
Review
Global estimates of 100-year return values of daily precipitation from ensemble weather
prediction data

This paper’s goal is to determine 100 year return values of annual maximum daily
precipitation from a quasi-observational dataset (ensemble forecast) and compare these to
100-year return values from actual (semi-)observational products – both ground-based and
satellite-based. In order to do so, generalised extreme value distributions are fitted to the
annual maximum daily precipitation data (both the ensemble forecast and the observational
data, it seems) and the 99% percentile value (1/100 years) is extracted. By comparing the
results based on the large ensemble forecast and the observational data, the authors
conclude that the estimated 100-year return levels are higher almost everywhere in the
ensemble forecast data compared to observations, and the uncertainty range of the
estimates, based on non-parametric bootstrapping, is smaller for the ensemble forecast data
than for observations.

I think this study asks a relevant and useful question, and is thorough in its use of several
observational products for comparison. The general choice of methods (extreme value
theory) is appropriate for the purpose of the study. The manuscript is easy to read, albeit
sometimes a bit too heavy on the details. I think this could become a good paper, but I see
major methodical flaws that would need to be addressed first. In addition, the reproducibility
is not guaranteed with the current level of detail in the method descriptions.

Below I first expand on these two major issues, followed by a list of more specific comments
in order of appearance.

Major methodical flaws
The main, general problem is the lack of caution and thoroughness in the use of
observational data. This manifests, firstly, in the lack of contextualisation of observational
uncertainties for the data products used, and in the way statistical quantities based on very
short observational records are presented and compared to EPS-ensemble results, without
enough attention for the instrumental differences and the bias and uncertainties in
observational results. As a consequence, the results and conclusions of the authors are
likely to be misunderstood; they seem to suggest that observations show lower and more
uncertain extreme precipitation than the ensemble forecast. In fact, the observations
themselves are not what causes the difference, but the data processing and the “unfair”
comparisons made.

1. My main concern is the use of observational data. As far as I can tell from the method
description, observed 100 year return level estimates are based on the three
observational datasets with lengths of 38 up to 65 values. These datasets are so short
that a lot of caution is warranted when return periods much longer than the sample
length are assessed. It is, even with much data, notoriously difficult to get the tail of
extreme value distributions right. Furthermore, it is known that there is a systematic
low bias when return levels are estimated from small samples (for shape parameters
<0.5). This is all not taken into account enough in the generation and presentation of
results.
Furthermore, the authors compare results obtained from samples with N < 70 directly



to results obtained from samples with N > 1200, both for return levels as well as
confidence intervals. The effects of sample size on this comparison are likely to be
larger than any true systematic difference.

Lastly, as far as I can tell, confidence intervals for observational estimates are
determined using non-parametric bootstrapping as for EPS data, i.e., re-sampling
those small datasets. This produces a confidence interval, but if the original sample did
not contain enough information to reflect the true underlying GEV tail accurately, any
bootstrapped samples will not either. More importantly, comparing confidence intervals
based on samples that differ in size by a factor of 15 (EPS:obs) is not very instructive,
since the “real” differences are obscured by the differences caused by the different
sample sizes.

Just for illustration, here is a tiny R-script and the resulting plot. The script computes
the RL100s of two random GEV-distributed samples, one of size 50 and one of size
1200, using 1000 bootstrap resamples. The original 50 and 1200 samples come from
the same prescribed GEV distribution as you can see. The plot, showing RL100 values
and the bootstrapped 95% confidence intervals, reveals that the n = 50 sample shows
a smaller RL100 with a larger bootstrapped confidence interval, despite coming from
the same GEV distribution. The fact that the results in the paper also show this, can
thus not be ascribed with certainty to anything else than the fact that the sample sizes
are so different. (If the n=50 sample contains one or more very extreme values, the
result is vastly different, hence the caution needed when dealing with such small
samples.)

bigs = revd(1200, 0,1,0.1) #define random GEV-distr samples
smalls = revd(50, 0,1,0.1)

funz<-function(data){return(return.level(fevd(data), 100))} #
function to determine RL100 from bootstrapped samples

dtp = data.frame("n" = c(rep(1200,1000), rep(50,1000)),
"RL100" = c(booter(bigs, funz,

1000)$results, booter(smalls,funz,1000)$results)))

#dataframe longformat with individual resampled RL100 values as a
function of sample size n



A possible way to address these issues, might be to generate independent
subsamples of the EPS dataset of the length of the observational datasets, and use
these subsamples to determine “quasi-observational” 100-year return levels (RL100),
as well as a confidence range (the range spanned by all these subsamples). These
can be directly compared to the RL100 values obtained from the observations.
Subsequently, the EPS RL100 values based on these small subsamples, can be
compared to other resampled EPS samples of progressively increasing sample size.
In this way, the effects of the different data type/source can be separated from effects
due to sample size.

In addition, a synthetic data study could be done to quantify the margin of error and
potential bias in estimates based on small datasamples. E.g. one could generate 1000
independent samples of different lengths comparable to the observational datasets,
based on random sampling from a known GEV distribution (or several, representative
of several regions, for example). Then one could fit GEVs to these samples, and
derive return levels from these GEVs. The “empirical” return levels as a function of
sample size can be compared to the known true return level. See e.g. Zeder et al.
(2023).

Naturally, there are other ways to make a justified comparison between the EPS data
and the observational data, and to assess the sensitivities to the data properties. In



any case, the analysis should be much more careful around determining observed
RL100 with the data at hand.

In the discussion it is indeed mentioned that the main cause for the differences in
confidence interval is the sample size difference. This should get more attention earlier
in the paper. If the main point of the paper is to show that the observational record
length leads to biases, it should be restructured and backed up with more statistical
analysis so that that point comes across more clearly.

2. Also on the general use of the observational data I have some concerns. Firstly,
REGEN comes with a mask reflecting quality/trust in the interpolated values (for many
locations, there are hardly any measurements). It would be good to acknowledge this
fact, perhaps simply use the quality masked dataset, or at least show where
confidence in the REGEN data is generally low, regardless of sample size. Also,
REGEN provides Rx1d values (annual precipitation max) (e.g. on https://climdex.org),
computed in a way that tries to best reflect actual annual maximum precipitation. I’d
recommend using this product directly, instead of computing it from daily values.

3. Lastly, if CHIRPS and PERSIANN do not provide Rx1d products, they have to be
calculated of course. In this procedure, the order of operations matters. As far as I can
tell, the authors first regrid the data, after which they determine the annual maxima.
This results in significantly lower values than the reverse order of operations due to
spatial smoothing of extreme values. The preferred order of operations is this: first
extraction of Rx1d, and then (conservative!) regridding. This order of operations
conserves the intensity better. Given that the absolute magnitude of Rx1d return levels
is central in the analysis, these details affect the results.

Major content flaws
4. Essential information from the methods is missing, especially on the way observations

are processed to obtain 100 year return levels and confidence intervals. I assumed the
same way as the EPS data, but this is not clearly stated.

Minor comments
General
1. Might it make sense to focus on precipitation over land? Two of the observational

datasets have land coverage only anyway, and the ocean signal is so strong that it
obscures the patterns over land due to the colourbar scaling being adjusted to the
ocean mainly.

2. Some references are not properly displayed, e.g. “Organization, 2009”.

Specific
L6-10: In light of my general comments above, these conclusions might need revision.

L99-100: I would think that another reason to not use all 10 days of the forecast, even if the
members were uncorrelated, is that you would have the same day in the ensemble
multiple times, because there’d be overlap between forecasts made on day n and
day n+1, which would introduce more dependence between individual values.

https://climdex.org


L127-128: “regridded”/”interpolation scheme MIR”: more information is needed here. Is 1 by
1 degree the lowest resolution found in the original data? Is all data “upscaled” to
lower resolution, or is some downscaled? What is MIR? What kind of interpolation
scheme does it use (bilinear, conservative etc.)?

Sect. 2.2.1: as mentioned above, the data quality/confidence in REGEN is low for a large
part of the global land, it would be good to mention and show this. I’d even
recommend using the quality masked dataset.

L156: “interpolated”: how, which scheme/method? Also, see major comment 3 on order of
operations.

L167: “interpolated”: see previous comment

L169: “set to 0”: this is not necessary and does not introduce problems if the annual
maximum is used only. See comment below for L211

Sections 2.2.1-.2.2.3: It would be useful if, for each of the 3 obs datasets, the details were
summarised, such as the length and coverage (land only, <60N/S only etc) of the
record.

Section 3: Major comment 4: the methods for return value and confidence interval
determination from observational data is missing.

L191-194: suggest to remove: the results for the river catchments do not matter here.

L208-211: Also here it is not necessary to report on what Ruff & Pfahl found in their previous
study.

L211: “50th and 90th percentiles”. I wonder why this is done in this way, given that the
analysis is about 100 year return levels of annual maximum precipitation, I do not
think that the 50th and 90th percentile of daily precipitation really matter much. If
there is good agreement at medium low percentiles, that does not guarantee that
there is good agreement for the >99th percentile (where the annual max is location)
as well. I would suggest assessing agreement in the distributions of Rx1d (the
median and some measure of spread of the Rx1d distribution, for example).

L239: “for the observational datasets”: it is not clear to me how the trend is computed -
Supplementary Fig. 2 suggests it is also the 99.9th percentile trend. Does that mean
the 99.9th percentile is determined for each year based on the 365 daily precipitation
values? Might it make more sense to simply assess the presence of a trend in the
timeseries of annual maxima for both EPS and observational data?

L256-257: “sufficient for the Fisher-Tippett theorem” I am not sure what is meant here. The
number of blocks does not determine whether the data is GEV-distributed. It needs to
be i.i.d. and max stable (and a large enough dataset to contain enough information).



We already know the data are more or less i.i.d. based on the correlation study, but
testing max stability (e.g. qq plots) would be good.

L258: “estimating the location, scale and shape parameters”: which method is used to
estimate these?

L277-279: Perhaps L-moments (assuming MLE was used in the initial GEV fits) provides
more robust results with less excessive parameters. For stationary GEVs, L-moments
is generally the better way, see e.g. Hosking (1990).

Results section: using mm/day instead of mm would be more specific.

L285-292: This is a matter of taste perhaps, but I find the lengthy listing of absolute RL100
values not very useful. This also holds for lines L300-305, (partly) L326-355 (all the
specific values can be seen in the figure, the text should contain interpretation rather
than listing the values), L 370-381.

L293-298: In and of itself this section seems a bit lost. However, in L328, the authors
mention “no clear pattern” in the relative CI-magnitudes, but there is: it is exactly the
pattern in Fig. 5. This makes sense: where the spread is very large, and the tail long
and thin, it is very difficult to estimate the tail percentiles. I would nonetheless suggest
moving Fig. 5 to an appendix, and referring to that in L328.

L299-319: See major comment 1.

Fig. 4: The stippling is a bit too tight, so it becomes more like a gray haze.

L321-355: See major comment 1.

L337: What is p.p.?

Fig 7: I think the relative CI is the relevant quantity (Fig 6). Suggest to remove or move Fig 7
to appendix.

L364-365: It would be good to expand a bit on how the non-independence of the data in the
tropical oceans and maritime continent might have affected the results.

L397: “substantially reduced in the EPS data”: see major comment 1.
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