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Abstract. Ozone in the troposphere is a greenhouse gas and a pollutant, hence, additional understanding of the drivers of 

tropospheric ozone evolution is essential. The El Niño–Southern Oscillation (ENSO) is a main climate mode and may 10 

contribute to the variations of tropospheric ozone. Nevertheless, there is uncertainty regarding the causal influences of ENSO 

on tropospheric ozone under warming environment. Here, we investigated the links between ENSO and tropospheric ozone 

using Coupled Modeling Intercomparison Project Phase 6 (CMIP6) data over the period 1850-2014. Our results show that 

ENSO impacts on tropospheric ozone are primarily found over oceans, while the signature of ENSO over continents is 

largely nonsignificant. Springtime surface ozone is more sensitive to ENSO compared to other seasons. The response of 15 

ozone to ENSO may vary depending on specific air pressure levels in the troposphere. These responses are weak in the 

middle troposphere and are stronger in the upper and lower troposphere. There is high consistency across CMIP6 models in 

simulating the signature of ENSO on ozone over the lower, middle and upper troposphere. While the response of tropical 

tropospheric ozone to ENSO is in agreement with previous works, our results suggest that ENSO impacts on tropospheric 

ozone over the northern North Pacific, American continent, and over the mid-latitude regions of the southern Pacific, 20 

Atlantic, and Indian oceans might be more significant than previously understood.  
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1 Introduction 

Ozone in the troposphere is an important greenhouse gas and pollutant (Archibald et al., 2020; Cooper et al., 2010; Wang et 

al., 2022). Tropospheric ozone has detrimental effects on human health and ecosystems (Fleming et al., 2018; Franz et al., 25 

2018; Gaudel et al., 2020; Lu et al., 2019; Oliver et al., 2018; Peron et al., 2021; Roberts et al., 2022; Schauberger et al. , 

2019). Changes in atmospheric ozone may also affect radiative forcing and have effects on climate (Gauss et al., 2006; 

Myhre et al., 2013). 

The El Niño–Southern Oscillation (ENSO) is the major mode of climate variability with global impacts (Bjerknes, 1969; Cai 

et al., 2020; McPhaden et al., 2006) and is expected to affect variations of global tropospheric ozone. ENSO-induced 30 
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changes in climate and meteorological conditions (Le and Bae, 2022a; Lu et al., 2019; Yeh et al., 2018) lead to impacts on 

ecosystems and the production/removal of ozone in soil, plant, and the water cycle, and the transport of ozone (Ganzeveld et 

al., 2009; Lin et al., 2019; Neu et al., 2014). In particular, ENSO drives changes in tropospheric and stratospheric 

circulations which can alter the tropospheric ozone variations (Daskalakis et al., 2022; Domeisen et al., 2019; Koumoutsaris 

et al., 2008; Lin et al., 2015; Neu et al., 2014; Olsen et al., 2019; Oman et al., 2013; Zeng and Pyle, 2005; Ziemke et al., 35 

2015). In addition, ENSO was revealed to exhibit influences on tropospheric ozone concentrations in many regions by 

modulating local meteorological conditions (Doherty et al., 2006; Jeong et al., 2023; Jiang and Li, 2022; Oman et al., 2011; 

Peiro et al., 2018; Rowlinson et al., 2019; Wie et al., 2021; Xu et al., 2017; Yang et al., 2022; Zhang et al., 2015).  

Nevertheless, there are uncertainties regarding the causal effects of ENSO on global tropospheric ozone. For instance, while 

the response of tropospheric ozone to ENSO over the mid-latitude regions remains elusive (Lu et al., 2019; Olsen et al., 40 

2016), further understanding of ENSO impacts on ozone concentrations at multiple air pressure levels in the troposphere is 

necessary. Moreover, a causal analysis (Le et al., 2022; Le and Bae, 2022b) that takes into account the confounding impacts 

of other climate modes on the relationship between ENSO and tropospheric ozone is lacking. While the response of 

tropospheric ozone to ENSO can be interpreted by changes in ENSO-related atmospheric circulation (Lu et al., 2019; Sekiya 

and Sudo, 2012; Ziemke and Chandra, 2003), these changes might be influenced by other climate modes (Cai et al., 2019; Le 45 

et al., 2020b). Despite the high spatial and temporal variability of tropospheric ozone, there are limited observations of past 

ozone changes at the global scale (Dragani, 2011; Ebojie et al., 2016; Gaudel et al., 2018; Young et al., 2018). Hence, Earth 

system models remain valuable tools to understand the evolution of tropospheric ozone and the interactions between 

tropospheric ozone and regional climate (Archibald et al., 2020; Collins et al., 2017; Young et al., 2018). Datasets from 

Coupled Modeling Intercomparison Project Phase 6 (CMIP6) models provide an important source to better identify the 50 

effects of ENSO on global tropospheric ozone. 

In the present study, we evaluated the causal impacts of ENSO on tropospheric ozone at the global scale using data from the 

historical simulations of CMIP6 models. We also discussed the coherency across CMIP6 models in reproducing the 

connection between ENSO and tropospheric ozone. 

2 Materials and Methods 55 

2.1 Datasets 

We used monthly data of mole fraction of ozone in air (i.e., variable ‘o3’) at different air pressure levels (i.e., 1000, 850, 

500, and 300 hPa). The CMIP6 models with ozone data available for the historical simulations (Eyring et al., 2016) over the 

1850-2014 period are listed in Table 1. In Table 1, the models equipped with an Atmospheric Chemistry module are fully 

coupled where the chemistry scheme is associated with the physics of the atmospheric model, allowing for comprehensive 60 

consideration of interactions between climate variations, interactive chemistry, and carbon cycle (Emmons et al., 2020; 
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Michou et al., 2020; Wu et al., 2019). The use of various model outputs reduces the uncertainty of the connections between 

ENSO and tropospheric ozone. 

There are biases in simulating tropospheric ozone variations in the models (Griffiths et al., 2021; Turnock et al., 2020; 

Young et al., 2018). For instance, CMIP6 models may underestimate ozone levels in the Southern Hemisphere and 65 

overestimate ozone levels in the Northern Hemisphere compared to observational data of recent past (Griffiths et al., 2021; 

Turnock et al., 2020; Young et al., 2018). However, CMIP model outputs are still helpful to investigate the effects of ENSO 

on tropospheric ozone (Archibald et al., 2020; Young et al., 2018). For example, the simulation of tropospheric ozone in 

CESM2 models is improved in comparison to previous model versions (Emmons et al., 2020). In addition, CMIP6 models 

are capable of simulating long-term changes in surface ozone levels and recent increasing trends in tropospheric ozone 70 

(Griffiths et al., 2021; Turnock et al., 2020). 

We employed monthly sea level pressure (SLP) and sea surface temperature (SST) to calculate the time series of the major 

climate modes (see also section Methods 2.2). 

Table 1. List of CMIP6 models used in this study.  

No. Model name Modelling center, country Atmospheric Chemistry model 

1 BCC_CSM2_MR BCC, China None 

2 BCC_ESM1 BCC, China BCC-AGCM3-Chem 

3 CESM2 NCAR, United States MOZART‐T1 

4 CESM2_FV2 NCAR, United States MOZART‐T1 

5 CESM2_WACCM NCAR, United States MOZART‐T1 

6 CESM2_WACCM_FV2 NCAR, United States MOZART‐T1 

7 CNRM_CM6_1 CNRM-CERFACS, France OZL_v2 

8 CNRM_CM6_1_HR CNRM-CERFACS, France OZL_v2 

9 CNRM_ESM2_1 CNRM-CERFACS, France REPROBUS-C_v2 

10 IPSL_CM6A_LR IPSL, France None 

11 MPI_ESM_1_2_HAM MPI-M, Germany Sulfur chemistry (unnamed) 

12 MPI_ESM1_2_LR MPI-M, Germany None 

 75 

2.2 Methods 

We assess the possibility of the impacts of ENSO on tropospheric ozone based on the approach employed in recent studies 

(Le and Bae, 2020, 2022a). This method was established using a multivariate predictive model to assess the probability for 
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the absence of Granger causal effects of ENSO on ozone concentrations. In the computations, we considered the 

confounding impacts of other major climate modes (i.e., the dipole mode index (DMI; Saji et al., 1999), the Southern 80 

Annular Mode (SAM; e.g., Cai et al., 2011), and the North Atlantic Oscillation (NAO; e.g., Hurrell et al., 2003)). Given that 

the climate changes in the Indian and Atlantic oceans can affect the tropical Pacific (Cai et al., 2019; Ha et al., 2017a; Le et 

al., 2020a; Le and Bae, 2019), and modify the connections between ENSO and ozone concentrations, these analyses provide 

a realistic estimate for the response of ozone concentrations to ENSO.  

We use the following multivariate predictive model (e.g., Stern and Kaufmann 2013, Mosedale et al 2006) to estimate the 85 

causal links between the ENSO and ozone concentration:  

𝑿𝒕 = ∑ 𝜶𝒊𝑿𝒕−𝒊 +
𝒑
𝒊=𝟏 ∑ 𝜷𝒊𝒀𝒕−𝒊 +

𝒑
𝒊=𝟏 ∑ ∑ 𝜹𝒋,𝒊𝒁𝒋,𝒕−𝒊 +

𝒑
𝒊=𝟏 𝜺𝒕

𝒎
𝒋=𝟏                                                                          (1)                                                                                                   

where Xt is the annual mean (or seasonal mean) ozone concentration for year t, Yt is the ENSO index, and Zj,t is the 

confounding factor j for year t. In the predictive model shown in equation 1, while estimating the influence of 𝑌 on 𝑋 (i.e., 

the contribution of the term ∑ 𝛽𝑖𝑌𝑡−𝑖  
𝑝
𝑖=1 in predicting 𝑋), the contribution of past 𝑋 events are already taken into account by 90 

adding the term ∑ 𝛼𝑖𝑋𝑡−𝑖
𝑝
𝑖=1 . Thus, the causal influence of 𝑌 on 𝑋, if detected, is robust and the contribution of past 𝑋 events 

are already considered in our analyses. Here, m is number of confounding factors and p ≥ 1 is the order of the multivariate 

predictive model. The optimal order p is computed by minimizing the Schwarz criterion or the Bayesian information 

criterion (Schwarz, 1978). The optimal orders might be different for each model. 

The ENSO index was computed as the average sea surface temperature (SST) anomalies in the Niño 3.4 area (120–170°W; 95 

5°N–5°S) in boreal winter (December–January–February, DJF). Confounding factors (i.e., the dipole mode index (DMI; Saji 

et al., 1999), the Southern Annular Mode (SAM) and the North Atlantic Oscillation (NAO; e.g., Hurrell et al., 2003)) may 

have effects on the connections between ENSO and ozone concentration. The DMI was given as the difference in boreal fall 

(September–October–November, SON) SST anomalies between two Indian Ocean regions of the western pole (50–70°E; 

10°N–10°S) and southeastern pole (90–110°E; 0°N–10°S). The SAM (Cai et al., 2011) was calculated as the first empirical 100 

orthogonal function (EOF) of the boreal summer (June–July–August, JJA) sea level pressure (SLP) anomalies for the region 

of 40–70°S. The NAO index is computed as the EOF of boreal winter (DJF) SLP anomalies in the North Atlantic area 

(90ºW-40ºE, 20º-70ºN). In this study, the confounding factors are limited to three major climate modes (i.e., DMI, SAM and 

NAO) as these modes are crucial to global climate variability on interannual time scales (Delworth et al., 2016; Hurrell et al., 

2003; Kripalani et al., 2009; Luo et al., 2012; Raphael and Holland, 2006). Furthermore, alterations in these climate modes 105 

may influence the variations of ENSO (Cai et al., 2019; Ha et al., 2017b; Le et al., 2020b; Le and Bae, 2019). 

We estimate the probability of no Granger causality by applying a test of Granger causality (Le and Bae, 2020; Mosedale et 

al., 2006; Stern and Kaufmann, 2013) for the multivariate predictive model shown in equation 1. For computing the degree 

of uncertainty, we followed recent guidance (Stocker et al., 2013) and utilized the terms ‘very unlikely’, ‘unlikely’, ‘likely’ 

for the 0–10%, 0–33%, and 66–100% probability of the likelihood of the outcome, respectively. For example, if the p-value 110 
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is less than 0.33, the result indicates that ENSO is unlikely to display no Granger causality on ozone concentration. In this 

instance, we conclude that ENSO has ‘causal effect’ on ozone concentration. 

3 Results 

Figure 1 depicts the models’ mean map of ozone concentrations at different air pressure levels for the period 1850-2014 of 

the CMIP6 historical simulations. As we will show in Figure 3, the models without the Atmospheric Chemistry module (i.e., 115 

4 models numbered 1, 10, 11 and 12 in Table 1) exhibit distinct outcomes of ENSO impacts compared to both the models’ 

mean and the remaining models. Hence, it's important to note that the models' mean is solely derived from the results 

obtained from all the models equipped with an Atmospheric Chemistry module (i.e., 8 models numbered from 2 to 9 in 

Table 1). In the middle and lower troposphere, ozone is higher in the northern hemisphere compared to the southern 

hemisphere (Figure 1). The agreement between models fluctuates at different air pressure levels. For example, in the upper 120 

troposphere (i.e., at 300 hPa pressure level), high consistency across the model is found in the mid-latitude regions, while 

this consistency is lower in the tropics and polar regions (Figure 1a). In the middle troposphere (i.e., at 500 hPa pressure 

level), the models’ agreement is mainly found in the northern hemisphere (Figure 1b). The simulations of near-surface ozone 

(i.e., at 850 hPa) are consistent over parts of the northern hemisphere (Figure 1c), while the models’ agreement is low in 

reproducing surface ozone (i.e., at 1000 hPa) for most regions (Figure 1d). The standard deviation is normally higher in the 125 

tropics and much of the southern hemisphere compared to other regions (Figure S1). 

Figure 2 displays the causal effects of ENSO on global ozone concentrations for the historical period 1850-2014. In Figure 2, 

we show that the response of ozone to ENSO may vary depending on specific air pressure level. For instance, ENSO impacts 

on ozone in the upper troposphere (i.e., at 300 hPa pressure level) can be observed over the tropics, parts of the Pacific 

Ocean, South America and North America (Figure 2a). In these areas, ENSO is unlikely to exhibit no causal influences on 130 

ozone concentrations (i.e., p-values were lower than 0.33). Further analysis (not shown) indicates that the patterns of ENSO 

impacts on ozone at 250 hPa are similar to those at 300 hPa. This implies that the response of ozone variation to ENSO 

might remain consistent across the upper troposphere, the tropopause, and the lower stratosphere. The response of ozone to 

ENSO in the middle troposphere (i.e., at 500 hPa pressure level) is found over the tropical Pacific and Atlantic Oceans 

(Figure 2b). We observe more significant impacts of ENSO on ozone in the lower troposphere compared to the upper and 135 

middle troposphere. Specifically, tropical ozone concentrations at near surface (i.e., at 850 hPa) and surface (i.e., at 1000 

hPa) levels appear to be sensitive to ENSO (Figures 2c and d). In these regions, ENSO is very unlikely to exhibit no causal 

influences on ozone concentrations (i.e., p-values were lower than 0.1). In addition, ENSO impacts on surface ozone can be 

found over part of the northern North Pacific and mid-latitude regions in the southern hemisphere (Figure 2d). While the 

signature of ENSO on ozone variations is generally weak over continents of the lower and middle troposphere (Figures 2b-140 

d), this signature is, however, stronger in the upper troposphere over North America (Figure 2a). These results imply that the 

effects of ENSO on tropospheric ozone over lands are nonsignificant for most regions. 
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Differences between CMIP6 models in replicating the influences of ENSO on surface (1000 hPa) ozone are shown in Figure 

3. Similar results for other pressure levels (300, 500, and 850 hPa) are presented in Figures S2-S4. As revealed in Figure 3, 

several models (i.e., BCC_CSM2_MR, IPSL_CM6A_LR, and MPI_ESM1_2_LR) may not reproduce the significant 145 

influences of ENSO on surface ozone over the tropical Pacific and Indian Oceans as described in Figure 2d. The models 

IPSL_CM6A_LR and MPI_ESM1_2_LR may underestimate the response of surface ozone to ENSO over the mid-latitude 

regions in the southern hemisphere compared to other models. The agreement between models for the impacts of ENSO on 

surface ozone is low over continents (Figure 2d), partly due to the discrepancy in simulating ozone variability (Figure 1d). 

While there are biases in simulating the response of surface ozone to ENSO (Figure 2d), these responses in the middle and 150 

upper troposphere appear to be more consistent across models (Figures 2a-c, S2-4). 

Springtime surface ozone is more sensitive to ENSO compared to other seasons (Figure 4). In particular, the clear response 

of springtime surface ozone over the tropics, the high-latitude north Pacific and the mid to high-latitude of the southern 

hemisphere can be observed (Figure 4a). The impacts of ENSO on surface ozone of other seasons are limited (e.g., over the 

tropical Pacific and part of southern North America, Figure 4b-d). The results for other air pressure levels (300, 500, and 850 155 

hPa) are shown in Figures S5-S7. We note that the response of springtime ozone at higher pressure levels is weaker 

compared to springtime surface ozone for most regions, except for the upper troposphere over east Asia, northern South 

America and northwestern North America (Figure S5a). Consistent with the results illustrated in Figure 2b, the impacts of 

ENSO on seasonal ozone in the middle troposphere (500 hPa) are mainly significant over the tropics and part of northern 

North Pacific (Figure S6). 160 

4 Discussion and conclusions 

The effects of ENSO on tropospheric ozone over the tropical Pacific (Figures 2-4) show agreement with previous works 

(Chandra et al., 2007; Peiro et al., 2018). ENSO causes changes in the tropospheric ozone budget over the tropical Pacific by 

modulating the Walker circulation (Chandra et al., 2007), wind systems (Cai et al., 2021; Le and Bae, 2020; Yeh et al., 

2018), and inducing biomass burning (Chandra et al., 2009; Le et al., 2022). Further, significant ENSO impacts on tropical 165 

ocean regions described in Figures 2-4 are in agreement with recent works (Olsen et al., 2016; Wespes et al., 2017) using 

satellite data.  

Despite the limited consensus among models in replicating ozone levels in the lower troposphere, and a high standard 

deviation particularly in tropical regions, (Figures 1 and S1), we observed noteworthy effects of ENSO on lower 

tropospheric ozone (Figure 2). These results exhibit a degree of independence and are not contradictory. This is because the 170 

models' mean of annual ozone is calculated over the entire 1850-2014 period, whereas the assessment of the relationship 

between the ENSO and annual ozone is conducted on a year-to-year basis. Furthermore, variations in ozone are also 

influenced by factors beyond ENSO, including other major climate modes, cyclones, and local emissions of ozone 

precursors such as nitrogen oxides (NOx), volatile organic compounds, and carbon monoxide (CO). Biases in simulating 
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these factors contribute to the inconsistencies of ozone in the models, although there is consensus in simulating the 175 

connection between ENSO and ozone. 

The significant impacts of ENSO on ozone in the upper troposphere (300 hPa) over the southern and western North America 

(Figures 2a and S5a) might be associated with the transport of ozone from east Asia (Cooper et al., 2010; Doherty, 2015; Lin 

et al., 2015). These impacts can be explained by the modulation of ENSO on springtime upper tropospheric ozone over east 

Asia (Figure S5a) and the connection between ENSO and the North Pacific Oscillation (Kug et al., 2020). However, these 180 

impacts cannot reach the surface levels (Figures 2c-d, and S7a), consistent with recent work (Lin et al., 2015). 

We note that the models without the Atmospheric Chemistry module (BCC_CSM2_MR, IPSL_CM6A_LR, 

MPI_ESM_1_2_HAM, and MPI_ESM1_2_LR; See Table 1) provide different results of ENSO impacts compared to the rest 

models (Figures 3). In these models, ozone variations are prescribed using observational data (Lurton et al., 2020; Wu et al., 

2019), and it is expected that the response of ozone variation to atmospheric circulation and ENSO is not significant. Hence, 185 

improvement of the Atmospheric Chemistry module in the models may provide further understanding of the connection 

between ENSO and ozone variations. 

The robust response of lower tropospheric ozone to ENSO is associated with ENSO-induced changes in the atmospheric 

circulation (Oman et al., 2011) and this response is particularly prominent over the tropics (Figures 2c and d). However, this 

response appears to be weaker over the middle and upper troposphere (Figures 2a and b). The weak impacts of ENSO on the 190 

mid-level tropospheric ozone (i.e., 500 hPa level, described in Figures 2b) might be due to the strong exchange between 

stratospheric ozone and middle to upper tropospheric ozone (Liu et al., 2017; Meul et al., 2018; Neu et al., 2014; Williams et 

al., 2019). The more pronounced reaction of upper tropospheric ozone to ENSO in comparison to middle tropospheric ozone 

could be attributed to the influence of ENSO on deep convective transport and the interconnected relationship between 

ENSO and the North Pacific Oscillation (Cai et al., 2019; Gaudel et al., 2020; Kug et al., 2020). 195 

Several models showed ENSO effects on tropospheric ozone over Antarctica with a low agreement between models (Figures 

2-4). These impacts might be associated with the signature of ENSO on stratospheric ozone anomalies over Antarctica (Li et 

al., 2021; Lin and Qian, 2019). 

Given that the tropospheric ozone burden and the ozone-induced impacts may increase in some regions in the future 

(Doherty et al., 2013; Franz and Zaehle, 2021; Gaudel et al., 2020; Griffiths et al., 2021; Verstraeten et al., 2015; Zanis et al., 200 

2022), further analyses of ENSO impacts on tropospheric ozone in future climate projections are necessary. In addition, as 

the tropopause may vary depending on different latitudes (Griffiths et al., 2021), it is essential to conduct further analyses 

that specifically address the impacts of ENSO on ozone concentrations across the upper troposphere, the tropopause, and the 

lower stratosphere. 
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Figure 1. Multi-model mean map of annual mean ozone concentrations (ppbv) for the historical experiment over 

the 1850-2014 period at 300 hPa (a), 500 hPa (b), 850 hPa (c) and 1000 hPa (d) pressure levels, respectively. 

Stippling indicates that at least 70% of total models show agreement on the mean ozone concentrations of all 495 

models at given grid point. The agreement of an individual model is identified when the difference between the 

selected model's ozone concentrations and the multi-model mean ozone concentrations is less than one standard 

deviation of the multi-model mean ozone concentrations. 
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Figure 2. Map of multi-model mean probability for the absence of Granger causality from ENSO to annual ozone 500 

concentrations for the historical experiment over the 1850-2014 period at 300 hPa (a), 500 hPa (b), 850 hPa (c) 

and 1000 hPa (d) pressure levels, respectively. Stippling indicates that at least 70% of total models show 

agreement on the mean probability of all models at given grid point. The agreement of an individual model is 

identified when the difference between the selected model's probability and the multi-model mean probability is 

less than one standard deviation of the multi-model mean probability. The cyan and yellow contour lines denote 505 

p-value = 0.33 and 0.1, respectively. Brown shades indicate low probability of no Granger causality. ENSO = El 

Niño–Southern Oscillation. 
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Figure 3. Probability of no Granger causality from ENSO to annual ozone concentrations at 1000 hPa pressure 

level for the historical experiment over the 1850-2014 period of 12 individual models (see Table 1). The yellow 510 

and cyan contour lines denote p-value = 0.1 and 0.33, respectively. Brown shades imply a low probability of no 

Granger causality. ENSO: El Niño–Southern Oscillation. 
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Figure 4. Multi-model mean probability map of no Granger causality from ENSO in boreal winter [D(t)JF(t+1); t 

indicates year t] to seasonal mean ozone concentrations at 1000 hPa pressure level over the period 1850-2014. (a) 515 

Spring [MAM(t+1)]. (b) Summer [JJA(t+1)]. (c) Fall [SON(t+1)]. (d) Winter [D(t+1)JF(t+2)]. Stippling 

signifies that at least 70% of total models show agreement on the mean probability of all models at a given grid 

point. The cyan contour line signifies p-value = 0.33. Brown shades imply a low probability of no Granger 

causality. ENSO: El Niño–Southern Oscillation. MAM: March- April-May. JJA: June-July-August. SON: 

September-October-November. DJF: December-January-February. 520 

 


