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Abstract. Atmospheric evaporative demand is a key metric for monitoring agricultural drought. The existing 20 

ways of estimating evaporative demand in drought indices do not faithfully represent the constraints of land 

surface characteristics and become less accurate over non-uniform land surfaces. This study proposes 

incorporating surface vegetation characteristics, such as vegetation dynamics data, aerodynamic and 

physiological parameters, into existing potential evapotranspiration (PET) methods. This approach is 

implemented over the Continental United States (CONUS) for the period of 1981-2017 and is tested in a 25 

recently developed drought index the Standardized Precipitation Evapotranspiration Index (SPEI). We show 

that activating realistic maximum surface and aerodynamic conductance could improve prediction of soil 

moisture dynamics and drought impacts by 29-41% on average compared to the widely used simple methods, 

especially effective in the forests and humid regions, by 86-89%. Surface characteristics that have a strong 

influence on the performance of the SPEI are mainly driven by leaf area index (LAI). Our approach only 30 

requires the minimum amount of ancillary data, while permitting both historical reconstruction and real-time 

forecast of drought. This offers a physically meaningful, yet easy-to-implement way to account for the 

vegetation control in drought indices. 
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1 Introduction 

Drought is one of the most costly hydrological hazards (Wilhite, 2000; Ross & Lott, 2003; Piao et al., 2019), 

with devastating impacts on croplands and pastures (Kogan, 1995), forests ecosystems (Clark et al., 2016; 

Xu et al., 2022), electricity production, water quality, and soil fertility (Loon, 2015). Monitoring the changes 

in water availability is critical for providing early warnings of drought and for risk management (Wilhite, 40 

Sivakumar, & Pulwarty, 2014). Many physical or probabilistic measures have been developed (Heim, 2002) 

to quantify drought, such as Palmer Drought Severity Index (PDSI, Palmer, 1965), Standardized Precipitation 

Index (SPI, McKee, Doesken, Kleist, & others, 1993), Vegetation Condition Index (VCI, Kogan, 1995), and 

multiple remote sensing drought indices (Zhang, Jiao, Zhang, Huang, & Tong, 2017; Yang et al., 2023).	

Atmospheric evaporative demand (AED) is a key input to drought indices because it is a measure of water 45 

demand, namely, how thirsty the atmosphere is (Peng, Li, & Sheffield, 2018). AED typically reflects the 

effect of temperature and humidity, and is considered a major driver of drought stress on vegetation and tree 

mortality (Williams et al., 2012; McDowell et al., 2018). Among the drought indices, the recently developed 

Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano, Beguería, & López-Moreno, 

2010) factors in water demand (AED) in addition to water supply (precipitation). Compared to the SPI that 50 

only considers precipitation, the SPEI is more suitable for quantifying the drought impacts on agriculture 

(Potop, 2011; Potop, Možný, & Soukup, 2012), and ecosystems (Vicente-Serrano et al., 2012; Vicente-

Serrano et al., 2013; Barbeta, Ogaya, & Peñuelas, 2013). In addition, the SPEI is more flexible than the PDSI 

because it is not sensitive to soil water field capacity and can be implemented on various time scales (Vicente-

Serrano, der Schrier, Beguería, Azorin-Molina, & Lopez-Moreno, 2015; Zhao et al., 2017). It has been widely 55 

used for both drought reconstruction and monitoring (Paulo, Rosa, & Pereira, 2012; Beguería, Vicente-

Serrano, Reig, & Latorre, 2013). 

The way of estimating AED in drought indices has a significant impact on drought quantification (Sheffield, 

Wood, & Roderick, 2012; Trenberth et al., 2013; Yang, Roderick, Zhang, McVicar, & Donohue, 2018; 

Dewes et al., 2017). AED is approximated by potential evapotranspiration (PET), the maximum rate of 60 

evapotranspiration when surface water supply is unlimited. Previous work has used various PET formulations 

for AED in the SPEI since it was first proposed in 2010 (Vicente-Serrano, Beguería, & López-Moreno, 2010; 

Beguería, Vicente-Serrano, Reig, & Latorre, 2013). These conventional PET methods do not factor in the 

effects of surface characteristics, which often assume no or simple universal vegetation control on 

transpiration (e.g., the Thornthwaite, Hargreaves-Samani, and Penman methods). Without vegetation control, 65 

the maximum surface conductance is overestimated and the PET rate during the onset and retreat of the 
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growing season is unrealistically high. Furthermore, by assuming an smooth reference surface, some methods 

do not account for surface roughness, hence downplay aerodynamic conductance and suppress the PET 

estimate (Peng et al., 2019). Even though the reference evapotranspiration (ET0) method (Allen, Pereira, 

Raes, & Smith, 1998) considers the biophysical limitation of transpiration by assigning a surface resistance 70 

under well-watered condition, it does not account for vegetation phenology (Lorenz, Davin, Lawrence, 

Stöckli, & Seneviratne, 2013) and assumes a fixed reference height and a constant surface resistance for all 

vegetation types. This approach is not physically meaningful for forests, where canopy height is relatively 

large and vegetation cover varies significantly. A recent study by Sun et al. (2023) highlighted the importance 

of incorporating surface properties especially vegetation control in PET and used a two source Shuttleworth-75 

Wallace (SW) model designed and validated for sparse and fragmented vegetation surfaces. However, 

without further calibration and parameterization, the SW model’s broader applicability beyond sparse 

vegetation is uncertain, and additionally it may increase data requirements and associated uncertainties (Gao 

et al., 2021; Abeysiriwardana et al., 2022). 

We hypothesize that adding the surface vegetation characteristics to an existing drought quantification 80 

approach will improve the spatial and temporal accuracy of drought prediction. The goals of this study are to 

explore which surface features are the most useful for enhancing drought prediction, and which vegetation 

types benefit most from incorporating these features. We propose incorporating realistic vegetation 

restrictions into existing PET methods, while not increasing much cost and uncertainty caused by additional 

data sources and complex formulations. Then we use independent soil moisture observations (Dai, Trenberth, 85 

& Qian, 2004) from satellite to evaluate the drought depictions by various forms of PET approaches across 

different temporal scales. The evaluation against observed soil moisture allows the direct diagnosis of the 

most sensitive surface characteristics and the most effective approach for drought quantification (Vicente-

Serrano et al., 2012).  

In this study, we focus on the continental U.S. (CONUS) primarily because the drought events hitting this 90 

region have raised interest in variability, trends, and future risks of drought (Andreadis & Lettenmaier, 2006; 

Hobbins et al., 2012; Dewes et al., 2017). Several most severe droughts hit the western U.S. in the recent 

decade, including the 2012 Great Plains drought (Hoerling et al., 2014) and the 2012-2016 California drought 

(Dong et al., 2019). The western U.S. has been experiencing the most severe drought period after the 1930s 

and 1950s (Andreadis, Clark, Wood, Hamlet, & Lettenmaier, 2005), and its vulnerability to drought 95 

continued to grow (Andreadis & Lettenmaier, 2006). Besides, high-quality meteorological datasets are 

available over the CONUS (Daly et al., 2008; Xia et al., 2012) and can help reduce the uncertainty of drought 

prediction originating from input forcings.	
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2 Data 

2.1 Meteorology 100 

To calculate the SPEI, PET is estimated on daily scale over the period of 1981-2017 using high-quality daily 

meteorology data from PRISM (Parameter-elevation Regressions on Independent Slopes Model) that 

employs weather stations and digital elevation model (Daly, Neilson, & Phillips, 1994; Daly et al., 2008). 

We acquire daily precipitation, daily mean, maximum, minimum, and dew point temperature on a 4 km grid 

for the period of 1981-2017. Surface downward shortwave and net longwave radiation, pressure, and wind 105 

speed are taken from the NLDAS-2 (North American Land Data Assimilation System phase 2 (Xia et al., 

2012). All data are spatially restricted to the continental United States (25–50oN, 67–125oW) and regridded 

to the 0.125o NLDAS-2 grid using the first-order conservative remapping tool provided by Climate Data 

Operators (https://code.zmaw.de/projects/cdo). 

2.2 Soil moisture 110 

The European Space Agency Climate Change Initiative (ESA CCI) v4.3 surface soil moisture (SMsurf) is 

used to evaluate the drought severity quantified by the SPEI time series (https://www.esa-soilmoisture-

cci.org/). This dataset combines several active and passive microwave soil moisture products into a 

harmonized surface layer soil moisture (2-5 cm) in m3 m-3 (Liu et al., 2012; Gruber et al., 2017). The dataset 

is chosen for its enhanced data reliability by integrating multiple single-sensor active and passive microwave 115 

soil moisture products to minimize uncertainty (Gruber et al., 2019). The version 4.3 provides soil moisture 

on a 0.25o grid at daily time step for the 1979-2017 period and has been widely used in ET and drought 

studies (Dorigo et al., 2017; Martens et al., 2017).  

2.3 Land surface ancillary data 

The land surface data used for deriving biophysical parameters include gridded land cover type, leaf area 120 

index, and surface albedo. The land cover type is provided by the 0.5 km MODIS-based Global Land Cover 

Climatology during the 2001-2010 period (Broxton, Zeng, Sulla-Menashe, & Troch, 2014, 

https://archive.usgs.gov/archive/sites/landcover.usgs.gov/global_climatology.html). This dataset has 17 land 

cover classes based on the International Geosphere‐Biosphere Program (IGBP) classification. This land 

cover climatology dataset is displayed in Fig. 1. 125 

The monthly climatology of leaf area index is obtained from the 15-day, 1 km AVHRR GIMMS LAI3g 

product that covers the period of 1982-2016 (Zhu et al., 2013).  

https://code.zmaw.de/projects/cdo
https://archive.usgs.gov/archive/sites/landcover.usgs.gov/global_climatology.html
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The monthly climatology of surface albedo is derived from the 8-day, 0.05o GLASS (Global Land Surface 

Satellite) albedo product. This GLASS02A05/06 product combines MODIS and AVHRR (Advanced Very-

High-Resolution Radiometer) to provide a gap-filled land surface shortwave black-sky and white-sky albedo 130 

(Qu et al., 2014; Liu et al., 2013) that covers the period of 1982-2012. We resample the 8-day albedo to a 

daily resolution and obtain daily albedo by averaging the black- and white-sky albedos. Missing data are gap-

filled using the average of adjacent years.  

This study uses the newly developed 10-m global canopy height dataset that merges the Global Ecosystem 

Dynamics Investigation (GEDI) space-borne LiDAR height data with Sentinel-2 satellite data (Lang et al., 135 

2023). The original 10-m resolution was remapped to 0.125o using the average. Additionally, this study uses 

a global tree height dataset at 1-km for 2005 using spaceborne lidar (Simard et al., 2011) for complementary 

analysis in the forests (Appendix B).  

 

Figure 1. The land cover classification over the Continental United States used for surface 140 

vegetation parameter inference. The classification is based on the satellite retrieval of land 

cover climatology during 2001-2010 (see Table 1 for a list of land cover full names). 

	

3 PET methods 

3.1 Current PET methods 145 
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PET can be estimated from univariate empirical models such as temperature-based methods (Thornthwaite, 

1948) and physically-based models. Empirically based methods can induce large uncertainty in the drought 

projection (Sheffield et al., 2012; Feng, Trnka, Hayes, & Zhang, 2017) and are therefore not considered in 

the study. Physically-based methods can account for multiple input variables such as surface net radiation, 

near-surface temperature, wind speed, or specific humidity. The Penman equation (Penman, 1948) is the 150 

most comprehensive physically-based method to estimate PET by combining the radiative and aerodynamic 

components: 

 𝑃𝐸𝑇!"#$%# =
Δ(𝑅# − 𝐺) + 𝜌%𝐶&𝐷𝐺𝑎

𝜆(Δ + 𝛾)  (1) 

where PET is expressed as water mass fluxes (kg m-2 s-1), 𝑅# is the surface net radiation (W m-2), 𝐺 is the 

surface ground heat flux (W m-2), Δ is the slope of the saturation vapor pressure curve at the temperature of 

interest (Pa K-1), 𝛾 is the psychrometric constant (Pa K-1), 𝜆 is the latent heat of vaporization (J kg-1), 𝜌% is 155 

the air density (kg m-3), 𝐶& is the specific heat of air (J kg-1 K-1), D is the vapor pressure deficit (VPD, Pa), 

and 𝐺𝑎 is the aerodynamic conductance (m s-1). The variants of the Penman equation have been widely used 

to estimate PET in hydrological and land surface modeling (Sellers et al., 1996; Liang et al., 1994; Ek et al., 

2003; Peng, Li, & Sheffield, 2018; Peng et al., 2019; Yang et al., 2019).  

The open-water Penman (OW) equation is a simplified Penman equation to calculate PET over an open water 160 

surface, re-parameterized by Shuttleworth (1993): 

	 𝑃𝐸𝑇'( =
Δ

(Δ + 𝛾)
(𝑅# − 𝐺)

𝜆 	+
𝛾

Δ + 𝛾
6.43(1 + 0.536𝑢))𝐷

𝜆 	 (2) 

where 𝑃𝐸𝑇'( is typically in mm d-1 (kg m-2 s-1 = 86400 mm d-1), (𝑅# − 𝐺) is daily available energy (J m-2 

d-1),  𝑢) is the wind speed at 2-m height (m s-1), 𝜆 is J kg-1, and 𝐷 is in kPa. Note that the OW equation 

provides daily estimates, and therefore some of the variables have different units compared to those in 

Equation 1.  165 

The Priestley-Taylor (PT) equation is also a simplified form of the Penman equation, which describes 

evaporation from a well-watered surface based on the equilibrium evaporation under conditions of minimal 

advection (Priestley & Taylor, 1972): 

	 𝑃𝐸𝑇!* = 1.26
Δ(𝑅# − 𝐺)
𝜆(Δ + 𝛾) 		

(3) 

where 𝑃𝐸𝑇!* is in mm d-1 and (𝑅# − 𝐺) is in J m-2 d-1.  
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The Penman-Monteith (PM) equation (Monteith, 1965) is an extended version of the Penman equation to 170 

estimate actual ET (kg m-2 s-1), which introduces the surface conductance (𝐺𝑠, m s-1):  

 𝑃𝐸𝑇!+ =
Δ(𝑅# − 𝐺) + 𝜌%𝐶&𝐷𝐺𝑎

𝜆(Δ + 𝛾 >1 + 𝐺𝑎𝐺𝑠?)
 (4) 

The reference crop evapotranspiration (𝑃𝐸𝑇,-) recommended by the UN Food and Agricultural Organization 

(FAO) is a specific application of the Penman-Monteith equation (Allen, Pereira, Raes, & Smith, 1998). It is 

designed for calculating the maximum ET of reference crop under well-watered condition. The general 

formula is given by Allen et al. (2005):  175 

 𝑃𝐸𝑇,- =
0.408Δ(𝑅# − 𝐺) +

𝐶#𝑢)
𝑇% + 273

𝛾𝐷

Δ + 𝛾(1 + 𝐶.𝑢))
 (5) 

where 𝑃𝐸𝑇,-  is also in mm d-1, (𝑅# − 𝐺) is daily available energy (MJ m-2 d-1), Δ and 𝛾 are in kPa oC -1, 𝑇% 

is the air temperature at 2-m height (oC), D is in kPa, 𝐶# (K mm s3 Mg-1 d-1) is a constant describing the effect 

of aerodynamic conductance (𝐺𝑎) that increases with canopy height. The denominator Δ + 𝛾(1 + 𝐶.𝑢)) is a 

special form of the denominator of the Penman-Monteith equation Δ + 𝛾(1 + 𝑅𝑠/𝑅𝑎). 𝐶. ( ,/
,%	1!

, s m-1) is a 

constant that increases with the ratio of surface resistance (𝑅𝑠 = 1/𝐺𝑠) to aerodynamic resistance (𝑅𝑎 =180 

1/𝐺𝑎). There are two sets of 𝐶# and 𝐶., tall crop (𝐶#=1600, 𝐶.=0.38) and short crop (𝐶#=900, 𝐶.=0.34). 

The FAO short crop equation is used in the recent version of the SPEI calculation (Beguería, Vicente-Serrano, 

Reig, & Latorre, 2013). 

The above-mentioned equations treat the surface vegetation as a “big leaf” by considering the canopy 

resistance and soil resistance together as the bulk surface resistance, and therefore require fewer parameters 185 

and less computational costs. One challenge of the big-leaf assumption is to infer bulk surface resistance 

from canopy resistance when the surface is not fully covered by vegetation (Leuning et al., 2008). 

Additionally, we compare the big leaf models with the Shuttle-Wallace (SW) two source model (Shuttleworth 

and Wallace, 1985; Sun et al., 2023), incorporating vegetation cover and separating ET into the sum of 

transpiration and soil evaporation:  190 

	 𝑃𝐸𝑇2( = 𝐶3𝑃𝐸𝑇!+3 + 𝐶/𝑃𝐸𝑇!+/	 (6) 

where the formulas and parameterizations of 𝑃𝐸𝑇!+3, 𝑃𝐸𝑇!+/, 𝐶3, and 𝐶/ are given in the Appendix A. 

3.2 Surface characteristics formulas 
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Classical PET definitions rely on surface meteorology and do not faithfully represent the vegetation 

conditions and biophysical constraints and become less accurate over non-uniform land surfaces (Moran et 

al., 1996). This section introduces the major options of formulas for aerodynamic conductance and surface 195 

conductance.  

3.2.1 Aerodynamic conductance 

Aerodynamic conductance 𝐺𝑎 in the OW and PT methods (Equations 2 and 5) are implicitly derived from a 

smooth surface with low roughness length, which can underestimate the 𝐺𝑎 and PET values in the forests 

(Peng et al., 2019). Open water aerodynamic conductance 𝐺𝑎'( can be obtained by inverting the open water 200 

Penman equation (Equation 2) to match the Penman equation (Equation 1), given by Peng et al. (2019): 

	 𝐺𝑎'( =
6.43(1 + 0.536𝑢)) ⋅ 𝑃/

86.4𝜖𝜆𝜌%
	 (6) 

where 𝑢) is converted from wind speed at 10-m to 2-m height following the wind profile relationship in 

Allen, Pereira, Raes, & Smith (1998). 𝑃/ is near-surface atmospheric pressure (Pa), 𝜖 is the ratio of molecular 

weight of water to dry air (= 0.622). 

Short and tall reference crop aerodynamic conductance 𝐺𝑎,-4/5678 and 𝐺𝑎,-48%99 are given by 205 

	 𝐺𝑎,-4/5678 =
𝑢)
208	 (7) 

	 𝐺𝑎,-48%99 =
𝑢)
110	

(8) 

where 𝑢) is converted from wind speed at 10-m to 2-m height (m s-1).  

Instead of the low 𝐺𝑎 in OW and the fixed 𝐺𝑎 in RC, it is better to generate more realistic surface roughness 

varying by land cover type, hereafter called 𝐺𝑎:-  (Brutsaert & Stricker, 1979; Allen, Pereira, Raes, & Smith, 

1998; Shuttleworth, 1993): 

	 𝐺𝑎:- =
𝑘)𝑢;

ln H𝑧$ − 𝑑<
𝑧<$

K ln H𝑧5 − 𝑑<𝑧<5
K
	 (9) 

where 𝑧$ is the measurement height (m) for wind speed, 𝑧5 is the measurement height (m) for temperature 210 

and humidity, 𝑢; is the wind speed at measurement height (m s-1), 𝑘 is the von Karman constant, 𝑑< is the 

zero-plane displacement height (m), 𝑧<$ and 𝑧<5 are the roughness lengths for momentum and heat (m). 𝑑< 

and 𝑧<$ can be estimated from canopy height (h) following 𝑑< = 2h/3 and 𝑧<$ = h/8 (Brutsaert, 1982). ℎ is 
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based on the typical value for each land cover type. When estimating 𝑧<5, instead of assuming 𝑧<5 = 0.1𝑧<$ 

as in Allen, Pereira, Raes, & Smith (1998), it is common to introduce a concept of excess resistance (Verma, 215 

1989) and characterize the relationship between 𝑧<5 and 𝑧<$: 

	 𝑧<5 =
𝑧<$

exp(𝑘𝐵4=)	 (10) 

The ln(𝑧<$/𝑧<5) term, also known as 𝑘𝐵4=, depends on the roughness Reynold’s number 𝑅𝑒 ∗ or frictional 

velocity (𝑢 ∗), LAI (Yang & Friedl, 2003), and land cover type (Rigden, Li, & Salvucci, 2018).  

On top of the above land cover based roughness (Equation 9), it is possible to further incorporate realistic 

canopy height (ℎ) to account for its effect on wind speed, hereafter called 𝐺𝑎->: 220 

	 𝐺𝑎-> =
𝑘)𝑢7

ln H𝑧7 − 𝑑<𝑧<$
K ln H𝑧7 − 𝑑<𝑧<5

K
	 (11) 

Similar to Equation 9, 𝑑< and 𝑧<$ are estimated from canopy height (h) following 𝑑< = 2h/3 and 𝑧<$ = h/8 

(Brutsaert, 1982), and 𝑧<5 is estimated using Equation 10; the only difference is that this CH approach use 

actual canopy height data instead of look up table. Different from Equation 9, this approach assumes a 

reference level, where 𝑧7 is the reference height (2m above canopy height) for wind speed, temperature, 

and humidity (Zhou et al., 2006). The reference height wind speed 𝑢7 (m s-1) is converted from the 225 

measured wind speed 𝑢; following the wind profile relationship. The internal boundary layer (𝑧?) on top of 

the measurement height (𝑧 = 10m) and canopy reference height are matched (Zhou et al., 2006; Brutsaert, 

1982; Federer et al., 1996): 

	 𝑢7 = 𝑢;
ln H 𝑧?𝑧<@

K

ln > 𝑧?𝑧<$
?

ln H𝑧7 − 𝑑<𝑧<$
K

ln H 𝑧𝑧<@
K

	 (12) 

where ground roughness length 𝑧<@ is 0.005 m, 𝑧7 is the reference height at (ℎ+2) m, 𝑧 is the measurement 

height at 10 m. The internal boundary layer height 𝑧? is estimated at about 4.4 m: 230 

	 𝑧? = 0.334𝐹<.BCD𝑧<@<.=)D	 (13) 

where F is the fetch at 5000 m, the effective distance over which the wind blows do not change in 

direction.    

For the SW method, the two aerodynamic resistances are given by Eq. A11-17 (Appendix A).	
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3.2.2 Surface conductance 

In previous PET methods, surface conductance is either not considered or assumed to be constant across 235 

vegetation types and over time. LAI plays a dominant role in determining the canopy-atmosphere coupling 

and ET partitioning (Peng et al, 2019; Wei et al., 2017; Forzieri et al., 2020). The OW and PT approach does 

not consider the role of LAI. The FAO approach uses a constant LAI throughout the growing season. Here 

we adopt a widely used method in estimating actual ET and assume a well-watered condition. The maximum 

surface conductance 𝐺𝑠$%E can be obtained by scaling the maximum stomatal conductance (𝐺𝑠𝑡$%E) with 240 

LAI (Yan et al., 2012): 

	 𝐺𝑠$%E = 𝐺𝑠𝑡$%E ⋅ 𝐿𝐴𝐼	 (14) 

An alternative formula for 𝐺𝑠$%E is from Zhou et al. (2006): 

	 𝐺𝑠$%E =
𝐿𝐴𝐼"
𝑅𝑠𝑡$F#

	 (15) 

where 𝐿𝐴𝐼" is the effective LAI, which is equal to LAI/2 when LAI is greater than 4.	We introduce two 

options to incorporate an average LAI or the seasonal cycle of LAI into the surface conductance.	

3.3 Parameterizations of surface characteristics 245 

For Eq. 9, given that NLDAS-2 provides wind speed at a 10 m level, we used a measurement height = 10 m 

for both wind speed and temperature because the variation in the vertical temperature profile (2-10 m) is 

negligible compared to that of wind speed. For 𝑧<$, we apply the typical values based on median canopy 

height for different land cover types, and estimated 𝑑< from 𝑧<$ (𝑑< ≈ 16𝑧<$/3). We use a simple look-up 

table approach to provide parameters based on land cover type (Fig. 1), summarized in Table 1.  250 

For 𝑘𝐵4=, we adopt estimates from a collection of literature as below. The forests generally have lower 𝑘𝐵4= 

values (𝑘𝐵4= = 1 for needleleaf or mixed forest, 𝑘𝐵4= = 0.5 for broadleaf) than shrublands (𝑘𝐵4= = 3.75) 

and croplands (𝑘𝐵4= = 1.75), based on the values of Rigden et al. (2018) for the medium emissivity case (𝜖 

= 0.96). For grasslands, 𝑘𝐵4= = 2.25 is computed as the average of short grass (𝑘𝐵4= = 2.0) and medium-

length grass (𝑘𝐵4= = 2.5), based on Brutsaert (1982). For barren or bare soil, we estimate 𝑘𝐵4= = 3 by taking 255 

the average of all observed 𝑘𝐵4= in Yang et al. (2008). Nadeau et al. (2009) suggested 𝑘𝐵4= = 6 for the 

urban area. For water body, wetlands, and snow, we adopt the widely-used 𝑘𝐵4= = 2, as Zilitinkevich et al. 

(2001) showed that 𝑘𝐵4= over the water surface is within the 0-4 range. There are large variations in the 

observed 𝑘𝐵4= for savannas. Troufleau et al. (1997) reported 𝑘𝐵4= = 7.9 for fallow savanna; Kustas et al. 
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(1989) provided a range of 1 to 11; Stewart et al. (1994) found an average value of 𝑘𝐵4= = 5.8, similar to the 260 

study by Lhomme et al. (1997) that reported 𝑘𝐵4=  = 5.9 for Sahelian vegetation; Verhoef et al. (1997) 

suggested a high value of 𝑘𝐵4= = 12.4. We choose 𝑘𝐵4= = 7 as most of these observed values fall into the 

range of 6-8. 𝑧<5 is then estimated based on land cover specific 𝑧<$ and 𝑘𝐵4= (Eq. 10). 

Table 1. 𝑮𝒂 and 𝑮𝒔 parameters by IGBP land cover*. 

ID Code Name  𝑧!" (m) 𝑑! (m) 𝑘𝐵#$  𝐺𝑠𝑡"%&	j 
(mm s-1) 

𝑅𝑠𝑡"'( k 

(s m-1) 

0 WB Water body  0.0004 a 0.002 2.0 e  NA NA 
1 ENF Evergreen needleleaf  1.1 b 5.9 1.0 f  9.3 150 
2 EBF Evergreen broadleaf  1.1 b 5.9 0.5 f  9.3 150 
3 DNF Deciduous needleleaf  0.9 b 4.8 1.0 f  9.3 150 
4 DBF Deciduous broadleaf  0.9 b 4.8 0.5 f  9.3 150 
5 MF Mixed forest  0.9 b 4.8 1.0 f  9.3 150 
6 CSH Closed shrublands  0.2 a 1.1 3.75 f  9.3 150 
7 OSH Open shrublands  0.2 a 1.1 3.75 f  9.3 100 
8 WSA Woody savannas  0.4 a 2.1 7.0 g  9.3 180 
9 SAV Savannas  0.4 a 2.1 7.0 g  9.3 120 
10 GRA Grasslands  0.05 a 0.27 2.25 a  12 115 
11 WET Permanent wetlands  0.04 c 0.21 2.0 e  12 65 
12 CRO Croplands  0.12 d 0.64 1.75 f  12.2 90 
13 URB Urban and built up  1.1 b 5.9 6.0 h  NA NA 
14 MOS Cropland/vegetation  0.12 d 0.64 1.75 f  12.2 120 
15 SNO Snow/ice  0.00001 a 5.3E-05 2.0 e  NA NA 
16 BSV Barren  0.01 d 0.053 3.0 i  NA NA 

*The above estimates are collected from aBrutsaert (1982), bCampbell and Norman (1998), cAcreman et al. 265 
(2003), dMonteith and Unsworth (2013), eZilitinkevich et al. (2001),  fRigden et al. (2018), gKustas et al. 
(1989), Stewart et al. (1994), Troufleau et al. (1997), Lhomme et al. (1997), and Verhoef et al. (1997), 
hNadeau et al. (2009), iYang et al. (2008), jKelliher et al. (1995), kZhou et al. (2006). 

 

Canopy height (ℎ) is a key parameter in determining aerodynamic conductance and is eventually used to 270 

obtain 𝑑< and 𝑧<$ for Eq.9. The OW and FAO methods generally assume it to be constant across vegetation 

types and temporal scales. To address this limitation, we evaluate two methods for canopy height 

parameterization.  

The first method uses literature values and is adopted in the Land Cover approach (LC, Eq.9). For most of 

the land cover types (ID 6-16), we applied the values from the look up table except for the forests, where we 275 
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determined canopy height by calculating the median height within each land cover from the tree height lidar 

data (Simard et al., 2011). 

The second more comprehensive method is adopted in the Canopy Height approach (CH, Eq. 11) and the 

SW two source model (Appendix A, Eq. A9-10). It takes into account three factors: land cover type, measured 

canopy height, and dynamic LAI. We overlayed the land cover map (Fig. 1) and the canopy/tree height data 280 

(Lang et al., 2023; Simard et al., 2011) to obtain the distribution in each land cover type (Appendix B). Based 

on the distribution of the two datasets, land cover definition, and literature ranges, we estimated the minimum 

canopy height (ℎ$F#) and maximum canopy height (ℎ$%E) by land cover type (Table 2). As for quality 

control, we set the outlier (smaller than ℎ$F# or greater than ℎ$%E) to a typical value of canopy height given 

land cover type (ℎ8G& , obtained through the mode of the distribution). The actual canopy height is then 285 

determined by assuming a linear relationship with dynamic LAI following Zhou et al. (2006).  

	 ℎ = ℎ$F# +
(ℎ$%E − ℎ$F#)𝐿𝐴𝐼

𝐿𝐴𝐼$%E
	 (13) 

where 𝐿𝐴𝐼$%E represents the annual maximum value at the grid cell level, obtained from the satellite data. 

Note that h is set to zero if 𝐿𝐴𝐼$%E is zero. 

Table 2. Canopy height parameters by IGBP land cover*. 

ID Code Name ℎ"'( (m) ℎ"%& (m) ℎ)*+	(𝑚) 
0 WB Water body 0.001 0.02 0.01 
1 ENF Evergreen needleleaf 2 a 48 b 13 b 
2 EBF Evergreen broadleaf 2 a 45 b 17 b 
3 DNF Deciduous needleleaf 7 b 23 b 17 b 
4 DBF Deciduous broadleaf 6 b 37 c 9.5 c 
5 MF Mixed forest 2 a 32 b 25 b 
6 CSH Closed shrublands 1 b 39 b 14.9 b 
7 OSH Open shrublands 2 b 17 b 6 b 
8 WSA Woody savannas 1 b 23 b 1 b 
9 SAV Savannas 1 b 26 b 17.7 b 
10 GRA Grasslands 0.1 3 1.5 
11 WET Permanent wetlands 0.1 5 0.5 
12 CRO Croplands 0.1 5 1 
13 URB Urban and built up 2 50 13 
14 MOS Cropland/vegetation 0.1 21 12 
15 SNO Snow/ice 0.001 0.02 0.01 
16 BSV Barren 0.01 0.1 0.05 

*The above estimates are collected from aIGBP classification, bLang et al. (2023), cSimard et al. (2023), 290 
otherwise based on authors’ best estimates. 
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To calculate surface conductance in Eq. 11-12, we provide two set of parameterizations based on land cover 

type. The first set is derived from the findings of Kelliher, Leuning, Raupach, & Schulze (1995). For 𝐺𝑠𝑡$%E, 

the measured values are ranging from 9 mm/s for natural vegetation to 12 mm/s for crops, as detailed in Table 295 

1. They also found that 𝐺𝑠$%E estimates are at most three times of the 𝐺𝑠𝑡$%E estimates, therefore we set a 

maximum limit for 𝐿𝐴𝐼 = 4. The second set uses the minimum stomatal resistance 𝑅𝑠𝑡$F#, following Zhou 

et al. (2006), also listed in Table 1. 

Current PET methods generally apply a uniform grass albedo value of 0.23 regardless of the underlying land 

cover type (Allen, Pereira, Raes, & Smith, 1998). To improve upon this assumption, we also introduce an 300 

option of introducing seasonal albedo cycle from satellite observations to both align albedo with specific land 

cover type and reflect temporal variations accurately. 

 

4 Evaluation of the PET methods and parameterizations  

4.1 Drought quantification: SPEI vs. soil moisture 305 

Given the substantial divergence in the PET magnitudes among different models (Peng et al., 2019), a direct 

comparison of the absolute values among methods is not meaningful. However, the performance in 

representing drought between PET methods should be comparable. We hypothesize that incorporating the 

parameters or model structures in Section 3 into the existing methods will increase the accuracy of drought 

quantification.  310 

We integrate the PET methods into the SPEI drought index across 1-, 3-, 6-, and 12-month time scales over 

the CONUS for the period of 1981-2017. The SPEI is based on the climatological water balance (water supply 

– atmospheric evaporative demand) cumulated over multiple time scales (e.g., 1, 3, 6, 12 months) following 

a similar procedure as in the SPI computation (Vicente-Serrano, Beguería, & López-Moreno, 2010). The 

accumulated water balances are fit using the log-logistic distribution and the probability distribution function 315 

is normalized to a standardized variable with mean = 0 and standard deviation = 1, termed as 1-, 3-, 6-, 12-

month SPEI, respectively. We calculate the monthly SPEI with the SPEI R package (https://cran.r-

project.org/web/packages/SPEI/) using daily meteorological data. We choose the SPEI driven by zero PET 

as a control scenario to showcase the net effect of introducing existing PET methods into traditional SPI 

drought index. We choose the SPEI driven by the Open Water (OW) method as the reference method, because 320 

the OW approach is the simplest scenario with minimal surface characteristics. 

https://cran.r-project.org/web/packages/SPEI/
https://cran.r-project.org/web/packages/SPEI/
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Soil moisture is a direct measure of drought severity. Therefore, we use the correlation between SPEI and 

soil moisture observations to quantify the skill of PET methods. We aggregated the daily ESA CCI surface 

soil moisture (SMsurf, m3 m-3) to monthly averages between 1981-2017 over the CONUS. To match the 

SPEI on multiple time scales, we calculated the moving average of SMsurf for 1, 3, 6, 12-month periods, 325 

respectively. Our analysis focuses on the growing season (April-September), because PET is close to zero 

during the cold season (not shown). Given the monthly SPEI and SMsurf series during the growing season, 

Pearson correlation coefficient (𝑅) is calculated for each pair of the SPEI and SMsurf monthly series in each 

grid cell of the CONUS on the time scale of 1, 3, 6, and 12 months. Then we calculate the change of 

correlation for each method from the control scenario or the reference. This change can identify whether a 330 

PET method causes an improvement in drought quantification relative to the reference approach. 

4.2 Initial examination of surface characteristics 

We conducted a pilot analysis to identify the relative importance of different surface characteristics. To test 

the hypotheses, we use the PM algorithm for big leaf methods, so that we can easily control a specific set of 

parameters that represents a process option. Each of the above processes are regarded as different options: 335 

(i) using active surface roughness or open water surface, (ii) seasonally varying or fixed surface conductance, 

and (iii) seasonally varying or fixed surface albedo. Table 3 provides the PET methods and the parameters in 

the preliminary analysis. We selected four existing PET methods and seven testing methods. The first set of 

methods (a, e, i, j) are the existing physically-based PET approaches: the open-water Penman equation (OW), 

the Priestley-Taylor equation (PT), the FAO reference crop evapotranspiration for short and tall crop.  340 

First, in methods (b-d), the aerodynamic conductance module is not active as we set 𝐺𝑎 to the open water 

𝐺𝑎'(, indicating a smooth surface with low roughness (Eq. 6). In methods (f-h), we activate the aerodynamic 

conductance using land cover based surface roughness as 𝐺𝑎:-  (Eq. 9). In methods (k-l), we activate the 

aerodynamic conductance using the formula of reference short crop (Eq.7). Second, in methods (b), (g), (k), 

the surface conductance parameter is unconstrained as we set 𝐺𝑠𝑡$%E to infinity (𝐺𝑠'(). In methods (c), (d), 345 

(g), (h), (l), we activate the surface conductance using seasonal LAI dynamics and 𝐺𝑠𝑡$%E from Kelliher et 

al. (1995). Lastly, in methods (c), (g), (k), (l), the albedo parameter is not active as we set 𝛼 to a constant 

(RC: 0.23 for grass, OW: 0.08 for water). In methods (b), (d), (f), (h), we activate the albedo parameter using 

seasonal albedo dynamics (𝛼-:+).  

Table 3. Summary of the PET methods for initial assessment with their ID, name and abbreviation 350 

code, and details about surface characteristics. 
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  𝐺𝑎 𝐺𝑠"%& Albedo (𝛼) 

ID Method (Code) Open Water Rough surface Infinite Constant Seasonal Constant Seasonal 
a Open Water (OW) X  X   X  
e Priestley-Taylor (PT)      X  

i FAO Short reference crop 
(RC-short)  X  X  X  

j FAO Tall reference crop 
(RC-tall)  X  X  X  

b Ga OW|Gs OW|𝛼	CLM X  X    X 
c Ga OW|Gs LAI|𝛼	OW X    X X  
d Ga OW|Gs LAI|𝛼	CLM X    X  X 
f Ga LC|Gs OW|𝛼	CLM  X X    X 
g Ga LC|Gs LAI|𝛼	OW  X   X X  
h Ga LC|Gs LAI|𝛼	CLM  X   X  X 
k Ga RC|Gs OW|𝛼	RC  X X   X  
l  Ga RC|Gs LAI|𝛼	RC  X   X X  

*Note that many methods in these experiments are unrealistic due to the inconsistencies of the surface 

conditions. Our attention is to include as many combinations as possible for a preliminary analysis.  

 

In Section 5.1, we compare the CONUS averaged 𝑅 values between the pairs of PET methods that share the 355 

same surface characteristics except for one of the features (see Fig. 3). The first feature surface roughness is 

determined by the way 𝐺𝑎 is estimated. We compare the parameter set between rough and the open water 

surface by calculating the differences (Rough - Open Water) for the following pairs of experiments including 

(f) Ga LC|Gs OW|𝛼 CLM – (b) Ga OW|Gs OW|𝛼 CLM, (g) Ga LC|Gs LAI|𝛼 OW – (c) Ga OW|Gs LAI|𝛼 

OW, and (h) Ga LC|Gs LAI|𝛼 CLM – (d) Ga OW|Gs LAI|𝛼 CLM. In terms of the surface conductance, we 360 

calculate the differences between seasonal and infinite 𝐺𝑠$%E (Seasonal - Infinite) for the following pairs of 

experiments: (c) Ga OW|Gs LAI|𝛼 OW – (a) OW, (d) Ga OW|Gs LAI|𝛼 CLM – (b) Ga OW|Gs OW|𝛼 CLM, 

and (h) Ga LC|Gs LAI|𝛼 CLM – (f) Ga LC|Gs OW|𝛼 CLM. We also compare the differences between all 

consistent and inconsistent surfaces and between seasonal and constant albedo. 

4.3 Comparison of PET parameterizations 365 

Based on the results of section 5.1, we further examine different parameterizations for 𝐺𝑎 and 𝐺𝑠 in order to 

identify optimal PET algorithms (Table 4, results in Section 5.2). We establish a control scenario where PET 

is not considered at all in the SPEI, equivalent to the traditional SPI. The PET methods under consideration 

have two categories, the big leaf model and the two source model. The big leaf model include three traditional 

methods (Open Water [OW], Reference Crop for short [RC-short], and tall [RC-tall] crops), land cover 370 

dependent (LC), and canopy height dependent (CH) methods. The LC method uses the same aerodynamic 

conductance method (Eq. 9) but differ in their surface conductance parameterizations: LC-K, which adopts 
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𝐺𝑠𝑡$%E  from Kelliher, Leuning, Raupach, & Schulze (1995), and LC-Z, which uses 𝑅𝑠𝑡$F#  from Zhou 

(2006). The CH method also has the two parameterizations: CH-K and CH-Z. We then calculated Δ𝑅 

between each PET method and the control scenario (set PET to zero).  375 

Table 4. Summary of PET methods with their formula and parameterization 

Model Ga  Gs 
type code (equation)  formula parameter  formula parameter 

Big 
leaf 

OW (Eq. 2)  Eq. 6 Peng et al. 2019  - - 
PT (Eq. 3)  - -  - - 
RC-short (Eq. 5)  Eq. 7 Allen et al. 2005  Eq. 5 Allen et al. 2005 
RC-tall (Eq. 5)  Eq. 8 Allen et al. 2005  Eq. 5 Allen et al. 2005 
LC-K (Eq. 4)  Eq. 9-10 𝑧!" (m), 𝑑! (m), 𝑘𝐵#$ (Table 1); 

Tree height (Simard et al. 2011) 
 Eq. 14 Kelliher et al. 1995 

LC-Z (Eq. 4) Eq. 15 Zhou et al. 2006 
CH-K (Eq. 4)  Eq. 11-

13 
Canopy height data (Lang et al. 
2023) 

 Eq. 14 Kelliher et al. 1995 
CH-Z (Eq. 4) Eq. 15 Zhou et al. 2006 

Two 
source 

SW (Eq. A1-5)  Eq. A6 Zhou et al. 2006; Canopy height 
data (Lang et al. 2023) 

 Eq. A7-
8 

Zhou et al. 2006 
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5 Results 380 

5.1 Initial assessment of surface characteristics 

We conducted a preliminary analysis to identify the relative importance of different surface characteristics. 

We examine eight algorithms to isolate the effects of surface characteristics on PET (Table 2). Fig. 2 displays 

the spatial patterns of growing season averages of these methods. For the classical Penman/Penman-Monteith 

methods (Fig. 2a, i, j), the highest mean growing season AED values are found in southern California, 385 

Arizona, and Texas, while the PT method (Fig. 2e) predicts the largest AED values in Texas and Florida. The 

spatial patterns of PET based on the rough surface (Fig. 2f-h, Rough 𝐺𝑎) are very different from those 

methods that assume a universal reference height (Fig. 2i-j, reference crop) or open water surface (Fig. 2a, 

b-d). Specifically, the regions which exhibit large PET estimates (> 250 mm/mon, Fig. 2h-k) are forests, 

such as ENF in the Pacific Northwest, DBF in the Northeast, and MF in the southeastern U.S.. Interestingly, 390 

although the methods using constant albedo (𝛼=0.08) have generally larger AED values than those using 

seasonal albedo, the differences in the spatial pattern between the two are almost negligible (Fig. 2c vs. d, g 

vs. h). The combination of the rough aerodynamic and unconstrained surface conductance, represented by 

(f), produces extremely high monthly PET values with means at 330 to 340 mm/mon. The remaining methods 

also predict a wide range of mean monthly totals.	395 

	

	

Figure 2. Growing season averages of AED derived from four PET methods and eight testing 

algorithms over the CONUS. Details and ID for each method are listed in Table 2. 
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 400 

Assessing the change between pairs of the above methods can identify whether adding/removing a surface 

feature eventually causes an improvement in drought quantification (Fig. 3). For 1-month time scale, surface 

roughness stands out to be the most important feature for enhancing the skill of drought index (𝛥𝑅 = 0.01-

0.025). For 6-month time scale, interestingly, activating realistic surface roughness does not necessarily 

increase the correlation with SMsurf, while activating dynamic surface conductance improves the correlation, 405 

meaning that adding the plant phenology driven by LAI can improve the seasonal variations of drought index 

over longer time scale. We compare Δ𝑅 of five pairs with an inconsistent surface (e.g., a combination of open 

water 𝐺𝑎  and seasonal 𝐺𝑐) subtracting from a consistent surface and find that methods with consistent 

surface features have persistently higher correlations with SMsurf (𝛥𝑅 = 0 - 0.02). Given the steadily better 

performance, we only focus on the consistent surface approaches in subsequent sections. Surprisingly, 410 

seasonal and constant albedo showed no significant difference on the correlations, possibly because of the 

little variation of albedo during the growing season. The differences in the spatial pattern between constant 

and seasonal albedo are almost negligible (Fig. 2). In subsequent sections, we default to using the seasonal 

albedo in our PET methods to fully represent the surface characteristics.  

 415 

 

Figure 3. Differences in spatially averaged correlation (𝚫𝑹) of pairs of PET methods that share 

the same surface characteristics except for one of the surface features: surface roughness, 

surface conductance, albedo, and overall consistency among the above features.  

 420 
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5.2 Performance of PET parameterizations 

Fig. 4 shows Δ𝑅 between each PET method in Table 4 and the control scenario (set PET to zero) for all grids, 

forested grids, and nonforested grids using 1-month SPEI. Incorporating the benchmark OW method into the 

SPEI increases 𝑅 by 0.042, shown by the top horizontal bars. Among the conventional PET methods, the tall 425 

reference crop (RC-tall) method stands out. Over the CONUS, it improved Δ𝑅 relative to control scenario by 

29% more than the OW method (0.054 versus 0.042). The short reference crop (RC-short) method has an 

identical averaged 𝑅 with the OW method. Although the RC-tall algorithm (Allen et al., 2005) is less known 

than the widely used RC-short algorithm (Allen, Pereira, Raes, & Smith, 1998), our results suggest that the 

SPEI driven by RC-tall correlates better with the SMsurf dynamics. 430 

 

 

Figure 4. Differences in correlations (𝚫𝑹) for selected PET methods versus the control scenario 

(PET = 0). Correlations were computed between the 1-month SPEI and SMsurf series across: 

(a) CONUS, (b) forested grids, and (c) nonforested grids. The bars represent the mean 𝚫𝑹 and 435 

the black dots represent the median 𝚫𝑹. The top blue bars show 𝚫𝑹 in the OW approach 

versus PET = 0 as a reference. For each bar, the darker shade indicates the reference 𝚫𝑹 and 

the lighter shade represents any improvement (or decline) relative to the reference.  



	 19	

One encouraging outcome is the performance improvement seen in the two big leaf LC and CH algorithms 

incorporating realistic surface conductance. Activating both surface roughness and seasonal 𝐺𝑠 produces 440 

high correlations of SPEI with SMsurf. These algorithms improve the OW method (Δ𝑅 = 0.042) by 29-41% 

(Δ𝑅 is 0.053-0.059). Methods where 𝐺𝑎 is determined by canopy height (the green bars in Fig. 3a) especially 

improve the correlations with SMsurf. Methods where 𝐺𝑠 is determined by Eq. 14 and parameterized using 

Kelliher et al. produce higher correlations in both LC and CH algorithms. It confirms our hypothesis that 

incorporating realistic vegetation information in atmospheric evaporative demand can enhance drought 445 

characterization. Finally, the two source Shuttleworth-Wallace (SW) method outperforms the OW method 

as expected. However, the SW method produces a smaller 𝑅 than the CH-K method. This suggests that the 

simple big leaf model in combination with the land cover details can achieve the same efficacy of the more 

complicated two source model.  

Over the CONUS, RC-tall, LC-K, CH-K, and SW are the top methods with similar average 𝑅. However, 450 

when we evaluate the performance in the forested areas (Fig. 3b), LC-K and CH-K exhibit the most 

significant enhancement in Δ𝑅 to control scenario, with increases of 86-89% over OW’s improvement (0.068 

relative to 0.036). RC-tall and SW improve Δ𝑅  to control scenario by 39% (0.05) and 50% (0.054), 

respectively. In nonforested areas (Fig. 3c), RC-tall has the best performance, followed by SW and CH-K. 

The SW method, designed for sparse vegetation, naturally demonstrates strong performance in these regions. 455 

Similarly, the CH-K method uses the dataset by Lang et al., which includes better quality canopy height 

measurements in short vegetated areas. Conversely, LC-K only exhibits a moderate improvement in Δ𝑅. This 

suggests that the performance of the land cover based approach in the sparse vegetation is strongly influenced 

by the uncertainty of the roughness parameters. On the other hand, it is surprising to see that the simple 

parametrized RC-tall can outperform SW. This suggests that, particularly in the sparsely vegetated areas, 460 

RC-tall can serve as a strong yet simple approach for PET estimates and drought characterization.  

 

 

5.3 Spatial patterns analysis 

In the subsequent sections, we compare the LC-K (referred to as LC) and CH-K (referred to as CH) methods, 465 

RC-tall, and SW with the three widely used methods: OW, PT, RC-short. The time series of these PET 

methods as well as the SMsurf time series are shown in the Fig. 5. The spatial patterns of the mean PET 

monthly values are shown in Fig. C1 (Appendix C). The OW approach serves as the reference. The highest 

𝑅 is observed for long-term drought (12-month, average 𝑅 = 0.73) and the lowest is found in medium-term 
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drought (3- and 6-month, average 𝑅 = 0.48). This suggests that the meteorology-driven SPEI can generally 470 

reproduce soil moisture dynamics, especially on an annual time scale. 	

 

Figure 5. Temporal evolution of PET methods, SPEIs, and SMsurf. a) The annual 

precipitation and PET (mm yr-1) from PET methods between 1981-2017. b)-e) SPEI series 

driven by the PET methods, aligning with the SMsurf time series for four time scales: 1, 3, 6, 475 

12-month. 

 

Fig. 6 displays the spatial distribution of correlations between SPEI driven by OW and SMsurf, along with 

the differences in correlations of PT, RC-short, RC-tall, LC, CH, and SW compared to OW. PT consistently 

exhibits lower correlations than OW over most regions, with an average decrease of 0.04, and has especially 480 

weak correlations in the southwest U.S. (lower by 0.15). Interestingly, the widely used RC-short method for 

SPEI presents little improvement over OW with minimal increases in correlation, while RC-tall method has 

overall better performance across CONUS and time scales. Both CH and LC show substantial improvements 

in some areas, with Δ𝑅 exceeding 0.16, notably in the eastern and pacific western U.S.. The enhancements 

of LC and CH are prominent but can be diluted when averaged across CONUS, with Δ𝑅 relative to the control 485 

scenario 0.012 higher than OW (Fig. 4a). This is especially true when considering their less favorable 

performance in the wouthwest and midwest U.S.. SW also exhibits notable improvements in the eastern and 
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pacific western U.S., with a magnitude of improvement falling between CH and RC-short. It is encouraging 

to see that LC and CH outperform SW in many eastern US grid cells (Δ𝑅 = 0.15 versus Δ𝑅 = 0.05), given 

their much simpler parameterization. Though it is worth noting that all LC, CH, and SW experience 490 

performance declines in the Southwest, with LC and CH slightly worse than SW. On the other hand, RC-tall 

robustly displays improvements in this particular area.  

 

Figure 6. The first row displays the correlations between SPEI driven by OW and SMsurf. 

The rows below show the differences in correlations (𝚫𝑹) of PET methods relative to OW. 495 

 

We further delve into the relative performance of the top four methods summarized by major vegetation types 

and by aridity (Fig. 7). Both LC and CH increase 𝑅 significantly in forests, especially in evergreen broadleaf, 

deciduous broadleaf, and mixed forests, where the largest 𝛥𝑅 exceeds 0.1, and the average 𝛥𝑅 hovers around 
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or above 0.05 for 1-month scale (Fig. 7a). Notable improvements in evergreen needleleaf forest, woody 500 

savanna, croplands, and mosaic lands compared to the OW are also observed. LC performs slightly better 

than CH in forests, while CH performs slightly better in shorter vegetation. 

For the time scale of 12-month (Fig. 7c), OW has an already high the average 𝑅 of 0.73 across the CONUS. 

LC and CH’s performance are outstanding in forests, with an average 𝛥𝑅 of about 0.05 and the largest 𝛥𝑅 

even exceeding 0.25. In evergreen needleleaf forests, CH and LC’s performance are significantly higher than 505 

that of the 1-month time scale. In humid regions, CH and LC’s improvements over SW becomes even more 

apparent compared to the 1-month time scale (Fig. 7d). 	

 

Figure 7. Violin plots of differences in correlations of three PET methods relative to OW, 

grouped by vegetation types and aridity. In each violin plot, the black dot represents the 510 

median and the black line represents the mean. 

 

In contrast, the average performance of LC and CH in grasslands, shrublands, and savannas (Fig. 7a and c), 

which are the dominant vegetation types in the western CONUS, are equivalent to or slightly lower than OW. 
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The magnitude of averaged 𝛥𝑅 of LC and CH are slightly smaller than RC-tall and SW, mainly due to their 515 

weaker performance in the arid shrublands and grasslands, which cover large portions of the CONUS. The 

more complicated LC, CH, and SW methods show less advantage or even worse performance than RC-tall 

and OW in nonforested and arid grid cells (Fig. 7c-d). 
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6 Discussion 520 

6.1 Interaction between surface features 

Fig. 3 provides important insights into the SPEI sensitivity to different surface features. Introducing 𝐺𝑠 with 

seasonal vegetation dynamics accounts for most of the total improvement of PET algorithm. This confirms 

that the FAO approaches are more favored than the OW approach due to its constraints on 𝐺𝑠. This highlights 

the importance of leaf area index (LAI) as a vegetation feature for drought depiction. LAI is a scaling factor 525 

to upscale 𝐺𝑠𝑡$%E to maximum canopy conductance. This is different from the drought index based on the 

normalized difference vegetation index (NDVI) or LAI, which requires the real-time dynamics of satellite 

data. This approach only requires the climatology of LAI, which can be easily implemented for drought 

forecasting where real-time or near-future data are not available. 

Using realistic surface roughness does not necessarily improve the overall performance of the SPEI. In fact, 530 

the consistency between aerodynamic conductance and surface conductance is more critical for the skill of 

PET method. Previous study by Peng et al. (2019) explains the linkage between the ratio of actual ET to PET 

and the ratio of 𝐺𝑎 to 𝐺𝑠. When 𝐺𝑎/𝐺𝑠 is large, the ratio of actual ET to PET becomes smaller. Although our 

study focused on the maximum evapotranspiration given the realistic vegetation condition, such a 

relationship remains valid. Thus, a large 𝐺𝑎/𝐺𝑠𝑡$%E  ratio should better limit PET with realistic surface 535 

constraints. In fact, the LC approach activates surface roughness and increases 𝐺𝑎 , while constraining 

𝐺𝑠𝑡$%E and reducing 𝐺𝑠; the CH approach further incorporates canopy height and LAI in the representation 

of surface roughness. Altogether these factors increase the 𝐺𝑎/𝐺𝑠 ratio and result in significant improvement 

in capturing the temporal evolution of SMsurf.  

6.2 Surface characteristics matter in the forests 540 

Our analysis concludes that incorporating surface features can largely improve the accuracy of drought 

monitoring in the forests. There are two vegetation groups with significantly improved correlation after 

incorporating the realistic surface characteristics. Forests over the eastern and pacific western U.S., such as 

evergreen broadleaf and deciduous broadleaf forests, the LC and CH methods exhibit large 𝛥𝑅 compared to 

OW (up to 0.12 for 1-month and up to 0.25 for 12-month, Fig. 7a, c). While OW has a 𝛥𝑅 at about 0.036 545 

compared to the zero PET control scenario (Fig. 4b), LC has an average 𝛥𝑅 of 0.032 relative to OW in these 

forests. This means the improvement of LC over control scenario is almost doubling of OW. CH and LC also 

display a significant increase in 𝑅 at about 0.025 in woody savanna. The enhancements in the forests or 

woody savannas are the most predominant since LAI in forests is relatively variable, and surface roughness 

is also the strongest. Although the southeastern U.S. has a humid subtropic climate, this region also suffered 550 
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from periodic droughts in 1986–1988, 1998–2002 and 2006–2009 (Seager, Tzanova, & Nakamura, 2009; 

Pederson et al., 2012), which is consistent with the increased forest drought severity from 1987-2013 (Peters, 

Iverson, & Matthews, 2014; Clark et al., 2016). Drought monitoring in these regions is also critical and can 

benefit from our approach that significantly improve the spatial and temporal accuracy in the forests.  

In contrast, the short-grass regions (grasslands, shrublands, and savannas) located in the western U.S. exhibit 555 

minimal improvements for LC. The CH method, incorporating the newly available Lang et al. (2023) canopy 

height dataset, improves the correlations in grasslands, croplands, and mosaic lands. Given that the RC-tall 

method—a similar big leaf model—performs better than LC and CH in shrublands (Fig. 4, 7), it suggests that 

uncertainties in LC and CH’s 𝐺𝑠𝑡$%E could result in these outcomes. Additionally, a comparison between 

𝐺𝑠𝑡$%E  and 𝑅𝑠𝑡$F#  (used in SW) highlights uncertainties in this parameter. For instance, 𝑅𝑠𝑡$F#  in 560 

shrublands, grasslands, and savannas ranges from 100-180 s m-1 (equivalent to 𝐺𝑠𝑡$%E  of 5-10 mm s-1), 

which is generally lower than 9-12 mm s-1 reported by Kelliher et al. (1995). These findings highlight the 

need for in-situ measurements of surface conductance in these areas. 

Furthermore, these areas have sparse vegetation cover, and thus LAI plays a less effective role in determining 

the seasonal dynamics of PET. In the meantime, these areas are located in the arid regions (Fig. 7), the 565 

improvements of PET do not have significant effects on modeling the soil moisture, and precipitation 

dynamics may dominate the soil moisture variations. 

6.3 Strategies for PET method selection 

Both the CH and LC methods not only provide modest absolute PET values (Fig. 5a, C2) but also display 

better performance across many areas (Fig. 6). Specifically, LC and CH estimate an annual PET of roughly 570 

1200 mm, which is within the range of the higher OW value (1424 mm) and the lower values around 1100 

mm from RC-short as well as Sun et al. PET dataset (Fig. C2). 

As Ershadi et al. (2015) pointed out, no single model consistently outperformed any other when considered 

across all land cover types. the selection of PET for model simulation varies depending on the region 

(Pimentel et al., 2023). We recommend the use of both LC and CH parameterization for drought monitoring 575 

in the forests, in which the roughness and surface conductance parameters vary with realistic vegetation 

conditions. Both are superior than OW or RC-short because of better performance, and compared to SW, 

they are both better performing and a simpler approach in the forested areas. Between CH and LC, we 

recommend CH because it factors in the dynamic change of vegetation structure and provides slightly better 

performance in woody savanna.  580 
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For shrublands and grasslands, we recommend the use of RC-tall to replace the more widely used RC-short 

for drought monitoring. We found that the RC-tall approach has a higher skill than the RC-short approach 

that is more widely used. The main difference between these two methods is the 𝐶# constant that describes 

the effect of aerodynamic conductance (Allen et al, 2005). The implementation of tall reference (𝐶# = 1600) 

seems to work better than the short reference (𝐶# = 900) over the CONUS. It is worth noting, however, that 585 

the FAO approaches assume a universal 𝐶# regardless of actual vegetation type. The better skill of RC-tall 

will not always hold, which may overestimate PET in semi-arid non-vegetated regions.  

For sparse vegetation, since the responses of the components of evapotranspiration to the environmental 

drivers are different (Katul, Oren, Manzoni, Higgins, & Parlange, 2012; Or & Lehmann, 2019), the 

partitioning between canopy and soil can also play a role in determining AED. The SW model significantly 590 

improves the SPEI skill driven by the OW approach. It outperforms LC and CH in the croplands and 

grasslands. Despite its complexity, it is a good choice for drought monitoring in these vegetation types (Sun 

et al., 2023).  

For croplands, we recommend choosing between RC-tall versus RC-short based on the actual crop canopy 

height. The more realistic approach is to use RC-tall for higher crops. Lastly, the PT method has the poorest 595 

correlation with soil moisture and is unlikely to capture drought dynamics.  

6.4 Bridging gaps in drought prediction 

Motivated by the question of whether incorporating surface characteristics can improve drought prediction, 

we overcome several limitations of previous drought quantification methods. Firstly, our study presents a 

different approach whereby we focus on the maximum possible evapotranspiration for a given vegetation 600 

condition. This concept allows a physically meaningful definition of evaporative demand for the non-uniform 

land surfaces.  

Secondly, the ultimate goal of PET calculation is to simulate ET and to quantify drought. Despite the 

simplicity of calculating PET using the existing Penman-type methods, the biggest challenge for assessing 

these methods is validation. Since the real evaporative demand rate is unattainable from observations, it is 605 

challenging to validate which PET method is superior directly. Even using ET observations for PET 

validation can be problematic because biased PET estimates and wrong surface biophysical parameters can 

still produce accurate ET estimates for locations with ET measurements (Peng et al., 2019). Our study 

evaluates the PET methods by comparing drought index with independently observed soil moisture (Vicente-

Serrano et al., 2012). This approach helps diagnose the most appropriate PET approach for drought 610 

quantification directly while avoiding the complexity and divergence caused by various PET definitions. 
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While the absolute improvements in correlation with soil moisture appear modest, they represent significant 

percentage changes of average 25-30% and notable local improvements of 86-89% in forests. We 

acknowledge the need for evaluation of the effectiveness in addition to the temporal correlations. 

Specifically, future studies should evaluate the capability of the land cover specific approaches to accurately 615 

capture extreme events. 

Finally, our approach bridges the gap between the two methodologies for quantifying soil-moisture drought, 

which is of most relevance to agriculture (Seneviratne, 2012). Since soil moisture observations are limited 

by inadequate measurement networks, drought indices such as the SPEI are often used to quantify drought. 

In hydrology, a drought index is a simple water balance model driven by surface meteorology without the 620 

use of any surface characteristics. Its shortcomings are the neglect of seasonally varying vegetation cover 

and the incapability to capture the vegetation control on transpiration. An alternative is to use land surface 

models to estimate large-scale soil moisture (Sheffield, & Wood, 2007). This approach often builds in 

vegetation dynamics and can provide temporally consistent soil moisture simulations, but it also requires 

substantial efforts to prepare meteorological forcings at high temporal resolution, set up the domain, spin up, 625 

and calibrate. Our approach is a compromise between the above two types of models, which is more realistic 

and process-based than the commonly used drought index while being easy-to-implement and less data-

intensive than a land surface model. 

 

  630 
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7 Conclusions 

To understand whether incorporating surface characteristics can improve drought prediction, we revise 

current PET methods in a newly developed drought index (SPEI), using the concept of maximum ET for any 

given vegetation condition. We use a simple look-up table approach combining in situ measurements and 

large-scale data fusion products for the key surface and aerodynamic parameters,. This study also presents a 635 

novel application of independent soil moisture observations to diagnose the most appropriate PET approach 

for drought quantification. Our approach is proved to be more effective than widely used big leaf methods 

and two source model in accurately predicting soil moisture spatiotemporal dynamics in the forests and humid 

regions. LAI has a particularly important influence on the skill of the SPEI. This new yet simple approach 

strikes a balance between a meteorology-driven water balance model and a complex land surface model for 640 

drought prediction. It could improve the accuracy of the drought reconstruction in forests and displays great 

potential to improve real-time drought forecast.  

  



	 29	

Appendix A. Shuttleworth-Wallace Model 

The Shuttleworth-Wallace (SW) two source model was developed to more accurately represent 645 
evapotranspiration from the sparse vegetation. Different from the big leaf models, SW treats the surface as 
a two-component structure: sparse vegetation (e.g., row crops) and soil. The following formulas are 
adapted from Equations 11-18 in Shuttleworth and Wallace (1985). 

	 𝑃𝐸𝑇2( = 𝐶3𝑃𝐸𝑇!+3 + 𝐶/𝑃𝐸𝑇!+/ 	 (A1) 

where 𝑃𝐸𝑇!+3  and 𝑃𝐸𝑇!+/  are Penman-Monteith like combined equations (Eq. 4) for a closed canopy and 
bare soil. Each term is given by the following formulas 650 

 𝑃𝐸𝑇!+3 =
Δ(𝑅# − 𝐺) + (𝜌%𝐶&𝐷 − Δ𝑟%3(𝑅#/ − 𝐺))/(𝑟%% + 𝑟%3)

𝜆(Δ + 𝛾 H1 + 𝑟/3
𝑟%% + 𝑟%3

K)
 (A2) 

 𝑃𝐸𝑇!+/ =
Δ(𝑅# − 𝐺) + (𝜌%𝐶&𝐷 − Δ𝑟%/(𝑅# − 𝑅#/))/(𝑟%% + 𝑟%/)

𝜆(Δ + 𝛾 H1 + 𝑟//
𝑟%% + 𝑟%/

K)
 (A3) 

	 𝐶3 =
1

1 + 𝑅3𝑅%
𝑅/(𝑅3 + 𝑅%)

	 (A4) 

	 𝐶/ =
1

1 + 𝑅/𝑅%
𝑅3(𝑅/ + 𝑅%)

	 (A5) 

	 𝑅% = (Δ + 𝛾)𝑟%%	 (A6) 

	 𝑅/ = (Δ + 𝛾)𝑟%/ + 𝛾𝑟//	 (A7) 

	 𝑅3 = (Δ + 𝛾)𝑟%3 + 𝛾𝑟/3 	 (A8) 

where many terms have been given by Eq.1-2, except 

𝑅#/  = net radiation over soil surface = 𝑅#/c1 − 𝑓H"@e = 𝑅#/ ⋅ exp	(−0.5 ⋅ 𝐿𝐴𝐼) 

𝑟%% = aerodynamic resistance between canopy height and reference level (s m-1) 

𝑟// = surface resistance of the substrate (s m-1) 

𝑟%/ = aerodynamic resistance between substrate and the canopy (s m-1) 655 

𝑟/3 = bulk stomatal resistance of the canopy (s m-1) 

𝑟%3 = bulk boundary layer resistance of the vegetative elements in the canopy (s m-1). 

In this study, the resistances are parameterized for the feasible minimal values based on the water-unlimited 
assumption for estimating PET. The substrate resistance 𝑟// is set to zero s m-1 as a saturated surface. The 
canopy resistances are dependent on LAI (Shuttleworth and Wallace, 1985, Equations 19-20). 660 
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	 𝑟/3 	= 𝑅𝑠𝑡 ⋅
1

𝐿𝐴𝐼"
	 (A9) 

	 𝑟%3 	= 𝑟? ⋅
1

2𝐿𝐴𝐼	
(A10) 

Stomatal resistance 𝑅𝑠𝑡 is set to 𝑅𝑠𝑡$F# obtained by the land cover types in Table 1. The effective leaf area 
index 𝐿𝐴𝐼" is LAI/2 and is capped to 2 (even when LAI is greater than 4). Note that, 𝑟/3 does not have valid 
values for non-vegetated grid cells (at a specific time of the year or location). The leaf boundary layer 
resistance 𝑟? is set to a value of 50 s m-1 (Brisson et al., 1998).  

The formulas of aerodynamic resistances are given as follows (Shuttleworth and Gurney, 1990; Zhou et al., 665 
2006). 

	 𝑟%/ 	=
ℎ ⋅ exp(𝑛) ln H𝑧$ − 𝑑<

𝑧<
K

𝑛𝑘)(ℎ − 𝑑<)
(exp	(−

𝑛𝑧<@
ℎ ) − exp	(−

𝑛c𝑧<$ + 𝑑&e
ℎ ))	 (A11) 

	 𝑟%% 	=
ln H𝑧$ − 𝑑<

𝑧<
K ln H𝑧$ − 𝑑<

ℎ − 𝑑<
K

𝑘)𝑢;
+
ln H𝑧$ − 𝑑<

𝑧<
K ℎ

𝑛𝑘)(ℎ − 𝑑<)
(exp(𝑛 H1 −

𝑧<$ + 𝑑&
ℎ K) − 1)	 (A12) 

where ℎ is canopy height (m), 𝑘 is the von Karman constant, 𝑧<$ is the “preferred” roughness length (m), 
𝑧<$ = ℎ/8, 𝑑& is the “preferred” zero plane displacement height (m), 𝑑& = 0.63ℎ, 𝑧<@ is the roughness 
length of ground (m), 𝑢; is the wind speed from the measurement height (m s-1), and 𝑧$ is the 
measurement height (m), assuming 𝑧$ = ℎ + 2.  670 

𝑑< is the zero plane displacement of canopy (m), 𝑛 is the eddy diffusivity decay constant of the vegetation, 
and 𝑧< is the canopy roughness length (m). These terms are parameterized as following (Equations 22-26, 
Zhou et al., 2006): 

	 𝑛 = g
2.5, ℎ ≤ 1

2.306 + 0.194ℎ, 1 < ℎ < 10
4.25, ℎ ≥ 10

 (A13) 

	 𝑑< = m
ℎ − 𝑧<3/0.3, 𝐿𝐴𝐼 ≥ 4

1.1ℎ ⋅ ln	(1 + (𝐶.𝐿𝐴𝐼)<.)D), 𝐿𝐴𝐼 < 4 (A14) 

	 𝑧< 	= min	(0.3(ℎ − 𝑑<), 𝑧<@ + 0.3ℎ(𝐶.𝐿𝐴𝐼)<.D)	 (A15) 

	 𝐶. = p
1.4 × 104I, ℎ = 0

0.25 H−1 + exp H0.909 −
3.03𝑧<3
ℎ

KK
J

, ℎ > 0
 (A16) 

	 𝑧<3 = g
0.13ℎ, ℎ ≤ 1

0.139ℎ − 0.009ℎ), 1 < ℎ < 10
0.05ℎ, ℎ ≥ 10

 (A17) 

where 𝑧<3 is the roughness length for a closed canopy (m), 𝐶. is the mean drag coefficient for individual 
leaves. 675 
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Appendix B. Canopy height data 680 

We evaluated the newly available global canopy height dataset (Lang et al., 2023) and the widely used 
global tree height dataset (Simard et al., 2011). Although the datasets are highly consistent with each other 
(Figure B1), some discrepancies exist for low-vegetation cases, which is expected due to the fact that 
Simard et al. focused on the tree height estimates. We further compared the histogram of canopy height in 
different land cover types between Lang et al. (Figure B2) and Simard et al. (Figure B3). The two datasets 685 
are highly consistent in the forests, while Lang et al. provides valuable information in the short vegetation 
types. 

 

Figure B1. The comparison in canopy height between Lang et al. (2023) and Simard et al. 

(2011). 690 

We reconstruct the canopy height in each grid cell by comparing the value in Lang et al. with the ranges 
given the land cover type, if it is out of the range (smaller than ℎ"'( or greater than ℎ"%&) then we give the 
grid cell a typical value of canopy height (ℎ)*+). For forests, we continue to follow the definitions from the 
IGBP land cover classification that the forests are more than 2 m, which we supersede the range in Lang et 
al. when it gave a range less than 2 m. Typical canopy height is taken from the value of the peak (mode) 695 
instead of median for forests. For DBF, Lang et al. only has 3 data points, so we use the distribution of Simard 
et al. instead, while keeping the lower limit of 6 m from Lang et al.. For grasslands, wetlands, and croplands, 
the lidar estimates from Lang et al. or Simard et al. are typically more than 3-5 meters, possibly due to the 
overestimation of the grid cell by the sampling of tall trees. Considering the difficulties in separating trees 
from the grass and pastures, we did not adopt the high canopy height values in these land cover types. We 700 
use conservative estimates from the literature, 1.5 m (mean value of 0-3m) for grasslands and 0.5 m for 
wetland. 
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Figure B2. The histogram of canopy height (Lang et al., 2023) by land cover type over the 705 

CONUS (excluding non-vegetated land cover: URB, MOS, SNO). 

 

Figure B3. The histogram of tree height (Simard et al., 2023) by forest type over the CONUS. 
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Appendix C. Comparison of multiple PET datasets 710 

 

Figure C1. Growing season averages of the PET methods in this study (Table 4) and the PET 

dataset by Sun et al. (2023) over the CONUS. 

	
Figure C2. Annual times series of the PET methods in this study (Table 4) and the PET dataset 715 

by Sun et al. (2023) over the CONUS. 
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Code and data availability 720 

The code used to process data and perform analysis for this study is available in the public repository at 

https://github.com/pitcheverlasting/spei-pet-evaluation/ 

The data provided along with this study include the key surface parameters, PET annual data from the main 

methods, precipitation, and SPEI dataset, available in this public repository: 

https://doi.org/10.6084/m9.figshare.12132696.v1. 725 

The primary data and tools can be downloaded from the PRISM Climate Group at Oregon State University 

(http://www.prism.oregonstate.edu), the ESA CCI soil moisture project team (https://www.esa-

soilmoisture-cci.org/node/145), the GIMMS LAI3g product team 

(https://drive.google.com/open?id=0BwL88nwumpqYaFJmR2poS0d1ZDQ), the Global Land Surface 

Satellite project (http://www.glass.umd.edu/Download.html), the SPEI R package released by Santiago 730 

Beguería and Sergio M. Vicente-Serrano at CSIC in Spain (https://cran.r-project.org/web/packages/SPEI/), 

the Global Land Cover Climatology project 

(https://archive.usgs.gov/archive/sites/landcover.usgs.gov/global_climatology.html), and the CDO software 

(https://code.zmaw.de/projects/cdo). 
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