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S1. Vertical boundary conditions for heat budget integrals 

Since we are unable to integrate for the full ocean depth (Argo floats profile the upper 2000 dbar), and most importantly, to 

the surface of the ocean, due to the high seasonal variability at the surface (Section 2.2), we need to decide on suitable vertical 10 

boundaries for the heat budget integrals. However, if we simply select uniform depths for the vertical boundaries, we may 

include certain features in the TS-profile (e.g., such as the temperature minimum) in some areas of the Weddell Gyre, while 

excluding them in other regions. Hence, we need to ensure the upper boundary is defined such that Θmax (i.e., the core of 

WDW) is always fully included in the vertical layer, given that the core of WDW is the primary source of heat to the Weddell 

Gyre. We also need to avoid incorporating seasonally variable Surface Water and Winter Water (a surface water mass 15 

characterised by a sub-surface temperature minimum, e.g., Behrendt et al., 2011). Otherwise, the vertical advection component 

will be stronger in regions where the profile includes the temperature minimum layer due to a larger vertical temperature 

gradient, in contrast to regions where the Winter Water is altogether omitted. This will result in bias in the spatial distribution 

of the heat budget terms. It is also necessary to ensure the same thickness of water is analysed throughout the Weddell Gyre. 

We resolve this by defining the upper boundary as the mid-point of the thermocline, and the lower boundary as 1000 m below 20 

the thermocline mid-point (Fig. S1). That way, regardless of location, we exclude Winter Water, but always include the core 

of WDW, and maintain equal layer thickness throughout. An example vertical temperature profile in Fig. S1a illustrates the 

vertical boundary conditions, while a map of the upper boundary depth is shown in Fig. S1b. 

(S1a) 
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(S1b) 
Figure S1: (a) A vertical profile of conservative temperature (the position of the profile is marked by a red star in Fig. S1b), where 

Θmax is marked by a red circle, the upper boundary (i.e., mid-thermocline) and the lower boundary (mid-thermocline + 1000) are 

marked by red squares, and the upper and lower WDW boundaries (defined by a neutral density range of 28 to 28.27 kg m -3) are 

marked by black stars. This is to highlight that our method for the vertical boundary limits allows for the full inclusion of the core 

of WDW while also excluding Winter Water. (b) Upper boundary depth (m), defined as the mid-thermocline, with streamlines 

(grey contours) of the vertically integrated stream function for 50-2000 dbar with a spacing of 5 Sv, derived from in-situ 

observations from Argo floats (Reeve et al., 2019, 2016), as in Fig. 1. The black contours show the 1000, 2000 and 3000 m isobaths, 

from the general bathymetric chart of the oceans (GEBCO, IOC et al., 2003).  

S2. Air-sea-heat fluxes 

The net air-sea heat flux is the sum of the following components: shortwave solar radiation, longwave thermal radiation, latent 25 

heat flux and sensible heat flux. The air-sea heat fluxes are not directly relevant in the calculation of the heat budget in this 

study, since the heat budget calculations are restricted to depths exceeding 80 m (i.e., the minimum depth of the mid-

thermocline below 50 m, Fig. S1b), and downward shortwave radiation decreases exponentially with depth (only 1% of the 

radiation reaches past 75 m; Tamsitt et al., 2016). However, gaining perspective on where we expect heat loss through the 

surface of the ocean may help to understand the mechanisms through which WDW loses its heat as it circulates the Weddell 30 

Gyre. Long-term means between 2002 and 2016 of surface heat fluxes are derived from ERA-interim reanalysis (Hersbach et 

al., 2020), based on previous convictions that it provides one of the most reliable estimates for the Southern Ocean (Jones et 

al., 2016). We also use this data source to derive vertical Ekman pumping velocity, as detailed in the following Section S3. 

The net air-sea heat flux into the ocean in Fig. S2 (here on referred to as Qnet) is positive along the northern limb of the gyre 

and negative over the southern limb, creating a north-south divide (the thick black line in Fig. S2) parallel to the central gyre 35 

axis (the dashed black line in Fig. S2). There is, however, some latitudinal offset between Qnet and the central axis of the depth-

integrated circulation. Thus, the IC is dominated by positive Qnet fluxes, and the zero contour in Qnet (thick black line in Fig. 

S2) appears south of the central gyre axis, roughly between the IC and the SL, instead of directly along the central axis of the 

gyre. 
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S3. Vertical Ekman pumping velocity derived from the wind stress field  

Since the flow is assumed geostrophic (non-divergent), vertical velocity is assumed constant with changing depth (outside of 

the turbulent surface and bottom boundary layers, which are excluded in this study, see Section S1). As an estimate of the 

vertical velocity is required in the vertical advection term (the second term on the right-hand side of Eq. 1.1), we therefore use 

the Ekman vertical velocity, wE. The Ekman velocity, wE, was derived from the mean wind stress field, sea ice concentration 45 

(α) and sea ice velocity (Uice) for the period 2002-2016, following Le paih et al. (2020) and Dotto et al. (2018):  

𝑤𝐸 = ∇⃗⃗  × (
𝜏 

𝜌0𝑓
) 

(2.1) 

where  

𝜏  =  𝛼𝜏 𝑖𝑐𝑒−𝑜𝑐𝑒𝑎𝑛  +  (1 − 𝛼)𝜏 𝑎𝑖𝑟−𝑜𝑐𝑒𝑎𝑛   (2.2) 

𝜏𝑎𝑖𝑟−𝑜𝑐𝑒𝑎𝑛  =  𝜌𝑎𝑖𝑟𝐶𝑑𝑤|𝑈𝑎𝑖𝑟
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |𝑈𝑎𝑖𝑟

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   
(2.3) 

and   

𝜏𝑖𝑐𝑒−𝑜𝑐𝑒𝑎𝑛  =  𝜌0𝐶𝑖𝑑|𝑈𝑖𝑐𝑒
⃗⃗ ⃗⃗ ⃗⃗  ⃗|𝑈𝑖𝑐𝑒

⃗⃗ ⃗⃗ ⃗⃗  ⃗ (2.4) 

where ρ0 is seawater density (1027 kg m-3) and 𝑓 is the Coriolis parameter; 𝜏  is the total surface stress, which takes into account 

sea ice concentration, α, by combining stress over the ocean by wind (𝜏 𝑎𝑖𝑟−𝑜𝑐𝑒𝑎𝑛) and stress over the ocean by ice (𝜏 𝑖𝑐𝑒−𝑜𝑐𝑒𝑎𝑛). 

ρair is the density of air (1.29 kg m-3), Cdw is the wind drag coefficient (1.5x10-3), 𝑈𝑎𝑖𝑟
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is the wind velocity at 10 m above sea 

level; Cid is the ice-ocean drag coefficient (5.5x10-3) and 𝑈𝑖𝑐𝑒
⃗⃗ ⃗⃗ ⃗⃗  ⃗ is the sea ice velocity. The data sources for the variables in Eq. 50 

2 are listed in Table 1, in Section 2.1.  

Eq. 2.1 relies on a formulation for wind stress (air-sea momentum flux) of an ice-free ocean. Le Paih et al. (2020) showed that 

different stress formulations, including sea ice-sensitive ones, in the Weddell Gyre area yield momentum input into the ocean 

 

Figure S2: Net air-sea heat flux (i.e. the sum of long/short-wave radiation, latent and sensible heat flues, in W m-2): long-term 

mean from 2002 to 2016, from ERA-interim reanalysis data. Positive values indicate heat flux into the ocean. The thick black line 

indicates the zero-contour line for Qnet. The central gyre axis is indicated by the dashed black line, defined as the meridional 

maximum stream function value. South of the dashed line the flow of the water column is westward and flow north of the dashed 

line is eastward. Streamlines (grey contours) show the vertically integrated stream function for 50-2000 dbar with a spacing of 5 

Sv, derived from in-situ observations from Argo floats (Reeve et al., 2019, 2016), as in Fig. 1. The black contours show the 1000, 

2000 and 3000 m isobaths, from the general bathymetric chart of the oceans (GEBCO, IOC et al., 2003).  



4 
 

within +/- 10% relative to the formulation used here. Since wE is assumed to be constant with depth below the Ekman layer 

(i.e. assuming the horizontal flow below the Ekman layer to be in perfect geostrophic balance), and the surface mixed layer is 55 

omitted from the objectively mapped grids of velocity and temperature, wE is a suitable estimate of the vertical velocity within 

the scope of this study. The resulting wE was averaged over 2002-2016 (Fig. S3) and re-gridded to the same grid as the Argo 

data, using a simple distance-weighted mean. wE is positive throughout most of the Weddell Gyre (indicative of upwelling), 

whereas downwelling is found along the Antarctic coastline and on the continental shelf in the south-west, which is excluded 

from this study since Argo float data are sparse for the shelf seas. 60 

 
Figure S3: Mean 2002-2016 vertical Ekman pumping velocity (wE: m/year), from Era-interim ECMWF reanalysis (ERA5 monthly 

mean output; Hersbach et al., 2020) and sea-ice velocity from Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors 

(Tschudi et al., 2019), where positive values indicate upwelling.  Black arrows show surface wind stress (N m-2), south of 60°S (in 

order to emphasise the weaker surface wind stress within the Weddell Gyre region, which would disappear if we were to include 

the much stronger wind stress over the ACC); the arrow at 50°W, 74°S is 0.05 N m-2. The black contours show the 1000, 2000 and 

3000 m isobaths, from the general bathymetric chart of the oceans (GEBCO, IOC et al., 2003). 

 

S4. Horizontal diffusivity 

In the north and east, we use horizontal diffusivity estimates from Sevellec et al. (2022; 2020). For all data within 1° lat/lon of 

a grid cell, we take the mean and standard error of the mean (s.e.). For grid cells where no data is available, we use 400±200 

m2s-1. The Sevellec et al (2022) dataset might underestimate values within the interior gyre where sea ice dominates, which is 65 

why we replaced these values with 400±200 m2s-1 (though indeed there are studies such as Donelly et al. (2017) which imply 

this value may be too high, Section 5.1.3). This is because the authors need ice-free consecutive float positions for an adequate 

length of time for the implementation of their method, suggesting the data are biased to conditions where the sea ice has melted 

and the wind has not yet stirred up the water column, leaving a layer of fresh water over the surface (as occurred, for example, 

in Cisewski et al., 2011). Also, given the Sevellec dataset is representing 1000 m, whereas the depth range we are looking at 70 

varies from 87 to 1530 m, with a mean upper boundary of 166 m, and a mean middle depth of 666 m, we can expect higher 

values overall for the shallower layer. Maps of the resulting zonal and meridional horizontal diffusivities used in this paper are 

provided in Fig. S4, along with their corresponding standard errors. 
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Figure S4: Horizontal diffusivity as a combination of the Sevellec at al. (2022) dataset and infilling with a background value of 

400±200 m2s-1. The upper panels show the zonal and meridional components from left to right, whereas the lower panels show their 

corresponding standard errors respectively. 
 

 75 

S5. Investigating uncertainty: horizontal gradients 

To look into the causes of the large ellipses in the pattern of horizontal heat advection (Fig. 2a), we checked the horizontal 

gradients in the upper boundary depth and the sub-surface temperature maximum, shown in Figs. S5a-b respectively. These 

have been discussed in Section 5.2.2. 

(a) 
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(b) 
Figure S5: (a) Horizontal gradient in the upper boundary depth (i.e. mid-thermicline depth; m), and (b) horizontal gradient in the 

sub-surface temperature maximum (°C). 

 80 

S6. Diffusive heat fluxes across boundaries 

In Section 4.2 we investigate the role of horizontal turbulent diffusion in redistributing heat across zonal boundaries: across 

the northern boundary of the Weddell Gyre from the ACC (Fig. 5b), across the interface between the open SL and the IC-south 

(Fig. 7b), and across the central gyre axis between IC-south and IC-north (Fig. 7c). Provided below in Fig. S6 are the zonally 

integrated diffusive heat fluxes corresponding to each of these regions respectively, from which we derive our net diffusive 85 

heat fluxes in Section 4.2. 

 
(a) 

 
(b) 
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(c) 
Figure S6: the cumulative sum of the diffusive heat flux in TW. (a) across the northern gyre boundary from west 

to east, where negative values indicate a southward flux of heat into the eastward-flowing northern limb of the 

Weddell Gyre from north of the northern Weddell Gyre boundary; (b) along the boundary between the southern 

inflow limb and IC-south, from east to west, where positive values indicate a removal of heat from the open 

southern limb of the gyre into the interior; in other words, a northward flux of heat from the southern limb into 

the interior circulation cell; (c) across the central gyre axis from IC-south to IC-north, where positive values 

indicate a diffusive heat flux northwards across the gyre axis.  Errors are computed following the same method 

outlined in Section 3.2 and S7, with the cumulative net sum error summed in quadrature (i.e., the square root 

of the cumulative sum of the squared error). 

 

S7. Error propagation computation 

The errors for each heat budget term are calculated using the laws of propagation, where the error for temperature is defined 

as the objective mapping error (Fig. S7; Reeve et al., 2016), and the error for horizontal velocity is provided from Reeve et al. 90 

(2019), which contains a sensitivity study, perturbing the original stream function by using mapping errors and uncorrected 

drift velocities, to get a maximum range of values (see Reeve et al., 2019 for more details). For further details refer to Sections 

2.2 and 3.2. The error for wE are the standard error of the mean of the timeseries variability for monthly values from January 

2002 to December 2016, since uncertainties associated with the wind field are as of yet unavailable for ERA-5 reanalysis data. 

Lastly, we provide a range of possible values for the horizontal and vertical diffusivities, which we use to represent the standard 95 

error of the diffusivities, with the exception of where the Sevellec et al. (2022) dataset provides error estimates (Section S4). 

With all this in mind, the derivation for the propagated errors for each term are provided below.  
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Figure S7: Mapping error for Θmax (ºC). The gridded Θmax field is shown in Fig. 1. The white, magenta and black contours show 

the 0.5, 0.8 and 1.1 ºC isotherms respectively. The grey contours are as in Fig. 1. 

 
For any one grid cell, the uncertainty for mean horizontal advection is the propagation of error as applied to two variables 

multiplied together: 

S2. 𝛿𝐴𝐻 = |𝑈𝛩| ∙ √(
𝛿𝛩

𝛩
)
2

+ (
𝛿𝑈

𝑈
)
2

+
2𝐶𝑂𝑉(𝑈𝛩)

|𝑈𝛩|
 (S2.1) 

where δ is the uncertainty of a variable, and COV(UΘ) is the covariance between U and Θ, which is 𝐶𝑂𝑉(𝑈𝛩) =  𝜌𝛩𝑢𝛿𝑈𝛿𝛩, 100 

where ρΘU is the correlation between Θ and U. The resulting uncertainties are propagated using the root-sum-square (RSS) law 

of error propagation, which is first applied to the differential: ∇𝐻(𝑈 ∙ 𝛩) =  
𝑑(𝑢𝛩)

𝑑𝑥
+

𝑑(𝑣𝛩)

𝑑𝑦
  (the length scales Δx and Δy are also 

applied). RSS is then applied to the vertical integration for the 1000 m thick layer, and also applied when integrating 

horizontally over larger areas. RSS is applied when integrating vertically and horizontally in the same way for all terms in 

Eq.1.1, and the resulting uncertainty of all terms are scaled by ρ0 and Cp, as well as the associated length scales (Δx and Δy in 105 

the horizontal terms, Δz for the vertical terms) as in the heat budget in Eq. 1.2. 

For the mean vertical advection term, RSS is applied to the uncertainties of the temperature difference between the upper and 

lower boundaries, and then this error is propagated with the uncertainty associated with wE as follows: 

𝛿𝐴𝑉 = |𝐴𝑉| ∙  √(
𝛿𝑤𝐸

𝑤𝐸

)
2

+ (
𝛿𝑇

𝑇
)
2

 (S2.2) 

where T = 𝛩𝑚𝑇 − 𝛩𝑚𝑇−1000, i.e., the temperature difference between the upper and lower boundary (Eq. 1.2), and the 

resulting uncertainty of T is: 110 

𝛿𝑇 =  √𝛿2𝛩𝑚𝑇 + 𝛿2𝛩𝑚𝑇−1000 (S2.3) 

Horizontal turbulent diffusion (i.e., the third term on the right-hand side of Eq. 1.1) consists of a double differential of Θ 

multiplied by κH, both of which have an associated uncertainty. The double differential is computed by taking the temperature 

differences between grid cells (i.e., τ = (Θi-1 + Θi+1 -2Θi)/ Δx2, where i represents the grid index for one direction; this is 
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repeated for both x and y directions). Thus, we apply the propagation of error to the uncertainty of the double differential using 

RSS (i.e., we sum together the square of 12 uncertainties for temperature, which include 22 x grid cell i, plus its surrounding 115 

grid cells, i-1 and i+1, which is repeated in both x and y directions, and then scaled by ΔX2 = Δx2 = Δy2; Eq. S2.5). We then 

take that uncertainty and apply the propagation of error for two variables multiplied together to incorporate the uncertainty for 

κH (Eq. S2.4). The vertical and horizontal integrations are treated using RSS, as above. 

𝛿𝐷𝐻 = |𝜅𝐻∇𝐻
2 𝛩| ∙ √(

𝛿𝜅𝐻

𝜅𝐻

)
2

+ (
𝛿𝜏

𝜏
)
2

 (S2.4) 

Where 𝛿𝜏 =  √
12𝛿𝜏2

∆𝑋2  (S2.5) 

Lastly, vertical turbulent diffusion is treated in the same manner as horizontal turbulent diffusion, except that it is applied in 

the vertical (i.e., the horizontal operator is not required when computing this term), and thus vertical integration is already 120 

accounted for:  

𝛿𝐵 =  
√4𝛿𝛩2

|𝐵|
 (S2.6) 

where 𝐵 = (
𝑑𝛩

𝑑𝑧
)
𝑚𝑇

− (
𝑑𝛩

𝑑𝑧
)
𝑚𝑇−1000

 (S2.7) 

The resulting propagated error is then: 

𝛿𝐷𝑉 = |𝜅𝑉𝐵| ∙ √(
𝛿𝜅𝑉

|𝜅𝑉|
)
2

+ (
𝛿𝐵

𝐵
)
2

 (S2.8) 

Lastly, the net uncertainty of the sum of the heat budget terms is the RSS of the uncertainty of all 4 terms described above: 

𝛿𝐻𝐵 = √𝛿𝐴𝐻
2 + 𝛿𝐴𝑉

2 + 𝛿𝐷𝐻
2 + 𝛿𝐷𝑉

2
 (S2.9) 

 

Figures S8-12 show the total propagated errors for the 4 heat budget terms and the sum of all terms respectively. The overall 125 

error is dominated by the mean horizontal advection term (Fig. S8), and to a slightly lesser extent the horizontal turbulent 

diffusion term (Fig. S10), with largest errors occurring to the north of the gyre and also over the eastern sub-gyre, particularly 

east of about 20° E. This is to be expected as this region is dominated by a mesoscale eddy field (Ryan et al., 2016; Schröder 

& Fahrbach, 1999), while also lacking in observations to adequately represent the long-term mean of the region’s hydrography 

and circulation. The gyre periphery has the largest errors for the horizontal turbulent diffusion term, which corresponds to 130 

regions with sharp lateral temperature gradients and large objective mapping errors (Reeve et al., 2016), such as towards the 

southern coastline, where data are also lacking, and at the northern boundary of the gyre, where high temporal variability is 

known and sharp meridional temperature gradients are found. For further discussion regarding uncertainty, refer to Sections 

5.1 & 5.2.2. 
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Figure S8: Total propagated error of mean horizontal advection (δAH, W m-2).  

  

 
Figure S9: Total propagated error of mean vertical advection (δAV, W m-2). 
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Figure S10: Total propagated error of horizontal turbulent diffusion (δDH, W m-2). 

 
Figure S11: Total propagated error of vertical turbulent diffusion (δDV, W m-2). 
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Figure S12: Total propagated error of the sum of heat budget terms (i.e. the residual heat budget), (δΣHB, W m-2). 
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