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Abstract. Atmospheric evaporative demand is a key metric for monitoring agricultural drought. The existing 

ways of estimating evaporative demand in drought indices do not faithfully represent the constraints of land 

surface characteristics and become less accurate over non-uniform land surfaces. This study proposes 20 

incorporating surface vegetation characteristics, such as vegetation dynamics data, aerodynamic and 

physiological parameters, into existing potential evapotranspiration (PET) methods. This approach is 

implemented over the Continental United States (CONUS) for the period of 1981-2017 and is tested in a 

recently developed drought index the Standardized Precipitation Evapotranspiration Index (SPEI). We show 

that activating realistic maximum surface and aerodynamic conductance could improve prediction of soil 25 

moisture dynamics and drought impacts by 29% on average compared to the widely used simple methods, 

especially effective in the forests and humid regions. Surface characteristics that have a strong influence on 

the performance of the SPEI are mainly driven by leaf area index (LAI). Our approach only requires the 

minimum amount of ancillary data, while permitting both historical reconstruction and real-time forecast of 

drought. This offers a physically meaningful, yet easy-to-implement way to account for the vegetation control 30 

in drought indices. 
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1 Introduction 

Drought is one of the most costly hydrological hazards (Wilhite, 2000; Ross & Lott, 2003; Piao et al., 2019), 35 

with devastating impacts on croplands and pastures (Kogan, 1995), forests ecosystems (Clark et al., 2016; 

Xu et al., 2022), electricity production, water quality, and soil fertility (Loon, 2015). Monitoring the changes 

in water availability is critical for providing early warnings of drought and for risk management (Wilhite, 

Sivakumar, & Pulwarty, 2014). Many physical or probabilistic measures have been developed (Heim, 2002) 

to quantify drought, such as Palmer Drought Severity Index (PDSI, Palmer, 1965), Standardized Precipitation 40 

Index (SPI, McKee, Doesken, Kleist, & others, 1993), Vegetation Condition Index (VCI, Kogan, 1995), and 

multiple remote sensing drought indices (Zhang, Jiao, Zhang, Huang, & Tong, 2017; Yang et al., 2023).	

Atmospheric evaporative demand (AED) is a key input to drought indices because it is a measure of water 

demand, namely, how thirsty the atmosphere is (Peng, Li, & Sheffield, 2018). AED typically reflects the 

effect of temperature and humidity, and is considered a major driver of drought stress on vegetation and tree 45 

mortality (Williams et al., 2012; McDowell et al., 2018). Among the drought indices, the recently developed 

Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano, Beguería, & López-Moreno, 

2010) factors in water demand (AED) in addition to water supply (precipitation). Compared to the SPI that 

only considers precipitation, the SPEI is more suitable for quantifying the drought impacts on agriculture 

(Potop, 2011; Potop, Možný, & Soukup, 2012), and ecosystems (Vicente-Serrano et al., 2012; Vicente-50 

Serrano et al., 2013; Barbeta, Ogaya, & Peñuelas, 2013). In addition, the SPEI is more flexible than the PDSI 

because it is not sensitive to soil water field capacity and can be implemented on various time scales (Vicente-

Serrano, der Schrier, Beguería, Azorin-Molina, & Lopez-Moreno, 2015; Zhao et al., 2017). It has been widely 

used for both drought reconstruction and monitoring (Paulo, Rosa, & Pereira, 2012; Beguería, Vicente-

Serrano, Reig, & Latorre, 2013). 55 

The way of estimating AED in drought indices has a significant impact on drought quantification (Sheffield, 

Wood, & Roderick, 2012; Trenberth et al., 2013; Yang, Roderick, Zhang, McVicar, & Donohue, 2018; 

Dewes et al., 2017). AED is approximated by potential evapotranspiration (PET), the maximum rate of 

evapotranspiration when surface water supply is unlimited. Previous work has used various PET formulations 

for AED in the SPEI since it was first proposed in 2010 (Vicente-Serrano, Beguería, & López-Moreno, 2010; 60 

Beguería, Vicente-Serrano, Reig, & Latorre, 2013). These conventional PET methods do not factor in the 

effects of surface characteristics, which often assume no or simple universal vegetation control on 

transpiration (e.g., the Thornthwaite, Hargreaves-Samani, and Penman methods). Without vegetation control, 

the maximum surface conductance is overestimated and the PET rate during the onset and retreat of the 

growing season is unrealistically high. Furthermore, by assuming an smooth reference surface, some methods 65 
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do not account for surface roughness, hence downplay aerodynamic conductance and suppress the PET 

estimate (Peng et al., 2019). Even though the reference evapotranspiration (ET0) method (Allen, Pereira, 70 

Raes, & Smith, 1998) considers the biophysical limitation of transpiration by assigning a surface resistance 

under well-watered condition, it does not account for vegetation phenology (Lorenz, Davin, Lawrence, 

Stöckli, & Seneviratne, 2013) and assumes a fixed reference height and a constant surface resistance for all 

vegetation types. This approach is not physically meaningful for forests, where canopy height is relatively 

large and vegetation cover varies significantly. A recent study by Sun et al. (2023) highlighted the importance 75 

of incorporating surface properties especially vegetation control in PET and used a two source model 

designed for sparse vegetation surfaces. However, the model’s broader applicability beyond sparse vegetation 

is uncertain, and additionally it may increase data requirements and associated uncertainties. 

We hypothesize that adding the surface vegetation characteristics to an existing drought quantification 

approach will improve the spatial and temporal accuracy of drought prediction. The goals of this study are to 80 

explore which surface features are the most useful for enhancing drought prediction, and which vegetation 

types benefit most from incorporating these features. We propose incorporating realistic vegetation 

restrictions into existing PET methods, while not increasing much cost and uncertainty caused by additional 

data sources and complex formulations. Then we use independent soil moisture observations (Dai, Trenberth, 

& Qian, 2004) from satellite to evaluate the drought depictions by various forms of PET approaches across 85 

different temporal scales. The evaluation against observed soil moisture allows the direct diagnosis of the 

most sensitive surface characteristics and the most effective approach for drought quantification (Vicente-

Serrano et al., 2012).  

In this study, we focus on the continental U.S. (CONUS) primarily because the drought events hitting this 

region have raised interest in variability, trends, and future risks of drought (Andreadis & Lettenmaier, 2006; 90 

Hobbins et al., 2012; Dewes et al., 2017). Several most severe droughts hit the western U.S. in the recent 

decade, including the 2012 Great Plains drought (Hoerling et al., 2014) and the 2012-2016 California drought 

(Dong et al., 2019). The western U.S. has been experiencing the most severe drought period after the 1930s 

and 1950s (Andreadis, Clark, Wood, Hamlet, & Lettenmaier, 2005), and its vulnerability to drought 

continued to grow (Andreadis & Lettenmaier, 2006). Besides, high-quality meteorological datasets are 95 

available over the CONUS (Daly et al., 2008; Xia et al., 2012) and can help reduce the uncertainty of drought 

prediction originating from input forcings. 
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2 Data 

2.1 Meteorology 100 

To calculate the SPEI, PET is estimated on daily scale over the period of 1981-2017 using high-quality daily 

meteorology data from PRISM (Parameter-elevation Regressions on Independent Slopes Model) that 

employs weather stations and digital elevation model (Daly, Neilson, & Phillips, 1994; Daly et al., 2008). 

We acquire daily precipitation, daily mean, maximum, minimum, and dew point temperature on a 4 km grid 

for the period of 1981-2017. Surface downward shortwave and net longwave radiation, pressure, and wind 105 

speed are taken from the NLDAS-2 (North American Land Data Assimilation System phase 2 (Xia et al., 

2012). All data are spatially restricted to the continental United States (25–50oN, 67–125oW) and regridded 

to the 0.125o NLDAS-2 grid using the first-order conservative remapping tool provided by Climate Data 

Operators (https://code.zmaw.de/projects/cdo). 

2.2 Soil moisture 110 

The European Space Agency Climate Change Initiative (ESA CCI) v4.3 surface soil moisture (SMsurf) is 

used to evaluate the drought severity quantified by the SPEI time series (https://www.esa-soilmoisture-

cci.org/). This dataset combines several active and passive microwave soil moisture products into a 

harmonized surface layer soil moisture (2-5 cm) in m3 m-3 (Liu et al., 2012; Gruber et al., 2017). The dataset 

is chosen for its enhanced data reliability by integrating multiple single-sensor active and passive microwave 115 

soil moisture products to minimize uncertainty (Gruber et al., 2019). The version 4.3 provides soil moisture 

on a 0.25o grid at daily time step for the 1979-2017 period and has been widely used in ET and drought 

studies (Dorigo et al., 2017; Martens et al., 2017).  

2.3 Land surface ancillary data 

The land surface data used for deriving biophysical parameters include gridded land cover type, leaf area 120 

index, and surface albedo. The land cover type is provided by the 0.5 km MODIS-based Global Land Cover 

Climatology during the 2001-2010 period (Broxton, Zeng, Sulla-Menashe, & Troch, 2014, 

https://archive.usgs.gov/archive/sites/landcover.usgs.gov/global_climatology.html). This dataset has 17 land 

cover classes based on the International Geosphere‐Biosphere Program (IGBP) classification. This land 

cover climatology dataset is displayed in Fig. 1. 125 

The monthly climatology of leaf area index is obtained from the 15-day, 1 km AVHRR GIMMS LAI3g 

product that covers the period of 1982-2016 (Zhu et al., 2013). The monthly climatology of surface albedo 

is derived from the 8-day, 0.05o GLASS (Global Land Surface Satellite) albedo product. This 
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GLASS02A05/06 product combines MODIS and AVHRR (Advanced Very-High-Resolution Radiometer) 

to provide a gap-filled land surface shortwave black-sky and white-sky albedo (Qu et al., 2014; Liu et al., 

2013) that covers the period of 1982-2012. We resample the 8-day albedo to a daily resolution and obtain 

daily albedo by averaging the black- and white-sky albedos. Missing data are gap-filled using the average of 

adjacent years.  135 

The canopy height data are obtained from a global tree height dataset at 1-km for 2005 using spaceborne 

lidar (Simard et al., 2011).  

 

Figure 1. The land cover classification over the Continental United States used for surface 

vegetation parameter inference. The classification is based on the satellite retrieval of land 140 

cover climatology during 2001-2010 (see Table 1 for a list of land cover full names). 

	

3 PET methods 

3.1 Current PET methods 

PET can be estimated from univariate empirical models such as temperature-based methods (Thornthwaite, 145 

1948) and physically-based models. Empirically based methods can induce large uncertainty in the drought 

projection (Sheffield et al., 2012; Feng, Trnka, Hayes, & Zhang, 2017) and are therefore not considered in 

the study. Physically-based methods can account for multiple input variables such as surface net radiation, Moved (insertion) [2]



	 5	

near-surface temperature, wind speed, or specific humidity. The Penman equation (Penman, 1948) is the 

most comprehensive physically-based method to estimate PET by combining the radiative and aerodynamic 150 

components: 

 𝑃𝐸𝑇!"#$%# =
Δ(𝑅# − 𝐺) + 𝜌%𝐶&𝐷𝐺𝑎

𝜆(Δ + 𝛾)  (1) 

where PET is expressed as water mass fluxes (kg m-2 s-1), 𝑅# is the surface net radiation (W m-2), 𝐺 is the 

surface ground heat flux (W m-2), Δ is the slope of the saturation vapor pressure curve at the temperature of 

interest (Pa K-1), 𝛾 is the psychrometric constant (Pa K-1), 𝜆 is the latent heat of vaporization (J kg-1), 𝜌% is 

the air density (kg m-3), 𝐶& is the specific heat of air (J kg-1 K-1), D is the vapor pressure deficit (VPD, Pa), 155 

and 𝐺𝑎 is the aerodynamic conductance (m s-1). The variants of the Penman equation have been widely used 

to estimate PET in hydrological and land surface modeling (Sellers et al., 1996; Liang et al., 1994; Ek et al., 

2003; Peng, Li, & Sheffield, 2018; Peng et al., 2019; Yang et al., 2019).  

The open-water Penman (OW) equation is a simplified Penman equation to calculate PET over an open water 

surface, re-parameterized by Shuttleworth (1993): 160 

	 𝑃𝐸𝑇'( =
Δ

(Δ + 𝛾)
(𝑅# − 𝐺)

𝜆 	+
𝛾

Δ + 𝛾
6.43(1 + 0.536𝑢))𝐷

𝜆 	 (2) 

where 𝑃𝐸𝑇'( is typically in mm d-1 (kg m-2 s-1 = 86400 mm d-1), (𝑅# − 𝐺) is daily available energy (J m-2 

d-1),  𝑢) is the wind speed at 2-m height (m s-1), 𝜆 is J kg-1, and 𝐷 is in kPa. Note that the OW equation 

provides daily estimates, and therefore some of the variables have different units compared to those in 

Equation 1.  

The Priestley-Taylor (PT) equation is also a simplified form of the Penman equation, which describes 165 

evaporation from a well-watered surface based on the equilibrium evaporation under conditions of minimal 

advection (Priestley & Taylor, 1972): 

	 𝑃𝐸𝑇!* = 1.26
Δ(𝑅# − 𝐺)
𝜆(Δ + 𝛾) 		

(3) 

where 𝑃𝐸𝑇!* is in mm d-1 and (𝑅# − 𝐺) is in J m-2 d-1.  

The Penman-Monteith (PM) equation (Monteith, 1965) is an extended version of the Penman equation to 

estimate actual ET (kg m-2 s-1), which introduces the surface conductance (𝐺𝑠, m s-1):  170 
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 𝑃𝐸𝑇!+ =
Δ(𝑅# − 𝐺) + 𝜌%𝐶&𝐷𝐺𝑎

𝜆(Δ + 𝛾 >1 +
𝐺𝑎
𝐺𝑠?)

 (4) 

The reference crop evapotranspiration (𝑃𝐸𝑇,-) recommended by the UN Food and Agricultural Organization 

(FAO) is a specific application of the Penman-Monteith equation (Allen, Pereira, Raes, & Smith, 1998). It is 

designed for calculating the maximum ET of reference crop under well-watered condition. The general 

formula is given by Allen et al. (2005):  175 

 𝑃𝐸𝑇,- =
0.408Δ(𝑅# − 𝐺) +

𝐶#𝑢)
𝑇% + 273

𝛾𝐷

Δ + 𝛾(1 + 𝐶.𝑢))
 (5) 

where 𝑃𝐸𝑇,-  is also in mm d-1, (𝑅# − 𝐺) is daily available energy (MJ m-2 d-1), Δ and 𝛾 are in kPa oC -1, 𝑇% 

is the air temperature at 2-m height (oC), D is in kPa, 𝐶# (K mm s3 Mg-1 d-1) is a constant describing the effect 

of aerodynamic conductance (𝐺𝑎) that increases with canopy height. The denominator Δ + 𝛾(1 + 𝐶.𝑢)) is a 

special form of the denominator of the Penman-Monteith equation Δ + 𝛾(1 + 𝑅𝑠/𝑅𝑎). 𝐶. ( ,/
,%	1!

, s m-1) is a 

constant that increases with the ratio of surface resistance (𝑅𝑠 = 1/𝐺𝑠) to aerodynamic resistance (𝑅𝑎 =180 

1/𝐺𝑎). There are two sets of 𝐶# and 𝐶., tall crop (𝐶#=1600, 𝐶.=0.38) and short crop (𝐶#=900, 𝐶.=0.34). 

The FAO short crop equation is used in the recent version of the SPEI calculation (Beguería, Vicente-Serrano, 

Reig, & Latorre, 2013). 

The above-mentioned equations treat the surface vegetation as a “big leaf” by considering the canopy 185 

resistance and soil resistance together as the bulk surface resistance, and therefore require fewer parameters 

and less computational costs. One challenge of the big-leaf assumption is to infer bulk surface resistance 

from canopy resistance when the surface is not fully covered by vegetation (Leuning et al., 2008). 

Additionally, we compare the big leaf models with the Shuttle-Wallace (SW) two source model (Shuttleworth 

and Wallace, 1985; Sun et al., 2023), incorporating vegetation cover and separating ET into the sum of 190 

transpiration and soil evaporation:  

	 𝑃𝐸𝑇2( = 𝐶3𝑃𝐸𝑇!+3 + 𝐶/𝑃𝐸𝑇!+/	 (6) 

where the formulas and parameterizations of 𝑃𝐸𝑇!+3, 𝑃𝐸𝑇!+/, 𝐶3, and 𝐶/ are given in the Appendix A. 

3.2 Surface characteristics 

Classical PET definitions rely on surface meteorology and do not faithfully represent the vegetation 

conditions and biophysical constraints and become less accurate over non-uniform land surfaces (Moran et 195 
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al., 1996). To understand the impact of surface characteristics on the AED estimate and drought 

quantification, four factors are explored: (i) aerodynamic conductance, (ii) surface conductance, (iii) canopy 215 

height, and (iv) surface albedo. This section introduces the major options of formulas for these factors.  

3.2.1 Aerodynamic conductance 

Aerodynamic conductance 𝐺𝑎 in the OW and PT methods (Equations 2 and 5) are implicitly derived from a 

smooth surface with low roughness length, which can underestimate the 𝐺𝑎 and PET values in the forests 

(Peng et al., 2019). Open water aerodynamic conductance 𝐺𝑎'( can be obtained by inverting the open water 220 

Penman equation (Equation 2) to match the Penman equation (Equation 1), given by Peng et al. (2019): 

	 𝐺𝑎'( =
6.43(1 + 0.536𝑢)) ⋅ 𝑃/

86.4𝜖𝜆𝜌%
	 (6) 

where 𝑢) is converted from wind speed at 10-m to 2-m height following the wind profile relationship in 

Allen, Pereira, Raes, & Smith (1998). 𝑃/ is near-surface atmospheric pressure (Pa), 𝜖 is the ratio of molecular 

weight of water to dry air (= 0.622). 

Short and tall reference crop aerodynamic conductance 𝐺𝑎,-4/5678 and 𝐺𝑎,-48%99 are given by 225 

	 𝐺𝑎,-4/5678 =
𝑢)
208	 (7) 

	 𝐺𝑎,-48%99 =
𝑢)
110	

(8) 

where 𝑢) is converted from wind speed at 10-m to 2-m height (m s-1).  

Instead of the low 𝐺𝑎 in OW and the fixed 𝐺𝑎 in RC, it is better to generate more realistic surface roughness 

varying by land cover type, hereafter called 𝐺𝑎:-  (Brutsaert & Stricker, 1979; Allen, Pereira, Raes, & Smith, 

1998; Shuttleworth, 1993): 

	 𝐺𝑎:- =
𝑘)𝑢;

ln H
𝑧$ − 𝑑<
𝑧<$ K ln H

𝑧5 − 𝑑<
𝑧<5 K

	 (9) 

where 𝑧$ is the measurement height (m) for wind speed, 𝑧5 is the measurement height (m) for temperature 230 

and humidity, 𝑢; is the wind speed at measurement height (m s-1), 𝑘 is the von Karman constant, 𝑑< is the 

zero-plane displacement height (m), 𝑧<$ and 𝑧<5 are the roughness lengths for momentum and heat (m). 𝑑< 

and 𝑧<$ can be estimated from canopy height (h) following 𝑑< = 2h/3 and 𝑧<$ = h/8 (Brutsaert, 1982). When 

estimating 𝑧<5, instead of assuming 𝑧<5 = 0.1𝑧<$ as in Allen, Pereira, Raes, & Smith (1998), it is common 

Deleted: three 235 

Deleted: ii
Deleted: equations and

Deleted: 2

Deleted: is

Deleted: to use canopy height 240 



	 8	

to introduce a concept of excess resistance (Verma, 1989) and characterize the relationship between 𝑧<5 and 

𝑧<$: 

	 𝑧<5 =
𝑧<$

exp(𝑘𝐵4=)
	 (10) 

The ln(𝑧<$/𝑧<5) term, also known as 𝑘𝐵4=, depends on the roughness Reynold’s number 𝑅𝑒 ∗ or frictional 

velocity (𝑢 ∗), LAI (Yang & Friedl, 2003), and land cover type (Rigden, Li, & Salvucci, 2018). 

For the SW method, the two aerodynamic resistances are given by Eq. A11-17 (Appendix A).	245 

3.2.2 Surface conductance 

In previous PET methods, surface conductance is either not considered or assumed to be constant across 

vegetation types and over time. LAI plays a dominant role in determining the canopy-atmosphere coupling 

and ET partitioning (Peng et al, 2019; Wei et al., 2017; Forzieri et al., 2020). The OW and PT approach does 

not consider the role of LAI. The FAO approach uses a constant LAI throughout the growing season. Here 250 

we adopt a widely used method in estimating actual ET and assume a well-watered condition. The maximum 

surface conductance 𝐺𝑠$%> can be obtained by scaling the maximum stomatal conductance (𝐺𝑠𝑡$%>) with 

LAI (Yan et al., 2012): 

	 𝐺𝑠$%> = 𝐺𝑠𝑡$%> ⋅ 𝐿𝐴𝐼	 (11) 

An alternative formula for 𝐺𝑠$%> is from Zhou et al. (2006): 

	 𝐺𝑠$%> =
𝐿𝐴𝐼"
𝑅𝑠𝑡$?#

	 (12) 

where 𝐿𝐴𝐼" is the effective LAI, which is equal to LAI/2 when LAI is greater than 4.	𝑅𝑠𝑡$?#We introduce 255 

two options to incorporate an average LAI or the seasonal cycle of LAI into the surface conductance.	

3.2.3 Canopy height 

Canopy height (ℎ) is a key parameter in determining aerodynamic conductance. The OW and FAO methods 

generally assume it to be constant across vegetation types and temporal scales. To address this limitation, we 

introduce two methods for estimating canopy height. The first method, eventually used to obtain 𝑑< and 𝑧<$ 260 

for Eq.9, determines canopy height based on land cover type by calculating the median height within each 

land cover from the global tree height dataset. The second method, applied in the SW two source model 

(Appendix A, Eq. A9-10), takes into account both land cover type and dynamic LAI. Each land cover type 

has a range for canopy height defined by the minimum canopy height (ℎ$?#) and maximum canopy height 
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(ℎ$%>). The actual canopy height is then determined by assuming a linear relationship with LAI following 290 

Zhou et al. (2006).  

	 ℎ = ℎ$?# +
(ℎ$%> − ℎ$?#)𝐿𝐴𝐼

𝐿𝐴𝐼$%>
	 (13) 

where 𝐿𝐴𝐼$%> represents the annual maximum value at the grid cell level, obtained from the satellite data. 

Note that h is set to zero if 𝐿𝐴𝐼$%> is zero. 

3.2.4 Albedo 

Current PET methods generally apply a uniform grass albedo value of 0.23 regardless of the underlying land 295 

cover type (Allen, Pereira, Raes, & Smith, 1998). To improve upon this assumption, we also introduce an 

option of introducing seasonal albedo cycle from satellite observations to both align albedo with specific land 

cover type and reflect temporal variations accurately. 

3.3 Parameterizations of surface characteristics 

We use a simple look-up table approach to provide parameters based on land cover type (Fig. 1), summarized 300 

in Table 1.  

For Eq. 9, given that NLDAS-2 provides wind speed at a 10 m level, we used a measurement height = 10 m 

for both wind speed and temperature because the variation in the vertical temperature profile (2-10 m) is 

negligible compared to that of wind speed. 𝑧<5 is then estimated based on land cover specific 𝑧<$ and 𝑘𝐵4= 

(Equation 10). For 𝑧<$, we apply the typical values based on median canopy height for different land cover 305 

types, and estimated 𝑑< from 𝑧<$ (𝑑< ≈ 16𝑧<$/3).  

For 𝑘𝐵4=, we adopt estimates from a collection of literature as below. The forests generally have lower 𝑘𝐵4= 

values (𝑘𝐵4= = 1 for needleleaf or mixed forest, 𝑘𝐵4= = 0.5 for broadleaf) than shrublands (𝑘𝐵4= = 3.75) 

and croplands (𝑘𝐵4= = 1.75), based on the values of Rigden et al. (2018) for the medium emissivity case (𝜖 

= 0.96). For grasslands, 𝑘𝐵4= = 2.25 is computed as the average of short grass (𝑘𝐵4= = 2.0) and medium-310 

length grass (𝑘𝐵4= = 2.5), based on Brutsaert (1982). For barren or bare soil, we estimate 𝑘𝐵4= = 3 by taking 

the average of all observed 𝑘𝐵4= in Yang et al. (2008). Nadeau et al. (2009) suggested 𝑘𝐵4= = 6 for the 

urban area. For water body, wetlands, and snow, we adopt the widely-used 𝑘𝐵4= = 2, as Zilitinkevich et al. 

(2001) showed that 𝑘𝐵4= over the water surface is within the 0∼4 range. There are large variations in the 

observed 𝑘𝐵4= for savannas. Troufleau et al. (1997) reported 𝑘𝐵4= = 7.9 for fallow savanna; Kustas et al. 315 

(1989) provided a range of 1 to 11; Stewart et al. (1994) found an average value of 𝑘𝐵4= = 5.8, similar to the 

study by Lhomme et al. (1997) that reported 𝑘𝐵4=  = 5.9 for Sahelian vegetation; Verhoef et al. (1997) 
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suggested a high value of 𝑘𝐵4= = 12.4. We choose 𝑘𝐵4= = 7 as most of these observed values fall into the 

range of 6-8.  335 

𝑧<5 is then estimated based on land cover specific 𝑧<$ and 𝑘𝐵4= (Eq. 10). 

To calculate surface conductance in Eq. 11-12, we provide two set of parameterizations based on land cover 

type. The first set is derived from the findings of Kelliher, Leuning, Raupach, & Schulze (1995). For 𝐺𝑠𝑡$%>, 

the measured values are ranging from 9 mm/s for natural vegetation to 12 mm/s for crops, as detailed in Table 

1. They also found that 𝐺𝑠$%> estimates are at most three times of the 𝐺𝑠𝑡$%> estimates, therefore we set a 340 

maximum limit for 𝐿𝐴𝐼 = 4. The second set uses the minimum stomatal resistance 𝑅𝑠𝑡$?#, following Zhou 

et al. (2006), also listed in Table 1. 

Table 1. 𝑮𝒂 and 𝑮𝒔 parameters by IGBP land cover*. 

ID Code Name  𝑧!" (m) 𝑑! (m) 𝑘𝐵#$  𝐺𝑠𝑡"%&	j 
(mm s-1) 

𝑅𝑠𝑡"'( k 

(s m-1) 

0 WB Water body  0.0004 a 0.002 2.0 e  NA NA 
1 ENF Evergreen needleleaf  1.1 b 5.9 1.0 f  9.3 150 
2 EBF Evergreen broadleaf  1.1 b 5.9 0.5 f  9.3 150 
3 DNF Deciduous needleleaf  0.9 b 4.8 1.0 f  9.3 150 
4 DBF Deciduous broadleaf  0.9 b 4.8 0.5 f  9.3 150 
5 MF Mixed forest  0.9 b 4.8 1.0 f  9.3 150 
6 CSH Closed shrublands  0.2 a 1.1 3.75 f  9.3 150 
7 OSH Open shrublands  0.2 a 1.1 3.75 f  9.3 100 
8 WSA Woody savannas  0.4 a 2.1 7.0 g  9.3 180 
9 SAV Savannas  0.4 a 2.1 7.0 g  9.3 120 
10 GRA Grasslands  0.05 a 0.27 2.25 a  12 115 
11 WET Permanent wetlands  0.04 c 0.21 2.0 e  12 65 
12 CRO Croplands  0.12 d 0.64 1.75 f  12.2 90 
13 URB Urban and built up  1.1 b 5.9 6.0 h  NA NA 
14 MOS Cropland/vegetation  0.12 d 0.64 1.75 f  12.2 120 
15 SNO Snow/ice  0.00001 a 5.3E-05 2.0 e  NA NA 
16 BSV Barren  0.01 d 0.053 3.0 i  NA NA 

*The above estimates are collected from aBrutsaert (1982), bCampbell and Norman (1998), cAcreman et al. 
(2003), dMonteith and Unsworth (2013), eZilitinkevich et al. (2001),  fRigden et al. (2018), gKustas et al. 345 
(1989), Stewart et al. (1994), Troufleau et al. (1997), Lhomme et al. (1997), and Verhoef et al. (1997), 
hNadeau et al. (2009), iYang et al. (2008), jKelliher et al. (1995), kZhou et al. (2006). 

 

4 Evaluation of the PET methods and parameterizations  
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Given the substantial divergence in the PET magnitudes among different models (Peng et al., 2019), a direct 

comparison of the absolute values among methods is not meaningful. However, the performance in 360 

representing drought between PET methods should be comparable. We hypothesize that incorporating the 

parameters or model structures in Section 3 into the existing methods will increase the accuracy of drought 

quantification.  

We integrate the PET methods into the SPEI drought index across 1-, 3-, 6-, and 12-month time scales over 

the CONUS for the period of 1981-2017. The SPEI is based on the climatological water balance (water supply 365 

– atmospheric evaporative demand) cumulated over multiple time scales (e.g., 1, 3, 6, 12 months) following 

a similar procedure as in the SPI computation (Vicente-Serrano, Beguería, & López-Moreno, 2010). The 

accumulated water balances are fit using the log-logistic distribution and the probability distribution function 

is normalized to a standardized variable with mean = 0 and standard deviation = 1, termed as 1-, 3-, 6-, 12-

month SPEI, respectively. We calculate the monthly SPEI with the SPEI R package (https://cran.r-370 

project.org/web/packages/SPEI/) using daily meteorological data. We choose the SPEI driven by zero PET 

as a control scenario to showcase the net effect of introducing existing PET methods into traditional SPI 

drought index. We choose the SPEI driven by the Open Water (OW) method as the reference method, because 

the OW approach is the simplest scenario with minimal surface characteristics. 

Soil moisture is a direct measure of drought severity. Therefore, we use the correlation between SPEI and 375 

soil moisture observations to quantify the skill of PET methods. We aggregated the daily ESA CCI surface 

soil moisture (SMsurf, m3 m-3) to monthly averages between 1981-2017 over the CONUS. To match the 

SPEI on multiple time scales, we calculated the moving average of SMsurf for 1, 3, 6, 12-month periods, 

respectively. Our analysis focuses on the growing season (April-September), because PET is close to zero 

during the cold season (not shown). Given the monthly SPEI and SMsurf series during the growing season, 380 

Pearson correlation coefficient (𝑅) is calculated for each pair of the SPEI and SMsurf monthly series in each 

grid cell of the CONUS on the time scale of 1, 3, 6, and 12 months. Then we calculate the change of 

correlation for each method from the control scenario or the reference. This change can identify whether a 

PET method causes an improvement in drought quantification relative to the reference approach. 

4.2 Initial examination of surface characteristics 385 

We conducted a pilot analysis to identify the relative importance of different surface characteristics. To test 

the hypotheses, we use the PM algorithm for big leaf methods, so that we can easily control a specific set of 

parameters that represents a process option. Each of the above processes are regarded as different options: 

(i) using active surface roughness or open water surface, (ii) seasonally varying or fixed surface conductance, 

and (iii) seasonally varying or fixed surface albedo. Table 2 provides the PET methods and the parameters in 390 
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the preliminary analysis. We selected four existing PET methods and seven testing methods. The first set of 

methods (a-d) are the existing physically-based PET approaches: the open-water Penman equation (OW), the 400 

FAO reference crop evapotranspiration for tall crop and short crop, and the Priestley-Taylor equation (PT).  

First, in methods (e), (f), (g), the aerodynamic conductance module is not active as we set 𝐺𝑎 to the open 

water 𝐺𝑎6@, indicating a smooth surface with low roughness (Eq. 6). In methods (h), (i), (j), (k), we activate 

the aerodynamic conductance using realistic surface roughness (Eq. 9). Second, in methods (e), (i), (j), the 

surface conductance parameter is unconstrained as we set 𝐺𝑠𝑡$%> to infinity. In methods (f), (g), (h), (k), we 405 

activate the surface conductance using seasonal LAI dynamics and 𝐺𝑠𝑡$%>  from Kelliher et al. (1995). 

Lastly, in methods (f), (i), (k), the albedo parameter is not active as we set 𝛼 to a constant (grass: 0.23, water: 

0.08). In methods (e), (g), (h), (j), we activate the albedo parameter using seasonal albedo dynamics.  

Table 2. Summary of the PET methods with their ID, name and abbreviation code, and details about 

surface characteristics. 410 

  𝐺𝑎 𝐺𝑠"%& Albedo (𝛼) 

ID Method (Code) Open Water Rough surface Infinite Constant Seasonal Constant Seasonal 
a Open Water (OW) X  X   X  

b FAO Tall reference 
crop (RC-tall)  X  X  X  

c FAO Short reference 
crop (RC-short)  X  X  X  

d Priestley-Taylor (PT)      X  

e 
Open Water Ga/ 

Infinite Gs/ 
Seasonal 𝛼 

(GAow_GSinf_ALBs) 

X  X    X 

f 
Open Water Ga/ 

Seasonal Gs/ 
Constant 𝛼 

(GAow_GSs_ALBc) 

X    X X  

g 
Open Water Ga/ 

Seasonal Gs/ 
Seasonal 𝛼 

(GAow_GSs_ALBs) 

X    X  X 

h 
Rough Ga/ 

Seasonal Gs/ 
Seasonal 𝛼 

(GAr_GSs_ALBs) 

 X   X  X 

i 
Rough Ga/ 
Infinite Gs/ 
Constant 𝛼 

(GAr_GSinf_ALBc) 

 X X   X  

j 
Rough Ga/ 
Infinite Gs/ 
Seasonal 𝛼 

(GAr_GSinf_ALBs) 

 X X    X 

k 
Rough Ga/ 

Seasonal Gs/ 
Constant 𝛼 

(GAr_GSs_ALBc) 

 X   X X  
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*Note that many methods in these experiments are unrealistic due to the inconsistencies of the surface 

conditions. Our attention is to include as many combinations as possible for a preliminary analysis.  

 

In Section 5.1, we compare the CONUS averaged 𝑅 values between the pairs of PET methods that share the 

same surface characteristics except for one of the features (see Fig. 3). The first feature surface roughness is 415 

determined by the way 𝐺𝑎 is estimated. We compare the parameter set between rough and the open water 

surface by calculating the differences (Rough - Open Water) for the following pairs of experiments including 

(i) GAr_GSinf_ALBc - (a) OW, (j) GAr_GSinf_ALBs - (e) GAow_GSinf_ALBs, and (k) GAr_GSs_ALBc 

- (f) GAow_GSs_ALBc. In terms of the canopy conductance, we calculate the differences between seasonal 

and infinite 𝐺𝑠$%> (Seasonal - Infinite) for the following pairs of experiments: (f) GAow_GSs_ALBc - (a) 420 

OW, (g) GAow_GSs_ALBs - (e) GAow_GSinf_ALBs, and (k) GAr_GSs_ALBc - (i) GAr_GSinf_ALBc.  

4.3 Comparison of PET parameterizations 

Based on the results of section 5.1, we further examine different parameterizations for 𝐺𝑎 and 𝐺𝑠 in order to 

identify optimal PET algorithms (shown in Section 5.2). We establish a control scenario where PET is not 

considered at all in the SPEI, equivalent to the traditional SPI. The PET methods under consideration have 425 

two categories, the big leaf model and the two source model (Fig. 4 left table). The big leaf model include 

three traditional methods (Open Water [OW], Reference Crop for short [RC-short], and tall [RC-tall] crops) 

and two land cover dependent (LC) methods. The LC method uses the same aerodynamic conductance 

method (Eq. 9) but differ in their surface conductance parameterizations: LC-Kelliher, which adopts 𝐺𝑠𝑡$%> 

from Kelliher, Leuning, Raupach, & Schulze (1995), and LC-Zhou, which uses 𝑅𝑠𝑡$?# from Zhou (2006). 430 

Additionally, for each big leaf model, alternative 𝐺𝑠 parameterizations based on either OW or RC-short are 

provided for comparative purpose, even though they are not considered unrealistic. We then calculated Δ𝑅 

between each PET method and the control scenario (set PET to zero).  

 

 435 
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5 Results 

5.1 Initial assessment of surface characteristics 

We conducted a preliminary analysis to identify the relative importance of different surface characteristics. 

We examine seven algorithms (e-k) to isolate the effects of surface characteristics on PET (Table 2). Fig. 2 440 

displays the spatial patterns of growing season averages of these methods. For the classical Penman/Penman-

Monteith methods (Fig. 2a-c), the highest mean growing season AED values are found in southern California, 

Arizona, and Texas, while the PT method (Fig. 2d) predicts the largest AED values in Texas and Florida. 

The spatial patterns of PET based on the rough surface (Fig. 2h-l, Rough 𝐺𝑎) are very different from those 

methods that assume a universal reference height (Fig. 2b-c, reference crop) or open water surface (Fig. 2a, 445 

e-g). Specifically, the regions which exhibit large PET estimates (> 250 mm/mon, Fig. 2h-k) are forests, 

such as ENF in the Pacific Northwest, DBF in the Northeast, and MF in the southeastern U.S.. Interestingly, 

although the methods using constant albedo (𝛼=0.08) have generally larger AED values than those using 

seasonal albedo, the differences in the spatial pattern between the two are almost negligible (Fig. 2a vs. e, i 

vs. j, k vs. h). The combination of the rough aerodynamic and unconstrained surface conductance, represented 450 

by (i) and (j), produces extremely high monthly PET values with means at 330 to 340 mm/mon. The 

remaining methods also predict a wide range of mean monthly totals. On average, the big-leaf method (Fig. 

2h) provides the most constrained (smallest) PET estimates. 

	

Figure 2. Growing season averages of AED derived from four PET methods and seven 455 

testing algorithms over the CONUS. Details and ID for each method are listed in Table 2.  
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Assessing the change between pairs of the above methods can identify whether adding/removing a surface 

feature eventually causes an improvement in drought quantification (Fig. 3). Interestingly, activating realistic 

surface roughness does not necessarily increase, but may even decrease the correlation (𝛥𝑅 ranging from -

0.01 to 0.01 for all time scales). Canopy conductance stands out to be the most important feature for 465 

enhancing the skill of drought index (𝛥𝑅 = 0.015-0.03), meaning that adding the plant phenology driven by 

LAI can largely improve the seasonal variations of drought index and hence the correlation with SMsurf. We 

compare Δ𝑅 of four pairs with an inconsistent surface (e.g., a combination of open water 𝐺𝑎 and seasonal 

𝐺𝑐) subtracting from a consistent surface and find that methods with consistent surface features have higher 

correlations with SMsurf. Surprisingly, seasonal and constant albedo showed no significant difference on the 470 

correlations, possibly because of the little variation of albedo during the growing season. The differences in 

the spatial pattern between constant and seasonal albedo are almost negligible (Fig. 2). In subsequent 

sections, we default to using the seasonal albedo in our PET methods to fully represent the surface 

characteristics.  

 475 

Figure 3. Differences in spatially averaged correlation (𝚫𝑹) of pairs of PET methods that 

share the same surface characteristics except for one of the surface features: surface 

roughness, canopy conductance, albedo, and overall consistency among the above features. 

The white dots indicate the average 𝚫𝑹 between the four methods and the reference method. 

 480 
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5.2 Performance of PET parameterizations 

Fig. 4 shows Δ𝑅 between each PET method and the control scenario (set PET to zero) for all grids, forested 

grids, and nonforested grids using 1-month SPEI. The big leaf methods are grouped by the parameterization 

of 𝐺𝑎 and 𝐺𝑠. Incorporating the benchmark OW method into the SPEI increases 𝑅 by 0.042, shown by the 495 

top horizontal bars. Among the conventional PET methods, the tall reference crop (RC-tall) method stands 

out. Over the CONUS, it improved Δ𝑅 relative to control scenario by 29% more than the OW method (0.054 

versus 0.042). The short reference crop (RC-short) method has an identical averaged 𝑅 with the OW method. 

Although the RC-tall algorithm (Allen et al., 2005) is less known than the widely used RC-short algorithm 

(Allen, Pereira, Raes, & Smith, 1998), our results suggest that the SPEI driven by RC-tall correlates better 500 

with the SMsurf dynamics. 

 

Figure 4. Differences in correlations (𝚫𝑹) for selected PET methods versus the control scenario 

(PET = 0). Correlations were computed between the 1-month SPEI and SMsurf series across: 

(a) CONUS, (b) forested grids, and (c) nonforested grids. The bars represent the mean 𝚫𝑹 and 505 

the black dots represent the median 𝚫𝑹. The top blue bars show 𝚫𝑹 in the OW approach 

versus PET = 0 as a reference. For each bar, the darker shade indicates the reference 𝚫𝑹 and 

the lighter shade represents any improvement (or decline) relative to the reference. Methods 

with unrealistic surface conditions are highlighted with a hatch pattern, without any specific 

Method ID. 510 

One encouraging outcome is the performance improvement seen in the two big leaf algorithms incorporating 

realistic surface conductance. Activating both surface roughness and seasonal 𝐺𝑠 produces high correlations 

of SPEI with SMsurf. These algorithms improve the OW method (Δ𝑅 = 0.042) by 24-29% (Δ𝑅 is 0.052-

0.054). Methods where 𝐺𝑎 is determined by land cover (the cyan bars in Fig. 3a) especially improve the 

correlations with SMsurf (Fig. 3a). It confirms our hypothesis that incorporating realistic vegetation 515 

information in atmospheric evaporative demand can enhance drought characterization. Finally, the two 
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source Shuttleworth-Wallace (SW) method outperforms the OW method as expected. However, the SW 

method produces a similar 𝑅 as the LC-Kelliher method. This suggests that the simple big leaf model in 

combination with the land cover details can achieve the same efficacy of the more complicated two source 

model. While we evaluated several unrealistic methods (see hatch patterns) with inconsistent surface 

assumptions, most did not outperform the OW method. One exception is the pairing of land cover-specific 530 

𝐺𝑎 with the RC-short 𝐺𝑎, which yields a high 𝑅. 

Over the CONUS, RC-tall, LC-Kelliher, and SW are the top three methods with similar average 𝑅. However, 

when we evaluate the performance in the forested areas (Fig. 3b), LC-Kelliher exhibits the most significant 

enhancement in Δ𝑅 to control scenario, with an increase of 89% over OW’s improvement (0.068 relative to 

0.036). RC-tall and SW improve Δ𝑅 to control scenario by 39% (0.05) and 50% (0.054), respectively. In 535 

nonforested areas (Fig. 3c), RC-tall has the best performance, followed by SW. The SW method, designed 

for sparse vegetation, naturally demonstrates strong performance in these regions. However, it is surprising 

to see that the simple parametrized RC-tall can outperform SW. Conversely, LC-Kelliher only exhibits a 

moderate improvement in Δ𝑅. This suggests that, particularly in the sparsely vegetated areas, RC-tall can 

serve as a strong candidate for PET estimates and drought characterization.  540 
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5.3 Spatial patterns analysis 

In the subsequent sections, we compare the LC-Kelliher (referred to as LC) method with the three widely 

used methods: OW, PT, RC-short (simply referred to as RC), and the two source SW method. The time series 555 

of these PET methods as well as the SMsurf time series are shown in the Fig. 5. The OW approach serves as 

the reference. The highest 𝑅 is observed for long-term drought (12-month, average 𝑅 = 0.73) and the lowest 

is found in medium-term drought (3- and 6-month, average 𝑅 = 0.48). This suggests that the meteorology-

driven SPEI can generally reproduce soil moisture dynamics, especially on an annual time scale.  

 560 

Figure 5. Temporal evolution of PET methods, SPEIs, and SMsurf. a) The annual 

precipitation and PET (mm yr-1) from five key methods between 1981-2017. b)-e) SPEI series 

driven by the five PET methods, aligning with the SMsurf time series for four time scales: 1, 

3, 6, 12-month. 

 565 

Fig. 6 displays the spatial distribution of correlations between SPEI driven by OW and SMsurf, along with 

the differences in correlations of PT, RC-short, LC, and SW compared to OW. PT consistently exhibits lower 

correlations than OW over most regions, with an average decrease of 0.04, and has especially weak 

correlations in the southwest U.S. (lower by 0.15). Interestingly, the widely used RC method for SPEI 
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presents little improvement over OW with minimal increases in correlation. LC shows substantial 

improvements in some areas , with Δ𝑅 exceeding 0.16, notably in the eastern and pacific western U.S.. The 

enhancements of LC are prominent but can be diluted when averaged across CONUS, with Δ𝑅 relative to the 

control scenario 0.012 higher than OW (Fig. 4a). This is especially true when considering LC’s less favorable 

performance in the wouthwest and midwest U.S.. SW also exhibits notable improvements in the eastern and 580 

pacific western U.S., with a magnitude of improvement falling between LC and RC. It is encouraging to see 

that LC outperforms SW in many eastern US grid cells (Δ𝑅 = 0.15 versus Δ𝑅 = 0.05), given LC’s much 

simpler parameterization. Though it is worth noting that both LC and SW experience performance declines 

in the Southwest, with LC slightly worse than SW. On the other hand, RC robustly displays improvements 

in this particular area. 	585 

 

Figure 6. The first column displays the correlations between SPEI driven by OW and 

SMsurf. The four columns on the right show the differences in correlations (𝚫𝑹) of PT, RC, 

LC, and SW relative to OW. 

 590 

We further delve into the relative performance of these methods summarized by major vegetation types and 

by aridity (Fig. 7). LC increases 𝑅  significantly in forests, especially in evergreen broadleaf, deciduous 

broadleaf, and mixed forests, where the largest 𝛥𝑅 exceeds 0.1, and the average 𝛥𝑅 hovers around or above 

0.05 for 1-month scale (Fig. 7a). Notable improvements in evergreen needleleaf forest, woody savanna, and 

croplands compared to the OW are also observed.  595 
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For the time scale of 12-month (Fig. 7c), OW has an already high the average 𝑅 of 0.73 across the CONUS. 

LC’s performance is outstanding in forests, with an average 𝛥𝑅  of about 0.05 and the largest 𝛥𝑅  even 600 

exceeding 0.25. In evergreen needleleaf forests, LC’s performance is significantly higher than that of the 1-

month time scale. In humid regions, LC’s improvements over SW becomes even more apparent compared to 

the 1-month time scale (Fig. 7d).  

 

Figure 7. Violin plots of differences in correlations of three PET methods relative to OW, 605 

grouped by vegetation types and aridity.  

 

In contrast, the average performance of LC in grasslands, shrublands, and savannas (Fig. 7a and c), which 

are the dominant vegetation types in the western CONUS, are equivalent to OW (except for open shrubland 

where LC slightly underperforms OW). The magnitude of averaged 𝛥𝑅 of LC is slightly smaller than SW, 610 

mainly due to LC’s weaker performance in the arid shrublands and grasslands, which cover large portions of 

the CONUS. Both LC and SW show less advantage or even worse performance than RC and OW in 

nonforested and arid grid cells (Fig. 7c-d). 
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6 Discussion 

6.1 Interaction between surface features 620 

Fig. 3 provides important insights into the SPEI sensitivity to different surface features. Introducing 𝐺𝑠 with 

seasonal vegetation dynamics accounts for most of the total improvement of PET algorithm. This confirms 

that the FAO approaches are more favored than the OW approach due to its constraints on 𝐺𝑠. This highlights 

the importance of leaf area index (LAI) as a vegetation feature for drought depiction. LAI is a scaling factor 

to upscale 𝐺𝑠𝑡$%> to maximum canopy conductance. This is different from the drought index based on the 625 

normalized difference vegetation index (NDVI) or LAI, which requires the real-time dynamics of satellite 

data. This approach only requires the climatology of LAI, which can be easily implemented for drought 

forecasting where real-time or near-future data are not available. 

Using realistic surface roughness does not necessarily improve the overall performance of the SPEI. In fact, 

the consistency between aerodynamic conductance and surface conductance is more critical for the skill of 630 

PET method. Previous study by Peng et al. (2019) explains the linkage between the ratio of actual ET to PET 

and the ratio of 𝐺𝑎 to 𝐺𝑠. When 𝐺𝑎/𝐺𝑠 is large, the ratio of actual ET to PET becomes smaller. Although our 

study focused on the maximum evapotranspiration given the realistic vegetation condition, such a 

relationship remains valid. Thus, a large 𝐺𝑎/𝐺𝑠𝑡$%>  ratio should better limit PET with realistic surface 

constraints. In fact, the LC approach activates surface roughness and increases 𝐺𝑎 , while constraining 635 

𝐺𝑠𝑡$%>  and reducing 𝐺𝑠 . Altogether these factors increase the 𝐺𝑎 /𝐺𝑠  ratio and result in significant 

improvement in capturing the temporal evolution of SMsurf.  

6.2 Surface characteristics matter in the forests 

Our analysis concludes that incorporating surface features can largely improve the accuracy of drought 

monitoring in the forests. There are two vegetation groups with significantly improved correlation after 640 

incorporating the realistic surface characteristics. Forests over the eastern and pacific western U.S., such as 

evergreen broadleaf and deciduous broadleaf forests, the LC method exhibits large 𝛥𝑅 compared to OW (up 

to 0.12 for 1-month and up to 0.25 for 12-month, Fig. 5a, c). While OW has a 𝛥𝑅 at about 0.04 compared to 

the zero PET control scenario (Fig. 3b), LC has an average 𝛥𝑅 of 0.05 relative to OW in these forests (Fig. 

5a). This means the improvement of LC over control scenario is more than doubling of OW. LC also displays 645 

a significant increase in 𝑅 at about 0.025 in woody savanna. The enhancements in the forests or woody 

savannas are the most predominant since LAI in forests is relatively variable, and surface roughness is also 

the strongest. Although the southeastern U.S. has a humid subtropic climate, this region also suffered from 

periodic droughts in 1986–1988, 1998–2002 and 2006–2009 (Seager, Tzanova, & Nakamura, 2009; Pederson 
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et al., 2012), which is consistent with the increased forest drought severity from 1987-2013 (Peters, Iverson, 

& Matthews, 2014; Clark et al., 2016). Drought monitoring in these regions is also critical and can benefit 

from our approach that significantly improve the spatial and temporal accuracy in the forests. In addition, 

future improvements to our approach could benefit from incorporating newly available datasets such as Lang 

et al. (2023) for canopy height. 655 

In contrast, the short-grass regions (grasslands, shrublands, and savannas) located in the western U.S. exhibit 

minimal improvements for LC. Given that the RC-tall method—a similar big leaf model—performs better 

than LC in these areas (Fig. 4), it suggests that uncertainties in LC’s 𝐺𝑠𝑡$%> could result in these outcomes. 

Additionally, a comparison between 𝐺𝑠𝑡$%>  and 𝑅𝑠𝑡$?#  (used in SW) highlights uncertainties in this 

parameter. For instance, 𝑅𝑠𝑡$?#  in shrublands, grasslands, and savannas ranges from 100-180 s m-1 660 

(equivalent to 𝐺𝑠𝑡$%> of 5-10 mm s-1), which is generally lower than 9-12 mm s-1 reported by Kelliher et al. 

(1995). These findings highlight the need for in-situ measurements of surface conductance in these areas. 

Furthermore, these areas have sparse vegetation cover, and thus LAI plays a less effective role in determining 

the seasonal dynamics of PET. In the meantime, these areas are located in the arid regions (Fig. 7), the 

improvements of PET do not have significant effects on modeling the soil moisture, and precipitation 665 

dynamics may dominate the soil moisture variations. 

6.3 Strategies for PET method selection 

The LC method not only provides modest absolute PET values (Fig. 5a) but also displays better performance 

across many areas (Fig. 6). Specifically, LC estimates an annual PET of roughly 1200 mm, consistent with 

PET estimations for the same region as well as temperate zone reported in a recent study (Fig.8 in Sun et al., 670 

2023). 

We recommend the use of the LC parameterization for drought monitoring in the forests, in which the 

roughness and surface conductance parameters vary with realistic vegetation conditions. LC is superior than 

OW or RC-short because of better performance, and compared to SW, it is both better performing and a 

simpler approach in the forested areas. 675 

For shrublands and grasslands, we recommend the use of RC-tall to replace the more widely used RC-short 

for drought monitoring. We found that the RC-tall approach has a higher skill than the RC-short approach 

that is more widely used. The main difference between these two methods is the 𝐶# constant that describes 

the effect of aerodynamic conductance (Allen et al, 2005). The implementation of tall reference (𝐶# = 1600) 

seems to work better than the short reference (𝐶# = 900) over the CONUS. It is worth noting, however, that 680 
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the FAO approaches assume a universal 𝐶# regardless of actual vegetation type. The better skill of RC-tall 685 

will not always hold, which may overestimate PET in semi-arid non-vegetated regions.  

For sparse vegetation, since the responses of the components of evapotranspiration to the environmental 

drivers are different (Katul, Oren, Manzoni, Higgins, & Parlange, 2012; Or & Lehmann, 2019), the 

partitioning between canopy and soil can also play a role in determining AED. The SW model significantly 

improves the SPEI skill driven by the OW approach. It outperforms LC in the shrublands and grasslands. 690 

Despite its complexity, it is a good choice for drought monitoring in these vegetation types (Sun et al., 2023).  

For croplands, we recommend choosing between RC-tall versus RC-short based on the actual crop canopy 

height. The more realistic approach is to use RC-tall for higher crops. Lastly, the PT method has the poorest 

correlation with soil moisture and is unlikely to capture drought dynamics.  

6.4 Bridging gaps in drought prediction 695 

Motivated by the question of whether incorporating surface characteristics can improve drought prediction, 

we overcome several limitations of previous drought quantification methods. Firstly, our study presents a 

different approach whereby we focus on the maximum possible evapotranspiration for a given vegetation 

condition. This concept allows a physically meaningful definition of evaporative demand for the non-uniform 

land surfaces.  700 

Secondly, the ultimate goal of PET calculation is to simulate ET and to quantify drought. Despite the 

simplicity of calculating PET using the existing Penman-type methods, the biggest challenge for assessing 

these methods is validation. Since the real evaporative demand rate is unattainable from observations, it is 

challenging to validate which PET method is superior directly. Even using ET observations for PET 

validation can be problematic because biased PET estimates and wrong surface biophysical parameters can 705 

still produce accurate ET estimates for locations with ET measurements (Peng et al., 2019). Our study 

evaluates the PET methods by comparing drought index with independently observed soil moisture (Vicente-

Serrano et al., 2012). This approach helps diagnose the most appropriate PET approach for drought 

quantification directly while avoiding the complexity and divergence caused by various PET definitions. 

While the absolute improvements in correlation with soil moisture appear modest, they represent significant 710 

percentage changes of 25-30% and notable local improvements. We acknowledge the need for evaluation of 

the effectiveness in addition to the temporal correlations. Specifically, future studies should evaluate the 

capability of the land cover specific approaches to accurately capture extreme events. 

Finally, our approach bridges the gap between the two methodologies for quantifying soil-moisture drought, 

which is of most relevance to agriculture (Seneviratne, 2012). Since soil moisture observations are limited 715 
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by inadequate measurement networks, drought indices such as the SPEI are often used to quantify drought. 

In hydrology, a drought index is a simple water balance model driven by surface meteorology without the 

use of any surface characteristics. Its shortcomings are the neglect of seasonally varying vegetation cover 

and the incapability to capture the vegetation control on transpiration. An alternative is to use land surface 

models to estimate large-scale soil moisture (Sheffield, & Wood, 2007). This approach often builds in 720 

vegetation dynamics and can provide temporally consistent soil moisture simulations, but it also requires 

substantial efforts to prepare meteorological forcings at high temporal resolution, set up the domain, spin up, 

and calibrate. Our approach is a compromise between the above two types of models, which is more realistic 

and process-based than the commonly used drought index while being easy-to-implement and less data-

intensive than a land surface model. 725 
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7 Conclusions 

To understand whether incorporating surface characteristics can improve drought prediction, we revise 

current PET methods in a newly developed drought index (SPEI), using the concept of maximum ET for any 730 

given vegetation condition. We use a simple look-up table approach combining in situ measurements and 

large-scale data fusion products for the key surface and aerodynamic parameters,. This study also presents a 

novel application of independent soil moisture observations to diagnose the most appropriate PET approach 

for drought quantification. Our approach is proved to be more effective than widely used big leaf methods 

and two source model in accurately predicting soil moisture spatiotemporal dynamics in the forests and humid 735 

regions. LAI has a particularly important influence on the skill of the SPEI. This new yet simple approach 

strikes a balance between a meteorology-driven water balance model and a complex land surface model for 

drought prediction. It could improve the accuracy of the drought reconstruction in forests and displays great 

potential to improve real-time drought forecast.  

  740 
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Appendix A. Shuttleworth-Wallace Model 

The Shuttleworth-Wallace (SW) two source model was developed to more accurately represent 
evapotranspiration from the sparse vegetation. Different from the big leaf models, SW treats the surface as 
a two-component structure: sparse vegetation (e.g., row crops) and soil. The following formulas are 745 
adapted from Equations 11-18 in Shuttleworth and Wallace (1985). 

	 𝑃𝐸𝑇2( = 𝐶3𝑃𝐸𝑇!+3 + 𝐶/𝑃𝐸𝑇!+/ 	 (A1) 

where 𝑃𝐸𝑇!+3  and 𝑃𝐸𝑇!+/  are Penman-Monteith like combined equations (Eq. 4) for a closed canopy and 
bare soil. Each term is given by the following formulas 

 𝑃𝐸𝑇!+3 =
Δ(𝑅# − 𝐺) + (𝜌%𝐶&𝐷 − Δ𝑟%3(𝑅#/ − 𝐺))/(𝑟%% + 𝑟%3)

𝜆(Δ + 𝛾 H1 +
𝑟/3

𝑟%% + 𝑟%3K
)

 (A2) 

 𝑃𝐸𝑇!+/ =
Δ(𝑅# − 𝐺) + (𝜌%𝐶&𝐷 − Δ𝑟%/(𝑅# − 𝑅#/))/(𝑟%% + 𝑟%/)

𝜆(Δ + 𝛾 H1 +
𝑟//

𝑟%% + 𝑟%/K
)

 (A3) 

	 𝐶3 =
1

1 + 𝑅3𝑅%
𝑅/(𝑅3 + 𝑅%)

	 (A4) 

	 𝐶/ =
1

1 + 𝑅/𝑅%
𝑅3(𝑅/ + 𝑅%)

	 (A5) 

	 𝑅% = (Δ + 𝛾)𝑟%%	 (A6) 

	 𝑅/ = (Δ + 𝛾)𝑟%/ + 𝛾𝑟//	 (A7) 

	 𝑅3 = (Δ + 𝛾)𝑟%3 + 𝛾𝑟/3 	 (A8) 

where many terms have been given by Eq.1-2, except 

𝑅#/  = net radiation over soil surface = 𝑅#/c1 − 𝑓A"Be = 𝑅#/ ⋅ exp	(−0.5 ⋅ 𝐿𝐴𝐼) 750 

𝑟%% = aerodynamic resistance between canopy height and reference level (s m-1) 

𝑟// = surface resistance of the substrate (s m-1) 

𝑟%/ = aerodynamic resistance between substrate and the canopy (s m-1) 

𝑟/3 = bulk stomatal resistance of the canopy (s m-1) 

𝑟%3 = bulk boundary layer resistance of the vegetative elements in the canopy (s m-1). 755 

In this study, the resistances are parameterized for the feasible minimal values based on the water-unlimited 
assumption for estimating PET. The substrate resistance 𝑟// is set to zero s m-1 as a saturated surface. The 
canopy resistances are dependent on LAI (Shuttleworth and Wallace, 1985, Equations 19-20). 
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	 𝑟/3 	= 𝑅𝑠𝑡 ⋅
1

𝐿𝐴𝐼"
	 (A9) 

	 𝑟%3 	= 𝑟C ⋅
1

2𝐿𝐴𝐼	
(A10) 

Stomatal resistance 𝑅𝑠𝑡 is set to 𝑅𝑠𝑡$?# obtained by the land cover types in Table 1. The effective leaf area 
index 𝐿𝐴𝐼" is LAI/2 and is capped to 2 (even when LAI is greater than 4). Note that, 𝑟/3 does not have valid 
values for non-vegetated grid cells (at a specific time of the year or location). The leaf boundary layer 
resistance 𝑟C is set to a value of 50 s m-1 (Brisson et al., 1998).  855 

The formulas of aerodynamic resistances are given as follows (Shuttleworth and Gurney, 1990; Zhou et al., 
2006). 

	 𝑟%/ 	=
ℎ ⋅ exp(𝑛) ln H

𝑧$ − 𝑑<
𝑧< K

𝑛𝑘)(ℎ − 𝑑<)
(exp	(−

𝑛𝑧<B
ℎ ) − exp	(−

𝑛c𝑧<$ + 𝑑&e
ℎ ))	 (A11) 

	 𝑟%% 	=
ln H

𝑧$ − 𝑑<
𝑧< K ln H

𝑧$ − 𝑑<
ℎ − 𝑑< K

𝑘)𝑢;
+
ln H

𝑧$ − 𝑑<
𝑧< K ℎ

𝑛𝑘)(ℎ − 𝑑<)
(exp(𝑛 H1 −

𝑧<$ + 𝑑&
ℎ K) − 1)	

(A12) 

where ℎ is canopy height (m), 𝑘 is the von Karman constant, 𝑧<$ is the “preferred” roughness length (m), 
𝑧<$ = ℎ/8, 𝑑& is the “preferred” zero plane displacement height (m), 𝑑& = 0.63ℎ, 𝑧<B is the roughness 
length of ground (m), 𝑢; is the wind speed from the measurement height (m s-1), and 𝑧$ is the 860 
measurement height (m), assuming 𝑧$ = ℎ + 2.  

𝑑< is the zero plane displacement of canopy (m), 𝑛 is the eddy diffusivity decay constant of the vegetation, 
and 𝑧< is the canopy roughness length (m). These terms are parameterized as following (Equations 22-26, 
Zhou et al., 2006): 

	 𝑛 =
g

2.5, ℎ ≤ 1
2.306 + 0.194ℎ, 1 < ℎ < 10

4.25, ℎ ≥ 10
 (A13) 

	 𝑑< = m
ℎ − 𝑧<3/0.3, 𝐿𝐴𝐼 ≥ 4

1.1ℎ ⋅ ln	(1 + (𝐶.𝐿𝐴𝐼)<.)E), 𝐿𝐴𝐼 < 4 (A14) 

	 𝑧< 	= min	(0.3(ℎ − 𝑑<), 𝑧<B + 0.3ℎ(𝐶.𝐿𝐴𝐼)<.E)	 (A15) 

	 𝐶. = p

1.4 × 104F, ℎ = 0

0.25 H−1 + exp H0.909 −
3.03𝑧<3
ℎ KK

G

, ℎ > 0
 (A16) 

	 𝑧<3 = g

0.13ℎ, ℎ ≤ 1
0.139ℎ − 0.009ℎ), 1 < ℎ < 10

0.05ℎ, ℎ ≥ 10
 (A17) 

where 𝑧<3 is the roughness length for a closed canopy (m), 𝐶. is the mean drag coefficient for individual 865 
leaves. 
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Code and data availability 

The model codes are available online at https://github.com/pitcheverlasting (will become a public repo after 

acceptance). 

The data generated in our study are published in this public repository: 

https://doi.org/10.6084/m9.figshare.12132696.v1. (active after acceptance). 875 

The primary data and tools can be downloaded from the PRISM Climate Group at Oregon State University 

(http://www.prism.oregonstate.edu), the ESA CCI soil moisture project team (https://www.esa-

soilmoisture-cci.org/node/145), the GIMMS LAI3g product team 

(https://drive.google.com/open?id=0BwL88nwumpqYaFJmR2poS0d1ZDQ), the Global Land Surface 

Satellite project (http://www.glass.umd.edu/Download.html), the SPEI R package released by Santiago 880 

Beguería and Sergio M. Vicente-Serrano at CSIC in Spain (https://cran.r-project.org/web/packages/SPEI/), 

the Global Land Cover Climatology project 

(https://archive.usgs.gov/archive/sites/landcover.usgs.gov/global_climatology.html), and the CDO software 

(https://code.zmaw.de/projects/cdo). 
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