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Abstract. As flood alert systems move towards higher spatial resolutions, there is a continued need to enable approaches that

provide robust predictions of flood extent that adequately account for the uncertainties from meteorological forcing, hydrologic

and hydraulic model structure, and parameter uncertainty. In flood forecasting, two primary sources of uncertainty are the

quantitative precipitation forecasts (QPF) and the representation of the channel and floodplain geometry. This is especially

relevant as simple approaches (e.g., HAND) are being used to map floods operationally at field scales (< 10 m). This article5

investigates the benefits of using a computationally efficient probabilistic precipitation forecast (PPF) approach to generate

multiple flood extension scenarios over a region of complex terrain prone to flash floods. First, we assess the limitations of

using a calibrated version of the gridded version of the WRF-Hydro model to predict an extreme flash flood event in the

Greenbrier River Basin (West Virginia) on 24 June 2016. We investigated an ensemble methodology to combine operational

High-Resolution Rapid Refresh (HRRR) QPF with radar-based Quantitative Precipitation Estimates, specifically MRMS QPE10

products. This approach was most effective to increase the headwaters streamflow accuracy in the first hour lead time, which is

still insufficient to issue actionable flood warnings in operational applications. At longer lead-times, success was elusive due to

epistemic uncertainties in MRMS rainfall intensity and HRRR rainfall spatial patterns. Furthermore, a QPF ensemble was used

to generate an ensemble of flood heights using the HAND flood mapping methodology at different spatial resolutions. Results

revealed a scale-dependency with increasing dispersion among the predicted flooded areas with increasing spatial resolution15

down to 1 meter. We hypothesize the overprediction of flooded areas at higher spatial resolutions reflects the increasing number

of river reaches and the need for scale-aware representation of river hydraulics that impacts flood propagation in the river

network.
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1 Introduction20

Climate projections suggest that in the future there will be an increase in flash flood frequency and severity, mainly due to

an increase in extreme rainfall events combined with continued urbanization (Hocini et al. (2021),Li et al. (2022)). This is

especially true in watersheds with steep topography and lower surface permeability conditions that are already highly prone

to the flashiness of flood waves (Gourley et al. (2017)). As a result, there is a high need to mitigate flash flood risks in

urban areas in tropical and subtropical mountainous areas. One solution is to build dams in headwaters to dampen the flood25

wave that reaches populated areas (Mondal et al. (2021)). However, cost constraints limit the feasibility of this approach

in many regions; this is especially true in developing countries. An alternative option is for continued investments in early

warning systems to drastically reduce damage while minimizing the associated costs; this approach is also seen as a more

sustainable alternative to the environment (Ward et al. (2020)). However, this approach remains limited by the lack of flash

flood forecasting skills in early warning systems (Kuller et al. (2021). As High-Performance Computing (HPC) continues to30

increase the potential modeling capabilities, physically based fully distributed hydrological-hydraulic models are becoming

more common in state-of-the-art flood forecast chains (Flack et al. (2019)). Ongoing scientific advancements and the use of

advanced modeling techniques have continuously improved flash flood predictability, but uncertainties in outcomes cannot be

completely eliminated.

Mapping potential flood areas remains a critical aspect of land use planning and urban expansion (Yu et al. (2021)). Au-35

thorities manage to decrease the flood risk levels by avoiding new urbanized areas in pre-determined high-risk locations via

zoning regulations. These static flood risk maps are calculated following statistical attributes of local rainfall and, or streamflow

time-series, in combination with the geometry description of the river channel and floodplain and physically based hydraulic

formulations (Mudashiru et al. (2021)). The advances in computation, digital elevation maps, and flood mapping using state-

of-the-art hydraulic models have enabled operational agencies to produce maps of potential flood-delineated areas to define40

the high-level risk of flood areas according to return periods (Knighton et al. (2020)). However, these static maps provide

only climatological bounds and cannot be relied upon to support emergency response for specific flood events(Di Baldassarre

et al. (2020)). This is due in part to the need to assess antecedent soil moisture conditions prior to a specific event, which

strongly affects runoff generation at small scales and thus impacts flood propagation (Ran et al. (2022)). Furthermore, the

scale dependency of rainfall and runoff processes increases the uncertainty of those maps to estimate the potential flash flood45

hazards.

Maps are indeed a helpful visual product to stakeholders when managing the relocation of human resources during a crisis

(Evers et al. (2012)). An alternative is to increase the accuracy of near-real-time flood maps for response to natural disasters

(Oddo and Bolten (2019)). In the context of flash floods, real-time hazard mapping quantifies the flood extent not only based

on floodplain water height but also the velocity of the flood waves (Mudashiru et al. (2021)). The destructive potential of water50

can cause damage to roads, buildings, and vehicles (Bocanegra and Francés (2021)). However, developing high-resolution

flood maps for existing flood forecast systems remains a persistent challenge (Braud et al. (2018)). This is in part due to the

lack of availability of high-resolution digital elevation models (<5m) in headwaters, that are needed to describe the channel
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cross-sections and floodplain geometries necessary for hydraulic transport simulations. Even with enough data availability,

complex 1D and 2D hydraulic models are usually not chosen for operational tasks since they can be computationally expensive55

at very high resolution. Therefore, operational flood warning systems often adopt simplified methodologies, which derive the

flood extent maps based on planar intersections across the DEM (Teng et al. (2017); Hu and Demir (2021)). For instance, the

National Water Model (NWM) framework currently uses HAND (height above nearest drainage) (Rennó et al. (2008)) maps

along with WRF-Hydro streamflow outputs to generate flood extension maps at 10 meters of spatial resolution over the United

States territory (Viterbo et al. (2020)).60

The use of non-physically based methodologies for flood mapping can increase epistemic uncertainties along the channel

and floodplain for different hydraulic conditions. In other words, the streamflow simulated by the hydrological model is not

two-way coupled to the final flood extent but instead, river discharge is mapped into water levels according to synthetic rating

curves (Zheng et al. (2018)). The final change in velocity and water height necessary to adjust the flood extent will therefore

not feedback into the calculation of the streamflow in the hydrological model. This introduces mass conservation and velocity65

errors that can lead to underestimation or overestimation of real-time flood extent, especially in complex topography where

dynamic flood propagation effects could be more relevant (Teng et al. (2017)). Like any other flood mapping methodology,

the roughness coefficient plays an important role to formulate the synthetic rating curves, usually defined per river reaches.

This creates a tendency in the HAND methodology to overpredict the flood extent, even when the streamflow used as input

is approximately accurate if the roughness coefficient is not well calibrated (Li et al. (2022)). Recently Scriven et al. (2021)70

tested different roughness coefficients along the floodplain and after an optimum configuration concluded that topographic

regions with steep river gradients and relatively long reaches (> 5km) exhibited more accurate flood delineation by the HAND

methodology. This shows that the HAND methodology can be suitable for flash flood mapping if local uncertainties are well-

defined. Scriven’s evaluations were made considering the epistemic uncertainties in the final methodology (channel geometry,

flow direction, DEM resolution) but did not address the uncertainties related to input streamflow forecast (i.e., hydrological75

model input, calibration process) for different watersheds. It is well known that in operational hydrological models, a certain

level of parameter calibration is necessary for delivering an accurate streamflow prediction. Uncertainty in hydrological model

forcing impacts the calibrated parameters, including the floodplain roughness coefficient. These uncertainties are propagated

differently according to basin size, physiography, climate region, and the dominant runoff mechanisms for different flood

events (Moges et al. (2021)).80

To efficiently improve flood warning systems it is therefore necessary to evaluate the uncertainties of each modeling compo-

nent adopted as input to forecast the hazard. Those analyses follow a forecast chain perspective since some output components

are used as input in the next process of the chain (Viterbo et al. (2020); Hofmann and Schüttrumpf (2020) ). An issue currently

addressed is how the observed rainfall (i.e., quantitative precipitation estimates - QPE) can influence the hydrological param-

eter calibration of operational models, and how the final choice of parameters can impact the runoff processes simulations in85

real-time (Wijayarathne et al. (2021)). The spatial and temporal representation of precipitation data has been shown to be one

of the greatest sources of uncertainties in hydrological models, especially in smaller watersheds prone to flash flood events

(Beven and Binley (1992); Beven (2010); Liao and Barros (2022)). Some flood warning system evaluations have also focused
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to show the limitations of short-term rainfall predictions when applied to operational hydrological models (Tao and Barros

(2013)). The next generation of Quantitative precipitation forecast (QPF) relies on numerical weather prediction (NWP) mod-90

els and short-term data assimilation techniques of weather radar data, which therefore brings to the forefront a wide range of

uncertainty including the parameterization of cloud and precipitation processes in models and the measurement uncertainty of

the observations themselves that are assimilated (Dowell et al. (2022)).

To diminish the propagation of short-term rainfall errors through hydrological models, the use of ensemble forecasts to

quantify uncertainty in flood warning systems(FWS) and to communicate the uncertainty in probabilistic terms to the public95

(Wu et al. (2020)). Ensemble forecasts increase the overall FWS reliability since each probabilistic scenario helps bound the

uncertainties driven by rainfall prediction (Cloke and Pappenberger (2009)). Recent studies have shown that rainfall ensem-

bles generated via post-processing techniques can be as reliable as short-term QPF members originating from different initial

conditions or atmospheric models (Crochemore et al. (2016)). Post-processing of deterministic rainfall fields using geostatis-

tical approaches requires minimal computational resources and can be run using multiple outputs from atmospheric models100

to produce different rainfall members (Caseri et al. (2016), Cecinati et al. (2017) and Hartke et al. (2022)). Statistically based

rainfall members are proven to increase the overall accuracy of streamflow prediction in distributed hydrological models (Falck

et al. (2021) and Valdez et al. (2022)). Moreover, the cost-benefit of investing in new techniques for QPF ensemble could be

beneficial to any application that relies on rainfall nowcasting, not only flood forecasting systems (Guzzetti et al. (2020)).

Although flood mapping has been analyzed in the context of the operational forecast chain uncertainty, few studies have ad-105

dressed how flood mapping ensembles could improve current forecast systems (Zahmatkesh et al. (2021)). This article intends

to 1) evaluate how the accuracy of forecast chain components influences flash flood prediction, and 2) investigate whether

the probabilistic approach decreases the flood prediction uncertainty in complex terrain. We follow a forecasting framework

similar to the National Water Model (NWM) and propose methodologies that could be beneficial for higher-resolution flash

flood spatial analysis. In addition, we explored a new methodology for flood ensemble mapping based on geostatistical QPF,110

WRF-Hydro, and HAND.

The study region is the Greenbrier River Basin, in the Appalachian Mountains region of West Virginia which is highly

prone to flash flood events. First, we assess the QPE and QPF accuracy tied to streamflow prediction for six extreme rainfall

events. Probabilistic flash flood maps for the 2016 event that caused 23 fatalities (Martinaitis et al. (2020)) are evaluated in

detail. Unlike the NWM, we approached calibrating the WRF-Hydro model relying on diffusive wave routing to capture flood115

propagation which is shown to be more suitable for extreme flash floods events due to abrupt changes in flood height (Moussa

and Bocquillon (2009)). We further compared results using a new Lidar-based digital elevation model (DEM) at 1 m spatial

resolution to forecast flash flood ensemble maps with results using the current NWM flood maps at 10 m spatial resolution.

2 Data and Methodology

In the following subsections, we will outline the data and experiments proposed as a workflow to evaluate the forecast chain120

depicted in Figure 1 (b). To build the forecast chain we include collection and preprocessing of meteorological (i.g. precipi-
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tation) and surface description (i.g. digital elevation model) data. A physically based fully distributed hydrological-hydraulic

model is the core component of the forecast chain. To configure the model we take the collected preprocessed data and calibrate

the model parameters using historical flood events (Figure 1 (c)) to improve streamflow prediction.. Additionally, ensemble

precipitation forecasts are used as inputs to the hydrological-hydraulic model for near-real-time flood extent uncertainties125

analysis.

2.1 Study area and flood events

Calibration
DDS algorithm

Study Region

Greenbrier Basin – West Virginia USA 
Hydrological Simulations

WRF-Hydro v5.1.1

LSM: Noah-MP (1 km)

Routing: Diffusive Wave (250m)

Streamflow 
Ensemble
Forecast

MRMS QPE
1 km

HRRR QPF
3 km (1h fct)

HAND 
NHDPlus 10m

NLDAS V2
12 km

HAND 
Lidar 3DEP 1m

Meteo. Forcings Flash Flood 

Mapping

Geoest. 
Ensemble 

PPF

(a)

(b)

(c)

Figure 1. (a) Greenbrier River Basin (4290 km2) and Elevation map. (b) Data and Models for the Flood Mapping Forecast Chain. (c) 6

events selected based on activity stage threshold in Alderson gauge

As part of the Appalachian Mountains region in the Eastern United States, the Greenbrier River basin has approximately 4290

km2 of drainage area (Figure 1 a). It is considered one of the longest undammed rivers in West Virginia. The river flows 261

km, from upstream areas in Randolph and Pocahontas counties to downstream in Greenbrier, Summers, and Monroe counties.130

The complex topography is characterized by steep valleys and thus Greenbrier tributaries are highly prone to flash flood events.

One of the most recent events in 2016 led to 1 billion dollars in damages. It also caused 23 fatalities, most of them in the White

Sulphur Springs neighborhood in West Virginia (Martinaitis et al. (2020)).

Constrained by QPE data availability, we selected six flash flood events between 2016 and 2018, in which the extreme

rainfall scenarios caused the USGS station hydrological station in Alderson to exceed its action (high) water stage threshold of135
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9 ft (2.74 meters; Figure 1 (c)). Table 1 shows the water level peak time for each of the events. The approximate time to peak

was calculated based on the hours between the initial time of the rainfall event (gauge measurement in mm/h) over the basin

and the water level at the Alderson gauge.

Table 1. Description of extreme rainfall events used in this study. The peak time corresponds to the water level peak at Alderson station. The

time to peak was calculated between the initial time of rainfall to the peak of water level. The precipitation values represent the maximum

observed by the daily rain gauge and the maximum MRMS pixel over the basin domain.

Flow peak time Time to Peak Max. Accumulated Max. Accumulated

peak (h) (ft) Rainfall Gauge (mm) Rainfall QPE (MRMS) (mm)

Event 1 2016-06-24 05:00 8 21.99 262.3 306.4

Event 2 2018-04-17 01:00 16 15.46 116.3 78.18

Event 3 2018-05-04 01:00 15 13.69 118.7 112.09

Event 4 2018-09-28 14:00 10 12.81 93.3 74.91

Event 5 2017-05-25 17:00 12 13.49 117.9 68.1

Event 6 2018-02-20 07:00 23 12.86 101.8 59.35

2.2 Quantitative Precipitation Estimates (QPE)

Precipitation data plays a critical role in flood forecast chains, and its accuracy is subject to considerable uncertainty (Clark140

et al. (2014) and Valdez et al. (2022)). The spatial misrepresentation of rainfall patterns has been identified as a significant

source of error that can substantially impact hydrological predictions, as discussed by Clark et al. (2008), Rakovec et al. (2014)

and Clark et al. (2017).

In our study, we utilized the Multi-Radar/Multi-Sensor System (MRMS) data as the instantaneous Quantitative Precipitation

Estimate (QPE). MRMS is an operational product that combines data from dual-polarization ground weather radar and satellite145

passive microwave measurements to derive surface rainfall estimates over continental areas (Zhang et al. (2016)). This dataset

was selected due to its widespread use and capabilities in capturing precipitation information (Moazami and Najafi (2021)).

2.3 Quantitative Precipitation Forecasts (QPF)

To examine the influence of deterministic short-term rainfall predictions within the forecast chain, we incorporated the High-

Resolution Rapid Refresh version 3 (HRRRv3) dataset (Dowell et al. (2022)). This dataset encompasses rainfall forecasts150

generated through the Weather Research and Forecasting-Advanced Research WRF (WRF-ARW) model version 3.8.1, em-

ploying a 3km spatial grid resolution. The HRRRv3 dataset leverages multiple data assimilation techniques and observation

sources, including the assimilation of ground weather radar data. These methods enhance the reinitialization of atmospheric

states such as air humidity and wind velocity on an hourly basis. Consequently, the accuracy of cloud formation and dissipation

in short-term lead time forecasts is improved.155

6

https://doi.org/10.5194/egusphere-2023-2088
Preprint. Discussion started: 9 October 2023
c© Author(s) 2023. CC BY 4.0 License.



For our investigation, we specifically focused on the early range lead times of up to 3 hours. Starting from the model

initialization at instant t=0, we extracted accumulated rainfall predictions (in mm/h) for the subsequent 1, 2, and 3 hours.

These short-term predictions allowed us to evaluate the impact of deterministic rainfall forecasts on the overall performance of

the flood forecast chain. Note that due to the short-response time of floods in headwater basins, actionable forecasts must be

available 3-6 hours in advance.160

2.4 Probabilistic Precipitation Forecast (PPF)

To optimize the utilization of Quantitative Precipitation Forecast (QPF) data and explore the uncertainties associated with

capturing the spatial distribution of rainfall, we employed a Sequential Gaussian Distribution (SGD) methodology to generate

QPF ensembles, referred to as Probabilistic Precipitation Forecast (PPF). This approach aligns with the findings discussed by

Min et al. (2021), which highlight the challenges of accurately modeling extreme rainfall intensities (measured in mm/h) using165

atmospheric nowcasting models, particularly in comparison to the primary direction of thunderstorms. The complexity arises

from the sub-grid representation of cloud and precipitation microphysics and challenges in the assimilation of radial motion

velocity data obtained from ground-based weather radar systems (Sun et al. (2014)).

In our methodology, we assumed that it is still feasible to correct rainfall intensities at early forecast lead times, specifically

within the range of up to 3 hours (t=t+1, t=t+2, and t=t+3), based on the Quantitative Precipitation Estimate (QPE) available at170

t=0. The underlying assumption is that precipitation processes that impact rainfall intensity have characteristic persistence of 1-

3 hours even as the storm propagates. This is a critical assumption that will be discussed later in the manuscript. In other words,

the PPF ensembles maintain the spatial representation of rainfall in the HRRR QPF. However, the intensities, corresponding to

the high rainfall rates, are adjusted based on the most recent availability of MRMS data in real-time. This adjustment ensures

that the PPF ensembles capture both the spatial distribution of rainfall (i.e., thunderstorm motion) from the HRRR QPF and175

the intensity corrections derived from the latest MRMS data.

To generate the multiplicative bias factor, a regular spatial grid with a resolution of 5 km was utilized over the study domain.

Point values of the High-Resolution Rapid Refresh (HRRR) and Multi-Radar/Multi-Sensor System (MRMS) datasets were

extracted to construct the bias factor, as illustrated in Figure 2. In this study, a total of 20 spatial error fields were derived using

a semi-variogram model of multiplicative bias. These error fields served as the basis for 20 random fields of kriging interpo-180

lation. The multiplicative point values were required to satisfy the conditions for each of the 20 ensemble members, while the

interpolated errors between the points, for each realization of the kriging field, followed a random Gaussian distribution, taking

into account the statistical properties of the multiplicative bias variogram. The fundamental principle of the Sequential Gaus-

sian Distribution (SGD) methodology is that as the number of random ensembles increases, the ensemble mean will converge

to a simple kriging interpolation (Bai and Tahmasebi (2022)).185

For each of the three groups of HRRR forecast lead times, up to 3 hours (t=t+1, t=t+2, and t=t+3), a different multiplicative

error variogram was employed based on the Quantitative Precipitation Estimate (QPE) data at t=0. Figure 2 provides an example

of the methodology for the HRRR rainfall forecast at 23:00 on June 23, 2016 (t=t+1), and the corresponding MRMS data at

22:00 on June 23, 2016 (t=0). The corrected HRRR rainfall for 23:00 on June 23, 2016 (t=t+1), utilizing the ensemble mean
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from 20 ensembles, resulted in a reduction of extreme rainfall intensities (above 150 mm/h), while simultaneously increasing190

rainfall rates in less intense areas compared to the MRMS data.

Initially, we assessed the impact of correcting HRRR rainfall fields based on in-situ rain gauges, considering both daily

and hourly accumulations. Subsequently, we analyzed the influence of the 20 rainfall ensemble members on the hydrological

model, focusing on the Greenbrier River basin. This analysis demonstrated how different spatial patterns of precipitation can

affect streamflow predictions along the length of the river.195

Increasing the 
rainfall

Decreasing the 
rainfall

𝑚𝑢𝑙𝑡𝑖𝐵𝐼𝐴𝑆 = 10 log
𝐻𝑅𝑅𝑅 + 2
𝑀𝑅𝑀𝑆 + 2

Sequential Gaussian simulation (SGS) 

conditional stochastic simulations of errors

Figure 2. PFF methodology to generate 20 conditional stochastic simulations of error fields between HRRR and MRMS. The example shows

the HRRR rainfall forecasted to 2016/06/23 23:00 (t=t+1) and the MRMS data at 2016/06/23 22:00 (t=0). Ensemble Mean of corrected HRRR

for 2016/06/23 23:00 (t=t+1)

2.5 Calibrating parameters in the WRF-Hydro Model

To account for atmospheric interactions with previously neglected components of the Earth system in simulating the hydro-

logical cycle, community models like the Weather Research and Forecast (WRF) model have been enhanced with extended

parameterizations. The WRF-Hydro model (Gochis et al. (2015)) serves as an extension of the WRF framework specifically

designed for hydrological simulations, enabling the simultaneous representation of atmospheric fluxes (such as rainfall) and200

river discharge within the same time-step.

In this integrated system, the Noah-MP Land Surface Model (LSM) (Niu et al. (2011)) is one-way coupled to river and

terrain routing parametrizations, in a way that floodplain streamflow does not reinfiltrate back to the LSM grid cells. The
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Noah-MP LSM simulates surface energy and water fluxes, providing runoff inputs to calculate the river discharge. When the

atmospheric modeling component is deactivated, WRF-Hydro can function as a standalone gridded distributed hydrological205

model. Typically, it is common practice to implement the LSM at a coarser spatial grid resolution compared to the river

network grid. For example, in our study, the surface and subsurface runoff are computed by the Noah-MP LSM at a resolution

of 1 km, which then feeds into a river network grid with a resolution of 250 m, as depicted in Figure 3. Once the runoff

reaches the channel banks, the streamflow is routed downstream using the diffusive wave routing approximation. This routing

parametrization is well-suited for capturing abrupt changes in water height, particularly in regions with steep topography (?).210

Such hydraulic effects are shown to be observed during flash flood events (Ding et al. (2022)).

In order to ensure that the modeled mass and energy balance aligns with observed discharge measurements in the Greenbrier

River, a calibration workflow was conducted for selected parameters within the Noah-MP Land Surface Model (LSM) and the

diffusive wave routing scheme, as depicted in Figure 3. The parameters targeted for calibration were identified by the National

Water Model developers as highly sensitive to changes in streamflow (Lahmers et al. (2021); Mascaro et al. (2023)), (Table in215

Figure 3). To streamline the calibration process, we leveraged the existing calibration conducted for operational purposes as

a starting point. This allowed us to redefine the parameter ranges and facilitate the search for an optimal configuration. The

Dynamic Dimensional Search (DDS) method (Tolson and Shoemaker (2007)) was employed for calibration, utilizing hourly

streamflow observations as the calibration target. The DDS algorithm, implemented and evaluated within a Python interface

workflow by the developers of WRF-Hydro, has demonstrated computational efficiency and suitability for hydrological appli-220

cations at a continental scale (Silver et al. (2017)).

In this study, we chose the NSE as a metric for the optimum configuration in the Greenbrier River. In other words, the

DDS searched for the best group of parameters which could give the highest NSE value between the simulated WRF-Hydro

and observed USGS river discharges. The calibration workflow considered the Hilldale USGS station data as the optimum

downstream point. Therefore, changes in the 20 parameters presented in Figure 3 would influence strongly the hydrology225

of the area upstream Hilldale’ (drainage area of 4207 km2). Firstly, we performed a simple test with 50 DDS iterations

over 2016, separately for each parameter, to investigate changes in NSE values (Fobj). The saturated hydraulic conductivity

multiplier (DKSAT), which controls the velocity of water transfer among soil grid layers in the Noah-MP, was considered the

most individually sensitive parameter (Fobj = 0.72; Figure 3) followed by the REFKDT parameter associated with scaling

infiltration partitions to direct surface runoff and SMCMAX, that adjusts the maximum soil moisture capacity of all soil layers.230

River routing parameters describing the channel properties and geometry (roughness coefficient, width, and slope) were also

highly relevant to changes in simulating streamflow. A more extensive Noah-MP parameter sensitivity analysis can be found

at Cuntz et al. (2016).

We performed WRF-Hydro calibration considering 300 iterations over hourly simulations between 06/2015 and 12/2020.

Therefore, all six extreme rainfall events were constrained to the calibration period. A more detailed description of WRF-235

Hydro parameters can be found in the supplementary material. The calibration relied on MRMS QPE at 1km for rainfall. Air

temperature, pressure, humidity, incoming radiation, and wind were bilinearly interpolated to 1 km from the NLDAS v2 (Xia

et al. (2012)) data at 12km. The complex terrain in Greenbrier Basin was originally described by the digital elevation model
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from NHDPlus at 10 meters resolution (Moore et al. (2019)). We used the default WRF-Hydro Land Use and Land Cover

(LULC) maps which rely on monthly MODIS images and look-up tables.240

𝑴𝑭𝑺𝑵𝑶

𝑪𝑶𝑬𝑭𝑭 ∗ 𝒆𝒙𝒑 𝑬𝑿𝑷𝑶𝑵 ∗
𝒁

𝒁𝑴𝑨𝑿 − 𝟏

𝑫𝑲𝑺𝑨𝑻
𝑺𝑴𝑪

𝑺𝑴𝑪𝑴𝑨𝑿

𝑩𝑬𝑿𝑷

𝑩𝑾

𝑪𝑯𝑳𝑳𝑺𝑷

𝑴𝑨𝑵𝑵𝑵

𝑹𝑬𝑭𝑲𝑫𝑻
𝑹𝑺𝑼𝑹𝑭𝑬𝑿𝑷

𝑯𝑽𝑻𝑪𝑾𝑷𝑽𝑻

𝑴𝑷

𝑽𝑪𝑴𝑿𝟐𝟓

𝑶𝑽𝑹𝑶𝑼𝑮𝑯

𝑹𝑬𝑻𝑫𝑬𝑷𝑹𝑻

𝑳𝑲𝑺𝑨𝑻

𝑺𝑳𝑶𝑷𝑬

𝑯𝑳𝑰𝑵𝑲

∆ NSE Parameter Component Description

1 0.72 DKSAT 1D LSM Saturated soil hydraulic conductivity 

2 0.65 REFKDT 1D LSM Surface infiltration parameter

3 0.32 SMCMAX 1D LSM Maximum soil moisture content

4 0.30 OVROUGH T. ROUTING Overland flow roughness coefficient

5 0.30 MANNN C. ROUTING Manning’s roughness coefficient

6 0.04 BW C. ROUTING Channel bottom width [m]

7 0.04 CHSSLP C. ROUTING Channel side slope [m/m]

8 0.03 RSURFEXP 1D LSM Exponent in the resistance for soil evaporation

9 0.02 MP 1D LSM Slope of conductance to photosynthesis (Ball-Berry)

10 <0.01 VCMX25 1D LSM Maximum rate of carboxylation at 25 [umol co2/m/s]

11 <0.01 LKSATFAC 1D LSM Multiplier on lateral saturated hydraulic conductivity

12 <0.01 BEXP 1D LSM Beta parameter

13 <0.01 SLOPE 1D LSM Linear reservoir coefficient from bottom drainage 

14 <0.01 REFDEPFAC 1D LSM Multiplier on retention depth for overland flow 

15 <0.01 CWVT 1D LSM Empirical canopy wind parameter

16 <0.01 HVT 1D LSM Top of canopy [m]

17 <0.01 COEFF GW Multiplier on bucket drainage as function of depth

18 <0.01 EXPON GW Exponent of rate of bucket drainage

19 <0.01 HLINK C. ROUTING Initial water depth in the channel [m]

20 <0.01 MSFNO 1D LSM Snow melt factor for snow depletion curve 

21 <0.01 ZMAX GW Maximum groundwater bucket depth

Figure 3. WRF-Hydro parameters considered for calibration using the DDS algorithm. The Table shows how the objective function NSE

changes according to each individual parameter. 1D LSM represents the components from Noah-MP. Terrain Routing, Channel Routing and

Groundwater are parametrizations from WRF-Hydro.

2.6 Probabilistic Streamflow Forecast (PSF)

Following the calibration of WRF-Hydro parameters using observed hourly streamflow data, we conducted near-real-time

experiments to assess the model’s streamflow prediction performance. For these experiments, we utilized both deterministic

High-Resolution Rapid Refresh (HRRR) Quantitative Precipitation Forecast (QPF) with lead times up to three hours, as well

as the corrected Probabilistic Precipitation Forecast (PPF) rainfall fields. During the evaluation, we focused on the same six245

extreme events listed at the table at Figure 3. For each event, we performed deterministic streamflow simulations using the

HRRR QPF and generated a set of 20 streamflow predictions for each lead time. This ensemble of streamflow predictions

formed our Probabilistic Streamflow Forecast (PSF). To assess the accuracy of the deterministic and probabilistic streamflow

predictions, we compared them against available streamflow observations along the Greenbrier River. This evaluation aimed to

determine the model’s ability to capture the observed streamflow patterns and provide reliable forecasts during extreme events.250

Through these near-real-time experiments, we aimed to evaluate and validate the performance of the WRF-Hydro model in

predicting streamflow, both in deterministic and probabilistic modes, using a combination of HRRR QPF and corrected PPF

rainfall fields as input.

2.7 Probabilistic Flood Mapping Forecast (PFF)

In our experiment using the Probabilistic Streamflow Forecast (PSF), we aimed to assess the potential of higher-resolution255

topographic data for generating probabilistic flood maps. Specifically, we utilized the National Elevation Dataset (NED) 3D
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LIDAR product with a spatial resolution of 1 meter, as opposed to the operational version of the National Water Model (NWM)

which relies on a 10-meter description of topography (Zheng et al. (2018)).

To evaluate the accuracy of the generated flood maps, we compared them against field-collected flood benchmarks provided

by the US Geological Survey (USGS) at White Sulphur Springs. This neighborhood was significantly affected by the 2016260

extreme flood event (Watson and Cauller (2017)). The observed flood extent was initially in vector format and was subsequently

converted into raster format to match the spatial resolution of the High-Resolution National Hydrography Dataset-Digital

Elevation Model (HAND-DEM) used in our analysis as reference. The Probabilistic Streamflow Forecast (PSF) was aimed at

assessing the potential of using a higher spatial resolution topographic dataset for generating probabilistic flood maps in the

study area.265

2.8 Metrics

Ensemble metrics are necessary to demonstrate the accuracy, reliability, sharpness, and skill of any type of probabilistic fore-

cast. To account for the forecast uncertainties of each component in our forecast chain, we applied statistical evaluation to the

workflow proposed in Figure 1.

Equation 1 shows the Pearson Correlation coefficient used to verify the linear correlation between O and S, the observed270

and simulated variables respectively. The Root Mean Squared Error (Equation 2) was used to measure the absolute accuracy

differences between the simulated and observed variables. The multiplicative Bias (MBIAS; Equation 3) reveals how much

(%) the simulations are being either overestimated or underestimated, when compared to the observations. Values of MBIAS

lower than 1 indicate underestimation while values above 1 shows overestimation. The Nash-Sutcliffe Coefficient (NSE) was

additionally applied between the time-series of the hydrological simulations (i.e. streamflow) and river gauges to verify the275

time-scale accuracy of the hydrologic model. The ensemble reliability was only verified though the ensemble mean for the

precipitation ensembles and streamflow ensembles.

PearsonCor. =
∑n

t=1(Si− Ō)2∑n
t=1(Oi− Ō)2

(1)

RMSE =

√√√√ 1
N

N∑

i=1

(Si−Oi)2 (2)

MBIAS =
∑N

i=1(Si−Oi)∑N
i=1 Oi

(3)280

NSE = 1−
∑n

t=1(Si−Oi)2∑n
t=1(Oi− Ō)2

(4)
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The package rwfhydro was used for some of the metrics at Session 3.3 to evaluate the streamflow calibration process of the

hydrological model. The WRF-Hydro R-package has functions to calculate the accuracy statistics (i.e. RMSE, NSE ) against

gauge observations at hourly, daily, and monthly time-scales.

The Equations 5, 6 and 7 were used to verify how the ensemble mean of simulated flood maps were comparable to the285

brenchmark collected by the USGS after the natural disaster. The Probability of Detection (POD), False Alarm Ratio (FAR)

and Characteristic Stability Index (CSI) are calculated based on the number of pixels that successfully predicted (nsuccess),

overpredicted (nfalsealarme) or underpredicted (nfail) the flood extent.

POD =
nsuccess

nsuccess + nfail
(5)

FAR =
nfalsealarme

nsuccess + nfalsealarm
(6)290

CSI =
nsuccess

nsuccess + nfail + nfalsealarm
(7)

By following this proposed workflow, the forecast chain depicted in Figure 1 can be thoroughly evaluated, providing in-

sights into the performance and limitations of the system for flash flood prediction. The workflow integrates data collection,

model configuration, ensemble precipitation forecasting, flood simulation, evaluation, and uncertainty analysis to ensure a

comprehensive assessment of the forecast chain’s effectiveness over the Greenbrier River Basin.295
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3 Results

3.1 How accurate is the QPE in the complex terrain of the Greenbrier watershed?

(a) (b) (c) (d)

(e) (f)

Figure 4. Kriging interpolation of MBIAS for (a) Summer (June, July, and August), (b) Fall (September, October, and November), (d)

Winter (December, January, February), (d) Spring (March, April, May) between 05/2015 and 03/2020. The remaining figures illustrate the

daily rainfall anomalies (mm) according to (e) Digital Elevation Model (m) and (f) Height above nearest drainage (m).

As mentioned in the methodology session, the hydrological model calibration, and its initial state for the forecast as well as the

correction of QPF rely on the accuracy of QPE. Our first analysis focused on discussing the uncertainties of MRMS products to

retrieve rainfall in complex terrain. As discussed by Cecinati et al. (2017) and Arulraj and Barros (2019), ground radar data can300

suffer inferences of the terrain according to the composition of the scan. This assumes that the rainfall would not be uniformly

retrieved over the basin, and areas upstream would present a systematic error if the product was not real-time corrected with

automatic hourly rain gauges, though this correction would be different depending on the storm and whether hourly rain gauges

can capture the variability of rainfall. Over our study domain the USGS hourly rain gauges are scarce (Figure 2S) compared to

daily rain gauges which can be found in higher density (Figure 4). Therefore, we decided to compare points of MRMS retrieval305

with observed daily rainfall accumulation to investigate possible systematic errors of estimation according to the steep terrain.

This a limitation for flash flood forecasting and fast response in mountainous regions, where the diurnal cycle of rainfall is very

strong (e.g., Liao and Barros (2022)). Figure 4 shows the kriging interpolation of MBIAS between observed daily rain gauges
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and daily MRMS accumulation time series for (a) Summer, (b) Fall, (d) Winter, and (e) Spring between 05/2015 and 03/2020.

It was detected an overall underestimation of MRMS rainfall (around 10 %) during the Summer and Fall. An overestimation310

of around 20% could be found in the lower Greenbrier River during the Winter and Spring. Without seasonal segregation, the

upper basin remains in about 10% of underestimation against a reduction to 5% of overestimation in downstream areas at daily

time-scales (Figure 1S). Furthermore, the supplementary material also demonstrates that the rainfall time-series correlation

(i.e., R2) is lower with higher accuracy error (i.e., RMSE) for upstream areas.

We performed an additional MRMS analysis against the only available hourly rain gauge inside the basin, located at high315

elevations(Figure 2S). The seasonal analysis of the rainfall diurnal cycle revealed an overall MRMS underestimation, especially

during winter months. However, it was observed that during the summer higher MRMS hourly rainfall rates between 12 and 21

local time, suggesting an overestimation of precipitation related to local diurnal convection in the warmer seasons. This is likely

due to the overcorrection of radar products at high elevations due to overshooting (Arulraj and Barros (2021)). Additionally,

when each one of the 6 extreme rainfall events was analyzed separately, we note the underestimation of QPE for 5 of those320

events (Figure 3S and Table 2).

3.2 How are uncertainties in deterministic QPF propagated to PPF Ensemble?

In this section, we analyzed the accuracy of HRRR deterministic QPF as well as the corrected HRRR probabilistic PPF during

the 6 rainfall extreme events in the Greenbrier River Basin. We performed our statistical comparison considering the spatial

mean over the 4 hourly rain gauges available in the domain shown in Figure 6 (b). The statistical metrics between the HRRR325

QPF at lead times up to 3 hours and the hourly rain gauges can be found in Table 3. The results show that the HRRR first hour

forecast (HRRRfct01), for instance, rainfall prediction for 01:00 with HRRR initialization at 00:00 compared to hourly rain

gauges at 01:00, demonstrates higher time-series correlation (Pearson Cor) with observed rainfall when compared to lead time

in 2 and 3 hour forecasts. Although, the second-hour forecast (HRRRfct02) presented slightly lower RMSE and multiplicative

Bias (MBIAS) closer to 1, suggesting that the second-hour forecasts, in general, could lead to more accurate rainfall magnitude,330

the first HRRR time-step (HRRRfct01) is generally more accurate in to predict storms direction.

Figure 5 shows the spatial pattern of (a) MRMS QPE, (b) HRRR first, (c) second, and (d) third-hour forecasts of total

accumulated rainfall during June 2016 flood event. The additional overlapping values of total rainfall accumulation from daily

in situ gauges facilitate the interpretation of overestimation or underestimation across the domain. There is underestimation

of QPE in upstream areas of high elevation , as mentioned previosuly, as well as the overestimation at the downstream areas335

at lower elevation. Comparing the MRMS QPE spatial patterns with the HRRR QPF, we can notice that the position of most

intense rainfall accumulation was more accurately described by the second-hour forecast Figure 5(c). The QPE and QPF’s

ability to capture the peak time of intense rainfall rates is shown in Figure 6(c), where the time series of average rainfall is

compared against rain gauge measurements. The MRMS showed a good agreement with USC00463669 rain gauge, as the

peak of precipitation was placed at 06/23/2016 02:00 and 06/23/2016 22:00. All 3 lead-times QPFs predicted a certain level of340

precipitation for 06/23/2016 02:00 but concentrated the highest rainfall intensities in the early afternoon hours.
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Table 2. Pearson Correlation, RMSE and multiplicative Bias (MBIAS) for HRRR deterministic QPF and MRMS QPE. Statistics considered

27 points of daily gauge measurements as observed rainfall. The last row represents the mean value over the six events.

Event1 Event2 Event3 Event 4 Event 5 Event 6 All Events

Pearson

Correlation

MRMS 0.72 0.77 0.85 0.85 0.91 0.91 0.78

HRRRfct01 0.27 0.62 0.25 0.42 0.23 0.49 0.34

HRRRfct02 0.06 0.60 0.45 0.65 0.21 0.70 0.33

HRRRfct03 0.11 0.42 0.41 0.32 0.42 0.55 0.31

RMSE

MRMS 2.57 1.84 0.93 0.79 0.54 0.34 1.32

HRRRfct01 5.67 2.22 2.01 1.5 1.91 1.87 2.72

HRRRfct02 5.14 2.34 1.67 1.36 1.83 1.95 2.55

HRRRfct03 4.13 5.84 1.68 1.88 1.78 2.13 3.25

MBIAS

MRMS 0.86 1.05 1.12 1.03 0.91 1.06 0.99

HRRRfct01 0.88 0.66 0.76 0.64 1.02 1.74 0.9

HRRRfct02 0.89 0.72 0.84 0.83 0.97 2.25 1.01

HRRRfct03 0.54 1.30 0.77 0.74 1.10 2.46 1.10

Figure 6 also shows the results of SGD methodology to adjust intensities of QPF based on the last QPE map, the PFF. Figure

6 (d), (e), and (f) represent the time series of accumulated rainfall considering the 20 PFF ensemble members generated for

the first, second, and third hours of HRRR forecasts. The ensembles produced rainfall scenarios above the rain gauge values

for the first and second forecast hours, which can explain why the ensemble mean reaches accumulation values closer to the345

observed. Considering the statistics presented in Table 3, the second-hour deterministic QPF showed lower RMSE and MBIAS,

which lead to a lower overestimation of the ensemble members (Figure 6 (e)), compared to the first-hour forecast. However,

the first-hour PPF ensemble mean (Figure 5 (e)) was able to adjust the rainfall intensities closer to the QPF (Figure 5 (b)) as

well as the second-hour QPF (Figure 5 (c)) as previously demonstrated. To exemplify how is the effect of the correction over

different rainfall intensities, Figure 6 (a) shows the histogram of first-hour PPF, by the percentage of pixels between certain350

rainfall rates over time. We noticed that most of the members started to differ from the ensemble mean for precipitation ranges

between 30 and 100 mm/h (30 < P <100) and above 100 mm/h (P > 100). The PFF was not able to completely reduce areas

where the QPF values were above 100 mm/h, not estimated by the MRMS. However, the ensemble members were able to

reduce the percentage of values above 100 mm/h.
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(a) (b)

(c)

(d)

(e)

Figure 5. Total accumulated rainfall for the first extreme event (06/2016) using (a) MRMS QPE, (b) first hour, (c) second hour, (d) third hour

QPF.(e) represents the total accumulated rainfall for first hour PPF.
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Gauge

MRMS

HRfc01

HRfc02

HRfc03

EnsMean

Histogram for different P (precipitation; mm) ranges  Hourly rainfall gauges
(a) (b) (c)

(d)

(e)

(f)

(%
)

Figure 6. (a) The percentage of pixels for different rainfall thresholds over time considering the first-hour PPF. (b) Hourly rain gauge over

the domain. (c) Rainfall rate time-series for USC00463669 rain gauge location. Total accumulated rainfall PPF time-series for the first hour

(d), second-hour (e), third-hour forecast (f) rainfall for first hour PPF at USC00463669 rain gauge location

Table 3 represents the statistics that evaluate the accuracy of the ensemble mean. For extreme event 1 (06/2016), the Pearson355

correlation of the PFF ensemble mean slightly increases while the RMSE values decrease for the first-hour forecast. However,

the second-hour PPF showed a deterioration in statistics compared to the deterministic QPF. The ensemble mean Pearson

Correlation was significantly lower and the RMSE showed an increase. However, considering the 6 events, the overall bias was

lower for the second-hour forecast.
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Table 3. Pearson Correlation, RMSE and MBIAS for HRRR PPF. Statistics considered 4 points of hourly gauge measurements as observed

rainfall over the domain. The last row represents the mean value over the six events.

Person Cor. RMSE MBIAS

fct 01 fct 02 fct 03 fct 01 fct 02 fct03 fct 01 fct 02 fct 03

Event 1 0.33 0.04 0.06 4.64 8.69 4.27 0.93 1.04 0.53

Event 2 0.50 0.10 0.27 2.85 8.46 4.30 0.63 1.13 0.91

Event 3 0.35 0.59 0.38 1.70 1.43 1.83 0.60 0.66 0.76

Event 4 0.61 0.64 0.54 1.03 1.00 1.08 0.68 0.67 0.62

Event 5 0.39 0.41 0.56 1.29 1.27 1.36 0.72 0.62 0.83

Event 6 0.77 0.49 0.51 0.79 1.32 1.32 1.33 1.67 1.85

All Events 0.38 0.11 0.25 2.41 4.99 2.70 0.79 0.98 0.85

3.3 Does the hydrological calibration affect the streamflow simulations along the main river?360

This section presents the results from the WRF-Hydro parameter calibration. As mentioned before, we performed the 16

Noah-MP parameter calibration considering the range provided by the operational version 2.0 of the National Water Model.

Since we decided to use the gridded channel network with a diffusive wave routing scheme, we did not consider the NWM

routing parameters which are related to a vector-based channel network applied to a kinematic wave approximation. The

ranges of parameters can be found in Table 2S of the supplementary material. We calibrated the WRF-Hydro experiment365

considering the most downstream USGS streamflow gauge available in Greenbrier River (Hilldale - 4217 km2 of the drainage

area). The hydrograph resulting from this calibration can be found in the bottom row of Figure 7. The downstream region

was fairly well calibrated providing an NSE of 0.75 and 0.79 on hourly and daily time scales, respectively.Nevertheless, the

Pearson Correlation (0.94) and RMSE (31 m3/s) reached the best optimum configuration at monthly time scales. The overall

multiplicative bias was approximately close to -28 m3/s, which reveals a systematic underestimation of streamflow for hourly,370

daily, and monthly time scales. The top row of Figure 7 shows the effect of downstream calibration in the the upstream region

of Greenbrier River at Durbin (346 km2). As we can observe, the NSE values had a considerable decrease to 0.43 and 0.44 for

hourly and daily time scales. Comparing both flow duration curves in Figure 7 we show that the upstream region showed poorer

agreement for moderate streamflow values. Although the overall bias is around -4.3 m3/s the underestimation is relative to the

streamflow magnitude observed in the smaller watershed. Despite the underestimation happening in the upper and lower regions375

of Greenbrier River watershed, the additional comparison with the NWM version 2.0 components (Figure 6S) showed that this

current configuration provided higher values of subsurface and channel runoff . The results could relate to a better ability

to estimate the flood peaks, considering the system without real-time data assimilation. We also did not perform a separate

streamflow validation against observed gauges for any other period than in calibration (2015-2020), instead we focused to

evaluate the model outputs for different locations along the Greenbrier river. In the supplementary material (Figure 6Sb) we380
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show the simulated hydropgrahs using the NWM version 2.0. Our calibration mainly improved the streamflow simulations at

Durbin station, decreasing the overestimation of discharge showed by the NWM version 2.0 parameters.

NSE r2 RMSE Bias

0.43 0.75 8.57 -4.23
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Figure 7. WRF-Hydro streamflow calibration results (lower row) for Hilldale (4217 km2). Evaluation of calibration results for upstream

Greenbrier (upper row) in Durbin (346 km2). The statistics were calculated using the package rwrfhydro.

3.4 Can the PSF increase the accuracy of streamflow predictions?

After the WRF-Hydro calibration, the model’s ability to simulate the streamflow in a real-time forecasting perspective using

the rainfall ensembles from PPF at lead times up to 3 hours was evaluated. In particular, the streamflow ensemble PSF was385

statistically evaluated for the 2016 flood event. Figure 8 shows the hydrographs at Buckeye (1398 km2) and Alderson (3531

km2) USGS stations. These monitoring stations have the advantage to provide not only discharge and water level series but

also water level early warning thresholds based on a constructed rating curve (i.e. relationship between discharge and local

water level time series).
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The red lines in Figure 8 are discharge rates associated with the flood warning stage, while the yellow line is associated390

with the action stage, which according to the USGS local stakeholders would call for evacuation precautions. The observed

hydrographs showed that the flood wave was possibly under the flood threshold upstream of the Buckeye station. Most of the

water overflowed to floodplain areas between Buckeye and Alderson stations. All modeled scenarios predicted the significant

floodplain overflow at Alderson. However, the QPE simulation overestimated the flood peak, which was expected since during

the calibration process this flood event was also overestimated. Both rainfall inputs from MRMS and the first hour of HRRR395

QPF anticipated the rising of the hydrograph for the downstream area in Alderson. However, the QPE simulation lead to a good

agreement for the flood peak at the upstream area in Buckeye. This reveals a certain level of uncertainty to simulate extreme

flood events even when they were part of the calibration process that could be attributed to hydrologic heterogeneity. As shown

before in Figure 5, according to the QPE the most intense rainfall areas were placed between Buckeye and Alderson stations. In

this case, we could possibly suggest that the hydrological model did not predict well the runoff response due to high-intensity400

rainfall in a short period of time. Table 5 also demonstrates that the QPE-driven hydrological simulations showed higher NSE

and Pearson Correlation for Buckeye in comparison with Alderson. Both station locations presented an overall overestimation

of hydrograph, mostly due to quick recession, which could be related to the routing parameter calibration or the simulation of

interflow.

As discussed in the previous session and shown in Figure 6 (c) some of QPF fields presented a time delay to predict the405

most intense rainfall rates in comparison to QPE. However, the precipitation delay helped the hydrological model to adjust the

rising limb time in hydrographs simulated with QPF. Table 5 and Figure 8 (f) showed that the second and third HRRR forecasts

in fact outperformed the QPE for Alderson and Hilldale stations with higher Pearson correlation and NSE. At the same time,

the first-hour QPF improved the streamflow prediction in Durbin, a location where the third-hour forecast showed a higher

overestimation of discharge. Considering the mean statistic values for all stations presented in Table 5, the second hour QPF410

showed to be more accurate to predict the streamflow in the current WRF-Hydro configuration.
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Table 4. Pearson Correlation, NSE and MBIAS between observed streamflow and WRF-Hydro predictions during the extreme flood event

in 06-2016, considering rainfall inputs from MRMS QPE and deterministic HRRR QPF for the first, second-, and third-hour forecast.

Durbin Buckeye Alderson Hilldale All Stations

Pearson Cor.

MRMS 0.45 0.93 0.77 0.70 0.71

HRRRfct01 0.76 0.81 0.63 0.53 0.68

HRRRfct02 0.56 0.60 0.86 0.79 0.70

HRRRfct03 0.63 0.85 0.95 0.94 0.84

NSE

MRMS 0.19 0.82 0.59 0.48 0.52

HRRRfct01 0.48 0.57 0.38 0.26 0.42

HRRRfct02 0.17 0.34 0.72 0.61 0.46

HRRRfct03 0.06 0.50 0.90 0.88 0.58

MBIAS

MRMS 0.98 0.77 0.94 1.1 0.92

HRRRfct01 0.79 1.18 0.97 1.08 1

HRRRfct02 1.38 1 0.81 0.86 1.01

HRRRfct03 3.69 1.56 0.89 0.92 1.77

(a) (b) (c)

(d) (e) (f)

Figure 8. QPE, QPF and PPF driven hydrographs for the 2016 flood event at (a) upstream area in Buckeye and (b) downstream area in

Alderson. Red lines represent the discharge stage threshold for flood (i.e. channel overflow) calculated by a rating curve. Yellow lines

represent the action stage defined by local stakeholders.

Table 6 and 7 show the statistical results obtained with PSF considering different rainfall members from PPF for the first-

, second-, and third-hour forecast. The ensemble mean of PSF was compared against observed streamflow data to compute

the Pearson Correlation, NSE and MBIAS presented at Table 6. We noticed a considerable improvement in the first-hour
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Table 5. Pearson Correlation, NSE and MBIAS between observed streamflow and PSF ensemble mean during the extreme flood event in

06-2016, considering rainfall inputs from PPF for the first-, second-, and third-hour forecast.

Durbin Buckeye Alderson Hilldale All Stations

Pearson Cor.

Ensfct01 0.77 0.84 0.82 0.74 0.79

Ensfct02 0.65 0.58 0.90 0.84 0.74

Ensfct03 0.54 0.68 0.95 0.92 0.77

NSE

Ensfct01 0.49 0.53 0.48 0.35 0.46

Ensfct02 0.29 0.26 0.77 0.65 0.5

Ensfct03 0.1 0.42 0.57 0.54 0.41

MBIAS

Ensfct01 0.84 0.66 0.64 0.71 0.71

Ensfct02 1.07 0.84 0.71 0.76 0.84

Ensfct03 2.13 0.84 0.60 0.65 1.05

and second-hour streamflow predictions, with increasing of Pearson correlation and NSE for the downstream areas next to415

Alderson and Hilldale stations. The predictions for Greenbrier upstream area in Buckeye suffered a slight decrease in NSE,

but the overall mean accuracy still conserved the improvement along the river regarding the 4-gauge locations. There was a

decrease in performance for the third-hour streamflow forecast. The third-hour PSF ensemble mean showed lower Pearson

correlation and NSE values compared to the streamflow simulations driven by the third-hour deterministic QPF. However, the

PSF helped to decrease the overestimation (i.e., lower percentual bias) at upstream areas in Durbin and Buckeye.420

3.5 How is the predictability of flood extension related to terrain description?

The results presented in this section will highlight the influence of the topographic model to map flood areas from a probabilistic

perspective. After the extreme flood event in June of 2016, USGS specialists benchmarked in the field the maximum flood

extension around the Howard Creek floodplain. We used the observed USGS flood map scenario as the target for our flood

map predictions. Based on the previous results evaluating the streamflow ensemble prediction, we decided to elaborate the425

probabilistic flood map forecasts (PFF) based on the first hour PSF members only. Figure 9 (a) shows the 20 PSF members

at the output of Howard Creek (248 km2 of drainage area – Figure 9 (b)). The streamflow spread among the PSF members

was higher for the middle flood peak in comparison to the two other smaller discharge waves observed in the Howard Creek

hydrograph. Unfortunately, there was no USGS streamflow gauge monitoring to evaluate the reliability of those predictions in

the small watershed during the flood event. However, the PSF results in the previous session demonstrated that the discharge430

simulations downstream fo Alderson had a satisfactory level of accuracy (0.77 of Pearson Correlation and 0.59 of NSE) under

the MRMS QPE.

The flood extension was estimated by a combination of the WRF-Hydro water level outputs and the HAND methodology, to

describe the floodplain topography along Howard Creek. The first approach was to derive the HAND map using the NHDPlus

DEM in 10 meters of spatial resolution (Figure 9(b)). The water level predictions at each WRF-Hydro 250 meters grid cell were435
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overlapped by the Hand map considering the regions mapped as flooded by USGS. Figure 9 (c) shows that the flood delineation

driven by the MRMS QPE (blue contours) overestimated the USGS benchmarks (black solid) flood extent. Moreover, the

statistics in Figure 9 (d) showed a positive bias also when the forecast was driven by the first hour HRRR QPF and the

PSF ensemble mean. The black ranges on top of the ensemble mean metrics indicate the upper and lower limits of the 20

PFF members, which enclose the score metrics found in the flood extension simulation driven by the MRMS QPE. The PFF440

ensemble means reduced the false alarm ratio (FAR) but also reduced the POD, which translated in a lower CSI in comparison

with the MRMS. However, we observed that the CSI from the PFF ensemble mean was slightly higher than the CSI found by

the HRRR first hour forecast QPF, which means that the overall ensemble mean also helped to slightly decrease the false alarm

ratio in mapping the flood extension.

When we applied the WRF-Hydro water level outputs to the HAND map generated by the NED Lidar DEM in 1 meter445

of spatial resolution, there is a depreciation in the flood extension score metrics (Figure 9 (f)). For instance, the CSI score

was considerably lower for the flood extension delineated in a 1-meter spatial resolution under the MRMS QPE, compared

to the flood mapping obtained in 10 meters. The overall POD spread of the 20 members also increased with a higher spatial

resolution of the floodplain, showing that the level of uncertainty increased when we mapped with the lidar DEM. However,

the PFF members once again helped the POD and CSI scores to match the ones found in the simulation using MRMS QPE.450

The overprediction was higher along the larger floodplain areas. Due to the lack of streamflow observations at Howard

Creek, we could not validate the diffusive wave accuracy to predict the water levels used to estimate the flood extent. However,

the streamflow evaluation showed that the MRMS QPE simulation was overpredicting the streamflow in Alderson, and the

PFF helped decrease the overestimation of the peak flow across the basin. We conclude that this also helped to decrease the

overestimation in Howard flood event.455

23

https://doi.org/10.5194/egusphere-2023-2088
Preprint. Discussion started: 9 October 2023
c© Author(s) 2023. CC BY 4.0 License.



Howard Creek Watershed – Sulphur Springs WV

(b) (a)

(c)

(d)

(e)

(f)

Figure 9. Flash flood probabilistic mapping for White Sulphur Springs (b) considering the stream flow members for 1 hour forecast at (a)

Howard Creek. (c) shows the statistics for the forecasted maps considering the HAND-DEM at 10 m of spatial resolution (d). (e) present the

maps and (f) statistics for the flood mapping considering the HAND-DEM at 1 m of spatial resolution.

4 Discussion

4.1 QPE

Identifying spatial uncertainties in real-time rainfall estimation products is relevant for any weather-related forecasting system.

After a hydrometeorological disaster, the nature of storm severity is usually the number one fact discussed and pointed out as the

main contributor to triggering the hazard. Martinaitis et al. (2020) discussed how the MRMS product was an important guideline460

to stakeholders in the operational environment to decide the time and level of flood warning during the 2016 flash flood event

in West Virginia. Operational hydrological products available at the time contributed to early warnings issued between 0-24h

lead-time and some relied on MRMS as a QPE, as initial conditions, or during the calibration process. However, our local

analysis through the MRMS QPE product identified an overall underestimation of the rainfall during the fall and summer

periods, which is apparent in the upstream region of the Greenbrier River basin area during the winter and spring months.465

Therefore, the systematic negative bias in upstream areas could have influenced capturing the real rainfall rate during the June

2016 flood event. A technical description of the MRMS retrieval algorithm shows that the final QPE could be gauge-corrected

with hourly accumulations if in-situ observations are available (Zhang et al. (2016)). However, when we compared the MRMS
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rainfall diurnal means against the only available rain gauge inside the basin, we did not find evidence that it was in fact being

used to correct the QPE during the 2016 June event. The difference in total accumulated rainfall between the USC00463669470

rain gauge and the MRMS pixel was around 20 mm at the end of the flood event. As discussed by Gerard et al. (2021), the

MRMS QPE tends to underestimate the rainfall intensity associated with deep convection storms during the warm season due to

systematic overshooting artifacts in radar operations, which could be a case of the storm event in June of 2016. This systematic

underestimation could be also related to the epistemic uncertainties of the weather radar to properly scan the storm and reflect

the radio waves in mountainous regions, not only in the algorithm retrieval. Basins with scarce rain gauges could also benefit475

from QPE correction techniques derived from hydrological models, as shown by Liao and Barros (2022).

4.2 QPF

Martinaitis et al. (2020) also demonstrated that experimental deterministic QPFs (NAMRR (Carley et al. (2015)) and ESRL

HRRRv2 (Benjamin et al. (2016))) were more accurate to capture the total accumulated rainfall than the operational HRRRv2

for the 2016 June event. In our evaluation focused on the Greenbrier River basin, the HRRRv2 first-hour QPF underestimated480

the rainfall around the White Sulphur Springs neighborhood, one of the regions most affected by flash flood events. The cor-

rection based on the MRMS QPE multiplicative bias was demonstrated through the ensemble means to relocate the maximum

rainfall coverage more accurately. We noticed an improvement in both rainfall timing (by the Pearson correlation) and inten-

sity (RMSE) mainly for the first-hour forecast. The ensemble PFF mean generated by the second and third HRRRv2 hour

forecast maintained the percentual bias closer to 1, showing a slight overestimation. Experimental QPF ensembles were also485

evaluated (Martinaitis et al. (2020)). Previous work showed that for 5 experimental QPF ensemble products evaluated, the

High-Resolution Ensemble Forecast System HREFX (Jirak et al. (2018)) was the most reliable to predict the spatial-temporal

pattern of rainfall during the 2016 event in West Virginia. HREFX constructs the rainfall members based on a variation of

multiple cycles of convective parametrizations, which could be considered more computationally expensive if applied oper-

ationally. The experimental HRRR-TLE (Alexander et al. (2010)) is a time-lagged ensemble, which means that the previous490

deterministic initialization of HRRRv2 was used to generate the members as a post-processing tool. According to Martinaitis

et al. (2020), HRRR-TLE performed well since was able to predict a 20% probability chance to exceed 50.8 mm (2 in) of

rainfall between 1800 UTC 23 Jun and 0000 24 Jun, which translated to a 10% change of flash food event. Our studies also

demonstrated that a rainfall ensemble of previous initializations of HRRRv2 could still be valuable for hydrological predic-

tion. We acknowledge that our QPF and PFF evaluation considered only 4 automatic rain gauges over our study domain, and495

object-based verification tools based on QPE, as MET’s MODE (discussed by Viterbo et al. (2020)), may be more appropriate

to track the evolution of isolated storms.

4.3 Hydrological model calibration and PSF

The WRF-Hydro hydrological model was calibrated using streamflow observations as well as considering the initial Noah-MP

parameters closer to the operational version of the NWM. The set of parameters found for the catchment upstream of Hilldale500

station (4217 km2) overestimated the streamflow for the 2016 flood event but underestimated the peak flows for the other
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extreme event analyzed. We considered all the events we intended to forecast as part of the calibration period. Considering or

not the most extreme events during the period of long-term calibration are an ongoing discussion in hydrological community.

SIN (2012) developed a methodology to select usual events in a streamflow time series and compared the calibration process

as well as transferability of parameters with the calibration being performed by the full time-series length. In their study,505

the authors concluded that the extreme event-based calibration was slightly worse than the full time-series length. However,

if the events were randomly selected (without considering the most extreme events in the series) the calibration performed

even worse. They discussed that methodology could be interesting to evaluate when a recalibration of operational hydrological

models is necessary since not all new extreme events would influence how the state of hydrological processes is being modeled.

We indeed noticed that in our case the overestimation of QPF beneficiated the streamflow forecasting. In the specific case of510

the 2016 flood event, the delay in rainfall timing from the third our forecast of HRRRv2 also helped to accurately forecast

the rising limb o fteh flood hydrograph at Alderson (3531 km2). Regarding the ability to simulate an accurate forecast for

the June 2016 flood at different points along the Greenbrier River, the PFF ensemble mean increased the overall statistical

performance when compared to the hydrological simulations by deterministic first-hour HRRRv2 QPF. The relevant effect was

most rainfall members that diminished the original QPF rainfall intensity at headwaters, a region that was underestimated by515

the MRMS QPE, used as a reference to generate the members. Falck et al. (2021) showed that post-processing PFF techniques

driven by NWP and rain gauges were mainly helpful to increase the streamflow prediction accuracy at watersheds smaller than

25 000 km2 of drainage area, but the prediction evaluation range varied between 24h to 264h lead time. In the context of the

short-term forecast, a radar-based PFF technique explored by Caseri et al. (2016) was able to increase the overall reliability of

streamflow prediction in small basins around 250 km2, up to 2 hours forecast lead-time compared to a persistence nowcasting520

method. In both cases, the streamflow prediction results were highly influenced by the rainfall reference used to generate the

members, if it’s either the space distribution of rain gauges or the weather radar-based QPE accuracy. It is important to note

that in many regions of complex terrain there are no rain gauges or reliable radar products. AI-based methods to take advantage

of the climatology of storm propagation (Kuligowski and Barros, 1998a, b; Kim and Barros, 2001) can extend the QPE lead

time with success.525

4.4 Flood ensemble mapping

The ability to translate the QPF uncertainties to real-time flood mapping also depends on the flood mapping methodology.

We observed a higher flood extension ensemble spread (i.e. difference in flood scenarios) when we increased the resolution

of the flood mapping areas by combining the LIDAR DEM with the HAND methodology. In other words, the resulting high

false alarm ratio revealed that the overprediction of flood extent increases when the DEM resolution increases. Since our530

streamflow simulations were made using the WRF-Hydro gridded version, there was no difference in hydraulic properties (i.e.

roughness parameter or river geometry) between the channel and floodplain inside the hydrological model. In this context,

we preserved the original water level WRF-Hydro output calculated following the conservation of momentum and mass to

intersect the HAND floodplain, unlike the methodology of synthetic rating curves in the NWM (Zheng et al. (2018)). Due to

the epistemic limitations of Manning’s equation to create those synthetic rating curves, Godbout et al. (2019) concluded that535
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HAND mapping tends to perform poorly at short river reaches with extreme slope values. In such cases, they suggested a more

equally spaced streamflow input along the main river to increase the flood extent mapping performance. Therefore, applying

the HAND methodology using the WRF-Hydro gridded version could be an alternative to finding the optimum reach length for

mountainous regions prone to flash floods, such as the Greenbrier River. Due to the lack of streamflow observations at Howard

Creek, we could not validate the accuracy of the diffusive wave approach to predict the water levels used to estimate the flood540

extent. However, the real-time PFF helped to decrease the peak flow compared to the offline simulation using the MRMS QPE

based on the streamflow evaluation, which lead to higher POD and lower FAR.

5 Conclusions

This work intended to analyze uncertainties to forecast hydrometeorological components in a framework considered state-

of-the-art in flash flood warning systems. We set up a physically based fully distributed hydrological-hydraulic model as the545

core component of the forecast chain. We conducted a comprehensive analysis of the uncertainties associated with different

components of the forecast chain. We quantified the contributions of meteorological uncertainty, model structure, parameter

uncertainty, and data input uncertainty to the overall forecast uncertainty.

By conducting our own experiment, we chose some extreme rainfall events in the Greenbrier River basin to create PSF and

particularly took a closer look at the flash flood event in June of 2016 to generate PFF. The starting point of our analysis was550

the evaluation of the operational MRMS QPE. We noticed a systematic underestimation of the rainfall on a daily scale mostly

during the summer and fall months. The high elevation with steep valleys could have some influence on weather radar scanning

of severe storms especially in the upstream area of the basin. At hourly scales, the scarcity of rain gauges made the results not

very conclusive. We indeed noticed that for the 2016 June flood event, the hourly rain gauges were probably not entirely

presented in the retrieval algorithm to bias correct the MRMS QPE product in real-time. Under the epistemic uncertainties in555

weather radar scanning, the accuracy of hourly QPE could be majorly improved if more rain gauges were installed over the

Greenbrier River basin. Because this is not likely to occur and it is not generalized, alternative techniques such as AI-based

storm propagation can be helpful in improving QPE at a basin scale.

We demonstrated that a simple geostatistical methodology to generate rainfall ensembles using the HRRRv2 and MRMS

QPE could be effective to increase the overall reliability of the first-hour forecast. More sophisticated methodologies which560

incorporate storm tracking had been shown to increase reliability by up to 3 hours of lead time and longer. In such a case, we

did not include patterns of previous initializations of HRRRv2, which could have been important to diminish the temporal bias

of each forecast to each initialization of SGD methodology.

The WRF-Hydro parameter calibration was satisfactory to simulate the hourly streamflow during The WRF-Hydro parame-

ter calibration was satisfactory to simulate the hourly streamflow during extreme flood events. When we introduced the rainfall565

ensemble members, it helped to adjust the streamflow prediction at upstream areas of the basin. The hydrological model also

benefited from the second and third hours PPF forecast delays in predicting the most intense rainfall. The results show that the

forecast skill along the Greenbrier River network varies significantly from the skill at the outlet that was used as the forecast
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point for calibration. This highlights the hydrologic and hydraulic heterogeneity across the basin and the complexity of the cou-

pled hydrologic-hydraulic networks in complex terrain. Therefore, to go beyond the point of flood forecast operations towards570

effective flood mapping, the calibration methodology for process-based models requires accounting for the scale-dependent

behavior of physical parameterizations and watershed physiographic heterogeneity, even at very high spatial resolution. We

did not test data assimilation techniques, which could significantly improve the initial conditions prior to the streamflow pre-

diction. In ensemble forecast scenarios, a combination of real-time streamflow data assimilation would possibly decrease the

PPF bias, especially in the timing of flood waves.575

The forecasted flash flood maps were considerably overpredicted at regions with longer floodplain banks. However, the

regularly spaced distributed streamflow prediction members created more dispersed flood scenarios when we increased the

DEM resolution (i.e. the floodplain detail). Following the previous literature in flood mapping using the HAND methodology,

hydraulic properties (i.e. roughness coefficient, channel slope) used in the diffusive wave formulation were more sensitive to

the changes in height description by the DEM. For that reason, simply updating the terrain description in the final step of a580

flood forecast chain cannot guarantee a higher accuracy to simulate flood extension. Identifying those sources of uncertainty

that have the most significant impact on flood predictions is important to continuously keep strategies to mitigate or reduce

near-real-time flood mapping uncertainties.
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