
The Response to Reviewers’ Comments

We thank the editor and the two referees for thoroughly reading the manuscript and their helpful
comments. We are very pleased to see many positive remarks. For example, the first reviewer said,
“This is an interesting paper as it demonstrates the practical application of the algorithm proposed
by one of the authors to real atmospheric dynamic models.” Reviewer 2 added, “The results
presented herein are novel, since they stem from an application of a recently published theory in
this very journal.” In light of the comments, we have made a thorough revision addressing all
major concerns, resulting in a significantly improved paper version.

1 The First Reviewer’s Report

1.1 Comments

1. In equation (1), I found it more intuitive to keep the unit in the dinominantor if the goal is
to nondimensionalize the variable.

Thanks for the good comment. We have revised it as

TTT =
TTT

|T |
=
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2◦C
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|H |
=
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50m
.

2. Table 1: to make it more clear, the authors need to explicitly say that the values reported in
table are the original objective values formulated in (4) instead of the sample average (5).

Thanks, we have revised the caption in Table 1 as “The optimal precursors uuu0 are com-
puted by both the adjoint method and the sampling method with the corre-
sponding spatial patterns shown in Figure 1. First Line: The objective values
J(uuu0) computed in eq.(4). Second Line: The percentages over the values com-
puted by the adjoint method.”. We have also revised the sentence in Lines 186-187 as
“ The objective values J(uuu0) obtained using the optimal precursors uuu0 computed by
both the adjoint method and the sampling method are shown in Table 1.”

3. Table 2: more discussions are needed for the settings of the experiment. For example how
many cores are used in parallel sampling? Is multithreading allowed for the adjoint method?

Thanks for the comments. In parallel sampling, we use 200 cores in the supercomputer with
8 nodes and 28 cores per node, which is labeled in the caption of Table 2. The multithreading
is not useful for the adjoint method. Following the suggestion, we have revised the sentences
of the whole paragraph in Line 143 – Line 162 as “The average of function values (7)
indicates that the random variables vvv0,i, (i = 1, . . . , n) are independently sampled
from the uniform distribution on the unit sphere Sd−1. This means that for any
two samples, vvv0,i and vvv0,j, where the indices i and j satisfy i ̸= j, there is no
relationship between them. In other words, every sample vvv0,i, (i ∈ {1, . . . , n}) has
no influence with each other and is drawn independently. With modern parallel
computation techniques, it is possible to run the numerical model and obtain the
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values J(uuu0 + ϵvvv0,i)vvv0,i for each i ∈ {1, . . . , n} simultaneously, assuming unlimited
computational resources are available. This parallelization allows for efficient
computation and reduces the time required to run n instances of the numerical
model to that of running the model only once. However, it is important to note
that in the adjoint method, the process of running the numerical model involves
two consecutive steps. Initially, there is a forward numerical integration from 0 to
τ , followed by a backward numerical integration from τ to 0. These computations
are based on the data obtained by running the numerical model. This process
is executed in a single-thread manner, meaning that parallel computation is not
applicable. On the other hand, in the implementation of the sampling algorithm,
the process of running the numerical model only requires forward numerical in-
tegration from 0 to τ , without any backward numerical integration. This implies
that for each sample, we only need to run the forward numerical integration once.
Since the samples are independent, we can leverage the parallel computation to
implement the sampling algorithm, which further reduces the time required for
running the forward numerical integration once. With the current resource of
computation, we have successfully implemented the sampling algorithm to obtain
the CNOPs, or the optimal precursors of the ZC model. This numerical model
has a substantial number of degrees of freedom, estimated to be on the order
of O(104 − 105). The implementation utilizes the modern parallel computation
technique. The numerical performance, including the spatial patterns, objective
values, computation times and nonlinear evolution of Nino 3.4 index, is shown
in Section 3.” and added more sentences in Line 194 – Line 199 as To show the effi-
ciency of the sampling method, a comparison of computation times is necessary.
As mentioned in Section 2.2, the sampling algorithm, implemented with parallel
computation, reduces the computation of the gradient by performing a single for-
ward numerical integration. In contrast, the adjoint method requires a two-step
process involving both forward and backward numerical integrations. We have
realized them and recorded the computation times of both the adjoint method
and the sampling algorithm implemented with parallel computation in Table 2.

4. The original paper [Shi and Sun, 2023] applied the algorithm to some traditional dynamic
system toy models such as viscous Burger’s equation and Lorenz 96 model, and it only re-
quires 5-15 samples for the method to perform well in these low-dimensional settings. It would
be great if the authors could include some discussions about convergence results and how the
number of samples scales with the dimensionality of the models.

Thanks for the good comment. We have revised and added more sentences in Line 258 – Line
270 to discuss the convergence results and empirically how to scale the number of samples with
the dimensionality of the models as “ In general, the number of samples required for a
numerical model depends on the degrees of freedom. As the degrees of freedom
increase, a larger number of samples is typically needed. However, the nonlinear
evolution of the initial values within the numerical model itself should not be
overlooked. This has been empirically demonstrated in a comparison between
the Burgers equation and the Lorenz-96 model (Shi and Sun, 2023). In the
case of the Burgers equation, which exhibits weak nonlinear evolution, achieving
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the desired experimental effect can be accomplished with just 5 samples, even
with 100 degrees of freedom. On the other hand, the 40-dimensional Lorenz-
96 model, characterized by strong nonlinear evolution, also requires 5 samples
to achieve the desired effect. Based on empirical observations, a good strategy
for initial experiments is to choose the number of samples to be approximately
equal to the square root of the number of degrees of freedom, that is, n ≈

√
d.

Indeed, by implementing the sampling algorithm with 60 samples, we are able
to achieve a numerical performance that nearly reproduces the results obtained
by the baseline adjoint method for the optimal precursors. However, it has been
observed that the numerical results are unstable. Out of four runs, only one
consistently produces correct numerical performance.”

1.2 Typos

1. line 37: “is” → “was”
Thanks, we have revised it.

2. line 67: “reivew”→ “review”
Thanks, we have revised it.

3. page 3 footnote: “constrained optimization”
Thanks, we have revised it.

4. line 94: “furthre researches” → “further research”
Thanks, we have revised it.

5. line 252: “probably” → “probable”
Thanks, we have revised it.

2 The Second Reviewer’s Report

2.1 Major Comments

1. In the Introduction (Lines 50-55), the authors state that “there is a great similarity between
optimal precursors and the optimal initial errors obtained by CNOP approaches, in terms of
spatial structure and localization.” The readers would appreciate a few sentences as to why
this is the case, since it is not, in my opinion, trivial. Are the optimal initial errors the
predictors for ENSO in the ZC model?
Thanks for the good comment. Following your suggestions, we have revised them in two
places.

(1) Regarding the optimal precursors, we provide the explanation and the reference in Line
50 – Line 52 as “ In the study (Duan et al., 2004), it was found that the CNOP
approach using ZC-specified climatology with the seasonal cycle as the basic
state produces optimal initial errors, which act as the optimal precursors for
triggering ENSO events.”
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(2) For the optimal growth errors: we also provide the explanation and the reference to show
its similarity with the optimal precursors for the ENSO event in Line 58 – Line 60 as
“The study by Mu et al.(2014) verified that the optimal precursors obtained
in the ZC model exhibit significant similarity with the optimal initial growth
errors, which are obtained by considering the ENSO events triggered the
optimal precursors as a basic state.”

2. In Lines 64-70, the authors speak about optimal energy growth. Typically optimal energy is
attained when the system (say, Navier-Stokes) is initialized with the optimal mode. Can the
authors say something about the formalmathematical connection between these optimal modes
and the adjoint methods? Could they potentially have the same spatial structure as other
CNOP approaches? Is there literature that applies the optimal growth theory with ENSO?

Thanks for the good comments. Following your suggestions, we have revised them in two
places.

� Regarding the connection between these optimal modes and the adjoint methods and
the discussion about the different optimization algorithms to obtain the CNOPs, we add
a detailed description to Footnote 2 of Page 2 as “It is worth noting that the first-
order optimization method employed to obtain the maximum in the scientific
community of fluid mechanics is the method of Lagrange multipliers (Ker-
swell, 2018), which has shown the consistent results when compared to other
first-order optimization method mentioned in the following paragraph. The
method of Lagrange multipliers is a classical method to solve the constrained opti-
mization problem. It involves transforming the constrained optimization problem into
an unconstrained one by incorporating the constrained condition into the Lagrange mul-
tipliers (Nocedall and Wright, Chapter 12).Additionally, the adjoint method is also
explored to numerically compute the gradient. The details of the solution
procedure can be found in (Kerswell, 2018).”

� Yes, there is some literature that applies to the optimal growth theory with ENSO, but
it is not about the optimal energy growth theory. Almost of the literature is listed in
Line 50 – Line 65 as “(Duan et al., 2004), (Mu et al., 2007), (Duan et al., 2008),
(Yu et al., 2009), (Mu et al., 2014), (Duan et al., 2014), (Tao et al.,2020),
and (Zheng et al.,2023).

3. Regarding the optimal energy growth, it might be useful to cite the seminal work on linear
energy growth by [Reddy and Henningson, 1993].

Thanks, we have cited the seminal work [Reddy and Henningson, 1993] and revised the sen-
tences in Line 66 to Line 75 as “ Within the field of fluid mechanics, turbulence is
widely regarded as a crucial and highly influential topic. The study of optimal
energy growth was initially explored using the non-normal mode method in the
seminal work by Reddy and Henningson [1993]. Additionally, the scientific com-
munity has also developed the CNOP approach to investigate the disturbance of
least amplitude for transition to turbulence. The CNOP approach, as described
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in (Pringle and Kerswell, 2010; Cherubini et al., 2010; Monokrousos et al., 2011),
identifies the optimal precursors, referred to as minimal seeds, for the transition
to turbulence. Nonlinear nonmodal analysis is applied to the 3D Navier-Stokes
equation for an incompressible fluid to determine the optimal energy growth
over all disturbances with a given starting energy and time horizon (Pringle and
Kerswell, 2010; Cherubini et al., 2010; Monokrousos et al., 2011). Further de-
tails can be found in the comprehensive review (Kerswell, 2018) and an earlier
review (Kerswell et al.,2014).”

4. Line 114: can the authors explain the choice of τ = 9?

The prediction times τ were selected based on the four seasons of a year, specifically 3, 6,
9, and 12 months. However, a season of τ = 3 months was deemed too short for effective
prediction. Therefore, numerical experiments were conducted for τ = 6, τ = 9, and τ = 12
months. The spatial patterns of SSTA and thermocline are almost consistent across all three
cases, so we choose the middle case, τ = 9 months, as a representative shown in the paper.
The subsequent spatial patterns correspond to the cases with prediction times of τ = 6 months
and τ = 9 months, respectively.

(1) The prediction time is 6 months.
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Figure 1: The prediction time is 6 months.
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(2) The prediction time is 12 months.
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Figure 2: The prediction time is 12 months.

5. Line 114: can the CNOP’s spatial structure change as a function of τ?

Thanks, this is a very good question. In theory, the spatial structure of the CNOP should be
a function of τ . However, the ZC model is developed to describe the main physical mechanism
of the ENSO events, Bjerknes positive feedback in the equatorial oceans. In other words, for
different τs, they share the same mechanism in the ZC model. Hence, the spatial structures
of the CNOPs obtained from the settings of different τ are almost consistent.

6. I understand the Section 2.2 is a brief summary of [Shi and Sun, 2023], although the reader
would benefit from a couple extra words on the actual statistical machine learning algorithm
employed. How is the objective function actually maximised? If evaluating J(uuu0+ϵvvv0) requires
solving the equations to find out TTT (τ), how can it be less costly than the adjoint method? Can
the authors give an intuition?

Thanks for the comment. We add the sentences to describe how the objective function is
actually maximized in Line 138 to Line 142 as “By utilizing the sample average of
function values (7) as an approximate gradient, we can employ various gradient
accent methods within the constraint domain, such as SPG, SQP, BFGS and the
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method of Lagrange multiplier, which help us maximize the objective function
J(u0u0u0). In this paper, the specific gradient accent method within the constraint
domain that we utilize is the second spectral projected gradient (SPG2) method
mentioned, as mentioned in (Birgin et al., 2000).” Additionally, we revised the fol-
lowing paragraph in Line 143 – Line 162 to provide an intuition and explain how it can be
less costly than the adjoint method as “The average of function values (7) indicates
that the random variables vvv0,i, (i = 1, . . . , n) are independently sampled from the
uniform distribution on the unit sphere Sd−1. This means that for any two sam-
ples, vvv0,i and vvv0,j, where the indices i and j satisfy i ̸= j, there is no relationship
between them. In other words, every sample vvv0,i, (i ∈ {1, . . . , n}) has no influence
with each other and is drawn independently. With modern parallel computa-
tion techniques, it is possible to run the numerical model and obtain the values
J(uuu0+ ϵvvv0,i)vvv0,i for each i ∈ {1, . . . , n} simultaneously, assuming unlimited computa-
tional resources are available. This parallelization allows for efficient computation
and reduces the time required to run n instances of the numerical model to that
of running the model only once. However, it is important to note that in the
adjoint method, the process of running the numerical model involves two con-
secutive steps. Initially, there is a forward numerical integration from 0 to τ ,
followed by a backward numerical integration from τ to 0. These computations
are based on the data obtained by running the numerical model. This process
is executed in a single-thread manner, meaning that parallel computation is not
applicable. On the other hand, in the implementation of the sampling algorithm,
the process of running the numerical model only requires forward numerical in-
tegration from 0 to τ , without any backward numerical integration. This implies
that for each sample, we only need to run the forward numerical integration once.
Since the samples are independent, we can leverage the parallel computation to
implement the sampling algorithm, which further reduces the time required for
running the forward numerical integration once. With the current resource of
computation, we have successfully implemented the sampling algorithm to obtain
the CNOPs, or the optimal precursors of the ZC model. This numerical model
has a substantial number of degrees of freedom, estimated to be on the order
of O(104 − 105). The implementation utilizes the modern parallel computation
technique. The numerical performance, including the spatial patterns, objective
values, computation times and nonlinear evolution of Nino 3.4 index, is shown in
Section 3.”

7. Line 235: For La Niña events, how would your algorithm change (in the language of Section
2.2)?

Our algorithm follows a similar way as the adjoint method for the La Niña event, as depicted
in Figure 3. The black line in Figure 3 shows exhibits a similar nonlinear evolution behavior
to that in (Duan et al.,2008, Figure 5), with a little difference, where we use the current
internationally recognized Niño 3.4 index instead of the previously used Niño 3 index. In Fig-
ure 3, the blue curve represents the nonlinear evolution of the Niño 3.4 index for the sampling
algorithm with n = 1000, and the red one for the sampling algorithm with n = 200.
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Figure 3: The nonlinear time evolution of Niño 3.4 SST anomaly index within a model year.

8. For Figures 3 and 4, some sort of error bars would be useful. Could the authors possibly use
the theory and bounds of [Shi and Sun, 2023] to compute some uncertainty bars?
Thanks for the good suggestion.

(1) We re-run the sampling method 50 times to obtain the optimal precursors. The error
bars are added in Figures 3 and 4 to represent the range of errors.

(2) Yes, the theory and bounds of [Shi and Sun, 2023] provide a kind of bar to measure the
uncertainty of the gradient computed by the sampling method with a high probability
(exponential tail), which is similar to the confidence interval in statistics (a bar covers
95%).

2.2 MinorTechnical Comments

1. Line 2: I suggest using “tropical Pacific” instead of “tropic Pacific”.
Thanks, we have revised it.

2. Line 51: It would be helpful to clarify what “spring predictability barrier” means and its
causes.
Thanks, we have added the means of “spring predictability barrier” and its causes imme-
diately following the sentence commented in Line 53 – Line 56 as The SPB refers to a
phenomenon in climate science where the predictability of systems, such as El
Niño or La Niña, significantly decreases during the spring season. This is likely
due to the transitional nature of spring for ENSO, where signals are lweak and
noise is high, making predictions more challenging.
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3. Line 60: I suggest to use SPB instead of “spring predictability barrier”.
Thanks, we have revised it.

4. Line 61: remove “the” in “the turbulence”.
Thanks, we have revised it.

5. Line 67: replace “reivew” by “review”.
Thanks, we have revised it.

6. Line 94: replace “futhre” by “further”.
Thanks, we have revised it.

7. Lines 111-112: awkward phrasing: “Since the target quantity required to maximize that we
concern...”.
Thanks, we have revised the sentence as “As our primary concern is maximizing the
target quantity solely dependent on the nonlinear evolution state of the SST
anomalies, we define the objective function as:”.

8. Eq. (6): “Sd−1” is not defined until way later. I would suggest defining it immediately below.
Thanks, we add the definition of “Sd−1” following your suggestion.

9. Line 237: replace “such” by “so”.
Thanks, we have revised it.
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