Supplement of

Molecular-level study on the role of methanesulfonic acid in iodine oxoacids nucleation

Jing Li et al.

Corresponding author: An Ning (anning@bit.edu.cn) and Xiuhui Zhang (zhangxiuhui@bit.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Table of Contents

Supplementary Methods

Multi-step cluster conformational searching method.

Figure S1. Number of hydrogen bonds (HBs) and halogen bonds (XBs) in the HIO₃-HIO₂ clusters and HIO₃-HIO₂-MSA clusters.

Figure S2. The branch ratio of different flux out of HIO₃-HIO₂-MSA-based system at (a) T = 278 K, [HIO₃] = 1.0×10^6 , [HIO₂] = 2.0×10^4 , [MSA] = $10^6 - 10^8$ molec. cm⁻³, and (b) T = 278 K, [HIO₃] = $10^6 - 10^8$, [HIO₂] = $2.0 \times 10^4 - 2.0 \times 10^6$, [MSA] = 1.0×10^7 molec. cm⁻³.

Figure S3. The branch ratio of different flux out of HIO₃-HIO₂-MSA-based system at (a) T = 268 K, [HIO₃] = 1.0×10^6 , [HIO₂] = 2.0×10^4 , [MSA] = $10^6 - 10^8$ molec. cm⁻³, (b) T = 268 K, [HIO₃] = $10^6 - 10^8$, [HIO₂] = $2.0 \times 10^4 - 2.0 \times 10^6$, [MSA] = 1.0×10^7 molec. cm⁻³, and (c) T = 268 K, [HIO₃] = $10^6 - 10^8$, [HIO₂] = $2.0 \times 10^4 - 2.0 \times 10^6$, [MSA] = 1.0×10^8 molec. cm⁻³.

Figure S4. The Gibbs free energies of formation (ΔG , kcal mol⁻³) of the growing clusters as a function of growth step in HIO₃-HIO₂-MSA nucleation system at T = 268 K, [HIO₃] = 1.0×10^6 , [HIO₂] = 2.0×10^4 , and [MSA] = 5.0×10^6 molec. cm⁻³.

Figure S5. Comparison with the simulated cluster formation rates (J, cm⁻³ s⁻¹) and field observations at the ambient conditions of (a) Réunion (T = 288 K, CS = 2.0×10^{-3} s⁻¹, [HIO₃] = $10^5 - 3.0 \times 10^6$, [HIO₂] = $2.0 \times 10^3 - 6.0 \times 10^4$, and [MSA] = $10^6 - 10^8$ molec. cm⁻³), (b) Mace Head (T = 287 K, CS = 2.0×10^{-3} s⁻¹, [HIO₃] = $10^7 - 10^8$, [HIO₂] = $2.0 \times 10^5 - 2.0 \times 10^6$, and [MSA] = $10^6 - 10^7$ molec. cm⁻³). The orange area, purple line and gray area represent J(HIO₃-HIO₂-MSA), J(HIO₃-HIO₂), and J(Field observation), respectively.

Table S1. The Gibbs formation free energies ΔG_{ref} (kcal mol⁻¹) of the studied HIO₃-HIO₂-MSA clusters at the RICC2/aug-cc-pV(T+d)Z(-PP)// ω B97X-D/6-311++G(3df,3pd) + aug-cc-pVTZ-PP with ECP28MDF (for I) level of theory, p = 1 atm and T = 268, 278, 288, and 298 K.

Table S2. The bond type, electron density $\rho(r)$ (a.u), Laplacian electron density $\nabla^2 \rho(r)$ (a.u.),

energy density H(r) at the corresponding bond critical points (BCPs) in the studied HIO₃-HIO₂-MSA-based clusters. The orange balls represent BCPs in the AIM theory analysis. HIO₃, HIO₂, and MSA are the shorthand for iodic acid, iodous acid and methanesulfonic acid, respectively. HB (hydrogen bond), XB (halogen bond).

Table S3. The boundary conditions of ACDC simulations at 268, 278, 288, and 298 K, respectively.

Table S4. The ratios of HIO₃ monomer collision frequencies versus total evaporation rate coefficients ($\beta C/\Sigma \gamma$) at T = 268, 278, 288, and 298 K. β is the rate coefficient of cluster collision with HIO₃ monomer, and *C* is the concentration of HIO₃ monomer (1.0×10^6 molec. cm⁻³).

Table S5. The evaporation rate coefficients (y, s^{-1}) of the studied clusters at 278 K.

Table S6. Cartesian coordinates of all clusters in the present study at the ω B97X-D/6-311++G(3df,3pd) + aug-cc-pVTZ-PP with ECP28MDF (for I) level of theory.

Supplementary Methods

Multi-step cluster conformational searching method.

First, the artificial bee colony algorithm combined with Universal force field (UFF) (Rappé et al., 1992) was employed to yield more than 7000000 initial configurations for each cluster by ABCluster software (Zhang and Dolg, 2015). Then up to 1000 relatively stable structures were selected to pre-optimized at the PM7 semiempirical method (Stewart, 2013) by MOPAC 2016 (Stewart, 2016). Next, about 100 structures with the lowest energy were selected to further optimized at the ωB97X-D/6-31+G* (for C, H, O and S atoms) + Lanl2DZ (for I atom) level of theory (Elm and Kristensen, 2017) by Gaussian 09 software (Frisch et al., 2009). Finally, the lower-lying 10 isomers were selected and reoptimized at the ωB97X-D function and 6-311++G (3df, 3pd) (for C, H, O and S atoms) + aug-cc-pVTZ-PP with ECP28MDF (for I atom) level of theory to obtain the global minimum one (Francl et al., 1982; Peterson et al., 2003).

Figure S1. Number of hydrogen bonds (HBs) and halogen bonds (XBs) in the HIO₃-HIO₂ clusters and HIO₃-HIO₂-MSA clusters.

(a) T = 278 K, $[HIO_3] = 1.0 \times 10^6$, $[HIO_2] = 2.0 \times 10^4$ molec. cm⁻³

(b) T = 278 K, [MSA] = 1.0×10^7 , [HIO₂] = $2.0 \times 10^4 - 2.0 \times 10^6$ molec. cm⁻³

Figure S2. The branch ratio of different flux out of HIO₃-HIO₂-MSA-based system at (a) T = 278 K, [HIO₃] = 1.0×10^6 , [HIO₂] = 2.0×10^4 , [MSA] = $10^6 - 10^8$ molec. cm⁻³, and (b) T = 278 K, [HIO₃] = $10^6 - 10^8$, [HIO₂] = $2.0 \times 10^4 - 2.0 \times 10^6$, [MSA] = 1.0×10^7 molec. cm⁻³.

(a) T = 268 K, $[HIO_3] = 1.0 \times 10^6$, $[HIO_2] = 2.0 \times 10^4$ molec. cm⁻³

(b) T = 268 K, [MSA] = 1.0×10^7 , [HIO₂] = $2.0 \times 10^4 - 2.0 \times 10^6$ molec. cm⁻³

(c) T = 268 K, [MSA] = 1.0×10^8 , [HIO₂] = $2.0 \times 10^4 - 2.0 \times 10^6$ molec. cm⁻³

Figure S3. The branch ratio of different flux out of HIO₃-HIO₂-MSA-based system at (a) T = 268 K, [HIO₃] = 1.0×10^6 , [HIO₂] = 2.0×10^4 , [MSA] = $10^6 - 10^8$ molec. cm⁻³, (b) T = 268 K, [HIO₃] = $10^6 - 10^8$, [HIO₂] = $2.0 \times 10^4 - 2.0 \times 10^6$, [MSA] = 1.0×10^7 molec. cm⁻³, and (c) T = 268 K, [HIO₃] = $10^6 - 10^8$, [HIO₂] = $2.0 \times 10^4 - 2.0 \times 10^6$, [MSA] = 1.0×10^7 molec. cm⁻³.

Figure S4. The Gibbs free energies of formation (ΔG , kcal mol⁻³) of the growing clusters as a function of growth step in HIO₃-HIO₂-MSA nucleation system at T = 268 K, [HIO₃] = 1.0×10^6 , [HIO₂] = 2.0×10^4 , and [MSA] = 5.0×10^6 molec. cm⁻³.

Figure S5. Comparison with the simulated cluster formation rates (*J*, cm⁻³ s⁻¹) and field observations at the ambient conditions of (a) Mace Head (T = 287 K, CS = 2.0×10^{-3} s⁻¹, [HIO₃] = $10^7 - 10^8$, [HIO₂] = $2.0 \times 10^5 - 2.0 \times 10^6$, and [MSA] = $10^6 - 10^7$ molec. cm⁻³), (b) Réunion (T = 288 K, CS = 2.0×10^{-3} s⁻¹, [HIO₃] = $10^5 - 3.0 \times 10^6$, [HIO₂] = $2.0 \times 10^3 - 6.0 \times 10^4$, and [MSA] = $10^6 - 10^8$ molec. cm⁻³). The orange area, purple line and gray area represent *J*(HIO₃-HIO₂-MSA), *J*(HIO₃-HIO₂), and *J*(Field observation).

Clustors	$\Delta G_{\rm ref}$ (kcal mol ⁻¹)					
	268K	278K	288K	298K		
(HIO ₃) ₂	-8.45	-8.07	-7.70	-7.33		
(HIO ₃) ₃	-19.26	-18.46	-17.68	-16.89		
(HIO ₃) ₄	-39.70	-38.46	-37.26	-36.03		
(HIO ₃) ₅	-57.93	-56.26	-54.64	-52.99		
(HIO ₂) ₂	-18.05	-17.63	-17.22	-16.80		
(HIO ₂) ₃	-39.72	-39.06	-38.02	-37.38		
(HIO ₂) ₄	-59.98	-58.69	-57.45	-56.17		
(HIO ₂) ₅	-77.63	-75.92	-74.26	-72.57		
(MSA) ₂	-11.37	-10.97	-10.57	-10.16		
(MSA) ₃	-16.88	-16.10	-15.33	-14.55		
(HIO ₃) ₁ (HIO ₂) ₁	-18.40	-17.99	-17.59	-17.18		
$(HIO_3)_1(HIO_2)_2$	-40.62	-39.77	-38.94	-38.10		
(HIO ₃) ₁ (HIO ₂) ₃	-56.48	-55.20	-53.96	-52.70		
(HIO ₃) ₁ (HIO ₂) ₄	-82.51	-80.75	-79.05	-77.30		
$(\mathrm{HIO}_3)_2(\mathrm{HIO}_2)_1$	-31.31	-30.46	-29.64	-28.79		
(HIO ₃) ₂ (HIO ₂) ₂	-56.42	-55.18	-53.97	-52.73		
(HIO ₃) ₂ (HIO ₂) ₃	-80.23	-78.52	-76.86	-75.16		
(HIO ₃) ₃ (HIO ₂) ₁	-52.92	-51.67	-50.45	-49.21		
(HIO ₃) ₃ (HIO ₂) ₂	-74.52	-72.80	-71.14	-69.44		
$(\mathrm{HIO}_3)_4(\mathrm{HIO}_2)_1$	-66.16	-64.48	-62.84	-61.18		
(HIO ₃) ₁ (MSA) ₁	-11.71	-11.31	-10.93	-10.54		
(HIO ₃) ₁ (MSA) ₂	-20.56	-19.77	-19.00	-18.22		
(HIO ₃) ₁ (MSA) ₃	-36.06	-34.81	-33.59	-32.34		
(HIO ₃) ₂ (MSA) ₁	-21.80	-21.00	-20.22	-19.42		
(HIO ₃) ₂ (MSA) ₂	-33.13	-31.89	-30.69	-29.46		

Table S1. The Gibbs formation free energies ΔG_{ref} (kcal mol⁻¹) of the studied HIO₃-HIO₂-MSA clusters at the RICC2/aug-cc-pV(T+d)Z(-PP)// ω B97X-D/6-311++G(3df,3pd) + aug-cc-pVTZ-PP with ECP28MDF (for I) level of theory, p = 1 atm and T = 268, 278, 288, and 298 K.

(HIO ₃) ₂ (MSA) ₃	-48.73	-47.12	-45.55	-43.94
(HIO ₃) ₃ (MSA) ₁	-33.39	-32.23	-31.10	-29.94
(HIO ₃) ₃ (MSA) ₂	-53.59	-51.98	-50.41	-48.81
(HIO ₃) ₄ (MSA) ₁	-55.82	-54.12	-52.47	-50.78
(HIO ₂) ₁ (MSA) ₁	-17.48	-17.06	-16.66	-16.25
$(HIO_2)_1(MSA)_2$	-30.59	-29.78	-28.99	-28.18
$(HIO_2)_1(MSA)_3$	-41.85	-40.63	-39.44	-38.22
$(HIO_2)_2(MSA)_1$	-36.13	-35.30	-34.48	-33.65
$(HIO_2)_2(MSA)_2$	-58.70	-57.40	-56.14	-55.25
(HIO ₂) ₂ (MSA) ₃	-74.57	-72.87	-71.22	-69.52
(HIO ₂) ₃ (MSA) ₁	-59.74	-58.47	-57.24	-55.98
$(HIO_2)_3(MSA)_2$	-79.31	-77.63	-75.99	-74.31
$(HIO_2)_4(MSA)_1$	-77.90	-76.20	-74.54	-72.84
$(HIO_3)_1(HIO_2)_1(MSA)_1$	-30.42	-29.58	-28.77	-27.93
$(\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_1(\mathrm{MSA})_2$	-45.90	-44.67	-43.48	-42.26
(HIO ₃) ₁ (HIO ₂) ₁ (MSA) ₃	-60.92	-59.25	-57.62	-55.95
(HIO ₃) ₁ (HIO ₂) ₂ (MSA) ₁	-50.60	-49.39	-48.21	-47.01
(HIO ₃) ₁ (HIO ₂) ₂ (MSA) ₂	-71.42	-69.75	-68.13	-66.47
(HIO ₃) ₁ (HIO ₂) ₃ (MSA) ₁	-76.73	-75.02	-73.35	-71.65
(HIO ₃) ₂ (HIO ₂) ₁ (MSA) ₁	-46.33	-45.06	-43.82	-42.56
(HIO ₃) ₂ (HIO ₂) ₁ (MSA) ₂	-62.32	-60.66	-59.04	-57.39
(HIO ₃) ₂ (HIO ₂) ₂ (MSA) ₁	-65.80	-64.09	-62.43	-60.73
(HIO ₃) ₃ (HIO ₂) ₁ (MSA) ₁	-65.83	-64.10	-62.42	-60.71

Table S2. The bond type, electron density $\rho(r)$ (a.u), Laplacian electron density $\nabla^2 \rho(r)$ (a.u.), energy density H(r) at the corresponding bond critical points (BCPs) in the studied HIO₃-HIO₂-MSA-based clusters. The orange balls represent BCPs in the AIM theory analysis. HIO₃, HIO₂, and MSA are the shorthand for iodic acid, iodous acid and methanesulfonic acid, respectively. HB (hydrogen bond), XB (halogen bond).

Cluster	Bond	Bond type	ρ(r)(a.u.)	$ abla^2 ho(r)$ (a.u.)	<i>H</i> (<i>r</i>) (a.u.)
-	О–Н…О	HB	0.0691	0.1092	-0.0248
The second secon	О–Н…О	HB	0.0224	0.0823	0.0018
6	0–I…O	XB	0.0786	0.1509	-0.0213
$(HIO_3)_1(HIO_2)_1(MSA)_1$	0–I…O	XB	0.0405	0.1239	-0.0016
	O–H…O	HB	0.0348	0.1086	-0.0021
2	0–Н…О	HB	0.0090	0.0310	0.0009
A X	О–Н…О	HB	0.0582	0.1156	-0.0017
yester	0–I…O	XB	0.0429	0.1257	-0.0023
$(HIO_3)_1(HIO_2)_1(MSA)_2$	0–I…O	XB	0.0476	0.1348	-0.0034
	0–I…O	XB	0.0299	0.0919	0.0003
	О–Н…О	HB	0.0154	0.0620	0.0024
	О–Н…О	HB	0.0521	0.1159	-0.0128
(HIO ₃) ₁ (HIO ₂) ₁ (MSA) ₃	О–Н…О	HB	0.0495	0.1110	-0.0116
	О–Н…О	HB	0.0783	0.0943	-0.0322
	0–I…O	XB	0.0114	0.0341	0.0006
	0–I…O	XB	0.0102	0.0288	0.0005
	0–I…O	XB	0.0190	0.0675	0.0019
	0–I…O	XB	0.0431	0.1244	-0.0025
	0–I…O	XB	0.0255	0.0873	0.0018
	0–I…0	XB	0.0381	0.1035	-0.0019
interest.	О–Н…О	HB	0.0644	0.1159	-0.0206
× n	О–Н…О	HB	0.0208	0.0803	-0.0023
X	0–I…O	XB	0.0449	0.1262	-0.0031
(HIO ₃) ₁ (HIO ₂) ₂ (MSA) ₁	0–I O	XB	0.0119	0.0358	0.0009

	O–I…O	XB	0.0326	0.0952	0.0001
	0–I…O	XB	0.0116	0.0321	0.0004
	0–I…0	XB	0.0136	0.0391	0.0005
	О–Н…О	HB	0.0242	0.0916	0.0018
	О–Н…О	HB	0.0824	0.0964	-0.0349
~~*	О–Н…О	HB	0.0383	0.1096	-0.0041
	0–H…O	HB	0.0366	0.1111	-0.0031
y we	0–I…O	XB	0.0927	0.1744	-0.0307
• (HIO ₃) ₁ (HIO ₂) ₂ (MSA) ₂	0–I…O	XB	0.0250	0.0745	0.0003
	0–I…O	XB	0.0275	0.0784	-0.0002
	0–I O	XB	0.0384	0.1231	-0.0006
	0–I…O	XB	0.0220	0.0724	0.0015
	0–H…O	HB	0.0453	0.1116	-0.0085
	О–Н…О	HB	0.0429	0.1091	-0.0074
· ····································	0–I…O	XB	0.0247	0.0767	0.0009
the season	0–I…O	XB	0.0406	0.1109	-0.0023
	0–I…0	XB	0.0499	0.1345	-0.0051
(HIO ₃) ₁ (HIO ₂) ₃ (MSA) ₁	0–I…O	XB	0.0794	0.1637	-0.0209
	0–I…O	XB	0.0648	0.1555	-0.0120
	0–I…0	XB	0.0283	0.0906	0.0011
	О–Н…О	HB	0.0487	0.1180	-0.0103
<u> </u>	О–Н…О	HB	0.0405	0.1131	-0.0054
A st	0–Н…О	HB	0.0869	0.0835	-0.0394
	О–Н…О	HB	0.0221	0.0793	0.0016
	0–I…O	XB	0.0386	0.1171	-0.0010
(IIIO3)2(IIIO2)1(WSA)1	0–I…O	XB	0.0135	0.0422	0.0012
	0–I…O	XB	0.1999	0.4607	-0.1372
	О–Н…О	HB	0.0482	0.1163	-0.0104
La P	0–H O	HB	0.0268	0.1079	0.0023
Josef .	O–H…O	HB	0.0627	0.1092	-0.0204

	0Н…О	HB	0.0586	0.1154	-0.0170
	0–I…O	XB	0.0122	0.0376	0.0009
	0–I…O	XB	0.0712	0.1462	-0.0165
	0–I…O	XB	0.0178	0.0554	0.0007
	0–I…O	XB	0.0215	0.0710	0.0008
	0–I…O	XB	0.0248	0.0802	0.0015
	0–I…O	XB	0.0607	0.1554	-0.0097
	0–I…O	XB	0.0068	0.0205	0.0007
	О–Н…О	HB	0.0309	0.1010	-0.0010
e X	0–Н…О	HB	0.0696	0.1038	-0.0254
- Dear	O–H…O	HB	0.0351	0.1040	-0.0029
A a at	0–I…O	XB	0.0212	0.0675	0.0014
	0–I 0	XB	0.0911	0.1693	-0.0297
(HIO ₃) ₂ (HIO ₂) ₂ (MSA) ₁	0–I…O	XB	0.0644	0.1487	-0.0122
	0–I…O	XB	0.0548	0.1427	-0.0070
	0–I…O	XB	0.0621	0.1511	-0.0104
	0–Н…О	HB	0.0356	0.1017	-0.0032
	O–H…O	HB	0.0336	0.1016	-0.0020
4 × - 1	O–H…O	HB	0.0542	0.1108	-0.0147
	0–I…O	XB	0.0258	0.0780	0.0010
1 startes	O–I…O	XB	0.0756	0.1668	-0.0181
$(HIO_{2})_{2}(HIO_{2})_{3}(MSA)_{3}$	0–I…O	XB	0.0152	0.0451	0.0008
()1	O–I…O	XB	0.0230	0.0709	0.0010
	0–I…0	XB	0.0566	0.1467	-0.0079
	O–I…O	XB	0.0811	0.1587	-0.0225

Temperature (K)	Boundary cluster		
	(HIO ₃) ₆		
	(HIO ₃) ₅ (MSA) ₁		
	(HIO ₃) ₁ (HIO ₂) ₅		
	(HIO ₂)5(MSA)1		
	(HIO ₃) ₂ (HIO ₂) ₄		
	(HIO ₃) ₃ (HIO ₂) ₃		
	$(HIO_2)_4(MSA)_2$		
	(HIO ₂) ₃ (MSA) ₃		
268 K	(HIO ₃)4(HIO ₂) ₂		
	(HIO ₃)4(MSA) ₂		
	(HIO ₃) ₃ (MSA) ₃		
	(HIO ₃) ₁ (HIO ₂) ₃ (MSA) ₂		
	(HIO ₃) ₃ (HIO ₂) ₂ (MSA) ₁		
	(HIO ₃) ₃ (HIO ₂) ₁ (MSA) ₂		
	$(\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_4(\mathrm{MSA})_1$		
	(HIO ₃) ₂ (HIO ₂) ₃ (MSA) ₁		
	(HIO3)6		
	(HIO ₃) ₅ (MSA) ₁		
	(HIO ₃) ₂ (HIO ₂) ₄		
	(HIO ₃) ₁ (HIO ₂) ₅		
	(HIO ₃) ₃ (HIO ₂) ₃		
278 K	(HIO ₃)4(HIO ₂) ₂		
	(HIO ₃) ₄ (MSA) ₂		
	(HIO ₃) ₃ (MSA) ₃		
	(HIO ₂) ₄ (MSA) ₂		
	(HIO ₂) ₅ (MSA) ₁		
	(HIO ₂) ₃ (MSA) ₃		

Table S3. Boundary conditions at 268, 278, 288, and 298 K, respectively.

	(HIO ₃) ₁ (HIO ₂) ₃ (MSA) ₂
	(HIO ₃) ₃ (HIO ₂) ₁ (MSA) ₂
	(HIO ₃) ₃ (HIO ₂) ₂ (MSA) ₁
	(HIO ₃) ₂ (HIO ₂) ₃ (MSA) ₁
	(HIO ₃) ₁ (HIO ₂) ₄ (MSA) ₁
	(HIO ₃) ₂ (HIO ₂) ₄
	(HIO ₃) ₁ (HIO ₂) ₅
	(HIO ₃) ₃ (HIO ₂) ₃
	(HIO ₃) ₄ (MSA) ₂
288 K	(HIO ₃) ₃ (MSA) ₃
	(HIO ₂) ₃ (MSA) ₃
	(HIO ₃) ₁ (HIO ₂) ₄ (MSA) ₁
	(HIO ₃) ₂ (HIO ₂) ₃ (MSA) ₁
	(HIO ₃) ₁ (HIO ₂) ₃ (MSA) ₂
	(HIO ₃) ₂ (HIO ₂) ₄
	(HIO ₃) ₁ (HIO ₂) ₅
	(HIO ₃) ₃ (HIO ₂) ₃
	(HIO ₃) ₄ (MSA) ₂
298 K	(HIO ₃) ₃ (MSA) ₃
	(HIO ₂) ₃ (MSA) ₃
	(HIO ₃) ₁ (HIO ₂) ₄ (MSA) ₁
	(HIO ₃) ₂ (HIO ₂) ₃ (MSA) ₁

	$eta C/\Sigma\gamma$					
Clusters	268K	278K	288K	298K		
(HIO ₃) ₂	6.08×10^{-7}	1.79×10^{-7}	5.86×10^{-8}	2.10 × 10 ⁻⁸		
(HIO ₃) ₃	2.61 × 10 ⁻⁵	6.09 × 10 ⁻⁶	1.60 × 10 ⁻⁶	4.55 × 10 ⁻⁷		
(HIO ₃) ₄	1.83×10^{3}	2.15×10^{2}	3.05×10^{1}	$4.84 imes 10^{0}$		
(HIO ₃) ₅	2.86×10^{1}	$3.97 imes 10^{\circ}$	6.46×10^{-1}	1.22×10^{-1}		
(HIO ₂) ₂	4.10×10^{1}	$5.87 imes 10^{0}$	9.81×10^{-1}	1.85×10^{-1}		
(HIO ₂) ₃	$1.86 imes 10^4$	2.89×10^{3}	2.59×10^2	3.77×10^{1}		
(HIO ₂) ₄	1.30×10^1	1.10×10^{2}	2.33×10^{1}	3.80×10^{0}		
(HIO ₂) ₅	$9.54 imes 10^{0}$	1.41×10^{0}	2.37×10^{-1}	6.16 × 10 ⁻²		
(MSA) ₂	1.21×10^{-4}	2.83 × 10 ⁻⁵	7.31 × 10 ⁻⁶	2.07×10^{-6}		
(MSA) ₃	9.92 × 10 ⁻¹⁰	3.57×10^{-10}	1.40×10^{-10}	5.87 × 10 ⁻¹¹		
(HIO ₃) ₁ (HIO ₂) ₁	$1.98 imes 10^1$	$2.83 imes 10^{0}$	4.70×10^{-1}	8.68 × 10 ⁻²		
(HIO ₃) ₁ (HIO ₂) ₂	3.45×10^4	3.59×10^{3}	4.45×10^{2}	6.44×10^{1}		
(HIO ₃) ₁ (HIO ₂) ₃	2.82×10^{-1}	4.27×10^{-2}	8.71 × 10 ⁻³	1.83 × 10 ⁻³		
(HIO ₃) ₁ (HIO ₂) ₄	$9.20 imes 10^4$	8.90×10^{3}	1.03×10^{3}	1.40×10^{2}		
(HIO ₃) ₂ (HIO ₂) ₁	1.33×10^{-3}	2.61 × 10 ⁻⁴	5.92×10^{-5}	1.46 × 10 ⁻⁵		
(HIO ₃) ₂ (HIO ₂) ₂	3.03×10^{-1}	5.34 × 10 ⁻²	1.08×10^{-2}	2.36 × 10 ⁻³		
(HIO ₃) ₂ (HIO ₂) ₃	4.78×10^5	4.41×10^4	4.93×10^{3}	6.34×10^2		
(HIO ₃) ₃ (HIO ₂) ₁	$1.67 imes 10^4$	1.95×10^{3}	2.65×10^{2}	4.19×10^{1}		
(HIO ₃) ₃ (HIO ₂) ₂	2.24×10^1	$2.87 imes 10^{0}$	4.47×10^{-1}	8.00×10^{-2}		
(HIO ₃) ₄ (HIO ₂) ₁	2.19×10^{-3}	4.73 × 10 ⁻⁴	1.06×10^{-4}	2.67×10^{-5}		
(HIO ₃) ₁ (MSA) ₁	6.08×10^{-5}	1.39 × 10 ⁻⁵	3.63 × 10 ⁻⁶	1.04×10^{-6}		
(HIO ₃) ₁ (MSA) ₂	3.63×10^{-7}	1.01×10^{-7}	3.14 × 10 ⁻⁸	1.05×10^{-8}		
(HIO ₃) ₁ (MSA) ₃	1.33 × 10 ⁻¹	2.11 × 10 ⁻²	3.87×10^{-3}	7.83 × 10 ⁻⁴		
(HIO ₃) ₂ (MSA) ₁	6.50 × 10 ⁻⁶	1.65 × 10 ⁻⁶	4.63 × 10 ⁻⁷	4.24×10^{-10}		
(HIO ₃) ₂ (MSA) ₂	4.98×10^{-5}	1.07×10^{-5}	2.67 × 10 ⁻⁶	7.33 × 10 ⁻⁶		

Table S4. The ratios of HIO₃ monomer collision frequencies versus total evaporation rate coefficients ($\beta C/\Sigma \gamma$) at T = 268, 278, 288, and 298 K. β is the rate coefficient of cluster collision with HIO₃ monomer, and *C* is the concentration of HIO₃ monomer (1.0 × 10⁶ molecules cm⁻³).

(HIO ₃) ₂ (MSA) ₃	8.22×10^{-4}	1.89×10^{-4}	4.88 × 10 ⁻⁵	1.40×10^{-5}
(HIO ₃) ₃ (MSA) ₁	1.09×10^{-4}	2.70×10^{-5}	7.48×10^{-6}	1.12 × 10 ⁻⁴
(HIO ₃) ₃ (MSA) ₂	6.03×10^{2}	7.36×10^{1}	1.05×10^{1}	1.71×10^0
(HIO ₃) ₄ (MSA) ₁	4.20×10^{-1}	6.46×10^{-2}	1.13×10^{-2}	2.22×10^{-3}
$(HIO_2)_1(MSA)_1$	3.11×10^{0}	4.63×10^{-1}	$8.17 imes 10^{-2}$	1.59 × 10 ⁻²
$(HIO_2)_1(MSA)_2$	1.59 × 10 ⁻³	3.36×10^{-4}	$7.91 imes 10^{-5}$	2.06×10^{-5}
(HIO ₂) ₁ (MSA) ₃	4.75×10^{-5}	1.10×10^{-5}	2.86×10^{-6}	8.15 × 10 ⁻⁷
(HIO ₂) ₂ (MSA) ₁	1.41×10^1	2.03×10^{0}	3.35×10^{-1}	6.25 × 10 ⁻²
(HIO ₂) ₂ (MSA) ₂	$7.94 imes 10^4$	7.66×10^{3}	9.17×10^2	1.23×10^2
(HIO ₂) ₂ (MSA) ₃	2.68×10^{-1}	4.56 × 10 ⁻²	9.13 × 10 ⁻³	1.82×10^{-3}
(HIO ₂) ₃ (MSA) ₁	6.65×10^{2}	5.91×10^{1}	1.30×10^{1}	2.25×10^{0}
(HIO ₂) ₃ (MSA) ₂	2.49×10^{2}	3.27×10^{1}	$4.95 \times 10^{\circ}$	1.11×10^{0}
(HIO ₂) ₄ (MSA) ₁	$8.33 imes 10^{0}$	1.20×10^{0}	$1.97 imes 10^{-1}$	7.22×10^{-2}
$(\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_1(\mathrm{MSA})_1$	1.79×10^{-4}	3.76×10^{-5}	9.10 × 10 ⁻⁶	2.39 × 10 ⁻⁶
$(\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_1(\mathrm{MSA})_2$	6.18×10^{-2}	1.09×10^{-2}	2.22×10^{-3}	5.08×10^{-4}
$(\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_1(\mathrm{MSA})_3$	5.43 × 10 ⁻²	9.21 × 10 ⁻³	1.77×10^{-3}	3.80×10^{-4}
$(\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_2(\mathrm{MSA})_1$	4.30×10^{-6}	1.19 × 10 ⁻⁶	3.64×10^{-7}	1.21 × 10 ⁻⁷
(HIO ₃) ₁ (HIO ₂) ₂ (MSA) ₂	9.18 × 10 ⁻⁴	2.06×10^{-4}	5.25×10^{-5}	1.46 × 10 ⁻⁵
$(\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_3(\mathrm{MSA})_1$	$2.77 imes 10^{0}$	4.12×10^{-1}	$6.98 imes 10^{-2}$	1.34 × 10 ⁻²
(HIO ₃) ₂ (HIO ₂) ₁ (MSA) ₁	4.83 × 10 ⁻²	8.40×10^{-3}	1.65×10^{-3}	3.75×10^{-4}
(HIO ₃) ₂ (HIO ₂) ₁ (MSA) ₂	2.46×10^{-1}	4.16×10^{-2}	$8.05 imes 10^{-3}$	1.74 × 10 ⁻³
(HIO ₃) ₂ (HIO ₂) ₂ (MSA) ₁	1.35 × 10 ⁻⁶	3.20×10^{-7}	$8.53 imes 10^{-8}$	2.59 × 10 ⁻⁸
(HIO ₃) ₃ (HIO ₂) ₁ (MSA) ₁	1.02×10^{-3}	1.86×10^{-4}	$3.94 imes 10^{-5}$	9.29 × 10 ⁻⁶

Evaporation pathways	Evaporation rate coefficients (γ, s ⁻¹)
$(\mathrm{HIO}_3)_2 \rightarrow \mathrm{HIO}_3 + \mathrm{HIO}_3$	1.48×10^{3}
$(\mathrm{HIO}_3)_3 \rightarrow (\mathrm{HIO}_3)_2 + \mathrm{HIO}_3$	4.76×10^{1}
$(\mathrm{HIO}_3)_4 \rightarrow (\mathrm{HIO}_3)_3 + \mathrm{HIO}_3$	$1.45 imes 10^{-6}$
$(\mathrm{HIO}_3)_5 \rightarrow (\mathrm{HIO}_3)_4 + \mathrm{HIO}_3$	8.37×10^{-5}
$(\text{HIO}_2)_2 \rightarrow \text{HIO}_2 + \text{HIO}_2$	4.40×10^{-5}
$(\mathrm{HIO}_2)_3 \rightarrow (\mathrm{HIO}_2)_2 + \mathrm{HIO}_2$	9.68×10^{-8}
$(\mathrm{HIO}_2)_4 \rightarrow (\mathrm{HIO}_2)_3 + \mathrm{HIO}_2$	2.75×10^{-6}
$(\mathrm{HIO}_2)_5 \rightarrow (\mathrm{HIO}_2)_4 + \mathrm{HIO}_2$	2.29×10^{-4}
$(MSA)_2 \rightarrow MSA + MSA$	1.11×10^{1}
$(MSA)_3 \rightarrow (MSA)_2 + MSA$	9.46×10^{5}
$(\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_1 \rightarrow \mathrm{HIO}_3 + \mathrm{HIO}_2$	9.30×10^{-5}
$(\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_2 \rightarrow \mathrm{HIO}_3 + (\mathrm{HIO}_2)_2$	2.68×10^{-8}
$(\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_2 \rightarrow (\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_1 + \mathrm{HIO}_2$	5.24×10^{-8}
$(\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_3 \rightarrow \mathrm{HIO}_3 + (\mathrm{HIO}_2)_3$	1.52×10^{-3}
$(\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_3 \rightarrow (\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_2 + \mathrm{HIO}_2$	5.59 × 10 ⁻³
$(\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_4 \rightarrow \mathrm{HIO}_3 + (\mathrm{HIO}_2)_4$	3.62×10^{-8}
$(\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_4 \rightarrow (\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_3 + \mathrm{HIO}_2$	6.64×10^{-11}
$(\mathrm{HIO}_3)_2(\mathrm{HIO}_2)_1 \rightarrow \mathrm{HIO}_3 + (\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_1$	$1.09 imes 10^{0}$
$(\mathrm{HIO}_3)_2(\mathrm{HIO}_2)_1 \rightarrow (\mathrm{HIO}_3)_2 + \mathrm{HIO}_2$	1.75×10^{-8}
$(\mathrm{HIO}_3)_2(\mathrm{HIO}_2)_2 \rightarrow \mathrm{HIO}_3 + (\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_2$	5.77 × 10 ⁻³
$(\mathrm{HIO}_3)_2(\mathrm{HIO}_2)_2 \rightarrow (\mathrm{HIO}_3)_2(\mathrm{HIO}_2)_1 + \mathrm{HIO}_2$	2.79×10^{-10}
$(\mathrm{HIO}_3)_2(\mathrm{HIO}_2)_3 \rightarrow \mathrm{HIO}_3 + (\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_3$	3.73×10^{-9}
$(\mathrm{HIO}_3)_2(\mathrm{HIO}_2)_3 \rightarrow (\mathrm{HIO}_3)_2(\mathrm{HIO}_2)_2 + \mathrm{HIO}_2$	3.68×10^{-9}
$(\mathrm{HIO}_3)_3(\mathrm{HIO}_2)_1 \rightarrow \mathrm{HIO}_3 + (\mathrm{HIO}_3)_2(\mathrm{HIO}_2)_1$	1.59×10^{-7}
$(\mathrm{HIO}_3)_3(\mathrm{HIO}_2)_1 \rightarrow (\mathrm{HIO}_3)_3 + \mathrm{HIO}_2$	6.01×10^{-17}
$(\mathrm{HIO}_3)_3(\mathrm{HIO}_2)_2 \rightarrow \mathrm{HIO}_3 + (\mathrm{HIO}_3)_2(\mathrm{HIO}_2)_2$	1.14×10^{-4}
$(\mathrm{HIO}_3)_3(\mathrm{HIO}_2)_2 \rightarrow (\mathrm{HIO}_3)_3(\mathrm{HIO}_2)_1 + \mathrm{HIO}_2$	2.03×10^{-7}

Table S5. The evaporation rate coefficients (γ, s^{-1}) for all evaporation pathways of clusters at 278 K.

$(\mathrm{HIO}_3)_4(\mathrm{HIO}_2)_1 \rightarrow \mathrm{HIO}_3 + (\mathrm{HIO}_3)_3(\mathrm{HIO}_2)_1$	6.98 × 10 ⁻¹
$(\mathrm{HIO}_3)_4(\mathrm{HIO}_2)_1 \rightarrow (\mathrm{HIO}_3)_4 + \mathrm{HIO}_2$	2.92×10^{-11}
$(\mathrm{HIO}_3)_1(\mathrm{MSA})_1 \to \mathrm{HIO}_3 + \mathrm{MSA}$	1.03×10^1
$(\mathrm{HIO}_3)_1(\mathrm{MSA})_2 \rightarrow \mathrm{HIO}_3 + (\mathrm{MSA})_2$	1.00×10^3
$(\mathrm{HIO}_3)_1(\mathrm{MSA})_2 \rightarrow (\mathrm{HIO}_3)_1(\mathrm{MSA})_1 + \mathrm{MSA}$	2.12×10^{3}
$(\mathrm{HIO}_3)_1(\mathrm{MSA})_3 \to \mathrm{HIO}_3 + (\mathrm{MSA})_3$	1.74×10^{-5}
$(\mathrm{HIO}_3)_1(\mathrm{MSA})_3 \rightarrow (\mathrm{HIO}_3)_1(\mathrm{MSA})_2 + \mathrm{MSA}$	1.61 × 10 ⁻²
$(\mathrm{HIO}_3)_2(\mathrm{MSA})_1 \rightarrow \mathrm{HIO}_3 + (\mathrm{HIO}_3)_1(\mathrm{MSA})_1$	1.82×10^2
$(\mathrm{HIO}_3)_2(\mathrm{MSA})_1 \rightarrow (\mathrm{HIO}_3)_2 + \mathrm{MSA}$	6.13 × 10 ⁻¹
$(\mathrm{HIO}_3)_2(\mathrm{MSA})_2 \rightarrow \mathrm{HIO}_3 + (\mathrm{HIO}_3)_1(\mathrm{MSA})_2$	2.48×10^{0}
$(\mathrm{HIO}_3)_2(\mathrm{MSA})_2 \rightarrow (\mathrm{HIO}_3)_2(\mathrm{MSA})_1 + \mathrm{MSA}$	2.83×10^1
$(\mathrm{HIO}_3)_2(\mathrm{MSA})_3 \rightarrow \mathrm{HIO}_3 + (\mathrm{HIO}_3)_1(\mathrm{MSA})_3$	$1.88 imes 10^{0}$
$(\mathrm{HIO}_3)_2(\mathrm{MSA})_3 \rightarrow (\mathrm{HIO}_3)_2(\mathrm{MSA})_2 + \mathrm{MSA}$	1.21 × 10 ⁻²
$(\mathrm{HIO}_3)_3(\mathrm{MSA})_1 \rightarrow \mathrm{HIO}_3 + (\mathrm{HIO}_3)_2(\mathrm{MSA})_1$	1.18×10^1
$(\mathrm{HIO}_3)_3(\mathrm{MSA})_1 \rightarrow (\mathrm{HIO}_3)_3 + \mathrm{MSA}$	1.49 × 10 ⁻¹
$(\mathrm{HIO}_3)_3(\mathrm{MSA})_2 \rightarrow \mathrm{HIO}_3 + (\mathrm{HIO}_3)_2(\mathrm{MSA})_2$	1.40×10^{-6}
$(\mathrm{HIO}_3)_3(\mathrm{MSA})_2 \rightarrow (\mathrm{HIO}_3)_3(\mathrm{MSA})_1 + \mathrm{MSA}$	3.33 × 10 ⁻⁶
$(\mathrm{HIO}_3)_4(\mathrm{MSA})_1 \rightarrow \mathrm{HIO}_3 + (\mathrm{HIO}_3)_3(\mathrm{MSA})_1$	5.28×10^{-8}
$(\mathrm{HIO}_3)_4(\mathrm{MSA})_1 \rightarrow (\mathrm{HIO}_3)_4 + \mathrm{MSA}$	5.32×10^{-3}
$(\mathrm{HIO}_2)_{l}(\mathrm{MSA})_{l} \rightarrow \mathrm{HIO}_2 + \mathrm{MSA}$	3.05×10^{-4}
$(\mathrm{HIO}_2)_1(\mathrm{MSA})_2 \to \mathrm{HIO}_2 + (\mathrm{MSA})_2$	1.35×10^{-5}
$(\mathrm{HIO}_2)_1(\mathrm{MSA})_2 \rightarrow (\mathrm{HIO}_2)_1(\mathrm{MSA})_1 + \mathrm{MSA}$	9.35 × 10 ⁻¹
$(\mathrm{HIO}_2)_1(\mathrm{MSA})_3 \to \mathrm{HIO}_2 + (\mathrm{MSA})_3$	4.63×10^{-10}
$(\mathrm{HIO}_2)_1(\mathrm{MSA})_3 \rightarrow (\mathrm{HIO}_2)_1(\mathrm{MSA})_2 + \mathrm{MSA}$	$3.13 imes 10^1$
$(\mathrm{HIO}_3)_2(\mathrm{MSA})_1 \rightarrow \mathrm{HIO}_2 + (\mathrm{HIO}_2)_1(\mathrm{MSA})_1$	3.40×10^{-5}
$(\mathrm{HIO}_2)_2(\mathrm{MSA})_1 \rightarrow (\mathrm{HIO}_2)_2 + \mathrm{MSA}$	1.12× 10 ⁻⁴
$(\mathrm{HIO}_2)_2(\mathrm{MSA})_2 \rightarrow \mathrm{HIO}_2 + (\mathrm{HIO}_2)_1(\mathrm{MSA})_2$	1.61×10^{-12}
$(\mathrm{HIO}_2)_2(\mathrm{MSA})_2 \rightarrow (\mathrm{HIO}_2)_2(\mathrm{MSA})_1 + \mathrm{MSA}$	4.26×10^{-8}
$(\mathrm{HIO}_2)_2(\mathrm{MSA})_3 \rightarrow \mathrm{HIO}_2 + (\mathrm{HIO}_2)_1(\mathrm{MSA})_3$	4.12×10^{-16}
$(\mathrm{HIO}_2)_2(\mathrm{MSA})_3 \rightarrow (\mathrm{HIO}_2)_2(\mathrm{MSA})_2 + \mathrm{MSA}$	7.73 × 10 ⁻³

$(\text{HIO}_2)_3(\text{MSA})_1 \rightarrow \text{HIO}_2 + (\text{HIO}_2)_2(\text{MSA})_1$	4.78×10^{-9}
$(\text{HIO}_2)_3(\text{MSA})_1 \rightarrow (\text{HIO}_2)_3 + \text{MSA}$	5.30×10^{-6}
$(\text{HIO}_2)_3(\text{MSA})_2 \rightarrow \text{HIO}_2 + (\text{HIO}_2)_2(\text{MSA})_2$	1.08×10^{-6}
$(\text{HIO}_2)_3(\text{MSA})_2 \rightarrow (\text{HIO}_2)_3(\text{MSA})_1 + \text{MSA}$	9.38 × 10 ⁻⁶
$(\text{HIO}_2)_4(\text{MSA})_1 \rightarrow \text{HIO}_2 + (\text{HIO}_2)_3(\text{MSA})_1$	9.62 × 10 ⁻⁵
$(\text{HIO}_2)_4(\text{MSA})_1 \rightarrow (\text{HIO}_2)_4 + \text{MSA}$	1.80×10^{-4}
$(\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_1(\mathrm{MSA})_1 \rightarrow \mathrm{HIO}_3 + (\mathrm{HIO}_2)_1 \ (\mathrm{MSA})_1$	1.07×10^{0}
$(\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_1(\mathrm{MSA})_1 \rightarrow \mathrm{HIO}_2 + (\mathrm{HIO}_3)_1(\mathrm{MSA})_1$	3.26×10^{-5}
$(\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_1(\mathrm{MSA})_1 \rightarrow \mathrm{MSA} + (\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_1$	6.86×10^{0}
$(\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_1(\mathrm{MSA})_2 \rightarrow \mathrm{HIO}_3 + (\mathrm{HIO}_2)_1(\mathrm{MSA})_2$	1.63 × 10 ⁻²
$(\text{HIO}_3)_1(\text{HIO}_2)_1(\text{MSA})_2 \rightarrow \text{HIO}_2 + (\text{HIO}_3)_1(\text{MSA})_2$	2.23×10^{-10}
$(\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_1(\mathrm{MSA})_2 \rightarrow \mathrm{MSA} + (\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_1(\mathrm{MSA})_1$	1.39 × 10 ⁻²
$(\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_1(\mathrm{MSA})_3 \rightarrow \mathrm{HIO}_3 + (\mathrm{HIO}_2)_1(\mathrm{MSA})_3$	2.08×10^{-5}
$(\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_1(\mathrm{MSA})_3 \rightarrow \mathrm{HIO}_2 + (\mathrm{HIO}_3)_1(\mathrm{MSA})_3$	5.52×10^{-10}
$(\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_1(\mathrm{MSA})_3 \rightarrow \mathrm{MSA} + (\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_1(\mathrm{MSA})_2$	3.91 × 10 ⁻²
$(\text{HIO}_3)_1(\text{HIO}_2)_2(\text{MSA})_1 \rightarrow \text{HIO}_3 + (\text{HIO}_2)_2(\text{MSA})_1$	6.55 × 10 ⁻²
$(\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_2(\mathrm{MSA})_1 \rightarrow \mathrm{HIO}_2 + (\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_1(\mathrm{MSA})_1$	2.11 × 10 ⁻⁶
$(\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_2(\mathrm{MSA})_1 \rightarrow \mathrm{MSA} + (\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_2$	2.67×10^{2}
$(\text{HIO}_3)_1(\text{HIO}_2)_2(\text{MSA})_2 \rightarrow \text{HIO}_3 + (\text{HIO}_2)_2(\text{MSA})_2$	1.68×10^{0}
$(\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_2(\mathrm{MSA})_2 \rightarrow \mathrm{HIO}_2 + (\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_1(\mathrm{MSA})_2$	1.68×10^{-10}
$(\text{HIO}_3)_1(\text{HIO}_2)_2(\text{MSA})_2 \rightarrow \text{MSA} + (\text{HIO}_3)_1(\text{HIO}_2)_2(\text{MSA})_1$	1.08×10^{-6}
$(\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_3(\mathrm{MSA})_1 \rightarrow \mathrm{HIO}_3 + (\mathrm{HIO}_2)_3(\mathrm{MSA})_1$	8.08×10^{-4}
$(\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_3(\mathrm{MSA})_1 \rightarrow \mathrm{HIO}_2 + (\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_2(\mathrm{MSA})_1$	$5.99 imes 10^{-11}$
$(\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_3(\mathrm{MSA})_1 \rightarrow \mathrm{MSA} + (\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_3$	2.77×10^{-6}
$(\mathrm{HIO}_3)_2(\mathrm{HIO}_2)_1(\mathrm{MSA})_1 \rightarrow \mathrm{HIO}_3 + (\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_1(\mathrm{MSA})_1$	5.32×10^{-3}
$(\text{HIO}_3)_2(\text{HIO}_2)_1(\text{MSA})_1 \rightarrow \text{HIO}_2 + (\text{HIO}_3)_2(\text{MSA})_1$	9.73×10^{-10}
$(\mathrm{HIO}_3)_2(\mathrm{HIO}_2)_1(\mathrm{MSA})_1 \rightarrow \mathrm{MSA} + (\mathrm{HIO}_3)_2(\mathrm{HIO}_2)_1$	3.26×10^{-2}
$(\mathrm{HIO}_3)_2(\mathrm{HIO}_2)_1(\mathrm{MSA})_2 \rightarrow \mathrm{HIO}_3 + (\mathrm{HIO}_3)_1(\mathrm{HIO}_2)_1(\mathrm{MSA})_2$	2.34×10^{-3}
$(\text{HIO}_3)_2(\text{HIO}_2)_1(\text{MSA})_2 \rightarrow \text{HIO}_2 + (\text{HIO}_3)_2(\text{MSA})_2$	2.12×10^{-13}
$(\text{HIO}_3)_2(\text{HIO}_2)_1(\text{MSA})_2 \rightarrow \text{MSA} + (\text{HIO}_3)_2(\text{HIO}_2)_1(\text{MSA})_1$	6.02×10^{-3}

Table S6. Cartesian coordinates of all clusters in the present study at the ω B97X-D/6-311++G(3df,3pd) + aug-cc-pVTZ-PP with ECP28MDF (for I) level of theory.

Atoms	X	Y	Z
Ι	-1.877771	-0.752509	0.232491
0	-0.595483	-1.823796	-0.441557
0	-2.129309	0.529646	-0.990503
0	-3.347446	-1.887376	-0.363133
Н	-3.316493	-2.009666	-1.318151
Ι	0.538518	1.786822	-0.007683
0	-0.280369	0.538764	1.127138
0	-0.982028	2.977162	-0.164915
Н	-1.650294	2.452812	-0.639218
С	2.381400	-2.002110	1.293918
Н	1.349560	-1.779093	1.553529
Н	3.055380	-1.690334	2.087356
Н	2.513617	-3.055293	1.064019
S	2.803335	-1.068186	-0.135331
0	4.109943	-1.391523	-0.576780
Ο	2.557737	0.329273	0.190156
0	1.799377	-1.531930	-1.201161
Н	0.827546	-1.555140	-0.894535

(HIO₃)₁(HIO₂)₁(MSA)₁:

(HIO₃)₁(HIO₂)₁(MSA)₂:

Atoms	X	Y	Z
Ι	2.409779	0.774129	-0.040206
О	1.385502	0.576253	1.430168
О	1.373911	1.601378	-1.214087
О	3.392857	2.316656	0.600986
Н	2.789785	3.054133	0.751657
Ι	-0.952983	-0.240914	1.639934
О	-0.192173	-1.842568	2.353516
О	-2.791548	-0.834672	1.828123
Н	-3.101196	-1.123232	0.961065
С	-1.635090	1.941809	-2.395478
Н	-1.580410	3.023401	-2.301298
Н	-2.078867	1.657620	-3.345129
Н	-0.648400	1.503914	-2.254014
S	-2.689253	1.381700	-1.107970
0	-4.018312	1.835580	-1.303795

O-2.703961-0.170078-1.294340H-1.806699-0.574127-1.495560C1.026057-3.296909-2.467723H1.757678-3.951230-2.002419H1.462361-2.757735-3.303648H0.154792-3.862035-2.787581S0.493560-2.124785-1.266745O-0.450874-1.245829-1.942264O1.721432-1.408995-0.868687O-0.082162-2.871797-0.166188	0	-2.052011	1.693605	0.151464
H-1.806699-0.574127-1.495560C1.026057-3.296909-2.467723H1.757678-3.951230-2.002419H1.462361-2.757735-3.303648H0.154792-3.862035-2.787581S0.493560-2.124785-1.266745O-0.450874-1.245829-1.942264O1.721432-1.408995-0.868687O-0.082162-2.871797-0.166188	0	-2.703961	-0.170078	-1.294340
C1.026057-3.296909-2.467723H1.757678-3.951230-2.002419H1.462361-2.757735-3.303648H0.154792-3.862035-2.787581S0.493560-2.124785-1.266745O-0.450874-1.245829-1.942264O1.721432-1.408995-0.868687O-0.082162-2.871797-0.166188	Н	-1.806699	-0.574127	-1.495560
H1.757678-3.951230-2.002419H1.462361-2.757735-3.303648H0.154792-3.862035-2.787581S0.493560-2.124785-1.266745O-0.450874-1.245829-1.942264O1.721432-1.408995-0.868687O-0.082162-2.871797-0.166188	С	1.026057	-3.296909	-2.467723
H1.462361-2.757735-3.303648H0.154792-3.862035-2.787581S0.493560-2.124785-1.266745O-0.450874-1.245829-1.942264O1.721432-1.408995-0.868687O-0.082162-2.871797-0.166188	Н	1.757678	-3.951230	-2.002419
H0.154792-3.862035-2.787581S0.493560-2.124785-1.266745O-0.450874-1.245829-1.942264O1.721432-1.408995-0.868687O-0.082162-2.871797-0.166188	Н	1.462361	-2.757735	-3.303648
S 0.493560 -2.124785 -1.266745 O -0.450874 -1.245829 -1.942264 O 1.721432 -1.408995 -0.868687 O -0.082162 -2.871797 -0.166188	Н	0.154792	-3.862035	-2.787581
O-0.450874-1.245829-1.942264O1.721432-1.408995-0.868687O-0.082162-2.871797-0.166188	S	0.493560	-2.124785	-1.266745
O 1.721432 -1.408995 -0.868687 O -0.082162 -2.871797 -0.166188	О	-0.450874	-1.245829	-1.942264
O -0.082162 -2.871797 -0.166188	0	1.721432	-1.408995	-0.868687
	О	-0.082162	-2.871797	-0.166188
Н -0.035276 -2.407404 1.566781	Н	-0.035276	-2.407404	1.566781

(HIO₃)₁(HIO₂)₁(MSA)₃:

X	Y	Ζ
-0.704502	1.880683	-0.087693
-0.262147	0.962564	-1.568210
0.769896	2.880001	0.140275
-1.718617	3.284402	-0.904918
-2.597548	2.909382	-1.066314
0.237573	-1.482650	-1.552860
-1.493460	-1.862291	-2.239184
0.793149	-3.313365	-1.239210
0.691830	-3.449932	-0.285722
-5.131422	-0.202325	0.675597
-5.602298	-0.293691	-0.299047
-5.397670	0.738529	1.148982
-5.404847	-1.040327	1.311180
-3.380752	-0.239309	0.457515
-2.769644	-0.081762	1.758671
-3.073136	0.902025	-0.429969
-3.081940	-1.512628	-0.184028
-2.145756	-1.747538	-1.495636
-0.352326	-1.151292	3.638131
-0.161837	-2.038803	4.234685
-1.363857	-1.142807	3.232807
-0.156843	-0.242376	4.199162
0.707021	-1.179657	2.247421
0.510522	0.019993	1.474837
0.561143	-2.434754	1.578032
2.110374	-1.088098	2.898449
2.710461	-0.516583	2.343792
5.133324	0.642192	-0.731776
	X -0.704502 -0.262147 0.769896 -1.718617 -2.597548 0.237573 -1.493460 0.793149 0.691830 -5.131422 -5.602298 -5.397670 -5.404847 -3.380752 -2.769644 -3.081940 -2.145756 -0.352326 -0.161837 -1.363857 -0.156843 0.707021 0.510522 0.561143 2.110374 2.710461 5.133324	XY -0.704502 1.880683 -0.262147 0.962564 0.769896 2.880001 -1.718617 3.284402 -2.597548 2.909382 0.237573 -1.482650 -1.493460 -1.862291 0.793149 -3.313365 0.691830 -3.449932 -5.131422 -0.202325 -5.602298 -0.293691 -5.397670 0.738529 -5.404847 -1.040327 -3.380752 -0.239309 -2.769644 -0.081762 -3.073136 0.902025 -3.081940 -1.512628 -2.145756 -1.747538 -0.352326 -1.151292 -0.161837 -2.038803 -1.363857 -1.142807 -0.156843 -0.242376 0.707021 -1.179657 0.510522 0.019993 0.561143 -2.434754 2.110374 -1.088098 2.710461 -0.516583 5.13324 0.642192

Н	5.048734	0.835176	-1.797054
Н	5.572150	-0.335132	-0.549498
Н	5.703289	1.421137	-0.234095
S	3.517878	0.610806	-0.048159
0	3.642807	0.423119	1.378359
0	2.734434	-0.371353	-0.743488
0	3.070689	2.029833	-0.374786
Н	2.095029	2.304867	-0.152704

(HIO₃)₁(HIO₂)₂(MSA)₁:

Atoms	X	Y	Z
Ι	2.348350	-0.769952	-0.370994
О	1.654492	-0.933432	1.291176
0	3.963063	-0.109532	-0.099351
0	2.813854	-2.636535	-0.606809
Н	3.520811	-2.864712	0.009545
Ι	-2.435446	-1.030080	-0.532754
0	-0.675580	-1.017821	-1.293881
0	-3.255475	-1.247275	-2.322592
Н	-3.259906	-0.405511	-2.787043
Ι	-0.311703	0.399257	2.003701
0	-1.453783	-0.979816	1.421811
0	-1.672202	1.741859	2.352406
Н	-1.643425	2.304136	1.558194
С	0.742195	3.687612	-2.070912
Н	1.452733	3.361092	-2.824708
Н	1.213050	4.370788	-1.369626
Н	-0.127171	4.148493	-2.531313
S	0.197366	2.274013	-1.170936
О	-0.746074	2.744114	-0.175752
О	1.404151	1.671612	-0.591398
0	-0.416216	1.381600	-2.162983
Н	-0.560623	-0.101299	-1.693138

(HIO₃)₁(HIO₂)₂(MSA)₂:

Atoms	X	Y	Z
Ι	-2.274708	-1.314077	-1.069938
0	-1.280980	0.083594	-1.611998
0	-2.834872	-0.822265	0.570168
0	-3.863092	-0.664896	-2.016261
Н	-3.926249	0.294889	-1.977898

Ι	0.632696	-1.618253	1.095082
Ο	-0.580722	-2.309479	-0.180893
Ο	-0.456420	-1.721741	2.682021
Н	-0.891987	-0.855016	2.762242
Ι	0.688431	1.614509	-1.302574
Ο	2.141989	2.852309	-1.109255
Ο	1.534733	0.503037	-2.608748
Н	2.035517	-0.157807	-2.078329
С	-2.210521	3.345329	2.878658
Н	-2.770544	4.077303	2.303823
Н	-1.320249	3.795666	3.309752
Н	-2.828191	2.892116	3.648119
S	-1.664285	2.084478	1.787508
Ο	-1.022339	1.045238	2.543856
Ο	-0.886171	2.707518	0.750861
Ο	-2.999114	1.580531	1.225491
Н	-2.947752	0.587627	0.928655
С	5.145879	-1.203340	0.025882
Н	5.462625	-1.041750	-1.000725
Н	5.004780	-2.261776	0.225378
Н	5.862700	-0.773971	0.720608
S	3.604091	-0.383395	0.266973
Ο	3.190244	-0.626641	1.636474
Ο	2.649949	-1.030216	-0.671988
Ο	3.827983	1.010367	-0.061212
Н	2.840580	2.359109	-0.624881

(HIO₃)₁(HIO₂)₃(MSA)₁:

_

Atoms	X	Y	Z
Ι	3.100541	-0.494953	0.054224
Ο	2.179606	-1.070771	1.483798
Ο	2.472547	1.147459	-0.315090
Ο	4.647763	0.187051	1.046983
Н	4.402718	0.972847	1.546784
Ι	0.062420	2.172851	-0.950176
О	-1.809613	2.599934	-0.820501
Ο	0.419481	3.698110	-2.140759
Н	0.228934	3.455910	-3.050887
Ι	-1.082332	0.306963	2.092020
Ο	-0.525627	0.313681	0.284389
Ο	0.668997	0.672503	2.819187
Н	1.295934	-0.000699	2.454745
Ι	-0.185243	-1.901950	-0.896517

0	1.558417	-1.340313	-1.301383
0	0.003276	-3.716490	-1.607974
Н	-0.125092	-3.696140	-2.560272
С	-5.285320	-0.812393	-0.216000
Н	-5.786708	0.143010	-0.091180
Н	-5.534282	-1.491748	0.594069
Н	-5.532742	-1.254333	-1.177365
S	-3.545561	-0.530966	-0.191771
Ο	-2.903926	-1.828621	-0.308546
Ο	-3.290245	0.092168	1.128168
О	-3.248350	0.375639	-1.288410
Н	-2.341954	1.803875	-1.066678

(HIO₃)₂(HIO₂)₁(MSA)₁:

Atoms	Χ	Y	Z
Ι	-2.773171	-0.569794	0.577742
0	-3.115255	0.810216	-0.492635
О	-1.860841	-1.790462	-0.379870
0	-1.500766	0.059435	1.789981
Н	-1.001840	0.929412	1.478961
Ι	0.168997	2.377382	-0.567292
О	-0.382966	2.188189	1.138075
О	0.041412	0.752066	-1.270487
О	-1.481935	3.081061	-1.270734
Н	-2.168376	2.402925	-1.129338
Ι	0.590524	-2.309932	-0.694268
О	0.649959	-2.383007	1.206637
Ο	2.421517	-2.794143	-1.001080
Н	2.934821	-1.967440	-0.840170
С	4.280227	0.941448	1.692637
Н	3.934820	1.617441	2.469557
Н	5.024361	1.422211	1.063883
Н	4.676566	0.026750	2.125015
S	2.901359	0.510132	0.682594
0	3.401261	-0.377603	-0.351589
0	2.430470	1.796956	0.137610
О	1.915552	-0.104451	1.559334
Н	1.072665	-1.523873	1.475161

(HIO₃)₂(HIO₂)₁(MSA)₂:

Atoms	Х	Y	Z

Ι	1.093782	-1.924547	-1.130100
О	0.788916	-2.106659	0.671617
О	2.174892	-3.259322	-1.508651
О	-0.532941	-2.693983	-1.742588
Н	-1.290898	-2.408139	-1.167747
Ι	-0.260065	-0.431970	1.808869
О	-0.040004	0.373751	0.174644
О	1.270762	-0.102861	2.655767
О	-1.103125	1.122009	2.601535
Н	-2.038169	1.063428	2.341988
Ι	-0.816885	2.364153	-0.728820
О	-1.345194	1.183577	-2.120771
О	-1.576969	3.955428	-1.584113
Н	-0.997674	4.261083	-2.287831
С	-4.943314	-1.579588	0.211887
Н	-5.685012	-0.789147	0.284178
Н	-4.933230	-2.183615	1.114711
Н	-5.126029	-2.197329	-0.662966
S	-3.359337	-0.831759	0.033773
Ο	-2.382689	-1.918557	-0.030515
Ο	-3.139910	-0.018473	1.224822
Ο	-3.424062	-0.045957	-1.192370
Н	-2.173130	0.707090	-1.814150
С	5.156706	1.385513	-0.097012
Н	5.394987	2.292011	0.451764
Н	5.308485	1.532078	-1.163093
Н	5.735971	0.540665	0.262797
S	3.451272	1.032543	0.125257
О	3.167615	-0.230034	-0.510885
О	2.670833	2.156196	-0.287817
Ο	3.422602	0.866210	1.656187
Н	2.555533	0.478486	2.004433

(HIO₃)₂(HIO₂)₂(MSA)₁:

Atoms	X	Y	Z
Ι	1.638876	2.217202	-0.876994
0	3.203167	1.345169	-1.008169
0	1.645011	2.991477	0.731909
О	2.207906	3.789233	-1.861349
Н	2.927213	4.227571	-1.392465
Ι	0.047108	-0.140936	1.660468
0	-1.424765	0.926820	1.618775

0	0.843791	0.258916	0.072686
О	1.095476	1.117886	2.666750
Н	1.312649	1.900316	2.115168
Ι	-3.401952	0.620074	0.341882
О	-2.335655	0.232535	-1.137462
О	-5.131298	0.380619	-0.578905
Н	-5.300014	1.133343	-1.151360
Ι	-1.168116	-1.759971	-1.326957
О	-1.069978	-1.635326	0.555583
О	-0.063041	-3.365138	-1.418258
Н	0.866112	-3.089567	-1.318258
С	4.335450	-3.200392	0.618297
Н	5.030533	-3.207465	-0.215828
Н	3.842428	-4.163437	0.721809
Н	4.833440	-2.924774	1.543321
S	3.077614	-2.020085	0.288754
О	2.191544	-1.993737	1.421264
О	2.487423	-2.307678	-0.990669
О	3.922077	-0.745176	0.218596
Н	3.516296	0.055401	-0.273325

(HIO₃)₃(HIO₂)₁(MSA)₁:

Atoms	X	Y	Z
Ι	-3.106823	-0.370436	-0.186573
О	-2.145238	-0.846587	-1.639348
О	-2.367302	1.168568	0.358986
О	-4.533365	0.501505	-1.186345
Н	-4.209031	1.297354	-1.621863
Ι	0.061077	-2.029060	0.951439
О	-1.738609	-1.620778	1.064687
О	0.112706	-3.645227	1.641637
О	-0.024593	-2.465220	-0.911670
Н	-0.820554	-2.007643	-1.267731
Ι	0.035066	2.050355	1.086344
О	1.860668	2.529156	1.051454
О	0.028319	0.731457	2.264618
О	-0.336960	3.459422	2.364098
Н	0.015508	3.230682	3.232029
Ι	1.107430	0.609985	-2.134574
О	0.571602	0.435722	-0.333269
Ο	-0.645515	1.197801	-2.746282
Н	-1.277691	0.480487	-2.534567
С	5.189397	-1.069024	-0.041490

Н	5.790078	-0.188883	-0.251452
Н	5.293215	-1.811758	-0.827119
Н	5.449669	-1.494011	0.924183
S	3.499037	-0.583334	0.037939
0	2.724920	-1.783507	0.274350
0	3.229755	0.011272	-1.299116
0	3.397067	0.414591	1.089765
Н	2.442469	1.711174	1.058207

Supplementary Reference

- Elm, J. and Kristensen, K.: Basis set convergence of the binding energies of strongly hydrogen-bonded atmospheric clusters, Phys. Chem. Chem. Phys., 19, 1122–1133, http://doi.org/10.1039/c6cp06851k, 2017.
- Francl, M. M., Pietro, W. J., Hehre, W. J., Binkley, J. S., Gordon, M. S., DeFrees, D. J. and Pople, J. A.: Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements, J. Chem. Phys., 77, 3654–3665, http://doi.org/10.1063/1.444267, 1982.
- Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. and Fox, D. J.: Gaussian 09, Revision A.02, Gaussian Inc, Wallingford CT, https://gaussian.com/g09citation/ (last access: 07 May 2022), 2009.
- Peterson, K. A., Figgen, D., Goll, E., Stoll, H. and Dolg, M.: Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements, J. Chem. Phys. , 119, 11113–11123, http://doi.org/10.1063/1.1622924, 2003.
- Rappé, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A. and Skif, W. M.: UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations, J. Am. Chem. Soc., 114, 10024–10035, http://doi.org/10.1021/ja00051a040, 1992.
- Stewart, J. J.: Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters, J. Mol. Model., 19, 1–32, http://doi.org/10.1007/s00894-012-1667-x, 2013.
- Stewart, J. J. P.: MOPAC 2016, Colorado Springs, CO (USA), http://openmopac.net/MOPAC2016.html, 2016.
- Zhang, J. and Dolg, M.: ABCluster: the artificial bee colony algorithm for cluster global optimization, Phys. Chem. Chem. Phys., 17, 24173–24181, http://doi.org/10.1039/c5cp04060d, 2015.