

::
-12% -6

:::
-10% -11

::
-12% GF-Guy - 4% - 4% - 4%

-45
:::
-22% -49

::
-13%

::::
-10%

::::
-12%

: ::::
-12%

::::
-12%

: :::::
IT-Cpz

:
-

:::
14%

: :
-

:::
14%

: :
-

:::
13%

::::
-51% -58%

::::
-53% -58% -59

:::
-54% -58% IT-Lav - -29% - -29% - -29%

-20
:::
-39% -18

::
-40% -29

:::
-39% -30

::
-40% -29

:::
-39% -30

::
-40% IT-Ren - 3

::
-11% - 3

::
-11% - 3

:::
-11%

-4
::
11% -9

:
-1% -9% -3% -8

::
-9% -3% IT-Ro2 - 30% - 30% - 30%

-5
::
12% -4

:
9% 8% 8% 10% 8% US-ARM - 38% - 38% - 38%

-21
:::
-22% -22

::
-23% -24

:::
-25% -22

::
-23% -24

:::
-25% -22

::
-23% US-GLE - 13% - 13% - 13%

-17
:::
-23% -20

::
-23% -22% -23% -22% -23% US-SRM - 5% - 5% - 5%

-6
::
-7% -6

:
-5% -11% -5% -11% -5% US-Ton - 3% - 3% - 3%

-2
::
12% -3

:
8% 9% 6

:
7% 9% 6

:
7% US-Var - 15

::
16% - 15

::
16% - 15

::
16%

Relative bias for GPP. Note that for static Noah-MP no GPP output is produced.
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Table A4.
::::::
Relative

:::
bias

:::
for

::::
latent

::::
heat

:::
flux.

:::::::::::
Abbreviations

::
in

::
the

:::::::
headings

:::
are

::
as

:::::
before.

ECLand Location Noah-MP

sim00 default clim. sim02 MODIS clim. sim40 MODIS single sim42 sim50 default clim. sim52 MODIS clim. sim00 sim02 sim40 sim42 sim50 sim52 MODIS single

0%
::::
static 0%

::::::
dynamic

:
0%

::::
static 0%

::::::
dynamic

:
0%

::::
static 0%

::::::
dynamic

:
Obs 0%

::::
static 0%

::::::
dynamic

:
0%

::::
static 0%

::::::
dynamic

:
0%

::::
static 0%

::::::
dynamic-36

:::
-27% -40

::
-31% -13% -28% -13% -28% AT-Neu -25% -19% -21% -19% -22% -19%

-25
:::
-27% -17

::
-18% -28

:::
-30% -18% -34

:::
-37% -18

::
-19% AU-DaS -24% -23% -20

::
-21% -23% -20

:::
-21% -23%

-53% -49% -50
:::
-51% -48% -51% -48% AU-How -31% -29% -29% -29% -29% -29%

8
:
2% 4

:
-1% 3

::
-3% 4

:
-1% 2

::
-3% 4

:
-1% AU-Stp 7

:
8% 1% -4

::
-3% 1% -4% 1%

-11% -17% -7% -17% -7% -17% AU-Tum 5% 7% 4% 7% 4
:
5% 7%

-16% -14% -24
:::
-22% -14% -24% -14% BE-Lon -3% 0% -4

::
-3% 0% -4% 0%

8
:::
-27% 7

::
-20% -18

:::
-19% -20% -18

:::
-20% -20% BE-Vie -5% 1% -4% 1% -4% 1%

-5
::
-9% -6

:
-9% -9% -9% -10% -10% CA-Oas 3% 8% 4% 8% 3% 7%

::::
-22%

::::
-21%

: ::::
-35%

::::
-22%

:
-36% -37

::
-22% -24

::::::
CA-Qfo

:::
-36% -31

::
-36% -24

::
-38% -31

::
-36%

::::
-38%

::::
-36%

::::
-21%

::::
-28%

: ::::
-22%

::::
-29%

: ::::
-22%

::::
-29%

:
CH-Fru -32

:::
-30% -26

::
-25% -31

::
-29% -26

::
-25% -31

:::
-29% -26

:::
-25%

-14
:::
-65% -15

:
-1% -26

:::
-25% 0% -25% 0% CH-Oe2 3% 9% 2% 9% 2% 9%

-2
:
8% -2

:
3% -4

::
-5% 2% -8% 2% DE-Geb -2% 5% -1% 5% -1% 5%

-34
:::
-41% -29

::
-33% -26

:::
-30% -29

::
-32% -26

:::
-29% -29

::
-32% DE-HoH -17

:::
-12% -14

:
-8% -16

::
-11% -14

:
-8% -15

:::
-10% -14

::
-8%

-7
:::
-37% -4

::
-29% -37

:::
-36% -29% -37% -29% DK-Sor -19% -12% -21% -12% -21% -12%

-22% -21% -21
:::
-22% -21% -21

:::
-22% -21% FI-Hyy -34% -32% -35% -32% -34

:::
-35% -32%

-31% -36% -25
:::
-26% -35% -24

:::
-30% -35

::
-36% GF-Guy -17% -15% -17% -15% -16% -15%

-41
:::
-21% -43

:
-8% -47

::
-1%

:::
-7%

: :::
-3%

:::
-7%

: :::::
IT-Cpz

: :::
17%

:::
16%

: :::
16%

:::
16%

: :::
14%

:::
14%

::::
-40%

::::
-46%

: ::::
-42% -47% -48

:::
-43% -47% IT-Lav -50% -47% -50% -47% -50% -47%

-16
:::
-41% -14

::
-41% -34

:::
-41% -35

::
-41% -34

:::
-41% -35

::
-41% IT-Ren -37

:::
-43% -35

::
-41% -38

::
-43% -35

::
-41% -38

:::
-43% -34

:::
-41%

-12
:::
-30% -17

::
-38% -39% -39% -39% -39% IT-Ro2 -9% -6% -8% -6% -8% -6%

7
:
6% 3

:
4% 7% 4% 6% 4% US-ARM 6% 11% 8

:
7% 11% 6% 11%

-58
:::
-62% -60

::
-64% -66

:::
-68% -61

::
-64% -66

:::
-68% -61

::
-64% US-GLE -52

:::
-54% -59

::
-63% -69

::
-73% -59

::
-63% -69

:::
-73% -59

:::
-63%

-21
:::
-22% -21% -27% -21% -26% -22% US-SRM -20% -19% -21% -19% -21% -19%

-5% -6
::
-12% -20

:::
-19% -14

::
-13% -20

:::
-19% -14

::
-13% US-Ton -10

::
-8% -10

:
-7% -12% -10% -12

:
-7% -10%

:::
-7%

:::
29% 28% 27

::
29% 27% 26

::
28% 27% 26% US-Var 20

::
21% 22

::
23% 16

::
17% 22

::
23% 16

::
17% 22%

Relative bias for latent heat flux.
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Table A5.
::::::
Relative

:::
bias

:::
for

::::::::
evaporative

:::::::
fraction.

::::::::::
Abbreviations

::
in
:::
the

:::::::
headings

::
are

::
as
::::::
before.

ECLand Location Noah-MP

sim00 default clim. sim02 MODIS clim. sim40 MODIS single sim42 sim50 default clim. sim52 MODIS clim. sim00 sim02 sim40 sim42 sim50 sim52 MODIS single

0%
::::
static 0%

::::::
dynamic

:
0%

::::
static

:
0%

::::::
dynamic

:
0%

::::
static 0%

::::::
dynamic

:
Obs 0%

::::
static 0%

::::::
dynamic

:
0%

::::
static 0%

::::::
dynamic

:
0%

::::
static 0%

::::::
dynamic-37

:::
-34% -41

::
-39% -21% -37% -22% -37% AT-Neu -12% -10% -10

::
-9% -10% -10

:
-9% -10%

-40
:::
-43% -35

::
-36% -45

::
-47% -37% -50

:::
-53% -37% AU-DaS -51% -43% -43

:::
-44% -43% -43% -43%

-49% -45% -46
::
-47% -45% -47% -45% AU-How -29% -22% -25% -22% -25% -22%

-7
:::
-14% -12

::
-18% -10

::
-16% -12

::
-17% -11

:::
-17% -12

::
-17% AU-Stp 0

::
-1% -6% -9% -6

:::
-11% -9% -6%

::::
-11%

:::
-9%

-50% -60% -46
::
-45% -60% -46

:::
-45% -60% AU-Tum -26% -23% -27% -23% -27% -23%

-4% -5% -10% -6% -11% -6% BE-Lon 8% 10% 9% 10% 9% 10%

8
:::
-12% 5

::
-10% -9

::
-10% -10% -9

:::
-10% -10% BE-Vie 0% 3% 0% 3% 0% 3%

-3
::
-4% -3

:
-5% -5% -5% -5% -5% CA-Oas -4% -1% -4% -1% -4% -1%

-15
:::
-21% -16

::
-21% -9

::
-32% -12

::
-22%

::::
-33%

::::
-22%

: :::::
CA-Qfo

: ::::
-33%

::::
-26%

: ::::
-31%

::::
-26%

: ::::
-31%

::::
-26%

-8% -12% CH-Fru
:::
-9%

: ::::
-12%

:
-9% -8

::
-12%

:::::
CH-Fru

: ::::
-10% -9% -8

:::
-10% -9% -8%

::::
-10%

:::
-9%

-43
:::
-32% -45

::
-30% -18% -29% -18% -29% CH-Oe2 -4% -4% -5% -4% -5% -4%

4
::
10% 1

:
4% 1

:
0% 3% -2% 3% DE-Geb 8% 13% 11% 13% 10% 13%

-56
:::
-52% -51

::
-46% -49

::
-45% -51

::
-45% -48

:::
-43% -51

::
-45% DE-HoH -27% -20

::
-21% -25

:::
-26% -20

::
-21% -25% -20

::
-21%

2
:::
-14% 2

::
-11% -15% -11% -15% -11% DK-Sor -9% -4% -10% -4% -10% -4%

-5% -6% -5
:
-6% -6% -6% -6% FI-Hyy -11% -10% -12% -10% -12% -10%

-73% -78% -60
::
-63% -78% -59

:::
-67% -77

::
-78% GF-Guy -48% -42% -47% -42% -46

::
-47% -42%

-25
:::
-12% -29

:
0%

::
9%

: ::
1%

: :::
7%

::
1%

: :::::
IT-Cpz

:::
34%

:::
34%

: :::
33%

:::
34%

: ::::
32%

::::
33%

::::
-25% -31% -32

::
-28% -32%

::::
-29% -32% IT-Lav -33% -30% -34% -30% -34% -30%

5
::
-7% 5

:
-8% -6

:
-8% -6

:
-8% -6

::
-8% -6

:
-8% IT-Ren -11

:::
-13% -9

::
-12% -11

:::
-13% -9

::
-12% -11

::
-13% -9

::
-12%

18
::
-7% 11

::
-17% -22% -18% -22% -18% IT-Ro2 6% 16% 11% 16% 11% 16%

-7% -13
:
-9% -7% -9% -8% -9% US-ARM 1% 2% 4% 2% 34% 2%

-35
:::
-41% -39

::
-44% -48

::
-50% -43

::
-45% -48

:::
-50% -43

::
-45% US-GLE -29% -27

::
-26% -30

:::
-31% -27

::
-26% -30

::
-31% -27

::
-26%

-4
::
-8% -2

:
-7% -11% -7% -11% -7% US-SRM -15% -9% -13% -9% -13% -9%

9
:
5% 8

:
0% -6% 0% -6% 0% US-Ton 1% 3% 2

:
3% 3% 23% 3%

9
:
8% 7

:
2% 6

:
7% 1

:
2% 6% 1

:
2% US-Var 8

:
9% 8

:
9% 14

::
15% 8

:
9% 14

:
15% 8

:
9%

Relative bias for evaporative fraction.
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Table A6.
::::::
Relative

:::
bias

::
of

:::
soil

:::::::
moisture.

:::::::::::
Abbreviations

::
in

::
the

:::::::
headings

:::
are

::
as

:::::
before.

ECLand Location Noah-MP

sim00 default clim. sim02 MODIS clim. sim40 MODIS single sim42 sim50 default clim. sim52 MODIS clim. sim00 sim02 sim40 sim42 sim50 sim52 MODIS single

0%
::::
static 0%

::::::
dynamic

:
0%

::::
static 0%

::::::
dynamic

:
0%

::::
static 0%

::::::
dynamic

:
Obs 0%

::::
static 0%

::::::
dynamic

:
0%

::::
static 0%

::::::
dynamic

:
0%

::::
static 0%

::::::
dynamic5

:
1% 6

:
2% -5% 1% -4% 1% AT-Neu -10% -11% -10

:::
-11% -11% -10% -11%

687
:::
695% 674

:::
680% 704% 681% 709

:::
711% 681% AU-DaS 371% 353% 357% 353% 356% 353%

194
:::
196% 191

:::
193% 197

:::
198% 193% 197

:::
198% 193% AU-How 192% 146% 169

:::
170% 146% 169% 146%

102
:::
116% 147

:::
163% 161

:::
180% 151

:::
169% 160

:::
179% 151

:::
169% AU-Stp 47

::
62% 41

::
54% 52

::
66% 41

::
54% 51

::
66% 41

::
54%

54% 57% 52% 57% 52% 57% AU-Tum 29% 28% 29% 28% 29% 28%

10% 9% 14
::
13% 9% 14% 9% BE-Lon -8% -13% -8% -13% -8% -13%

29
::
37% 29

::
36% 35

::
36% 36% 35

::
36% 36% BE-Vie 7% 7% 7% 7% 7% 6%

127
:::
131% 130

:::
133% 132

:::
133% 133% 133% 134% CA-Oas 73% 65% 71% 65% 71% 66%

-28
::
84% -28

::
83%

:::
86%

:::
83%

: :::
86%

:::
83%

: :::::
CA-Qfo

: :::
97%

:::
96%

: :::
95%

:::
96%

: :::
95%

:::
96%

::::
-33% -32% -31

:::
-33%

::::
-32%

:
-33% -31

::
-32% CH-Fru -44% -44% -44% -44% -44% -44%

50
::
53% 50

::
47% 50% 47% 50% 47% CH-Oe2 29% 28% 29% 28% 29% 28%

97
::
82% 98

::
92% 100

:::
101% 93% 102% 93% DE-Geb 45% 27% 44

::
45% 27% 45

::
46% 27%

167
:::
161% 163

:::
154% 158

:::
152% 163

:::
154% 157

:::
150% 162

:::
153% DE-HoH 111

:::
109% 103

:::
101% 107

:::
106% 103

:::
101% 107

:::
105% 103

:::
101%

69
::
80% 68

::
78% 79

::
80% 77

::
78% 78

::
80% 77

::
78% DK-Sor 11

::
12% 11% 11% 11% 11% 11%

51% 50% 50
::
51% 50% 50% 50% FI-Hyy -3% -4% -3% -4% -4% -5%

251% 253% 250% 253% 250
:::
251% 253% GF-Guy 160

:::
159%

::::
159%

:
160% 161

:::
159% 160% 160%

::::
159%

::::
246% 160%

::::
230%

: ::::
228%

::::
229%

: ::::
230%

::::
239%

: :::::
IT-Cpz

::::
124%

::::
125%

: ::::
124%

::::
125%

: ::::
123%

::::
124%

-86
:::
-87% -85% -85

:::
-86% -85% -85

:::
-86% -85% IT-Lav -25% -25% -25% -25% -25% -25%

-44
:::
-42% -44

::
-42% -42% -42% -42% -42% IT-Ren -11% -11% -11% -11% -11% -12%

-12
::
75% -10

::
83% 13

::
84% 12

::
83% 13

::
83% 12

::
83% IT-Ro2 -18

::
25% -22

::
16% -19

::
22% -22

::
16% -19

::
22% -22

::
16%

17
::
-7% 21

:
-1% -2% 0% -2% 0% US-ARM 14% 1% 16% 1% 16% 1%

48% 48% 50% 49% 50% 49% US-GLE 36% 38% 39% 38% 39% 38%

314
:::
455% 398

:::
429% 552% 433% 552% 433% US-SRM 298% 303% 339% 303% 338% 303%

7
::
36% 10

::
39% 45% 40% 45% 40% US-Ton 6% 3% 14% 3% 14% 3%

58% 62
::
74% 72% 74% 72% 74% US-Var 60% 53% 65

::
66% 53% 66% 53%

Relative bias of soil moisture

41



Author contributions. SW prepared model setups for the selected sites and prepared input data from available datasets in consultation with

ST and AH. Model source code was provided by ST. SB supported setup of ECLand model runs. Simulations, analysis and plotting were

done by SW with the involvement of AH and ST. SW took the lead in writing the manuscript with contributions from all authors.840

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. This work used eddy covariance data acquired and shared by the FLUXNET community and by the TERENO network.

On-site LAI data from site "Hohes Holz" was acquired, analyzed, and shared by the working group Model Driven Monitoring lead by
::
led

:::
by

:::
site

::
PI Corinna Rebmann at UFZ

:::::::::::::
Helmholtz-Centre

:::
for

:::::::::::
Environmental

:::::::
Research

:
-
::::
UFZ.

:::
We

:::::
thank

::
all

:::::
station

:::
PIs,

::::::::
scientists,

:::
and

:::::::::
technicians

::
for

::::
their

:::::
efforts

::
in

::::::::
collecting,

::::::::
processing,

:::
and

::::::
sharing

::::
their

:::
data.845

42



References

Arsenault, K. R., Nearing, G. S., Wang, S., Yatheendradas, S., and Peters-Lidard, C. D.: Parameter Sensitivity of the Noah-MP Land Surface

Model with Dynamic Vegetation, Journal of Hydrometeorology, 19, 815 –830, https://doi.org/10.1175/jhm-d-17-0205.1, 2018.

Ashaolu, E. D. and Iroye, K. A.: Rainfall and potential evapotranspiration patterns and their effects on climatic water balance in the Western

Lithoral Hydrological Zone of Nigeria, Ruhuna Journal of Science, 9, https://doi.org/10.4038/rjs.v9i2.45, 2018.850

Ball, J. T., Woodrow, I. E., and Berry, J. A.: A Model Predicting Stomatal Conductance and its Contribution to the Control of Photosynthe-

sis under Different Environmental Conditions, pp. 221–224, Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-94-017-0519-

6_48, 1987.

Balsamo, G., Viterbo, P., Beljaars, A., van den Hurk, B., Hirschi, M., Betts, A. K., and Scipal, K.: A Revised Hydrology for the ECMWF

Model: Verification from Field Site to Terrestrial Water Storage and Impact in the Integrated Forecast System, Journal of Hydrometeorol-855

ogy, 10, 623–643, https://doi.org/10.1175/2008jhm1068.1, 2009.

Beck, H. E., Pan, M., Miralles, D. G., Reichle, R. H., Dorigo, W. A., Hahn, S., Sheffield, J., Karthikeyan, L., Balsamo, G., Parinussa, R. M.,

van Dijk, A. I. J. M., Du, J., Kimball, J. S., Vergopolan, N., and Wood, E. F.: Evaluation of 18 satellite- and model-based soil moisture

products using in situ measurements from 826 sensors, Hydrology and Earth System Sciences, 25, 17–40, https://doi.org/10.5194/hess-

25-17-2021, 2021.860

Benesty, J., Chen, J., Huang, Y., and Cohen, I.: Pearson correlation coefficient, in: Noise reduction in speech processing, pp. 37–40, Springer,

2009.

Best, M. J., Abramowitz, G., Johnson, H. R., Pitman, A. J., Balsamo, G., Boone, A., Cuntz, M., Decharme, B., Dirmeyer, P. A., Dong,

J., Ek, M., Guo, Z., Haverd, V., van den Hurk, B. J. J., Nearing, G. S., Pak, B., Peters-Lidard, C., Santanello, J. A., Stevens, L., and

Vuichard, N.: The Plumbing of Land Surface Models: Benchmarking Model Performance, Journal of Hydrometeorology, 16, 1425–1442,865

https://doi.org/10.1175/jhm-d-14-0158.1, 2015.

Blyth, E. M., Arora, V. K., Clark, D. B., Dadson, S. J., De Kauwe, M. G., Lawrence, D. M., Melton, J. R., Pongratz, J., Tur-

ton, R. H., Yoshimura, K., and Yuan, H.: Advances in Land Surface Modelling, Current Climate Change Reports, 7, 45–71,

https://doi.org/10.1007/s40641-021-00171-5, 2021.

Bohm, K., Ingwersen, J., Milovac, J., and Streck, T.: Distinguishing between early- and late-covering crops in the land surface model870

Noah-MP: impact on simulated surface energy fluxes and temperature, Biogeosciences, 17, 2791–2805, https://doi.org/10.5194/bg-17-

2791-2020, 2020.

Bonan, G. B.: Land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and user‘s

guide., Technical Note PB-97-131494/XAB; NCAR/TN-417-STR; TRN: 70341497, U.S. Department of Energy, Office of Scientific and

Technical Information, https://www.osti.gov/biblio/442360, 1996.875

Boussetta, S., Balsamo, G., Beljaars, A., Kral, T., and Jarlan, L.: Impact of a satellite-derived leaf area index monthly

climatology in a global numerical weather prediction model, International Journal of Remote Sensing, 34, 3520–3542,

https://doi.org/10.1080/01431161.2012.716543, 2012.

Boussetta, S., Balsamo, G., Beljaars, A., Panareda, A.-A., Calvet, J.-C., Jacobs, C., van den Hurk, B., Viterbo, P., Lafont, S., Du-

tra, E., Jarlan, L., Balzarolo, M., Papale, D., and van der Werf, G.: Natural land carbon dioxide exchanges in the ECMWF inte-880

grated forecasting system: Implementation and offline validation, Journal of Geophysical Research: Atmospheres, 118, 5923–5946,

https://doi.org/https://doi.org/10.1002/jgrd.50488, 2013.

43

https://doi.org/10.1175/jhm-d-17-0205.1
https://doi.org/10.4038/rjs.v9i2.45
https://doi.org/10.1007/978-94-017-0519-6_48
https://doi.org/10.1007/978-94-017-0519-6_48
https://doi.org/10.1007/978-94-017-0519-6_48
https://doi.org/10.1175/2008jhm1068.1
https://doi.org/10.5194/hess-25-17-2021
https://doi.org/10.5194/hess-25-17-2021
https://doi.org/10.5194/hess-25-17-2021
https://doi.org/10.1175/jhm-d-14-0158.1
https://doi.org/10.1007/s40641-021-00171-5
https://doi.org/10.5194/bg-17-2791-2020
https://doi.org/10.5194/bg-17-2791-2020
https://doi.org/10.5194/bg-17-2791-2020
https://www.osti.gov/biblio/442360
https://doi.org/10.1080/01431161.2012.716543
https://doi.org/https://doi.org/10.1002/jgrd.50488


Boussetta, S., Balsamo, G., Dutra, E., Beljaars, A., and Albergel, C.: Assimilation of surface albedo and vegetation states

from satellite observations and their impact on numerical weather prediction, Remote Sensing of Environment, 163, 111–126,

https://doi.org/10.1016/j.rse.2015.03.009, 2015.885

Boussetta, S., Balsamo, G., Arduini, G., Dutra, E., McNorton, J., Choulga, M., Agustí-Panareda, A., Beljaars, A., Wedi, N., Munõz-Sabater,

J., de Rosnay, P., Sandu, I., Hadade, I., Carver, G., Mazzetti, C., Prudhomme, C., Yamazaki, D., and Zsoter, E.: ECLand: The ECMWF

Land Surface Modelling System, Atmosphere, 12, https://doi.org/10.3390/atmos12060723, 2021.

Brunsell, N. A., de Oliveira, G., Barlage, M., Shimabukuro, Y., Moraes, E., and Aragão, L.: Examination of seasonal water and car-

bon dynamics in eastern Amazonia: a comparison of Noah-MP and MODIS, Theoretical and Applied Climatology, 143, 571–586,890

https://doi.org/10.1007/s00704-020-03435-6, 2020.

Budyko, M. I.: Climate and Life: English Ed. edited by David H. Miller, Academic Press, New York, 1974.

Cai, X., Yang, Z.-L., Xia, Y., Huang, M., Wei, H., Leung, L. R., and Ek, M. B.: Assessment of simulated water balance from Noah, Noah-

MP, CLM, and VIC over CONUS using the NLDAS test bed, Journal of Geophysical Research: Atmospheres, 119, 13,751–13,770,

https://doi.org/10.1002/2014jd022113, 2014.895

Calvet, J. C. and Soussana, J. F.: Modelling CO2-enrichment effects using an interactive vegetation SVAT scheme, Agricultural and Forest

Meteorology, 108, 129–152, https://doi.org/Doi 10.1016/S0168-1923(01)00235-0, 2001.

Calvet, J. C., Noilhan, J., Roujean, J. L., Bessemoulin, P., Cabelguenne, M., Olioso, A., and Wigneron, J. P.: An interactive vegetation SVAT

model tested against data from six contrasting sites, Agricultural and Forest Meteorology, 92, 73–95, https://doi.org/Doi 10.1016/S0168-

1923(98)00091-4, 1998.900

Chen, F. and Dudhia, J.: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling sys-

tem. Part I: Model implementation and sensitivity, Monthly Weather Review, 129, 569–585, https://doi.org/Doi 10.1175/1520-

0493(2001)129<0569:Caalsh>2.0.Co;2, 2001.

Copin, Y.: Taylor diagram for python/matplotlib, https://doi.org/10.5281/zenodo.5548061, 2021.

De Kauwe, M. G., Zhou, S. X., Medlyn, B. E., Pitman, A. J., Wang, Y. P., Duursma, R. A., and Prentice, I. C.: Do land surface models905

need to include differential plant species responses to drought? Examining model predictions across a mesic-xeric gradient in Europe,

Biogeosciences, 12, 7503–7518, https://doi.org/10.5194/bg-12-7503-2015, 2015.

Dickinson, R. E., Shaikh, M., Bryant, R., and Graumlich, L.: Interactive canopies for a climate model, Journal of Climate, 11, 2823–2836,

https://doi.org/Doi 10.1175/1520-0442(1998)011<2823:Icfacm>2.0.Co;2, 1998.

Dirmeyer, P. A., Chen, L., Wu, J., Shin, C. S., Huang, B., Cash, B. A., Bosilovich, M. G., Mahanama, S., Koster, R. D., Santanello, J. A., Ek,910

M. B., Balsamo, G., Dutra, E., and Lawrence, D. M.: Verification of land-atmosphere coupling in forecast models, reanalyses and land

surface models using flux site observations, J Hydrometeorol, 19, 375–392, https://doi.org/10.1175/JHM-D-17-0152.1, 2018.

Dirmeyer, P. A., Balsamo, G., Blyth, E. M., Morrison, R., and Cooper, H. M.: Land-Atmosphere Interactions Exacerbated the Drought and

Heatwave Over Northern Europe During Summer 2018, AGU Advances, 2, https://doi.org/10.1029/2020av000283, 2021.

Dutra, E., Balsamo, G., Viterbo, P., Miranda, P. M. A., Beljaars, A., Schär, C., and Elder, K.: An Improved Snow Scheme915

for the ECMWF Land Surface Model: Description and Offline Validation, Journal of Hydrometeorology, 11, 899–916,

https://doi.org/10.1175/2010jhm1249.1, 2010.

Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno, G., and Tarpley, J. D.: Implementation of Noah land surface

model advances in the National Centers for Environmental Prediction operational mesoscale Eta model, Journal of Geophysical Research:

Atmospheres, 108, https://doi.org/10.1029/2002jd003296, 2003.920

44

https://doi.org/10.1016/j.rse.2015.03.009
https://doi.org/10.3390/atmos12060723
https://doi.org/10.1007/s00704-020-03435-6
https://doi.org/10.1002/2014jd022113
https://doi.org/Doi 10.1016/S0168-1923(01)00235-0
https://doi.org/Doi 10.1016/S0168-1923(98)00091-4
https://doi.org/Doi 10.1016/S0168-1923(98)00091-4
https://doi.org/Doi 10.1016/S0168-1923(98)00091-4
https://doi.org/Doi 10.1175/1520-0493(2001)129%3C0569:Caalsh%3E2.0.Co;2
https://doi.org/Doi 10.1175/1520-0493(2001)129%3C0569:Caalsh%3E2.0.Co;2
https://doi.org/Doi 10.1175/1520-0493(2001)129%3C0569:Caalsh%3E2.0.Co;2
https://doi.org/10.5281/zenodo.5548061
https://doi.org/10.5194/bg-12-7503-2015
https://doi.org/Doi 10.1175/1520-0442(1998)011%3C2823:Icfacm%3E2.0.Co;2
https://doi.org/10.1175/JHM-D-17-0152.1
https://doi.org/10.1029/2020av000283
https://doi.org/10.1175/2010jhm1249.1
https://doi.org/10.1029/2002jd003296


Fang, H., Wei, S., and Liang, S.: Validation of MODIS and CYCLOPES LAI products using global field measurement data, Remote Sensing

of Environment, 119, 43–54, https://doi.org/10.1016/j.rse.2011.12.006, 2012.

Fisher, J. B., Huntzinger, D. N., Schwalm, C. R., and Sitch, S.: Modeling the Terrestrial Biosphere, Annual Review of Environment and

Resources, 39, 91–123, https://doi.org/10.1146/annurev-environ-012913-093456, 2014.

Forzieri, G., Miralles, D. G., Ciais, P., Alkama, R., Ryu, Y., Duveiller, G., Zhang, K., Robertson, E., Kautz, M., Martens, B., Jiang, C. Y.,925

Arneth, A., Georgievski, G., Li, W., Ceccherini, G., Anthoni, P., Lawrence, P., Wiltshire, A., Pongratz, J., Piao, S. L., Sitch, S., Goll, D. S.,

Arora, V. K., Lienert, S., Lombardozzi, D., Kato, E., Nabel, J. E. M. S., Tian, H. Q., Friedlingstein, P., and Cescatti, A.: Increased control

of vegetation on global terrestrial energy fluxes, Nature Climate Change, 10, 356–+, https://doi.org/10.1038/s41558-020-0717-0, 2020.

Garrigues, S., Verhoef, A., Blyth, E., Wright, A., Balan-Sarojini, B., Robinson, E. L., Dadson, S., Boone, A., Boussetta, S., and Balsamo, G.:

Capability of the variogram to quantify the spatial patterns of surface fluxes and soil moisture simulated by land surface models, Progress930

in Physical Geography: Earth and Environment, 45, 279–293, https://doi.org/10.1177/0309133320986147, 2021.

Harrigan, S., Zoster, E., Cloke, H., Salamon, P., and Prudhomme, C.: Daily ensemble river discharge reforecasts and real-time

forecasts from the operational Global Flood Awareness System, Hydrology and Earth System Sciences Discussions, pp. 1–22,

https://doi.org/10.5194/hess-2020-532, publisher: Copernicus GmbH, 2020.

Haughton, N., Abramowitz, G., Pitman, A. J., Or, D., Best, M. J., Johnson, H. R., Balsamo, G., Boone, A., Cuntz, M., Decharme, B.,935

Dirmeyer, P. A., Dong, J., Ek, M., Guo, Z., Haverd, V., van den Hurk, B. J. J., Nearing, G. S., Pak, B., Santanello, J. A., J., Stevens, L. E.,

and Vuichard, N.: The plumbing of land surface models: is poor performance a result of methodology or data quality?, J Hydrometeorol,

17, 1705–1723, https://doi.org/10.1175/JHM-D-15-0171.1, 2016.

Haughton, N., Abramowitz, G., De Kauwe, M. G., and Pitman, A. J.: Does predictability of fluxes vary between FLUXNET sites?, Biogeo-

sciences, 15, 4495–4513, https://doi.org/10.5194/bg-15-4495-2018, 2018a.940

Haughton, N., Abramowitz, G., and Pitman, A. J.: On the predictability of land surface fluxes from meteorological variables, Geoscientific

Model Development, 11, 195–212, https://doi.org/10.5194/gmd-11-195-2018, 2018b.

Haverd, V., Smith, B., Nieradzik, L., Briggs, P. R., Woodgate, W., Trudinger, C. M., Canadell, J. G., and Cuntz, M.: A new version of the

CABLE land surface model (Subversion revision r4601) incorporating land use and land cover change, woody vegetation demography,

and a novel optimisation-based approach to plant coordination of photosynthesis, Geoscientific Model Development, 11, 2995–3026,945

https://doi.org/10.5194/gmd-11-2995-2018, 2018.

Hengl, T., de Jesus, J. M., MacMillan, R. A., Batjes, N. H., Heuvelink, G. B., Ribeiro, E., Samuel-Rosa, A., Kempen, B., Leenaars,

J. G., Walsh, M. G., and Gonzalez, M. R.: SoilGrids1km–global soil information based on automated mapping, PLoS One, 9, e105 992,

https://doi.org/10.1371/journal.pone.0105992, 2014.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,950

A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee,

D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E.,

Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut,

J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., n/a, https://doi.org/10.1002/qj.3803, 2020.

Hu, Z., Piao, S., Knapp, A. K., Wang, X., Peng, S., Yuan, W., Running, S., Mao, J., Shi, X., Ciais, P., Huntzinger, D. N., Yang, J., and955

Yu, G.: Decoupling of greenness and gross primary productivity as aridity decreases, Remote Sensing of Environment, 279, 113 120,

https://doi.org/10.1016/j.rse.2022.113120, 2022.

45

https://doi.org/10.1016/j.rse.2011.12.006
https://doi.org/10.1146/annurev-environ-012913-093456
https://doi.org/10.1038/s41558-020-0717-0
https://doi.org/10.1177/0309133320986147
https://doi.org/10.5194/hess-2020-532
https://doi.org/10.1175/JHM-D-15-0171.1
https://doi.org/10.5194/bg-15-4495-2018
https://doi.org/10.5194/gmd-11-195-2018
https://doi.org/10.5194/gmd-11-2995-2018
https://doi.org/10.1371/journal.pone.0105992
https://doi.org/10.1002/qj.3803
https://doi.org/10.1016/j.rse.2022.113120


Huang, A., Shen, R., Di, W., and Han, H.: A methodology to reconstruct LAI time series data based on generative adversar-

ial network and improved Savitzky-Golay filter, International Journal of Applied Earth Observation and Geoinformation, 105,

https://doi.org/10.1016/j.jag.2021.102633, 2021.960

Huang, A., Shen, R., Shi, C., and Sun, S.: Effects of satellite LAI data on modelling land surface temperature and related energy budget in

the Noah-MP land surface model, Journal of Hydrology, 613, https://doi.org/10.1016/j.jhydrol.2022.128351, 2022.

Jarlan, L., Balsamo, G., Lafont, S., Beljaars, A., Calvet, J. C., and Mougin, E.: Analysis of leaf area index in the ECMWF land surface

model and impact on latent heat and carbon fluxes: Application to West Africa, Journal of Geophysical Research: Atmospheres, 113,

https://doi.org/10.1029/2007jd009370, 2008.965

Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Camps-Valls, G., Papale, D., Schwalm, C., Tramontana, G., and Reichstein, M.: The

FLUXCOM ensemble of global land-atmosphere energy fluxes, Scientific Data, 6, 74, https://doi.org/10.1038/s41597-019-0076-8, 2019.

Krinner, G., Derksen, C., Essery, R., Flanner, M., Hagemann, S., Clark, M., Hall, A., Rott, H., Brutel-Vuilmet, C., Kim, H., Ménard, C. B.,

Mudryk, L., Thackeray, C., Wang, L., Arduini, G., Balsamo, G., Bartlett, P., Boike, J., Boone, A., Chéruy, F., Colin, J., Cuntz, M., Dai,

Y., Decharme, B., Derry, J., Ducharne, A., Dutra, E., Fang, X., Fierz, C., Ghattas, J., Gusev, Y., Haverd, V., Kontu, A., Lafaysse, M.,970

Law, R., Lawrence, D., Li, W., Marke, T., Marks, D., Ménégoz, M., Nasonova, O., Nitta, T., Niwano, M., Pomeroy, J., Raleigh, M. S.,

Schaedler, G., Semenov, V., Smirnova, T. G., Stacke, T., Strasser, U., Svenson, S., Turkov, D., Wang, T., Wever, N., Yuan, H., Zhou, W.,

and Zhu, D.: ESM-SnowMIP: assessing snow models and quantifying snow-related climate feedbacks, Geoscientific Model Development,

11, 5027–5049, https://doi.org/10.5194/gmd-11-5027-2018, 2018.

Kumar, S. V., M. Mocko, D., Wang, S., Peters-Lidard, C. D., and Borak, J.: Assimilation of Remotely Sensed Leaf Area Index into the975

Noah-MP Land Surface Model: Impacts on Water and Carbon Fluxes and States over the Continental United States, Journal of Hydrome-

teorology, 20, 1359–1377, https://doi.org/10.1175/jhm-d-18-0237.1, 2019.

Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G., Collier, N., Ghimire, B., van Kampenhout, L.,

Kennedy, D., Kluzek, E., Lawrence, P. J., Li, F., Li, H., Lombardozzi, D., Riley, W. J., Sacks, W. J., Shi, M., Vertenstein, M., Wieder,

W. R., Xu, C., Ali, A. A., Badger, A. M., Bisht, G., van den Broeke, M., Brunke, M. A., Burns, S. P., Buzan, J., Clark, M., Craig, A.,980

Dahlin, K., Drewniak, B., Fisher, J. B., Flanner, M., Fox, A. M., Gentine, P., Hoffman, F., Keppel-Aleks, G., Knox, R., Kumar, S., Lenaerts,

J., Leung, L. R., Lipscomb, W. H., Lu, Y., Pandey, A., Pelletier, J. D., Perket, J., Randerson, J. T., Ricciuto, D. M., Sanderson, B. M.,

Slater, A., Subin, Z. M., Tang, J., Thomas, R. Q., Val Martin, M., and Zeng, X.: The Community Land Model Version 5: Description

of New Features, Benchmarking, and Impact of Forcing Uncertainty, Journal of Advances in Modeling Earth Systems, 11, 4245–4287,

https://doi.org/10.1029/2018MS001583, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2018MS001583, 2019.985

Lawrence, P. J., Lawrence, D. M., and Hurtt, G. C.: Attributing the Carbon Cycle Impacts of CMIP5 Historical and Future Land Use and

Land Cover Change in the Community Earth System Model (CESM1), Journal of Geophysical Research: Biogeosciences, 123, 1732–

1755, https://doi.org/10.1029/2017jg004348, 2018.

Li, J., Zhang, G., Chen, F., Peng, X., and Gan, Y.: Evaluation of Land Surface Subprocesses and Their Impacts on Model Performance With

Global Flux Data, Journal of Advances in Modeling Earth Systems, 11, 1329–1348, https://doi.org/10.1029/2018ms001606, 2019.990

Li, J., Chen, F., Lu, X., Gong, W., Zhang, G., and Gan, Y.: Quantifying Contributions of Uncertainties in Physical Parameterization Schemes

and Model Parameters to Overall Errors in Noah-MP Dynamic Vegetation Modeling, Journal of Advances in Modeling Earth Systems,

12, https://doi.org/10.1029/2019ms001914, 2020.

46

https://doi.org/10.1016/j.jag.2021.102633
https://doi.org/10.1016/j.jhydrol.2022.128351
https://doi.org/10.1029/2007jd009370
https://doi.org/10.1038/s41597-019-0076-8
https://doi.org/10.5194/gmd-11-5027-2018
https://doi.org/10.1175/jhm-d-18-0237.1
https://doi.org/10.1029/2018MS001583
https://doi.org/10.1029/2017jg004348
https://doi.org/10.1029/2018ms001606
https://doi.org/10.1029/2019ms001914


Li, J., Miao, C., Zhang, G., Fang, Y., Shangguan, W., and Niu, G.: Global Evaluation of the Noah-MP Land Surface Model and Suggestions

for Selecting Parameterization Schemes, Journal of Geophysical Research: Atmospheres, 127, https://doi.org/10.1029/2021jd035753,995

2022a.

Li, L., Yang, Z., Matheny, A. M., Zheng, H., Swenson, S. C., Lawrence, D. M., Barlage, M., Yan, B., McDowell, N. G., and Leung, L. R.:

Representation of Plant Hydraulics in the Noah-MP Land Surface Model: Model Development and Multiscale Evaluation, Journal of

Advances in Modeling Earth Systems, 13, https://doi.org/10.1029/2020ms002214, 2021.

Li, W., Migliavacca, M., Forkel, M., Denissen, J. M. C., Reichstein, M., Yang, H., Duveiller, G., Weber, U., and Orth, R.: Widespread1000

increasing vegetation sensitivity to soil moisture, Nat Commun, 13, 3959, https://doi.org/10.1038/s41467-022-31667-9, 2022b.

Liang, J., Yang, Z., and Lin, P.: Systematic Hydrological Evaluation of the Noah-MP Land Surface Model over China, Advances in Atmo-

spheric Sciences, 36, 1171–1187, https://doi.org/10.1007/s00376-019-9016-y, 2019.

Liang, J., Yang, Z.-L., Cai, X., Lin, P., Zheng, H., and Bian, Q.: Modeling the Impacts of Nitrogen Dynamics on Regional Terrestrial Carbon

and Water Cycles over China with Noah-MP-CN, Advances in Atmospheric Sciences, 37, 679–695, https://doi.org/10.1007/s00376-020-1005

9231-6, 2020.

Liu, X., Chen, F., Barlage, M., Zhou, G., and Niyogi, D.: Noah-MP-Crop: Introducing dynamic crop growth in the Noah-MP land surface

model, Journal of Geophysical Research: Atmospheres, 121, 13,953–13,972, https://doi.org/10.1002/2016jd025597, 2016.

Luo, J., Ying, K., and Bai, J.: Savitzky-Golay smoothing and differentiation filter for even number data, Signal Processing, 85, 1429–1434,

https://doi.org/10.1016/j.sigpro.2005.02.002, 2005.1010

Ma, N., Niu, G.-Y., Xia, Y., Cai, X., Zhang, Y., Ma, Y., and Fang, Y.: A Systematic Evaluation of Noah-MP in Simulating Land-Atmosphere

Energy, Water, and Carbon Exchanges Over the Continental United States, Journal of Geophysical Research: Atmospheres, 122, 12,245–

12,268, https://doi.org/10.1002/2017jd027597, 2017.

Menard, C. B., Essery, R., Krinner, G., Arduini, G., Bartlett, P., Boone, A., Brutel-Vuilmet, C., Burke, E., Cuntz, M., Dai, Y., Decharme, B.,

Dutra, E., Fang, X., Fierz, C., Gusev, Y., Hagemann, S., Haverd, V., Kim, H., Lafaysse, M., Marke, T., Nasonova, O., Nitta, T., Niwano,1015

M., Pomeroy, J., Schädler, G., Semenov, V. A., Smirnova, T., Strasser, U., Swenson, S., Turkov, D., Wever, N., and Yuan, H.: Scientific

and Human Erros in a Snow Model Intercomparison, https://doi.org/https://doi.org/10.1175/BAMS-D-19-0329.1, 2021.

Myneni, R., Knyazikhin, Y., and Park, T.: MOD15A2H MODIS/Terra Leaf Area Index/FPAR 8-Day L4 Global 500m SIN Grid V006,

https://doi.org/https://doi.org/10.5067/MODIS/MOD15A2H.006, 2015.

NCAR: The Climate Data Guide: CERES: IGBP Land Classification., https://climatedataguide.ucar.edu/climate-data/ceres-igbp-land-class1020

ification, accessed: 2024-06-03, 2022.

Niu, G.-Y., Yang, Z.-L., Dickinson, R. E., Gulden, L. E., and Su, H.: Development of a simple groundwater model for use

in climate models and evaluation with Gravity Recovery and Climate Experiment data, Journal of Geophysical Research, 112,

https://doi.org/10.1029/2006jd007522, 2007.

Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and1025

Xia, Y.: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation

with local-scale measurements, Journal of Geophysical Research, 116, https://doi.org/10.1029/2010jd015139, 2011.

Nogueira, M., Boussetta, S., Balsamo, G., Albergel, C., Trigo, I. F., Johannsen, F., Miralles, D. G., and Dutra, E.: Upgrading Land-Cover

and Vegetation Seasonality in the ECMWF Coupled System: Verification With FLUXNET Sites, METEOSAT Satellite Land Surface

Temperatures, and ERA5 Atmospheric Reanalysis, J Geophys Res Atmos, 126, e2020JD034 163, https://doi.org/10.1029/2020JD034163,1030

2021.

47

https://doi.org/10.1029/2021jd035753
https://doi.org/10.1029/2020ms002214
https://doi.org/10.1038/s41467-022-31667-9
https://doi.org/10.1007/s00376-019-9016-y
https://doi.org/10.1007/s00376-020-9231-6
https://doi.org/10.1007/s00376-020-9231-6
https://doi.org/10.1007/s00376-020-9231-6
https://doi.org/10.1002/2016jd025597
https://doi.org/10.1016/j.sigpro.2005.02.002
https://doi.org/10.1002/2017jd027597
https://doi.org/https://doi.org/10.1175/BAMS-D-19-0329.1
https://doi.org/https://doi.org/10.5067/MODIS/MOD15A2H.006
https://climatedataguide.ucar.edu/climate-data/ceres-igbp-land-classification
https://climatedataguide.ucar.edu/climate-data/ceres-igbp-land-classification
https://climatedataguide.ucar.edu/climate-data/ceres-igbp-land-classification
https://doi.org/10.1029/2006jd007522
https://doi.org/10.1029/2010jd015139
https://doi.org/10.1029/2020JD034163


Oleson, K. W., Lawrence, D. M., Bonan, G. B., Flanner, M. G., Kluzek, E., Lawrence, P. J., Levis, S., Swenson, S. C., and Thornton, P. E.:

Technical Description of version 4.0 of the Community Land Model (CLM), NCAR Technical Note, 2010.

Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y. W., Poindexter, C., Chen, J., Elbashandy, A., Humphrey, M.,

Isaac, P., Polidori, D., Reichstein, M., Ribeca, A., van Ingen, C., Vuichard, N., Zhang, L., Amiro, B., Ammann, C., Arain, M. A., Ardo, J.,1035

Arkebauer, T., Arndt, S. K., Arriga, N., Aubinet, M., Aurela, M., Baldocchi, D., Barr, A., Beamesderfer, E., Marchesini, L. B., Bergeron,

O., Beringer, J., Bernhofer, C., Berveiller, D., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer, G., Boike, J., Bolstad, P. V., Bonal, D.,

Bonnefond, J. M., Bowling, D. R., Bracho, R., Brodeur, J., Brummer, C., Buchmann, N., Burban, B., Burns, S. P., Buysse, P., Cale, P.,

Cavagna, M., Cellier, P., Chen, S., Chini, I., Christensen, T. R., Cleverly, J., Collalti, A., Consalvo, C., Cook, B. D., Cook, D., Coursolle,

C., Cremonese, E., Curtis, P. S., D’Andrea, E., da Rocha, H., Dai, X., Davis, K. J., Cinti, B., Grandcourt, A., Ligne, A., De Oliveira,1040

R. C., Delpierre, N., Desai, A. R., Di Bella, C. M., Tommasi, P. D., Dolman, H., Domingo, F., Dong, G., Dore, S., Duce, P., Dufrene,

E., Dunn, A., Dusek, J., Eamus, D., Eichelmann, U., ElKhidir, H. A. M., Eugster, W., Ewenz, C. M., Ewers, B., Famulari, D., Fares, S.,

Feigenwinter, I., Feitz, A., Fensholt, R., Filippa, G., Fischer, M., Frank, J., Galvagno, M., Gharun, M., et al.: The FLUXNET2015 dataset

and the ONEFlux processing pipeline for eddy covariance data, Sci Data, 7, 225, https://doi.org/10.1038/s41597-020-0534-3, 2020.

Pilotto, I. L., Rodríguez, D. A., Tomasella, J., Sampaio, G., and Chou, S. C.: Comparisons of the Noah-MP land surface model1045

simulations with measurements of forest and crop sites in Amazonia, Meteorology and Atmospheric Physics, 127, 711–723,

https://doi.org/10.1007/s00703-015-0399-8, 2015.

Rebmann, C. and Pohl, F.: Carbon, water and energy fluxes at the TERENO/ICOS ecosystem station Hohes Holz in Central Germany since

2015, https://doi.org/10.1594/PANGAEA.940760, 2022.

Ruiz-Vásquez, M., O, S., Arduini, G., Boussetta, S., Brenning, A., Bastos, A., Koirala, S., Balsamo, G., Reichstein, M., and Orth, R.:1050

Impact of Updating Vegetation Information on Land Surface Model Performance, Journal of Geophysical Research: Atmospheres, 128,

https://doi.org/10.1029/2023jd039076, 2023.

Savitzky, A. and Golay, M. J. E.: Smoothing + Differentiation of Data by Simplified Least Squares Procedures, Analytical Chemistry, 36,

1627–, https://doi.org/DOI 10.1021/ac60214a047, 1964.

Sayed, A. H.: Fundamentals of adaptive filtering, John Wiley & Sons, 2003.1055

Schweppe, R., Thober, S., Müller, S., Kelbling, M., Kumar, R., Attinger, S., and Samaniego, L.: MPR 1.0: a stand-alone multiscale pa-

rameter regionalization tool for improved parameter estimation of land surface models, Geoscientific Model Development, 15, 859–882,

https://doi.org/10.5194/gmd-15-859-2022, 2022.

Stevens, D., Miranda, P. M. A., Orth, R., Boussetta, S., Balsamo, G., and Dutra, E.: Sensitivity of Surface Fluxes in the ECMWF Land

Surface Model to the Remotely Sensed Leaf Area Index and Root Distribution: Evaluation with Tower Flux Data, Atmosphere, 11,1060

https://doi.org/10.3390/atmos11121362, 2020.

Trabucco, A. and Zomer, R. J.: Global Aridity Index and Potential Evapo-Transpiration (ET0) Climate Database v2, CGIAR-CSI GeoPortal,

2018.

UCAR: Noah-Multiparameterization Land Surface Model (Noah-MP®LSM), https://ral.ucar.edu/model/noah-multiparameterization-land-s

urface-model-noah-mp-lsm, accessed: 2024-06-04, 2023.1065

Ukkola, A. M., De Kauwe, M. G., Pitman, A. J., Best, M. J., Abramowitz, G., Haverd, V., Decker, M., and Haughton, N.: Land surface models

systematically overestimate the intensity, duration and magnitude of seasonal-scale evaporative droughts, Environmental Research Letters,

11, https://doi.org/10.1088/1748-9326/11/10/104012, 2016.

48

https://doi.org/10.1038/s41597-020-0534-3
https://doi.org/10.1007/s00703-015-0399-8
https://doi.org/10.1594/PANGAEA.940760
https://doi.org/10.1029/2023jd039076
https://doi.org/DOI 10.1021/ac60214a047
https://doi.org/10.5194/gmd-15-859-2022
https://doi.org/10.3390/atmos11121362
https://ral.ucar.edu/model/noah-multiparameterization-land-surface-model-noah-mp-lsm
https://ral.ucar.edu/model/noah-multiparameterization-land-surface-model-noah-mp-lsm
https://ral.ucar.edu/model/noah-multiparameterization-land-surface-model-noah-mp-lsm
https://doi.org/10.1088/1748-9326/11/10/104012


van den Hurk, B. J. J. M., Viterbo, P., and Los, S. O.: Impact of leaf area index seasonality on the annual land surface evaporation in a global

circulation model, Journal of Geophysical Research: Atmospheres, 108, https://doi.org/10.1029/2002jd002846, 2003.1070

van Genuchten, M. T.: A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils, Soil Science Society of

America Journal, 44, 892–898, https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.

Wollschläger, U., Attinger, S., Borchardt, D., Brauns, M., Cuntz, M., Dietrich, P., Fleckenstein, J. H., Friese, K., Friesen, J., Harpke, A.,

Hildebrandt, A., Jäckel, G., Kamjunke, N., Knöller, K., Kögler, S., Kolditz, O., Krieg, R., Kumar, R., Lausch, A., Liess, M., Marx, A.,

Merz, R., Mueller, C., Musolff, A., Norf, H., Oswald, S. E., Rebmann, C., Reinstorf, F., Rode, M., Rink, K., Rinke, K., Samaniego,1075

L., Vieweg, M., Vogel, H.-J., Weitere, M., Werban, U., Zink, M., and Zacharias, S.: The Bode hydrological observatory: a platform for

integrated, interdisciplinary hydro-ecological research within the TERENO Harz/Central German Lowland Observatory, Environmental

Earth Sciences, 76, https://doi.org/10.1007/s12665-016-6327-5, 2016.

Xiao, Z., Liang, S., Wang, J., Jiang, B., and Li, X.: Real-time retrieval of Leaf Area Index from MODIS time series data, Remote Sensing of

Environment, 115, 97–106, https://doi.org/10.1016/j.rse.2010.08.009, 2011.1080

Xu, T., Chen, F., He, X., Barlage, M., Zhang, Z., Liu, S., and He, X.: Improve the Performance of the Noah-MP-Crop Model

by Jointly Assimilating Soil Moisture and Vegetation Phenology Data, Journal of Advances in Modeling Earth Systems, 13,

https://doi.org/10.1029/2020ms002394, 2021.

Yang, F., Dan, L., Peng, J., Yang, X., Li, Y., and Gao, D.: Subdaily to Seasonal Change of Surface Energy and Water Flux of the Haihe

River Basin in China: Noah and Noah-MP Assessment, Advances in Atmospheric Sciences, 36, 79–92, https://doi.org/10.1007/s00376-1085

018-8035-4, 2018.

Yang, Q., Dan, L., Lv, M., Wu, J., Li, W., and Dong, W.: Quantitative assessment of the parameterization sensitivity of the

Noah-MP land surface model with dynamic vegetation using ChinaFLUX data, Agricultural and Forest Meteorology, 307,

https://doi.org/10.1016/j.agrformet.2021.108542, 2021.

Yang, Z.-L., Niu, G.-Y., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Longuevergne, L., Manning, K., Niyogi, D., Tewari, M., and1090

Xia, Y.: The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins,

Journal of Geophysical Research, 116, https://doi.org/10.1029/2010jd015140, 2011.

Zhang, G., Chen, F., and Gan, Y.: Assessing uncertainties in the Noah-MP ensemble simulations of a cropland site during the

Tibet Joint International Cooperation program field campaign, Journal of Geophysical Research: Atmospheres, 121, 9576–9596,

https://doi.org/10.1002/2016jd024928, 2016.1095

Zhang, Z., Xin, Q., and Li, W.: Machine Learning-Based Modeling of Vegetation Leaf Area Index and Gross Primary Productiv-

ity Across North America and Comparison With a Process-Based Model, Journal of Advances in Modeling Earth Systems, p. 25,

https://doi.org/10.1029/2021MS002802, 2021.

49

https://doi.org/10.1029/2002jd002846
https://doi.org/10.2136/sssaj1980.03615995004400050002x
https://doi.org/10.1007/s12665-016-6327-5
https://doi.org/10.1016/j.rse.2010.08.009
https://doi.org/10.1029/2020ms002394
https://doi.org/10.1007/s00376-018-8035-4
https://doi.org/10.1007/s00376-018-8035-4
https://doi.org/10.1007/s00376-018-8035-4
https://doi.org/10.1016/j.agrformet.2021.108542
https://doi.org/10.1029/2010jd015140
https://doi.org/10.1002/2016jd024928
https://doi.org/10.1029/2021MS002802


Change of model quality metrics for LAI modeling when switching on vegetation dynamics for all included sites and by using default

climatological LAI forcing (left) or MODIS climatological LAI (right). The star (“Observ”) marks the location of the perfect correlation

between observation and model and perfect agreement between observed and modelled variance. The model performance of the static runs

can be read from the start of each arrow. When no arrow appears, either no correlation could be calculated (e.g. for evergreen forests where

default climatological LAI is constant) or values could not be placed on the logarithmic axis. The point colors indicate the site aridity (top

right legend). Vegetation types are symbolized by different marker types (bottom right legend).

Figure 3. Statistical measures for die variables LAI, NEE and GPP of the model runs for
::
the

:::
site

:
"Hohes Holz

:
". The categories on the y-axis

mark the different LAI forcings. Statistical measure of the static and dynamic simulations of the same variable are connected by a horizontal

line. The red dotted vertical line marks the optimum of each measure.
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Figure 4. Same as Taylor diagram before but with NEE evaluation. Since NEE is not generated as variable from Noah-MP when running

the model without dynamics, no change in statistical measures can be presented.Additionally, because all the simulations with dynamic

vegetation created the same output for Noah-MP, only one Taylor diagram is shown.
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Figure 5.
::::::
Change

::
of

:::::::
statistical

:::::::
measures

:::
for

::
LE

::::::::
modeling

::::
when

::::::::
switching

::
on

::::::
dynamic

::::::::
vegetation

:::
for

::
all

:::::::
included

::::
sites

:::
and

::
by

::::
using

::::::
default

::::::::
climatology

::::
(left)

:
or
:::::::

MODIS
::::::::
climatology

:::::
(right)

:
as
:::::::

forcing.
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Figure 6.
::::
Same

::
as

:::::
before

:::
but

:::
for

::::::::
evaporative

::::::
fraction

:::::
which

::::::::
represents

:::
the

::::::
turbulent

::::
flux

:::::::::
partitioning.
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