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Abstract.

Carbon dioxide (CO2) is the most important anthropogenic greenhouse gas. Its atmospheric concentration has increased by

almost 50% since the beginning of the industrial era, causing climate change. Fossil fuel combustion is responsible for most of

the atmospheric CO2 increase, which originates to a large extent from localized sources such as power stations. Independent

estimates of the emissions from these sources are key to tracking the effectiveness of implemented climate policies to mitigate5

climate change. We developed an automatic procedure to quantify CO2 emissions from localized sources based on a cross-

sectional mass-balance approach and applied it to infer CO2 emissions from the Bełchatów Power Station, in Poland, using

atmospheric observations from the Orbiting Carbon Observatory 3 (OCO-3) in its Snapshot Area Map (SAM) mode. As a result

of the challenge of identifying CO2 emission plumes from satellite data with adequate accuracy, we located and constrained the

shape of emission plumes using TROPOspheric Monitoring Instrument (TROPOMI) NO2 column densities. We automatically10

analysed all available OCO-3 overpasses over the Bełchatów Power Station from July 2019 to November 2022 and found a total

of 9 that were suitable for the estimation of CO2 emissions using our method. The mean uncertainty of the obtained estimates

was 5.8 Mt CO2y
−1 (22.0%), mainly driven by the dispersion of the cross-sectional fluxes downwind of the source, e.g. due

to turbulence. This dispersion uncertainty was characterized using a semivariogram, made possible by the OCO-3 imaging

capability over a target region in SAM mode, which provides observations containing plume information up to several tens of15

kilometres downwind of the source. A bottom-up emission estimate was computed based on the hourly power plant generated

power and emission factors to validate the satellite-based estimates. We found that the two independent estimates agree within

their 1σ uncertainty in 8 out of 9 analysed overpasses and have a high Pearson’s correlation coefficient of 0.92. Our results

confirm the potential for monitoring large localized CO2 emission sources from space-based observations and the usefulness

of NO2 estimates for plume detection. They illustrate as well the potential to improve CO2 monitoring capabilities with20

the planned Copernicus Anthropogenic CO2 Monitoring (CO2M) satellite constellation, which will provide simultaneously

retrieved XCO2 and NO2 maps.
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1 Introduction

CO2 is the most important anthropogenic greenhouse gas and its cumulative atmospheric concentration increase plays a major

role in global warming and climate change (Chen et al., 2021). In 2015, the Paris Agreement was adopted to limit global warm-25

ing to well below 2◦C and pursue "efforts to limit the temperature increase to 1.5◦C above pre-industrial levels" (UNFCCC,

2015). To meet these objectives, net greenhouse gas emissions need to be rapidly reduced (IPCC, 2023; Rockström et al.,

2017). Under this agreement and as part of the mitigation strategy, the parties report their national greenhouse gas inventories,

usually computed using bottom-up methods based on statistical activity data and emission factors (IPCC, 2006). Top-down ap-

proaches, based on atmospheric observations, can complement these inventories and verify their accuracy (Bergamaschi et al.,30

2018).

Most of the CO2 emissions result from the combustion of fossil fuels. About one-third of the total fossil fuel emissions

happen at localized sources, such as power plants (Oda and Maksyutov, 2011; IEA, 2019; Crippa et al., 2022). Therefore,

monitoring the CO2 emissions from these targets is key to tracking the correct application and effectiveness of the reduction

policies, and supporting the assessment of the global stocktake implemented by the United Nations. Satellite observations35

have the advantages of providing periodical data and having potential global coverage. Furthermore, as initially proposed by

Bovensmann et al. (2010) and Velazco et al. (2011), analysis of space-based observations of XCO2, the column-averaged dry

air mole fraction of CO2, provide independent estimates of CO2 emissions from localized sources like power plants (e.g.,

Reuter et al., 2019; Nassar et al., 2017, 2022).

The detection of CO2 emission plumes from localized sources is challenging due to the small anomaly in the XCO2 due40

to these emissions in the atmosphere, which are typically in the order of one ppm and in the same order of magnitude as the

instrument noise (Bovensmann et al., 2010). Since net atmospheric CO2 has a long lifetime, ranging from years to millennia

(e.g., Ciais et al., 2013), and large fluxes of natural origin, these enhancements are also much smaller than CO2 background

values and natural variability. Therefore, to quantify the CO2 emission plumes from localized sources, further assumptions are

usually needed, e.g. a Gaussian plume shape considering steady state (e.g., Nassar et al., 2017).45

Nitric oxide (NO) is co-emitted with CO2 during the combustion of fossil fuels. It rapidly reacts with ozone (O3) to form

nitrogen dioxide (NO2). During the day, NO2 is photolyzed to produce NO and atomic oxygen. Therefore, NO and NO2

are coupled during the daytime and their sum is referred to as NOx. Unlike CO2, NOx has a lifetime in the order of hours

in the daytime boundary layer. As a result, NO2 vertical column densities in plumes released from fossil fuel combustion

exceed background values and sensor noise typically by orders of magnitude. This makes it a suitable tracer for recently50

emitted CO2. The approach of using NO2 as a proxy for recent CO2 emissions for the combustion of fossil fuels has been

successfully used previously, both to estimate the CO2 emissions from NOx-to-CO2 emission ratios (e.g., Reuter et al., 2014;

Hakkarainen et al., 2021) and to detect and constrain the spatial extent of the emission plume, using observed data (e.g.,

Reuter et al., 2019) as well as synthetic observations (e.g., Kuhlmann et al., 2019, 2021). The use of NO2 as a proxy for CO2

profits from less noisy data at the expense of required knowledge about the source-dependent NOx-to-CO2 emission ratios,55

as well as about the NO2-to-NOx ratios, which are determined by the chemistry of NOx within the plume. A more cautious
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approach is the use of NO2 to constrain the spatial extent of the emission plume, e.g. fitting simultaneously observations of

NO2 and CO2 along a plume cross section, so that the width (and possibly the location) of the CO2 is constrained by that of

NO2 (Reuter et al., 2019; Hakkarainen et al., 2023; Kuhlmann et al., 2021). This latter approach profits from simultaneous

observations of both gases for an increased correlation in the spatial structures and is therefore less applicable in case of60

significant changes in the meteorological conditions in the time between the CO2 and NO2 measurements. We investigated a

technique based on NO2 data to constrain the region containing the CO2 emission plume without simultaneously fitting both

datasets. We used currently available observations of XCO2 and column densities of NO2, retrieved from the Orbiting Carbon

Observatory 3 (OCO-3) and the TROPOspheric Monitoring Instrument (TROPOMI), respectively. This is in part preparation

for the planned extensive exploitation of this approach to observations from the upcoming Copernicus Anthropogenic CO265

Monitoring (CO2M) mission, which aims to quantify anthropogenic CO2 emissions and will simultaneously retrieve XCO2

and NO2 column densities (Bézy et al., 2019). The CO2M builds on the heritage of the preparatory work undertaken in the

CarbonSat concept studies (Buchwitz et al., 2013; Bovensmann et al., 2010) and the observations of the SCIAMACHY on

ESA ENVISAT (Burrows et al., 1995; Bovensmann et al., 1999), TANSO-FTS on GOSAT (Kuze et al., 2009, 2016) and OCO

(Crisp et al., 2004; Eldering et al., 2019).70

Several methods exist to quantify the emissions from localized sources using satellite data, as described e.g. by Varon

et al. (2018). The Gaussian plume inversion method, based on the simulation of a Gaussian plume which is then fitted to the

observations, has been used to quantify power plant emissions from both OCO-2 and OCO-3 data (Nassar et al., 2022, 2017;

Chevallier et al., 2022). The Gaussian model describes a plume in steady state and therefore it does not account for eddies,

but relies on the assumption that their effects are negligible for multi-kilometre spatial scales. We have used a mass-balance75

cross-sectional flux method on XCO2 retrievals from OCO-3. The cross-sectional flux method, together with the imaging

capabilities of OCO-3, allowed us to analyse plume structures and estimate the magnitude of random errors affecting the

computed emission rate. A cross-sectional method was also used by Hakkarainen et al. (2023) to derive CO2 emissions of

localized sources in the South African Highveld from OCO-3 data. We focused on the Bełchatów Power Station, in Poland,

which is among the power plants having the highest CO2 emissions in the world. This power station was also the object of80

study by Nassar et al. (2022), who quantified its emissions using OCO-3 data.

This paper is structured as follows. Our cross-sectional flux method for the top-down quantification of the CO2 emissions

from localized sources is described in Sect. 2. The datasets used are presented in Sect. 2.1. The plume detection and charac-

terization algorithm, based on TROPOMI NO2 data, is described in Sect. 2.2.1. Section 2.2.2 describes the processing of the

XCO2 data to estimate the emission rate as detailed in Sect. 2.2.3. The estimation of the uncertainties is explained in Sect. 2.3.85

We briefly describe the scene selection procedure (Sect. 2.5) and the method to compute bottom-up emission estimates (Sect.

2.6) to verify the top-down computed emission rates. The results are shown in Sect. 3 and discussed in Sect. 4 along with the

conclusions.
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2 Datasets and methods

2.1 Datasets90

2.1.1 XCO2

NASA’s OCO-3 XCO2 retrievals were the main input data used to derive the CO2 emissions. NASA’s OCO-3 instrument,

onboard the International Space Station (ISS) since May 2019, measures reflected sunlight in three bands, centred on the

molecular oxygen-A band at 0.76 µm and the two CO2 bands at 1.6 µm and 2.0 µm. The instrument has eight footprints, each

of 1.6 km, and it sweeps about 2.2 km in the 0.33 seconds integration time. As a result of the ISS precessing orbit, the local95

overpass time of OCO-3 varies every day and it views latitudes between approximately ±52◦. In its Snapshot Area Map (SAM)

mode, it can scan almost adjacent swaths over CO2 emission hotspots and other targets. These SAMs are scans of a region of

about 80 km by 80 km, taken in approximately 2 minutes (Eldering et al., 2019; Payne et al., 2022).

We utilized observations taken in SAM mode from the Level 2 Lite XCO2 OCO-3 product (Taylor et al., 2023; O’Dell et al.,

2018) in its version 10.4r, based on the Atmospheric Carbon Observations from Space (ACOS) retrieval algorithm (O’Dell100

et al., 2012; Crisp et al., 2012). These XCO2 estimates are geolocated, bias-corrected and contain a quality flag, which we

have used to filter out estimates that are less likely to be accurate. This quality filtering is derived from thresholds on single

retrieval variables that are identified to cause the largest differences in the retrieved XCO2 compared to truth proxies (Payne

et al., 2022; O’Dell et al., 2018).

2.1.2 NO2105

We used TROPOspheric Monitoring Instrument (TROPOMI) NO2 retrievals to detect the shape and location of the NO2

enhancement due to the power plant emission plume. TROPOMI, onboard ESA’s Sentinel-5 Precursor (S5P), provides ob-

servations on NO2 among other atmospheric constituents (Veefkind et al., 2012). It has a swath of approximately 2600 km

across the track of the satellite, divided in 450 ground pixels of about 5.6 km (along track) × 3.6 km (across track) at nadir. It

has a nadir-viewing grating spectrometer with four detectors for the different spectral bands: UV and VIS (270-500 nm), NIR110

(710-770 nm) and SWIR (2314-2382 nm) (Eskes et al., 2022). S5P has a sun-synchronous orbit with a mean local solar time

at ascending node of 13:30 h. It performs 14 orbits per day with a repeat cycle of 16 days and its revisit time is approximately

one day.

We used slant column densities (SCD) obtained with a Differential Optical Absorption Spectroscopy (DOAS) retrieval in

the region from 425 to 497 nm (Richter et al., 2011). The SCD of a trace gas is a measure of its density along the average115

light path from the Sun to the instrument after reflection at the Earth’s surface. Consequently, it depends on the viewing and

solar geometry, as well as on other factors like the presence of clouds and aerosols. The vertical column densities (VCD) are

related to SCDs through the airmass factor, AMF, as VCD = SCD
AMF . The accuracy in the absolute VCDs is less relevant for

our application because we do not use them for emission quantification but for detecting enhanced anomalies with respect to

background values and thereby quantifying the spatial extent of the emission plume from a localized source. Therefore, we120
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neglected multiple scattering in the atmosphere by the electromagnetic radiation in the spectral region used for the retrieval

and approximated the VCDs considering a geometrical AMF from the viewing zenith angle (θv) and the solar zenith angle (θs)

as AMF = secθv +secθs.

2.1.3 Meteorological data

We obtained meteorological information from the ERA5 dataset, the fifth generation atmospheric reanalysis of the global125

climate covering the period from 1940 to present (Hersbach et al., 2017, 2020), produced by the European Centre for Medium

Range Weather Forecast (ECMWF) and provided by the Copernicus Climate Change Service (C3S). We used instantaneous

hourly estimates of a number of atmospheric variables in a 0.25◦ × 0.25◦ grid and 137 hybrid sigma/pressure vertical levels.

From ERA5 we obtained, for the different vertical layers, the horizontal wind speed components, u and v. We also computed

the number of dry air molecules in the vertical column from meteorological profiles. Assuming that the emission plume is130

well-mixed within the boundary layer, we computed, at each location and time, an average of each wind component within the

boundary layer weighted by the number of dry air molecules in the corresponding vertical layer. Brunner et al. (2023) found,

with their simulations over the Bełchatów and Jänschwalde power plants in May and June 2018 and in consistency with flight

observations, that this assumption of a well-mixed emission plume within the boundary layer is a good approximation during

the daytime.135

2.2 Top-down CO2 emission quantification method

We estimated the net emission rate, f , from a localized source using a cross-sectional flux method. This method is based on

mass balance so that f is the flux through any cross section (CS) downwind of the source.

Let ρ [kg m−2] be a map of the CO2 vertical column mass density at each spatial pixel and ρbg be the CO2 vertical column

mass density map for the background, i.e., the corresponding ρ in the absence of the source under analysis. The anomaly in the140

vertical column mass density, ∆ρ, resulting from the emissions of the source with emission rate f , is given by ∆ρ= ρ− ρbg

at each spatial pixel. Let w = (u,v) [m s−1] be the horizontal wind vector field at plume height and let us consider a CS of

infinite length (or whose length is larger or equal to the plume width) through this map and downwind of the source, as sketched

in Fig. 1. The normal vector to the CS, n, forms an angle θ with w. The mass flux density field is then given by F =w ∆ρ.

Let us consider as well a positively oriented closed curve C enclosing the emission source (and no other sources), with normal145

vector nC at each point and with one side coincident to the CS. Under stationary conditions, and assuming that all the emitted

CO2 mass was transported downwind, the only non-zero flux through this curve is given by the flux through the CS, which is,

by mass balance, a measure of the net emission rate:

f =

∮
C

F nCdl =

+∞∫
−∞

F n dl =

+∞∫
−∞

w⊥ ∆ρ dl (1)

where dl is a length differential along the CS and w⊥ = w cosθ the projection of w onto the direction of n.150
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Figure 1. Sketch of the cross-sectional flux method. The location of the emission source is marked as a black cross. Several CSs are depicted

as blue lines.

The CO2 quantity retrieved by the OCO-3 instrument, XCO2 [ppm], is transformed to vertical column mass density

[kg m−2] by the formula ∆ρ=
MCO2

NA
∆XCO2 nd, where Mco2 is the molar mass of CO2 (44.009 g mol−1), NA is the

Avogadro number (6.02214076×1023 mol−1) and nd is the number of dry air molecules per unit area (estimated from ERA5

meteorological vertical profiles). We then discretized the flux integral in Eq. 1 as the sum over each spatial pixel i along the

CS. With this, we rewrote the expression for the cross-sectional flux as:155

f =
Mco2

NA

∑
i

w⊥,i ∆XCO2,i nd,i ∆li, (2)

where ∆li stands for the length of each spatial pixel along a given CS.

The steps carried out to quantify the emission rate with our cross-sectional flux method are outlined in Fig. 2, where each of

the three main blocks is detailed below. The described analysis was carried out automatically. It used the mentioned datasets,

illustrated in Fig. 2. The emission source coordinates were considered as known and taken as an input. Additionally, a set of160

predefined parameters (explained below along with the method) were used. The potential plume detection uses TROPOMI

NO2 column densities to identify a region containing the emission plume. The XCO2 processing comprises initially the

determination of the XCO2 anomaly and a second step that refines the shape of the emission plume. Subsequently, for the

emission rate estimation, a set of cross-sectional fluxes is computed to estimate the mean emission rate and its uncertainty.

2.2.1 Potential CO2 plume detection using NO2 data165

The potential CO2 plume detection algorithm essentially defines a region in space that contains the detected NO2 emission

plume and is expected to enclose the CO2 emission plume from the source of interest. The algorithm, sketched in the left block

in Fig. 2, relies on TROPOMI NO2 VCD (described in Sect. 2.1.2), co-located with the OCO-3 SAM under analysis, and with

a time difference between the S5P and OCO-3 overpasses of less than 5 hours. For the potential plume detection we also need

horizontal wind data (Sect. 2.1.3).170
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Figure 2. Diagram sketching the main steps in the top-down emission quantification algorithm. Each coloured block corresponds to a distinct

step, whose output is shown in a gray box at the bottom. The input data points to the steps where they are used. Sub-steps are numbered and

shown in boxes within the parent step. For details see Sect. 2.2.1 for step "Potential plume detection", Sect. 2.2.2 for "XCO2 processing"

and Sect. 2.2.3 for "Emission rate estimation".

The spatial extension of the scene is defined using the OCO-3 SAM. We defined a SAM region as the rectangle enclosing

the SAM observations, with a cut-off in longitude and latitude at 2◦ from the coordinates of the source. This is shown in Fig.

3a as a dashed grey line. We also considered a frame of 0.75◦ around this SAM region. Due to the larger swath of TROPOMI

compared to that of OCO-3, the image of NO2 VCD allows us to inspect the surroundings of the XCO2 SAM and identify

other potential sources of CO2 around the SAM and thereby exclude sources other than that targeted in the analysis.175

We first smoothed the NO2 data to reduce random noise by means of a two-dimensional convolution with a binary kernel.

This kernel has the shape of a von Neumann neighbourhood, consisting of the pixel itself and its four first-neighbouring pixels.

In the TROPOMI spatial resolution, this neighbourhood size is often similar to the width of the emission plume close to the

source. Its result is essentially the replacement of the VCD in each pixel by the average over a neighbourhood around it, similar

to the approach suggested by Kuhlmann et al. (2019) and Varon et al. (2018).180

For the background (bg) subtraction, we first defined the NO2 background region, i.e. a sector of the scene expected to

contain a representative sample of background observations within the SAM area and no signal due to the NO2 emissions.

After taking the averaged horizontal wind speed components at the centre of each TROPOMI pixel within the SAM region at

the time of the S5P overpass, we defined a wedge centred along this horizontal wind direction, with its centre slightly displaced

upwind of the source, an angular amplitude of 90◦ and a radius long enough to cover the scene. The NO2 background region185

is the area containing the observations within the SAM region that lie outside this wedge. An example is shown in Fig. 3a as

the region enclosed by the solid red line.
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Figure 3. Steps of the potential plume detection method using TROPOMI NO2 data for a SAM over the Bełchatów Power Plant on 10 April

2020. The times (in local time) refer to the beginning of the overpass for both OCO-3 and S5P. The location of the source is marked as a

black cross. The black arrows show the mean horizontal wind within the potential plume at the OCO-3 overpass time. The borders of the

SAM footprints are depicted as white polygons. (a) Smoothed NO2 VCD. The SAM region is depicted as a dashed grey line, and the solid

red line encloses the background region. (b) Modelled background. (c) Vertical column density anomaly, ∆VCD. The observations with

enhanced ∆VCD as obtained from the significance test are enclosed by orange polygons. The dashed red line surrounds the cluster closest

to the source, and the solid red line stands for the potential plume.

Emission plumes reside in the troposphere, while the VCD refers to the whole vertical column. To remove the stratospheric

component of the VCD as well as large-scale tropospheric background patterns, we assumed that these VCD components

exhibit smooth variations within the scene compared to the portion resulting from anthropogenic emissions from localized190

sources (Leue et al., 2001). Therefore, to model the background, we fitted the VCD values within the background region to a
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linear function of longitude and latitude. We subtracted this modelled background from the VCD to obtain the vertical column

anomaly, ∆VCD. Figure 3b shows an example of the modelled background and the corresponding ∆VCD is displayed in Fig.

3c.

We selected the observations with enhanced ∆VCD with respect to the background using a one-tailed Welch test. The null195

hypothesis is the equality of the background and ∆VCD means. The combined standard error of the mean was computed for

each pixel from the background standard deviation and the reported NO2 uncertainty. The observations for which the null

hypothesis was rejected at a significance level, p, of 5% were marked as enhancements, enclosed by orange boundaries in Fig.

3c. These enhancements were clustered by Moore neighbourhoods. The NO2 plume is the cluster located closest to the source

location, depicted in Fig. 3c as a dashed red line.200

The time difference between the S5P and OCO-3 retrievals leads to a decreased correlation in the spatial structures (Lei

et al., 2022; Hakkarainen et al., 2023). In that time between overpasses, the atmospheric conditions can vary, which can cause

displacements in the emission plume or alter its shape, disrupting the congruence and overlap between the detected NO2

plume shape and the CO2 plume. This congruence might be further disrupted by the different spatial resolution of OCO-3

and TROPOMI. To obtain a detected potential plume that encloses the CO2 plume, we performed a spatial extension of the205

NO2 plume mask by binary dilation. For that, we re-gridded the TROPOMI pixels to a high-resolution 0.001◦ × 0.001◦ grid.

The magnitude of this extension was computed as proportional to the time difference between overpasses, with a minimum of

0.03◦ in the case of simultaneous overpasses and 0.08◦ for a time difference of 5 hours. This extension increases the likelihood

of the CO2 plume being contained within the potential plume. However, the CO2 plume might extend beyond the borders of

the potential plume if the wind was highly variable in the time between overpasses. The extended plume, whose boundary is210

shown in Fig. 3c as a solid red line, is the detected potential plume, which is expected to contain the signal due to the CO2

emissions as well as a fraction of the background observations.

2.2.2 XCO2 processing

The processing of the XCO2 to later estimate the emission rate is sketched in the middle block of Fig. 2. We first estimated

the XCO2 anomaly, ∆XCO2, from the quality filtered OCO-3 XCO2 data. We defined a CO2 background region using an215

extension of the potential plume by binary dilation by about 0.35◦ and excluding the potential plume. This region is depicted in

Fig. 4a enclosed by a solid black line and outside the potential plume (solid red contour). We modelled the OCO-3 background

as a fit of the XCO2 observations within the background region to a linear function of longitude, λ, and latitude, ϕ. Some SAMs

have been observed to present biases between adjacent swaths, likely arising from an interplay between viewing geometry and

the presence of aerosols (Bell et al., 2023). This swath bias was accounted for in the linear background model by including an220

extra term in the equation, sj , for each swath j = 1,2, ...,n−1 where n is the number of swaths of the SAM, so that the XCO2

background model is:

bj = a0 + a1λ+ a2ϕ+ sj , (3)
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having a total of n− 1 equations. An example of a modelled background is shown in Fig. 4b. For each observation, the

corresponding background value from the model was subtracted to obtain the XCO2 anomalies, ∆XCO2, shown in Fig. 4c.225

The horizontal wind components and the number of dry air molecules were obtained, as described in Sect. 2.1.3, at the

centre of each OCO-3 footprint within the potential plume at the time of the overpass. The resulting averaged wind vector is

shown in Figs. 3 and 4 as a black arrow. We re-gridded the ∆XCO2 values and the meteorological information to the same

high-resolution 0.001◦ × 0.001◦ grid as for NO2 and filled in the missing ∆XCO2 footprints in the grid using inverse squared

distance weighting interpolation for observations within a region of radius 0.05◦ centred at each missing footprint.230

This method relies on the spatial correlation of the NO2 and CO2 emission plumes, which is typically not perfect mainly

due to changes in the meteorological conditions, and consequently also in the plume shape and location, in the time between

the S5P and OCO-3 overpasses. The plume extension performed as the last step of the potential plume detection takes into

consideration possible mismatches between the detected NO2 plume and the CO2 plume due to these changes at the expense

of a larger potential plume, which includes more background observations. This is, in theory, not critical since the ∆XCO2235

within the potential plume should contain only the signal due to the emission plume and random noise that averages out to zero.

However, in cases where the background has small-scale structures that have not been characterized by our background model,

the background observations within the potential plume might not average to zero, adding thus a bias. To minimize this bias,

we performed a refinement of the potential plume following a similar approach to the plume detection described in Sect. 2.2.1.

We first masked the footprints with enhanced ∆XCO2 values with respect to the background by means of a one-tailed z-test240

with a p-value of 5%. After a binary closing operation that merges any enhancements separated by less than about 0.06◦ to

obtain a coherent mask, we clustered the enhancements. These clusters are shown in Fig. 4c within dashed orange boundaries.

Any isolated cluster of about the size of a OCO-3 footprint or less (disregarding any filled data) was neglected since it is most

likely to be the result of random noise in the ∆XCO2. With a second binary closing operation, we merged clusters separated

by less than about 0.14◦. This second closing operation provides us with a coherent mask even if there are relatively large245

blocks of missing observations within the potential plume. We selected the cluster closest to the source and extended it through

binary dilation in 0.015◦ (about the shortest side of a OCO-3 footprint), obtaining like this the refined plume, shown in Fig. 4c

enclosed by a solid orange line.

2.2.3 Emission rate estimation

From the refined plume shape and the XCO2 anomalies, we estimated the mean CO2 emission rate following the steps outlined250

in the rightmost block in Fig. 2.

We first transformed the high-resolution grid to the local tangent plane (LTP) at the location of the source considering the

Earth geometry to be a WGS84 ellipsoid. For the footprints within the refined plume, we carried out a linear regression of their

coordinates to define the plume track, shown in Fig. 4c as a red straight line traversing the refined plume and passing through

the source coordinates. Along this track and perpendicular to it, we defined a number N of equidistant CSs separated by a255

distance, ∆x, of approximately 0.2 km. This track, together with its perpendicular CSs on the LTP, spans a new coordinate

system, hereinafter referred to as track coordinate system, whose resolution in the x-axis (along the plume track) is determined
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by the distance between consecutive CSs and in the y-axis is set to about 0.1 km along the given CS. The transformation

between the high-resolution grid and the track coordinate system comprises a rotation of the coordinate axes followed by an

undersampling procedure, where only the footprints that are crossed by a CS are taken into account. This undersampling with260

respect to the high-resolution grid does not lead to a loss of information because the resolution of the track coordinate system

is still about one order of magnitude higher than the original OCO-3 resolution. In this transformation, the refined plume mask

was slightly modified insofar that, if the mask has any hole along a CS, it is filled. The resulting ∆XCO2 data transformed to

this coordinate system is shown in Fig. 5a.

We accepted only the subset of CS at distances downwind of the source larger than 5 km and smaller than 35 km. We refer265

to the span in between as the plume range. The lower threshold avoids errors due to both the OCO-3 product geolocation error,

typically of less than 1 km and reaching up to 3 km for a fraction of the data (Payne et al., 2022), and due to the exact location

of the stacks, which can be about 1 km apart. Furthermore, it accounts for the fact that the assumption of good vertical mixing

of the plume within the boundary layer is realistic only after about the height of the boundary layer downwind of the source,

typically in the order of 1-2 km (Matheou and Bowman, 2016). For larger distances downwind of the source, diffusion causes270

the dilution of the plume, reducing the XCO2 enhancement, which can lead to the detection of only a fraction of the plume

extension, and therefore an underestimation of the computed cross-sectional fluxes. This was avoided with the upper limit of

the plume range.
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Figure 4. Steps for XCO2 processing for the flux computation for a OCO-3 SAM over the Bełchatów Power Plant, on 10 April 2020.

The location of the source is marked as a black cross. The black arrows stand for the average wind within the potential plume at OCO-3

overpass time. The potential plume is enclosed by a solid red line. (a) XCO2 footprints (colour-coded) over NO2 VDC in the background

(gray scale). The dashed purple line delimits the SAM region. The XCO2 background area is enclosed by the black line and outside the

potential plume. The dashed red line encircles the NO2 detected plume. (b) Modelled XCO2 background according to Eq. 3. (c) ∆XCO2.

The refined plume is enclosed by the solid orange line within the potential plume. Other clusters with enhanced ∆XCO2 are enclosed by

dashed orange boundaries. A number of valid CS along the track is shown as grey lines. The straight red line that traverses the potential

plume is the computed plume track.
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Figure 5. Example of the emission rate estimation procedure, as explained in Sect. 2.2.3, for the scene on 10 April 2020. The x-axis represents

the distance of the CSs from the source (at the origin) along the plume track. (a) ∆XCO2 within the refined plume in the track coordinate

system. The black arrow stands for the averaged horizontal wind within the potential plume. The red lines stand for valid CSs and the grey

lines for invalid CSs. The filled ∆XCO2 gaps are shown together with the observations. (b) Estimated fluxes across each valid CS along

the plume track. The blue dots account for the cross-sectional fluxes used for the estimation of the mean emission rate, shown as a solid

blue line. The standard deviation of the data is shown as a pink area to both sides of the mean line, and the 1σ error, calculated as described

in Sect. 2.3, appears as a light-blue area. The vertical bars at each dot account for the propagation uncertainty (see Sect. 2.3.2). The fluxes

through valid CSs at distances from the source outside the plume range are plotted as blue crosses. (c) Semivariogram used to compute the

dispersion uncertainty (see Sect. 2.3.1). The dots stand for the empirical semivariogram, computed using Eq. 5. The model resulting from

the exponential fit (Eq. 6) is depicted as a solid line.

In addition, we filtered out CSs that are likely to yield biased estimates of the emission rate. We considered the CSs to be

valid if they fulfilled all of the following conditions: a) less than 40% of the XCO2 observations within the refined plume along275

the CS are missing, to avoid considering CSs with too much interpolated data added to fill gaps, b) the width of the refined

plume along the CS is larger than 4 km, which ensures that the CS spans over more than one SAM footprint. After filtering out

CSs outside the plume range and applying conditions a) and b), we are left with a subset of n′ CSs.
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With this, we computed, using Eq. 2, a set of values {fj}, for j = 1,2, ...,N , corresponding to the CO2 flux through each CS

at distance, xj from the source along the plume track, where only a subset of n′ valid CSs was considered. An example of these280

cross-sectional fluxes is shown in Fig. 5b as scattered blue dots along the plume track. We expect the obtained cross-sectional

fluxes to vary along the track of the plume. These fluctuations are partly originated by the experimental error in the quantities

used in Eq. 2, but also due to the turbulent nature of the process.

In addition, the CO2 molecules observed in the SAM were released at different times. The farther away the CS is from the

source, the longer the CO2 molecules were released before the OCO-3 overpass time. Let us define the plume characteristic285

time, ∆t, as the time that the CO2 molecules would have needed to travel, at the mean horizontal wind speed within the

potential plume, the distance between the source and the valid CS within the plume range situated the farthest away from the

source. If the power plant emissions vary within this ∆t, they will add another source of fluctuations to the cross-sectional

fluxes. We calculated this plume characteristic time and rounded it to the nearest hour integer. For a typical plume length along

its track of about 30 km, the characteristic time ranges from approximately 1 to 3 hours, for wind speeds between 3 and 7290

ms−1.

To describe the process leading to the flux fluctuations we took a stochastic approach. Let each fj be a realization of a

random variable F (xj), at points xj , j = 1,2, ...,N along the plume track. To characterize F , we assume second-order or

weak stationarity (WS), which means that: a) the mean of F is constant for all xj , which allows us to estimate the mean of the

process by treating the fj at different locations as realizations of the same random variable. This assumption is realistic as long295

as both the emissions from the power plant and the wind vector have no significant trend within the characteristic time interval.

b) The covariance, Cov(F (xj),F (xj+δ)) of the random variables at points xj and xj+δ , ∀δ = 0,1,2, ...,N − 1 depends only

on the distance between two points along the plume track, d= |xj+δ −xj |, but not on their absolute positions. Since all the

xj are equally spaced, the distance between any pair of consecutive locations will be constant and given by ∆x= xj+1 −xj .

Therefore, we can write the lag distance as d= δ∆x, where δ is the lag index, and consequently Cov(F (xj),F (xj+δ)) = C(δ),300

where C is the covariance function. On account of the first assumption, we can estimate the mean emission rate, f̄ , from the

mean of the computed cross-sectional fluxes. The obtained results are detailed in Sect. 3.2 and Table 1. With the second

assumption, we can as well estimate its uncertainty.

2.3 Uncertainty

To estimate the uncertainty of the obtained mean emission rate, we considered three contributions: 1) The dispersion uncer-305

tainty, sdisp, includes all random effects that cause cross-sectional fluxes to oscillate about their mean. These effects have

different origins, such as the inherent variability of the cross-sectional fluxes due to turbulence, variations in the emissions

within the plume characteristic time or random errors in the quantities used to compute the cross-sectional fluxes. 2) The wind

uncertainty, swind, refers to the impact on the emission rate estimate of a possible bias in the horizontal wind speed. 3) The

sensitivity uncertainty, ssens includes the effect on the emission estimate of different choices of the analysis parameters. Con-310

sidering all three sources of uncertainty are uncorrelated, the standard error (1σ) of the mean emission rate, s(f̄), is therefore
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given by s2(f̄) = s2disp +s2wind +s2sens. Each of these contributions to the uncertainty are explained below and the corresponding

results shown in Table 1.

We did not explicitly consider a XCO2 measurement error under the assumption that, at the relatively small spatial scales of

the analysed scenes, any bias in the XCO2 data is corrected for when subtracting the background. Random errors in the XCO2315

values are included in the dispersion uncertainty.

2.3.1 Dispersion uncertainty

The dispersion uncertainty is given by the variance of the mean:

s2disp = V ar(f̄) =
1

n2

n∑
j=1

n∑
k=1

Cov(F (xj),F (xk)) =
WS

1

n

(
C(0)+ 2

n−1∑
δ=1

(1− δ

n
)C(δ)

)
, (4)

where the last term is the explicit sum over the elements of the covariance matrix for a weakly stationary process divided320

by n2 (Storch and Zwiers, 1999). Thus, we can compute the dispersion uncertainty provided knowledge of the shape of the

covariance function.

For uncorrelated data, C(δ) = 0 for δ ≥ 1, so Eq. 4 reduces to s2disp =
1
nC(0). However, the cross-sectional fluxes are spa-

tially correlated, especially due to the close spacing between consecutive CSs compared to the OCO-3 spatial resolution. Since

the effective number of independent CSs is unknown, we performed a correlation analysis to estimate the covariance function,325

C(δ), which we used to estimate the dispersion uncertainty using Eq. 4.

We used a semivariogram, defined as γ(xj−xk) =
1
2V ar[F (xj)−F (xk)], to estimate the covariance function. For a weakly-

stationary process, it can be written as γ(δ) = 1
2V ar[F (xj+δ)−F (xj)] and fulfils that γ(δ) = C(0)−C(δ), showing, in this

case, the equivalence between the semivariogram and the covariogram. When estimated from the data, the semivariogram is

preferred because it does not require the knowledge of the mean and is, therefore, an unbiased estimator (Montero et al., 2015).330

We can empirically estimate the semivariogram as:

γ̂(δ) =
1

2m(δ)

m(δ)∑
j=1

(fj+δ − fj)
2, (5)

where m(δ) is the number of pairs of data, {fj+δ,fj} used for the estimation. For a pair to be taken into account, both fj+δ

and fj must correspond to valid CSs. Therefore, m decreases for larger lags, δ, and depends on the number and distribution of

valid CSs.335

The empirical semivariogram is only defined for a subset of the total N lags and it might exhibit an erratic behaviour.

A widely used solution is to use a model to fit the estimated semivariogram. A suitable model should represent some basic

features, like a monotonic increase with increasing lag, which shows decreasing correlation until the sill (horizontal asymptote)

is reached, and a positive intercept that accounts for the nugget effect, i.e. a discontinuity at the origin (Webster and Oliver,

2007). We use an exponential model of the shape:340

γ(δ) = C(0)(1− e−δ∆x/l), (6)
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where C(0) is the variance of the process. The parameter l is a measure of the correlation length and the only free parameter

to be determined by the fit. This model assumes that there is no nugget effect since we expect a smooth variation of the

semivariances due to the close spacing between CSs. Since the estimation of the empirical semivariances is less reliable for

larger lag distances and smaller number of pairs, m, used for the computation, we considered only the empirical semivariances345

computed from a number of pairs m≥ 10.

With the modelled semivariogram, we computed the covariance function for each lag, δ, as C(δ) = C(0)− γ(δ), which we

used to compute the dispersion uncertainty making use of Eq. 4.

The effective number of independent CSs within the plume range was estimated as:

n′
eff =

C(0)

s2disp
(7)350

For a typical plume range of 30 km and about 2 km footprint width we would expect a maximum of about 15 independent

CSs. Further correlation among CSs derived from spatial structures would lead to n′
eff ≤ 15. n′ provides us, therefore, with an

intuitive check on the computed dispersion uncertainty. It is worth noting that n′
eff is independent of the number, n′, of valid

CSs within the plume range, provided n′ was large enough to perform the correlation analysis.

2.3.2 Wind uncertainty355

The wind uncertainty, swind, includes the effect on the estimated emission rate of a possible bias in the horizontal wind used to

compute the cross-sectional fluxes. This is a purely systematic component, since any fluctuations in the wind along the plume

track are accounted for in the dispersion uncertainty.

We considered an uncertainty on the horizontal wind speed perpendicular to the CSs, of s(w⊥) = 0.5 ms−1. This value is

representative of the ERA5 ensemble spread zonal wind component close to the surface (Hersbach et al., 2020). A different360

approach was taken by e.g. Nassar et al. (2017), who obtained the uncertainty on the horizontal wind speed from a compari-

son between MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications-2) and ERA5 data. However, an

ensemble approach of only two methods might be insufficient to determine the wind speed uncertainty, because it would be

affected from random errors from both data products.

Using Eq. 2 and substituting w⊥ by its uncertainty, we obtain a value of the effect of the wind uncertainty on each cross-365

sectional flux, bw,j . These uncertainties bw,j are shown in Fig. 5b as blue bars about the flux estimates. The wind uncertainty

is the mean effect of the wind bias on the emission rate estimate, i.e. the mean of bw,j .

2.3.3 Uncertainty from sensitivity

The sensitivity uncertainty, ssens is a measure of the effect on the emission estimate of different choices of the parameters used

for the analysis.370

We estimated a measure of this uncertainty contribution from the variation of a number of parameters used for the analysis

of each scene within plausible ranges: 1) the p-values for the detection of the potential plume and plume refinement, in both

cases ranging from 0.03 to 0.1, 2) the radius of the circle and power of the inverse distance to fill the SAM gaps within the
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refined plume. We varied the radius from 0.05◦ to 0.1◦ for inverse distance weighting and from 0.05◦ to 0.2 from inverse

squared distance weighting. 3) The limits of the plume range, for which we varied the lower limit from 3 to 10 km and the375

upper limit from 30 to 40 km from the source. 4) The function used to fit the background, where we considered three cases:

linear dependence on longitude and latitude with a possible swath bias (given by Eq. 3), an analogous model allowing as well

for a possible footprint bias, fk for k = 1,2, ...,7, and a model considering only the linear dependence on longitude and latitude

(i.e. setting sj = 0 ∀j in Eq. 3).

For each parameter, we computed the standard deviation of the emission estimates for each scene and took its mean as380

a measure of the sensitivity uncertainty for that parameter. Assuming uncorrelated errors, we added them quadratically to

compute an estimate of ssens.

2.4 Sensitivity tests

Additionally to the sensitivity analysis performed to obtain an uncertainty estimate, we have performed other sensitivity tests.

These tests are explained in what follows, and the results are presented in Sect. 3.3. The modifications evaluated in these tests385

have shown to either have no significant influence on the results or lead to biased emission estimates. Therefore, we have not

included the outcome of these tests in the sensitivity uncertainty.

a) In the computation of the cross-sectional fluxes, the wind speed and direction from ERA5 were used. It is a common

practice to rotate the wind vector to match the direction of the observed plume (e.g., Reuter et al., 2019; Nassar et al., 2017;

Varon et al., 2018). We have therefore tested the influence of the wind rotation to match the direction of the detected plume390

track.

b) The OCO-3 L2 XCO2 product includes a quality flag, allowing us to filter out those observations tagged as having poorer

quality. Omitting the quality filtering has the advantage of a denser coverage, thus having fewer missing SAM observations at

the expense of higher bias risk.

c) We used NO2 VCD to obtain the shape of the potential plume, which constrains the CO2 plume region. We tested the395

applicability of the method without using NO2 measurements but constraining the CO2 plume region by a wedge downwind

of the source (as described in Sect. 2.2.1) to define the NO2 region.

2.5 Scene selection

The analysed scenes were selected using an automatic procedure. It comprises searching for SAMs with more than 800 sound-

ings (after quality filtering) and co-located TROPOMI NO2 overpasses with a time difference to the OCO-3 overpass smaller400

than 5 hours.

We also applied additional filters in the emission quantification procedure. A scene was discarded according to the following

criteria: 1) If there were less than 20 OCO-3 observations within the detected potential plume or less than 50 in the background.

This condition discards scenes with too few observations for our emission estimation procedure. 2) The width of TROPOMI

pixels increases in the across-flight direction due to the increasing viewing angle, from about 3.6 km at nadir to about 14405

km at the edges. A larger pixel size can result in an underestimation of the extension of the detected NO2 plume with the
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statistical test due to the dilution of the signal, further intensified due to smoothing. In cases with strong NO2 emissions, the

larger pixel size can also lead to an overestimation of the detected plume, underconstraining the CO2 plume and leading to a

possible inclusion of background structures in the CO2 plume. To avoid such cases, we left out a scene if more than 50% of

the TROPOMI observations with enhanced VCD belonged to the outer 50 pixels of the swath (on any side). 3) If the angle410

between the plume track and the wind direction was wider than 45◦. This provides an additional check on the wind direction as

obtained from ERA5 and avoiding the analysis of scenes where there was an abrupt change in the wind direction shortly before

the overpass. 4) If the highest computed lag distance was smaller than 2 km (about the size of an OCO-3 footprint). With this

criterion we avoid characterizing the dispersion of the fluxes along the plume track with an insufficient number of independent

CSs.415

2.6 Bottom-up emission estimation

To validate our top-down emission estimates, we computed the CO2 emissions of the Bełchatów Power Station for the selected

scenes at approximately the OCO-3 overpass time using a bottom-up approach based on the power plant activity.

First, an hourly bottom-up estimate of the CO2 emissions was computed as the product of the hourly generated power and

the emission intensity (mass of emitted CO2 per unit of generated power). We used information on the hourly net generated420

power per generation unit of 100 MW or more installed capacity, provided by the European Network of Transmission System

Operators for Electricity (ENTSO-E) in its Transparency Platform (https://transparency.entsoe.eu/, last accessed on 3 Feb

2023). The emission intensity was computed from the total CO2 emissions divided by the net generated power by the power

plant in 2018. That year, the CO2 emissions were 38.4 Mt CO2, as reported by the European Industrial Emissions Portal (https:

//industry.eea.europa.eu, last accessed on 20 Feb 2023). The European Industrial Emissions Portal collects information from425

the EU Registry on Industrial Sites and the European Pollutant Release and Transfer Register (E-PRTR). The net generated

power in that year, according to the power plant operator (PGE), was 32.535 TWh. That yields a CO2 intensity of 1.18

10−6 Mt CO2(MWh)−1, which we assumed to have remained approximately constant up to 2022.

Power plant emissions have strong daily and day-to-day variations (Velazco et al., 2011). For this reason, despite providing

our top-down emission estimates in units of MtCO2 y
−1, they are not annual averages. They are up-scaled and represent430

the emissions within approximately the plume characteristic time, ∆t, before the OCO-3 overpass. Therefore, we averaged

the reported hourly generated power within that ∆t before the OCO-3 overpass to compute the bottom-up emission estimates,

which we can directly compare with our top-down estimates. This approach is similar to the dynamic value described by Nassar

et al. (2021).

We estimated the uncertainty of the bottom-up emission estimates by taking into account two contributions: the intensity435

uncertainty and the characteristic time uncertainty. The former refers to the uncertainty on the estimated emission intensity,

subject to the uncertainty of the data used in its computation. Gurney et al. (2016) analysed two emission datasets for power

plants in the U.S., finding monthly emission differences of about 6% for about half of the facilities. For such a large power

plant, we would not expect the uncertainty to belong to the top 50 percentile. Despite that, we considered a conservative

6% uncertainty on the CO2 emissions from EIEP (2020), and consequently on the emission intensity computed from it. We440

18

https://transparency.entsoe.eu/
https://industry.eea.europa.eu
https://industry.eea.europa.eu
https://industry.eea.europa.eu


assumed that this includes changes in the intensity over the years, the different emission intensities that the various units in

the power plant have and possible mismatches between the net generated power as reported by ENTSO-E and the power plant

operator. We also considered the characteristic time uncertainty. This contribution to the uncertainty refers to the mentioned

emission variations within ∆t, which we account for by taking half the maximum difference in the hourly generated power

times the emission intensity. The total uncertainty of our bottom-up estimates is the root sum of squares of the characteristic445

time and the intensity uncertainties.

Our bottom-up emission estimates are shown in Table 1, together with their corresponding uncertainties.

3 Results

3.1 Scene selection

In the period from the beginning of the OCO-3 XCO2 dataset, in July 2019, until November 2022 inclusive, we found a total450

of 94 SAMs over the Bełchatów Power Plant, of which 14 have more than 800 soundings (after quality filtering). All these 14

SAMs have at least one co-located S5P overpass with a time difference smaller than 5 hours. After applying the scene selection

filters mentioned in Sec 2.5, we were left with 9 scenes, corresponding to 9 different SAMs.

3.2 CO2 emission estimates

The results for these 9 scenes obtained from the scene selection are detailed below, illustrated in Fig. 9 and summarized in455

Table 1 along with the meteorological information for each scene and several other parameters that characterize the scene. The

correlation between our top-down (TD) and bottom-up (BU) estimates is 0.92, and the results obtained by these two methods

agree in 8 out of 9 cases within their 1σ uncertainty range. Their mean difference (TD - BU) is -2.8 MtCO2 y
−1 and their

standard deviation is 3.7 MtCO2 y
−1. The mean uncertainty for these 9 scenes is 5.8 MtCO2 y

−1 (22.0%) and it is dominated

by the dispersion uncertainty, which is on average about 1.8 times higher than the wind uncertainty and slightly larger (on460

average 1.3 times higher) than the sensitivity uncertainty.

The results obtained for the 9 analysed scenes are detailed below. They are illustrated in Figs. 3-8 for some of the overpasses,

and in Figs. A1-A5 in Appendix A for those overpasses not shown in this text. We refer to overpass times in local time (LT)

as determined by the corresponding time zone. All the overpass times for the analysed scenes for the Bełchatów power station

refer to Central European Summer Time (CEST).465

10 April 2020. The OCO-3 overpass began at 15:35 LT (CEST) and the co-located S5P overpass at 12:57 LT. Our top-down

CO2 emissions are estimated to be 32.29 ± 6.38 MtCO2 y
−1. The mean horizontal wind speed within the potential

plume was 3.39 m s−1 and had an angle relative to the plume track of about -4.7◦. The characteristic time was estimated

to be of about three hours. Within that characteristic time before the OCO-3 overpass, all the units were operative and

the bottom-up estimated emissions decreased by 3.51 MtCO2 y
−1. Within that time there was a gradual increase in the470
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wind speed by 1.5 m s−1 and an angle shift of 13.94◦ about the plume track. The steps to compute the emission estimate

and the results are shown in Figs. 3-5.

17 April 2020. The OCO-3 overpass was at 11:42 LT, and the S5P overpass began at 14:06 LT. Our top-down emission

estimate is 32.04 ± 10.27 MtCO2 y
−1, illustrated in Fig. 6. The averaged wind speed within the potential plume at

the OCO-3 overpass time was 5.86 m s−1, having an angle of 18.4◦ with the detected plume track. We estimated a475

characteristic time of approximately 2 hours. Within that characteristic time before the OCO-3 overpass, the wind speed

slightly increased to then decrease by a total amount of about 0.79 m s−1, and its angle remained approximately constant.

We refer to an approximately constant wind speed or wind direction if its change within the characteristic time is less than

0.5 m s−1 and 10◦, respectively. The power plant activity slightly decreased within the characteristic time, from 3381 to

3041 MWh, leading to a bottom-up age uncertainty of 1.63 MtCO2 y
−1. The dispersion uncertainty of 9.28 MtCO2 y

−1480

is the largest among all the analysed scenes. In Fig. 6c,d we can appreciate the oscillations in the cross-sectional fluxes,

with a CO2 accumulation at higher distances from the source.

18 June 2021. Figure 7 shows the results for this overpass. The top-down emission estimate is 32.77 ± 5.40 MtCO2 y
−1.

Within the 2 hours characteristic time prior to the overpass, the wind speed increased by 0.71 m s−1 and its direction

remained approximately constant. So did the generated power, as shown in the relatively small age uncertainty (0.12485

MtCO2 y
−1).

19 June 2021. The potential plume extends, in this case, to areas without OCO-3 observations. Therefore, we have obtained

cross-sectional fluxes only up to a distance from the source of about 23 km. Our top-down emission estimate is 41.94 ±
6.99 MtCO2 y

−1. The results for this overpass are shown in Fig. A1.

20 June 2021. The low power plant activity, operating at less than 40% of its maximum capacity, together with the relatively490

large wind speed of 6.80 m s−1, results in enhancements over the background of the same order of magnitude as the

background structures, so that the emission plume is hardly perceptible at first sight (see Fig. A2). The estimated top-

down emissions are 17.96 ± 3.83 MtCO2 y
−1. Within the one hour (characteristic time) prior to the OCO-3 overpass,

the wind speed decreased by about 0.61 m s−1, and its direction and the power plant generated power remained approx-

imately constant. The large fraction of missing OCO-3 observations within the refined plume led to a discard of about495

two-thirds of the defined CSs within the plume range, especially at distances between 14 and 23 km from the source.

The low number of valid CSs, distributed in blocks spanning over less than 5 km and with gaps reaching 10 km, led

to a likely incomplete characterization of the correlation of the cross-sectional fluxes and thus to an underestimation of

the dispersion uncertainty (1.88 MtCO2 y
−1). The inference of an underestimated dispersion uncertainty can also be

reached when looking at the unexpectedly high computed effective number of independent CSs.500

8 October 2021. The large fraction of missing (quality filtered) SAM observations led to the near absence of valid CS to

compute the fluxes for distances smaller than about 23 km downwind of the source. We observed (Fig. A3) a near

monotonic increase in the fluxes with the distance downwind to the source over about 10 km. This increase could be
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Figure 6. Overview of the top-down emission rate estimation steps for the scene on 17 April 2020. (a) NO2 VCD. The SAM footprints are

enclosed by grey polygons. As in Fig. 3, the observations with enhanced ∆VCD as obtained from the t-test are enclosed by orange polygons.

The SAM region is depicted as a dashed grey line. The dashed red line surrounds the cluster closest to the source, and the solid red line

accounts for the potential plume. (b) XCO2 over NO2 VDC in the background in a gray scale. The solid black line encloses the XCO2

background area (excluding the potential plume). The refined plume is enclosed by the solid orange line within the potential plume. The

straight line that traverses the potential plume is the computed track. (c) Analogous to Fig. 5a. (d) Analogous to Fig 5b. The black arrows in

a-c depict the mean horizontal wind within the potential plume. The black cross stands for the source location.

attributed, at the first instance, to a violation of the stationarity assumption that we made to estimate the mean emission

rate and its uncertainty. However, the change in the generated power within the characteristic time is in the order of 10%,505

while the fluctuations in the cross-sectional fluxes are at least one order of magnitude larger. The wind speed and the

power plant activity have remained approximately constant within the characteristic time of one hour before the overpass.

Therefore, a plausible cause of the apparent monotonic change in the cross-sectional fluxes is the turbulent flow, where

we missed part of the oscillating behaviour due to the cut-off of 35 km along the plume track. This explanation seems

consistent with Fig. A3d, where we observe a decrease in the cross-sectional fluxes at distances greater than 35 km510

downwind.
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Figure 7. Overview of the top-down emission rate estimation steps for the scene on 18 June 2021. Analogous to Fig. 6.

9 October 2021. The results are shown in Fig. 8. The wind speed and power generation are comparable to those determined

for the scene on 20 June 2021. The relatively large fraction of gaps within the potential plume and low enhanced ∆XCO2

led to an apparent underestimation of the refined plume extension before about 18 km downwind of the source. This

is the only case where the obtained top-down estimate (11.59 ± 4.12 MtCO2 y
−1) does not agree with our bottom-up515

estimate (19.54 ± 1.48 MtCO2 y
−1) within the uncertainty ranges.

24 June 2022. The OCO-3 overpass took place at 9:01 am and is the earliest of all the scenes investigated. Despite the 4-hour

time difference with the TROPOMI overpass, which is the largest of the analysed scenes, the detected potential plume

seems to contain well the OCO-3 plume (see Fig. A4). The wind was highly variable: in the characteristic time of 1 hour

before the OCO-3 overpass the wind speed increased by 3.73 m s−1 and its direction changed by 13.35◦.520

13 October 2022. The top-down emission estimate is 27.75 ± 6.08 MtCO2 y
−1. Within the 1-hour characteristic time before

the overpass, the wind speed and direction remained constant, and there was a drop in the generated power, from 3045

MW to 2464 MW, resulting in a higher age uncertainty than for other scenes, but smaller than the dispersion uncertainty.

This overpass is illustrated in Fig. A5.
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Figure 8. Overview of the top-down emission rate estimation steps for the scene on 9 October 2021. Analogous to Fig. 6.
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Table 1. Parameters characterizing each of the analysed scenes including CO2 emission estimates. The satellites overpass times at local

time are shown, as well as the meteorological information at OCO-3 overpass time. The angle refers to that between the wind vector and the

north-to-south direction, positive in the clockwise direction. The top-down and bottom-up emission estimates are shown together with their

corresponding uncertainties, broken down into their components as described in Sect. 2.3. The sensitivity uncertainty of 3.11 Mt CO2 y−1 is

included in the total top-down uncertainty estimates.

Date
2020 2020 2021 2021 2021 2021 2021 2022 2022

10 Apr 17 Apr 18 Jun 19 Jun 20 Jun 08 Oct 09 Oct 24 Jun 13 Oct

OCO-3 time (LT) 15:35 11:42 11:23 10:36 09:48 14:53 14:06 09:01 12:34

S5P time (LT) 12:57 14:06 13:59 13:40 13:21 14:00 13:41 13:03 13:22

Wind speed (m s−1) 3.39 5.86 5.58 6.18 6.80 7.78 6.40 9.10 5.76

Angle θ (◦) -53.53 -30.35 144.60 139.92 139.06 93.84 92.39 131.18 151.37

nd (1025 cm−2) 2.12 2.10 2.11 2.11 2.10 2.15 2.15 2.11 2.12

Boundary layer height (km) 1.64 1.32 1.26 1.26 1.03 0.79 1.06 1.23 0.65

Characteristic time (h) 3 2 2 1 1 1 1 1 1

Number of independent CS, n′
eff 10.38 5.41 7.30 6.64 24.90 8.37 9.31 15.56 5.98

Generated power (MW) 3774 3217 3709 3714 1936 2793 1889 3208 2754

To
p-

do
w

na

Emissions 32.29 32.04 32.77 41.94 17.96 24.13 11.59 33.75 27.75

Total uncertainty 6.38 10.27 5.40 6.99 3.83 5.04 4.12 4.40 6.08

Dispersion uncertainty 3.40 9.28 3.33 5.37 1.88 3.61 2.55 2.49 4.62

Wind uncertainty 4.42 3.11 2.89 3.22 1.21 1.65 0.90 1.86 2.45

Emissions (Nassar et al., 2022) 29.60 27.90 36.90 26.40 10.20 21.40 16.40 35.20 -

Uncertainty (Nassar et al., 2022) 3.30 1.90 4.60 1.10 1.50 3.80 2.60 7.00 -

B
ot

to
m

-u
pa

Emissions 39.04 33.28 38.37 38.42 20.03 28.90 19.54 33.19 28.49

Total uncertainty 2.79 2.46 2.14 2.16 1.16 1.61 1.48 1.98 3.20

Age uncertainty 1.76 1.63 0.12 0.34 0.34 0.08 1.01 0.72 2.78

Intensity uncertainty 2.17 1.85 2.13 2.14 1.11 1.61 1.09 1.84 1.58

Emissions (Nassar et al., 2022) 31.30 28.10 32.20 24.40 17.20 24.30 15.50 29.50 -

Uncertainty (Nassar et al., 2022) 1.57 1.41 1.61 1.22 0.86 1.22 0.78 1.48 -
aAll quantities expressed in Mt CO2 y−1.
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Figure 9. Bottom-up (black), top-down (blue) and Nassar et al. (2022) (orange) emission estimates for the analysed scenes. The 1σ un-

certainties are displayed as bars about the corresponding emission estimate. The same uncertainties are shown at the bottom, revealing the

relative contributions to the bottom-up and top-down emission estimates, where the bars length is the respective uncertainty contribution

quadratically scaled with respect to the total uncertainty.

3.3 Sensitivity analysis525

As a result of the sensitivity analysis explained in Sect. 2.3.3, we obtained a measure of the sensitivity uncertainty, which

is included in the total uncertainties of our top-down estimates. We obtained sensitivity uncertainties of 1) 1.24 and 1.36

MtCO2 y
−1 for the p-value sensitivity for the potential plume detection and plume refinement, respectively. 2) For the filling

parameter sensitivity, we obtained a value of 0.74 MtCO2 y
−1. 3) The lower and upper limit of the plume range led to

uncertainties of 0.70 and 1.24 MtCO2 y
−1, respectively. 4) The background model resulted in a sensitivity uncertainty of 1.94530

MtCO2 y
−1. Assuming uncorrelated uncertainty contributions, this results in a total ssens of 3.11 MtCO2 y

−1.

In the sensitivity tests a-c described in Sect. 2.4 we analyzed a) wind rotation to match the detected plume track, b) omission

of quality filtering of XCO2 data and c) omission of the use of NO2 data to detect the potential plume. The results that we

obtained for these tests are summarized below and shown in Fig. A7 in the supplementary material (Appendix A).

a) When automatically rotating the wind direction to match that of the detected plume track, we did not observe significant535

differences in the obtained emission rates (see Fig. A7a) because the angle that the mean wind speed forms with the detected
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plume track was, for the analysed scenes, between 1.4◦ and 18.4◦. The absolute mean difference between bottom-up and

top-down slightly decreased (from -2.8 to -2.4 MtCO2 y
−1) and its standard deviation increased by 0.3 MtCO2 y

−1.

b) A larger disparity was found when switching off the quality filtering in the XCO2 data. In this case, summarized in Fig.

A7b, we found that running the same analysis including the XCO2 observations considered to have a poor quality results in a540

correlation coefficient of about 0.45, and a standard deviation of the difference bottom-up minus top-down of 14.7 MtCO2 y
−1.

This discrepancy was specially remarkable in the scenes where the emission plume is close to the lignite pit, situated just a few

kilometres south-west of the Bełchatów power plant, where a region of elevated ∆XCO2 is noticeable in most of the SAMs. In

these scenes, the observations with elevated ∆XCO2 were masked as belonging to the plume. If we discard the scenes in which

the wind blows towards the pit region (about 90◦), i.e. the scenes on 8 and 9 October 2021, we obtain a correlation coefficient545

of 0.86 and the difference TD-BU becomes -3.50 ± 5.91 MtCO2 y
−1. Two additional scenes passed our scene selection filters

in this case: on 27 June 2022 and on 10 October 2022.

c) Omitting the use of NO2 data to detect the potential plume led as well to a noticeable decrease in the correlation coefficient

(to 0.26) and a TD - BU difference of -2.2 ± 10.1 MtCO2 y
−1, as we can see in Fig. A7c. The main reason for the decreased

correlation is the larger potential plume, which underconstrained the CO2 plume region, resulting in the inclusion in the550

detected plume of neighbouring background structures of enhanced ∆XCO2, e.g. on the SAMs on 18 June 2021 (shown in

Fig. A8) and 24 June 2022. In addition, no CO2 plume was detected for the SAM on 20 June 2021 using the same p-value as

with the use of NO2 data. A higher p-value leads to the detection of the CO2 plume in this case, but also to a further inclusion

of background structures in the detected plume. A higher sensitivity (2.77 MtCO2 y
−1) to the chosen p-value was found.

4 Discussion and conclusions555

With our data-driven cross-sectional flux method using co-located CO2 and NO2 satellite data, we were able to quantify the

CO2 emissions from the Bełchatów Power Station. We estimated the power plant CO2 emissions for 9 automatically identified

different OCO-3 overpasses and compared the results with bottom-up (BU) emission estimates, finding a good correlation

(0.92). The results obtained by these two methods agree in 8 out of 9 analysed cases within their uncertainty range.

Nassar et al. (2022) have also analyzed 8 of our 9 scenes. Their results are shown in Fig. 9 and Table 1 along with our560

results. We analyzed an additional scene on 13 October 2022, not shown by Nassar et al. (2022). On the other hand, Nassar

et al. (2022) have shown a SAM corresponding to the 27 June 2022, which was discarded by our filtering algorithm (Sect. 2.5)

due to the lack of plume observations left after dumping the OCO-3 retrievals flagged as being of poor quality. Our top-down

(TD) estimates agree with those obtained from Nassar et al. (2022) in 6 out of 8 cases. The emission estimates of Nassar

et al. (2022) (NA) have a correlation coefficient of 0.85 with our BU estimates, and the difference NA - BU (mean ± standard565

deviation) is -5.8 ± 4.8 Mt CO2 y−1. The correlation coefficient between NA and TD is 0.76, with a mean difference NA - TD

(mean ± standard deviation) of -2.8 ± 6.7 Mt CO2 y−1. Nassar et al. (2022) have also computed bottom-up emission estimates

based on the generated power by the power plant. However, their bottom-up estimates are scaled by their mean top-down

emission estimates. Therefore we have not performed any comparisons with the bottom-up estimates of Nassar et al. (2022).
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The relative uncertainties for individual overpasses lie between 13% and 32% (22.0% on average), higher than those ob-570

tained by Nassar et al. (2022), which are 3.8-19.7% (12.2% on average). The obtained relative uncertainties are in the same

order of magnitude as the uncertainty levels to be achieved with the CarbonSat mission (Buchwitz et al., 2013; Bovensmann

et al., 2010), which aimed for about 20% uncertainty on the CO2 emission estimate for individual overpasses (ESA, 2015).

The dispersion uncertainty dominates over that from wind and sensitivity, because it accounts for the large fluctuations in

the cross-sectional fluxes. Brunner et al. (2023) showed with simulated plumes that estimated individual (2-km-wide) cross-575

sectional fluxes fluctuate about 20-30% due to turbulence, even with perfect knowledge of the ∆XCO2 map and wind speed. A

similar outcome was obtained by Wolff et al. (2021). We have observed more pronounced fluctuations with standard deviations

ranging from 27% to 67% of the corresponding mean emission estimate. We expect these larger fluctuations to arise from the

use of modelled data in the mentioned studies, as opposed to our measurement-based analysis. Despite the large fluctuations

in individual cross-sectional fluxes, having multiple CS downwind of the source enabled their correlation to be investigated,580

which led to dispersion uncertainties between about 1.88 and 9.28 MtCO2 y
−1. To obtain a qualitative check on the obtained

dispersion uncertainties, we computed the effective number of CSs for each scene using Eq. 7, as shown in Table 1. In agree-

ment with the reasoning made in Sect. 2.3.1, we obtained typical effective numbers of about 15 CSs or less. A noticeable

exception is the unexpectedly high effective number of CSs (24.90) obtained for the scene on 20 June 2021 (Fig. A2). This is

probably a consequence of the low number of valid CSs, distributed in blocks of about 5 km or less, with gaps between the585

blocks reaching 10 km, which likely led to an incomplete characterization of the correlation of the cross-sectional fluxes and

in this case to an underestimation of the dispersion uncertainty.

The sensitivity uncertainty (3.11 MtCO2 y
−1) shows a fair stability of the method over the used parameters. All the contri-

butions to the sensitivity uncertainty accounted for are in the same order of magnitude. The choice of the p-value was of little

influence for most of the analysed scenes, for both the plume detection and the refinement, as long as it was large enough to590

detect the full extension of the actual emission plume and there were no other structures with elevated ∆XCO2 close to the

plume. The choice of the p-value only had a significant effect (about 5-6 MtCO2 y
−1) for the plume detection in the scene on

20 June 2021 (Fig. A2), due to the structures with elevated ∆XCO2 in the vicinity of the plume, included within the potential

and refined plume for higher p-values. We encountered a similar situation when setting the upper limit of the plume range

along its track, with very small fluctuations for every scene but that on 17 April 2020 (Fig. 6), where the estimated emission595

rate increased about 10 MtCO2 y
−1 when varying the parameter from 30 to 40 km. This results from an accumulation of CO2

at those distances along the plume track.

In some of the analysed scenes there seemed to be deviations from our assumption of stationarity. For example, we observed

significant wind speed variability within the characteristic time for the overpass on 24 June 2022, and less notable on 10

April 2020, 17 April 2020 or 18 June 2021. We also observed noticeable changes in the power plant generated power, as600

occurred on 13 October 2022. These deviations are partly considered in the dispersion uncertainty because they can enhance

or reduce the fluctuations and be partly masked by them. For example, a monotonic decrease in the wind speed would lead to

an underestimation of the cross-sectional fluxes, the more pronounced the farther away from the source. For a relatively large

decrease by 1 ms−1 in the wind speed, from a typical wind speed of about 6 ms−1 and emissions of 30 MtCO2 y
−1, variations
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of less than about 5 MtCO2 y
−1 in individual CSs would be expected, which are much smaller than the oscillations observed605

in the cross-sectional fluxes.

We have identified no significant difference between considering the wind direction obtained from ERA5 and rotating it to

match the detected plume track. For this reason, we have used the ERA5 wind speed, because this has the advantage being able

to account for variable wind directions along the plume track. In addition, it is independent of any assumption on the shape of

the plume track (in our case linear) and any possible difference between our detected plume track and the plume centreline.610

An advantage of the wind rotation would be a potential increase in the number of analysed scenes, because we have discarded

scenes with an angle between the detected track and the mean wind direction larger than 45◦ (see Sect. 2.5). However, such a

large difference between the detected track and the mean wind direction may indicate a bias in the wind vector, and therefore

discarding that scene is yet the most prudent option.

We have observed significant disagreement between bottom-up and top-down estimates when using the XCO2 observations615

flagged as having poor quality. Nevertheless, after discarding the scenes where the emission plume was close to the lignite

pit, the disagreement between performing or not performing quality filtering was significantly smaller. The better agreement

between top-down and bottom-up estimates when disregarding these scenes suggests the presence of possible artefacts in

the XCO2 estimates over the pit regions, as well as the importance for the application of our method of accurate XCO2

measurements and a reliable quality filtering in case of potential biases in the XCO2. Yet, an analysis with more scenes is620

needed for a more conclusive result. A larger number of scenes were successfully analysed using our method, at the cost of a

reduced correlation between bottom-up and top-down estimates.

The difference TD-BU had a large standard deviation when the potential plume was not detected using NO2 data, but

through a wedge centred at the mean wind vector. This disagreement appears to result from the inclusion in the detected

plume of background structures with enhanced ∆XCO2 (in about the same order of magnitude as the ∆XCO2 resulting from625

the power plant emissions) close to the source. The reason for this is that the potential plume defined through this wedge

downwind has a greater extension than that detected using NO2, and therefore it constrains less the region for the CO2 plume

detection. Some examples of this inclusion of background structures in the refined plume happened for the overpasses on 18

June 2021 (shown in Fig. A8) and 24 June 2022. In these cases, the discrimination between background features and signal

due to the source emissions is difficult without ancillary data. In addition, no CO2 plume was detected for the SAM on 20 June630

2021 without the aid of NO2 data. With this, we confirmed the usefulness of NO2 data to constrain the CO2 plume region. It

helped us define a CO2 background region and exclude false positives, i.e. pixels wrongly assigned to belong to the plume.

The presented method has some limitations. It can only quantify CO2 emissions of isolated sources. The use of NO2 allows

us to identify scenes and targets whose emission plumes might be affected by other emission sources, but no de-coupling has

been attempted. In addition, the method relies on the confinement of the CO2 plume within the detected potential plume. In635

general, we found good agreement. However, we might encounter cases, such as the scene on 18 June 2021 (Fig. 7), where the

CO2 plume seems to extend beyond the potential plume boundaries. In this case, the part of the CO2 plume that we miss is

mostly beyond the plume range, having only a small effect on the final result, but it could lead to a significant underestimation

of the emissions in other cases. This mismatch is due to a change in the wind direction in the time between OCO-3 and S5P
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overpasses and will be solved with the use of simultaneously retrieved XCO2 and NO2 maps (at the same spatial resolution)640

from the future CO2M, from which we expect to detect potential plumes with higher congruity with the CO2 one.

Furthermore, we have focused on one of the power plants with the highest emissions in the world. We have obtained suc-

cessful top-down estimates for individual overpasses with estimated bottom-up emissions as low as about 19-20 MtCO2 y
−1.

This suggests the feasibility of tracking power plants whose emissions are about that magnitude. Power plants emitting over

20 MtCO2 y
−1 are responsible for roughly 5% of the total annual power plant CO2 emissions (Strandgren et al., 2020).645

The uncertainty of the presented method is expected to scale with the source emissions. The dispersion uncertainty includes

terms that are expected to be proportional to the emissions, e.g. those resulting from turbulence effects, as well as other terms

that are independent of the emissions, such as those derived from XCO2 random error. The sensitivity uncertainty also has

terms proportional to the emissions, resulting e.g. from the uncertainty derived from the gap filling method, and terms that

are independent of the emissions, such as those resulting from the uncertainty derived from the function used to fit the XCO2650

background. The wind uncertainty is proportional to ∆XCO2, so we can assume that this component of the total uncertainty

will also be directly proportional to the emissions. Therefore, we would expect uncertainties with a similar proportionality

factor as obtained in the present study (22% of the emission rate) for power plants whose emissions are comparable to those

of Bełchatów. For power plants with lower CO2 emissions, the absolute total uncertainty is expected to decrease accordingly,

with a lower threshold determined by the terms independent of the emissions. These terms will presumably lead to a higher655

relative uncertainty for power plants with lower CO2 emissions.

With our cross-sectional flux method, we have shown the potential to monitor CO2 emissions from individual power plants

using OCO-3 XCO2 observations. With such a method, we can obtain independent emission estimates, which are crucial for

facilities with limited or missing information on the activity data. The TROPOMI NO2 column densities have proved useful

to detect the emission plume in scenes with other neighbouring sources or small-scale background structures with enhanced660

XCO2. The application of our method to observations from the planned CO2M is expected to have many advantages. CO2M

simultaneous measurements of NO2 and XCO2, at the same spatial resolution and similar resolution as that of OCO-3, will

increase the spatial correlation between NO2 and XCO2 images, and thus allow us to constrain the CO2 plume better, which

will lead to an increased accuracy of the emission estimates and a reduced uncertainty.

Data availability. The OCO-3 XCO2 is available at https://doi.org/10.5067/970BCC4DHH24, last accessed on 31 January 2023. Generated665

power per generation unit from ENTSO-E is available at https://transparency.entsoe.eu/, last accessed on 3 February 2023. The ERA5

meteorological dataset is available at the Copernicus Climate Change Service (C3S) Climate Data Store (CDS), last accessed on 28 February

2023.
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Appendix A: Additional figures680

In Sect. 3 in the main text of this manuscript we described each of the analysed scenes and detailed the results obtained for each

of them. Some of these scenes were also displayed in Figs. 3-8. Figures A1-A5 illustrate the obtained results for the scenes

mentioned in Sect. 3 but not shown there.

The sensitivity analysis performed to obtain the uncertainty from sensitivity was described in Sect. 2.3.3. The obtained

results are shown in Sect. 3.3 and also illustrated in A6, which shows the sensitivity analysis to the considered parameters, as685

described in Sect. 2.3.3.

The semivariograms used to compute the dispersion uncertainty according to Sect. 2.3.1 are show in Fig. A9.
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Figure A1. Overview of the top-down emission rate estimation steps for the scene on 19 June 2021. Analogous to Fig. 6 in the main text.
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Figure A2. Overview of the top-down emission rate estimation steps for the scene on the 20 June 2021. Analogous to Fig. 6.

Figure A3. Overview of the top-down emission rate estimation steps for the scene on the 8 October 2021. Analogous to Fig. 6.
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Figure A4. Overview of the top-down emission rate estimation steps for the scene on the 24 June 2022. Analogous to Fig. 6.
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Figure A5. Overview of the top-down emission rate estimation steps for the scene on 13 October 2022. Analogous to Fig. 6.
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Figure A6. Sensitivity analysis performed to estimate a measure of the sensitivity uncertainty. The legend shows the names of the parameters

taken into account and the values considered in each case: 1) p-values for the detection of the potential plume (p-value-n) and for plume

refinement (p-value-c), taking values from 0.03 to 0.1 in both cases. 2) Area and weighting of the distance weighting interpolation

(d_idw), where d indicates inverse distance weighting interpolation and dd squared inverse distance weighting interpolation, and the

numbers refer to the radius of the used area, in tenths of degrees. 3) Limits of the plume range (dist_as and dist_max for the lower

and upper thresholds, respectively). The values are in kilometres. 4) The function used to fit the XCO2 background (sub_method): linear

dependence on longitude and latitude with a possible swath bias (nofp_linreg), linear dependence on longitude and latitude with a

possible swath and footprint biases (coord_linreg), only linear dependence on longitude and latitude (noswfp_linreg). Each data

point stands for the result of the analysis using the value indicated by the marker for each considered parameter. The dashes stand for the

values used for the main analysis. The bars show, for each scene, the total uncertainty obtained using the parameters selected for the main

analysis.
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Figure A7. Summary of results, analogous to Fig. 9, for the sensitivity tests: a) Rotation of the wind direction to match the plume track. b)

No quality filtering of the XCO2 data. c) Potential plume definition through a wedge downwind of the source instead of NO2 VCD.

36



Figure A8. Overview of the top-down emission rate estimation steps for the scene on 18 June 2022. Analogous to Fig. 6. Instead on NO2

data, a wedge downwind of the source was used to define the potential plume (as described in Sect. 2.4) NO2.
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Figure A9. Semivariograms used to compute the dispersion uncertainty (see Sect. 2.3.1), analogous to Fig. 5c, for each of the 9 analysed

scenes. The blue dots stand for the empirical semivariogram, computed using Eq. 5. The exponential fit according to Eq. 6 is shown as a

solid line. a) 10 April 2020, b) 17 April 2020, c) 18 June 2021, d) 19 June 2021, e) 20 June 2021, f) 8 October 2021, g) 9 October 2021, h)

24 June 2022, i) 13 October 2022.
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