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Abstract.

Winter windstorms are among the most significant natural hazards in Europe linked to fatalities and substantial economic

damages. However, projections of windstorm impact in Europe under climate change are highly uncertain. This study combines

climate projections from 30 general circulation models participating in CMIP6 with the climate-risk assessment model CLI-

MADA to obtain projections of windstorm-induced damages over Europe in a changing climate. We conduct an uncertainty-5

sensitivity analysis, and find large uncertainties in the projected changes in the damages, with climate model uncertainty being

the dominant factor of uncertainty in the projections. We investigate spatial patterns of the climate change-induced changes

in windstorm damages and find an increase in the damages in northwestern and northern-central Europe, and a decrease over

the rest of Europe, in agreement with an eastward extension of the North Atlantic storm track into Europe. We combine all

30 available climate models in an ensemble of opportunity approach and find evidence for an intensification of future-climate10

windstorm damages, with damages with return periods of 100 years under current climate conditions becoming damages with

return periods of 28 years under future SSP585 climate scenarios. Our findings demonstrate the importance of climate model

uncertainty for the CMIP6 projections of windstorms in Europe, and emphasize the increasing need for risk mitigation due to

extreme weather in the future.

1 Introduction15

Extratropical cyclones (ETCs) can cause intense windstorms in winter (hereafter referred to as winter storms), and are among

the most significant natural hazards in Europe in terms of fatalities and damages to physical assets (Schwierz et al., 2010).

Understanding future changes in winter storm risk is thus key for risk assessment and damage mitigation in Europe.

Both the main regions of extratropical cyclonic activity (known as the storm tracks) and the characteristics of individual

ETCs are expected to change as climate changes (Shaw et al., 2016; Catto et al., 2019). Many studies suggest an eastward ex-20

tension of the North Atlantic storm track further into Europe, potentially increasing the risk of winter storms and their regional

impacts (Zappa et al., 2013; Zappa and Shepherd, 2017; Oudar et al., 2020; Harvey et al., 2020; Priestley and Catto, 2022).
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However, changes in the North Atlantic storm track are highly uncertain, as climate models feature biases in both the location

and the dynamical intensity of the storm tracks (Lee et al., 2021). For instance, General Circulation Models (GCMs) participat-

ing in the Coupled Model Intercomparison Project (CMIP) are associated with a winter storm track extending too zonally into25

Europe (Harvey et al., 2020; Priestley et al., 2020), and tend to underestimate the intensity of the most intense ETCs (Seiler

and Zwiers, 2016; Priestley et al., 2020). In addition, the level of global warming will likely be an important factor of uncer-

tainty, with emission scenarios corresponding to higher radiative forcings potentially further increasing both the number and the

intensity of ETCs associated with strong wind speeds over northwestern Europe (Zappa et al., 2013; Priestley and Catto, 2022).

30

Modelling the impacts of winter storms and their strong winds can be achieved by incorporating surface wind projections

from climate models into climate-risk models, thus using the risk framework to derive estimates of natural hazard-related

impacts on natural or socio-economic systems. In the risk framework, risk from a natural hazard can be modelled as the con-

volution between three components: the hazard, the exposure, and the vulnerability (IPCC, 2014). The hazard describes the

distribution of the intensity of a certain hazard in space and time (e.g. wind gust intensities, flooding heights), the exposure35

describes the distribution of assets at risk in space and time (e.g. population, infrastructure, crops, ecosystems), and the vul-

nerability makes the link between hazard and exposure, by describing the effect of the hazard on the exposed value in terms of

the assessed impact. Most often, the complex hazard-exposure-impact relation of the vulnerability component is approximated

with simpler functional relationships, called vulnerability curves, or impact functions.

By incorporating the three components of risk, climate-risk models can jointly assess changes in exposure and vulnerability40

and changes in the climate system, thus allowing to produce comprehensive estimates of climate impacts. These estimates of

climate impacts are extremely valuable for the mitigation and management of changing climate risks, and can greatly help to

improve the resilience of our societies or of the natural environment to climate change.

Considerable uncertainties are involved in the modelling of the hazard, exposure and vulnerability, which in turn can con-45

tribute to render risk projections highly uncertain. Understanding and quantifying those uncertainties, and their influence on the

outcome of the risk projection is crucial for risk assessment studies. Uncertainty and sensitivity analyses are a commonly used

method to study and model uncertainties associated with the use of complex models such as climate-risk models (Saltelli et al.,

2008; Pianosi et al., 2016; Kropf et al., 2022). Uncertainty and sensitivity analyses rely on the generation of many replications

of a model’s output, where the replications are obtained by varying some of the model’s input factors which are considered50

as uncertain. The term input factors here refers to any of the model’s components (e.g. parameters, data) which can drive a

variation in any of the model’s outputs, while the term outputs refers to any numerical results produced by the model (Saltelli

et al., 2008, 2019). Uncertainty analysis can then be understood as the study of the distribution of the generated model outputs,

and sensitivity analysis as the study of the links between the model’s uncertain input factors and the generated model outputs.

Uncertainty and sensitivity analyses can thus provide insights into which of the model’s input factors contribute most to the55

uncertainty in model output, and help in understanding the model’s input-output relationships.
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Many recent studies have focused on impacts of extratropical winter windstorms in Europe under past (e.g. Della-Marta

et al., 2010; Donat et al., 2010b; Haylock, 2011; Priestley et al., 2018; Vautard et al., 2019; Walz and Leckebusch, 2019; Koks

and Haer, 2020; Welker et al., 2021; Röösli et al., 2021; Wilkinson et al., 2022) or future (e.g. Leckebusch et al., 2007; Heneka60

et al., 2007; Pinto et al., 2007; Schwierz et al., 2010; Donat et al., 2011; Pinto et al., 2012; Ranson et al., 2014; Karremann

et al., 2014; Hochman et al., 2022; Little et al., 2023) climate conditions. For instance, Pinto et al. (2007) assessed future

European winter storm damages considering multiple realizations of a single climate model with varying initial conditions

and boundary forcing scenarios, and Leckebusch et al. (2007) and Donat et al. (2011) assessed future European winter storm

damages considering different climate models. However, only a limited number of studies made use of the most recent pro-65

jections from climate models participating in phase six of the Coupled Model Intercomparison Project (CMIP6; Eyring et al.,

2016) to assess winter storm related wind damages in Europe. Notably, Little et al. (2023) used an ensemble of eight climate

models participating in CMIP6 to conduct a multi-model and multi-scenario assessment of winter storm risk over Europe.

Furthermore, a few uncertainty and sensitivity analyses focusing on winter storm damage risk modelling under current climate

have been published (e.g. Koks and Haer, 2020; Röösli et al., 2021), but a comprehensive estimate of the importance of the70

different uncertainties involved in the modelling of winter storm damage in Europe under future climate is still lacking.

This study combines state-of-the-art climatic projections from 30 global climate models participating in CMIP6 with the

open-source weather and climate risk assessment model CLIMADA to obtain a set of relevant projections for winter-storm-

induced wind damages to physical assets over Europe in a changing climate. CLIMADA’s uncertainty-sensitivity quantification75

module unsequa (Kropf et al., 2022) is used to quantify the importance of five different sources of uncertainty in the projec-

tions: Climate model, internal climate variability, future climate scenario, exposure, and impact function uncertainty.

This paper is structured as follows: Sect. 2 introduces hazard, exposure, and vulnerability data, and presents the damage and

uncertainty modelling approaches; Sect. 3 presents the results of both the uncertainty and sensitivity quantification, and the80

winter storm damage projections; Sect. 4 summarizes, discusses the results, and concludes.

2 Data and methods

This study uses the open-source weather and climate risk modelling platform CLIMADA (Aznar-Siguan and Bresch, 2019) to

estimate windstorm damages associated with European winter storms in a changing climate. The term damage here represents

the economic losses resulting from the impact of intense surface wind gusts on physical assets. CLIMADA is based on the risk85

framework as defined by the IPCC (IPCC, 2014) that incorporates the three components hazard, exposure, and vulnerability to

compute impact and risk metrics in a fully probabilistic and geographically explicit manner. Additionally, CLIMADA features

an uncertainty and sensitivity quantification module (unsequa; Kropf et al., 2022), which is used in this study to assess the key

uncertainties associated with the modelling of the damages. We study the impact of climate change on winter storm damage

over Europe, by combining hazard data modelled for a domain comprised within latitudes 30° to 75°N and longitudes 30°W90
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to 30°E with exposure data for 44 European countries. To better explore the spatial patterns of the damages, specific countries

are grouped into seven sub-regions shown in Fig. 2, the British Isles (BI), the Iberian Peninsula (IP), Western Europe (WEU),

Central Europe (CEU), the Mediterranean and Balkan region (MED), Scandinavia (SC), and Eastern Europe (EEU). The

seven sub-regions are defined following their climate and their exposure to winter storm hazards, following Christensen and

Christensen (2007). Damages are investigated on a daily basis, for the winter half-year only (October-November-December-95

January-February-March). Climate change effects are studied by comparing damages computed for a future (2070-2100) versus

a historical (1980-2010) period while keeping exposure and vulnerability invariant in time. We present our results as the differ-

ence between the damages computed for the future and the damages computed for the historical reference period, divided by

the damages computed for the historical reference period. We call this approach Delta Climate, as it informs on the change in

winter storm damage associated with changing climate conditions but disregarding future changes in exposure and vulnerabil-100

ity. GCMs participating in CMIP6 are used to represent past and future climates and their surface winds as described in Sect.

2.1. Exposure and vulnerability data are described in Sect. 2.2 and 2.3. Section 2.4 describes the different damage and risk

metrics used in this study, and Sect. 2.5 briefly details the methods and results of the model’s calibration and validation proce-

dures. Finally, Sect. 2.6 introduces the unsequa module and explains the uncertainty and sensitivity quantification framework.

See Fig. 1 for a visual summary of the study framework.105

2.1 CMIP6 windstorm hazard data

We use daily surface wind maximum (sfcWindmax) outputs from 30 GCMs participating in CMIP6 to represent winter storm

hazards. Model data is kept on the original model grids, as provided by the modelling centers. We select the GCMs on the

criterion that a GCM provides at least one simulation for the historical period and one simulation for the future period, obtained

using the forcing dataset from the Shared Socio-economic Pathway 5-8.5 (hereafter SSP585; for a detailed description of the110

shared socio-economic pathways and CMIP6 scenarioMIP experiments, see O’Neill et al., 2016). We choose the high-emission

SSP585 scenario as we expect it to correspond to a high-impact scenario (Zappa et al., 2013). For each GCM, a maximum of

three ensemble members is considered. One ensemble member of the historical and one ensemble member of the SSP585

simulations from the GCM NESM3 were discarded from the analysis due to a strong negative bias in the surface wind speeds

of the historical member, which resulted in a strong positive bias in future-minus-historical change in surface wind maxima.115

Table A1 summarizes the climate models and climate model members used for the damage projections of this study. Model

members representing the same GCM-SSP combination are assembled into one single simulation in order to decrease the

effects of internal variability. Thus, for each of the study periods (historical or future), we obtain hazard data with a duration

of 30, 60, or 90 years, for climate models with respectively one, two, or three ensemble members. First, we consider each

climate model separately to compute the damage projections (Sect. 3.2). Considering the climate models separately allows us120

to investigate the climate model uncertainty in the projections. As a second step, we combine the different climate models, in an

ensemble of opportunity approach (Tebaldi and Knutti, 2007), where all models are considered to be equally valid realizations

of the climate and combined without prior weighting (Sect. 3.3). This ensemble of opportunity approach allows us to consider

simulations representing 400 winter seasons, which can be used to estimate damage events with considerably longer return
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Figure 1. Schematic describing the modelling process. Thirty General Circulation Models (GCMs) participating in phase six of the Coupled

Model Intercomparison Project (CMIP6) and featuring one to three ensemble members are used to represent the winter climate from a

historical (1980-2010), and a future (2070-2100) period, resulting in 67 members x 30 years x 6 months = 12060 months of winter climate

for each period. The historical climates are obtained from CMIP6’s historical experiments and the future climates from the Shared Socio-

economic Pathway 5-8.5 (SSP585) experiments. Daily surface wind maximum outputs from each GCM are bias-corrected using a percentile

mapping approach, and storm days are detected from the pre-processed daily surface wind maximum fields from those 2 x 12060 months of

winter climate. The storm days derived from the GCMs, exposure data from the Litpop dataset, and a storm damage impact function taken

from Schwierz et al. (2010) are then incorporated as the weather hazard, exposure, and vulnerability data into the weather and climate risk

assessment model CLIMADA, which then produces damages and risk metrics, such as damage maps, or Exceedance-Frequency-Curves. We

use those damage and risk metrics to obtain Delta Climate estimates, where Delta Climate refers to the future-minus-historical change in the

metric relative to the historical period. As a second step, CLIMADA’s uncertainty and sensitivity quantification module (unsequa) is used to

study the uncertainty and sensitivity related to the hazard, exposure, and vulnerability components in the damage projections. To this end, we

generate additional hazard data from 14 GCMs featuring three realizations for each of the historical, SSP126, SSP245, SSP370, and SSP585

experiments from CMIP6; eight additional exposure data layers using different parameterizations of LitPop; and an additional storm damage

impact function taken from Klawa and Ulbrich (2003). This additional hazard, exposure, and vulnerability data is then used by CLIMADA’s

unsequa module to quantify the uncertainty in several damage and risk metrics, including the Average Annual Damage (AAD), and damage

amounts with return periods, of one, 15, and 30 years (rp1, rp15, rp30), and to assess the sensitivity of those damage and risk metrics to

different components of the modelling framework, including modid: climate model choice; memid: climate model member choice; scenid:

future climate scenario choice; and impfid: impact function choice.

periods.125

We use a percentile mapping technique originally designed in Rajczak et al. (2016) and adapted by Lüthi et al. (2022) to

bias-correct the GCMs’ daily sfcWindmax outputs. ERA5 10m wind gust maxima (WG10) are used as reference for the bias

correction. Hourly WG10 data are first resampled to a daily resolution and then linearly interpolated to each CMIP6 GCM’s
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Figure 2. Map of the seven sub-regions used for regional winter storm damage assessment: the British Isles (BI; United Kingdom, Ireland),

the Iberian Peninsula (IP; Spain, Portugal, Andorra), Western Europe (WEU; France, Monaco, Kingdom of the Netherlands, Luxembourg,

Belgium), Central Europe (CEU; Switzerland, Germany, Liechtenstein, Czech Republic, Austria), the Mediterranean and Balkan region

(MED; Italy, Albania, Bosnia and Herzegovina, Croatia, Montenegro, Malta, Greece, San Marino, Vatican City State, Slovenia, Macedonia,

Bulgaria, Serbia), Scandinavia (SC; Denmark, Sweden, Finland, Norway, Estonia, Latvia, Lithuania), and Eastern Europe (EEU; Belarus,

Hungary, Poland, Romania, Slovakia, Ukraine, Republic of Moldova). Physical asset exposure is modelled for each of the listed countries

using the LitPop dataset (Sect. 2.2).

grid. A bias-correction is then carried out for each climate model’s grid-cell, using one single correction function per GCM,

so that inter-member variability is preserved. For each climate model, the correction function is computed as the average130

correction function taken over the different ensemble members of the climate model.

We detect stormy days associated with European winter storms from the bias-corrected daily GCM data by applying a simple

selection procedure, based on local wind statistics. A storm event is defined as a day for which stormy conditions are locally

detected over a part of the domain. First, a grid-cell of a GCM’s grid is considered as stormy if the daily intensity of the

sfcWindmax is in excess of its local 98th percentile value, computed over the winter half-years of the historical simulation of135

the model. The choice of the 98th percentile value as a threshold has been widely used for winter storm damage assessment

studies (e.g., Klawa and Ulbrich, 2003; Pinto et al., 2007; Schwierz et al., 2010; Donat et al., 2010a, 2011), and is based on the

assumption that storms and associated damages only occur during the two percent windiest days of the winter half-year (Klawa

and Ulbrich, 2003). This modelling approach does not assume any temporal adaptation to future changes in the wind climate,

as the local wind speeds thresholds are constant in time and representative of the historical wind conditions only. We also140

ensure that the selected daily wind fields correspond to wind intensities that are sufficiently intense to produce actual damages

by further requiring the daily wind intensities to be greater than a value of 15 m · s−1 to be considered as stormy (Schwierz
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et al., 2010). Only grid-cells that fulfill both conditions are considered for the subsequent damage calculations. Secondly, the

total area of the stormy grid-cells on a particular day must amount to a minimum threshold Amin for the day to be considered

as stormy. Stormy grid-cells do not have to be contiguous to be included in the total stormy area required for a storm day.145

Hence, different wind features at separate geographical locations can be combined to evaluate whether or not the storm area

exceeds the minimum threshold to count as a storm day in Europe. A value of 150000 km2 is chosen for Amin, which is

representative of the typical area of the wind footprint of an extratropical storm (Kruschke, 2014). Days that do not fulfill this

minimum area requirement are not considered in the analysis, thus noise and small-scale events unrelated to European winter

storms are filtered out. In summary, a stormy day is defined as:150

Stormy dayt ⇐⇒
∑
i

{ai|[(vi,t ≥ vi,98) & (vi,t ≥ 15)]} ≥Amin (1)

where ai is the area of the grid cell i, vi,t is the daily sfcWindmax intensity at grid cell i on the considered day t, vi,98 is the

98th percentile of the daily sfcWindmax at grid cell i, computed over the winter periods of the historical period, and Amin is

the area threshold parameter.

2.2 LitPop exposure data155

We use the LitPop dataset to represent exposure (Eberenz et al., 2020). LitPop provides geographical distribution of physical

asset exposure, by spatially disaggregating country-specific macroeconomic indicators (e.g. produced capital, gross domestic

product) using nightlight intensity and population count data. For this study we choose produced capital as the macroeconomic

indicator, which we distribute in space at a resolution of 600 arcseconds and using the base parameterization of LitPop, which

gives equal weight to the nightlight and population disaggregation layers. We assume no future change in population and160

economy, and thus keep the exposed values and their geographical distribution constant in time. Keeping a time-invariant

exposure baseline allows us to focus on the climate change impacts on the risk outcomes and is a common approach taken in

the field of natural hazard risk modelling (e.g. Leckebusch et al., 2007; Pinto et al., 2007; Schwierz et al., 2010; Donat et al.,

2011; Pinto et al., 2012; Karremann et al., 2014; Meiler et al., 2023; Rana et al., 2022; Stalhandske et al., 2022). However, the

assumption of a constant exposure over time yields an incomplete view of the future risk associated with storm damage, as165

exposure is expected to undergo considerable change over time, due to economic and societal development (IPCC, 2014). For

a more complete view of future risk, changes in exposure over time should be accounted for (see e.g. Cremen et al., 2022).

2.3 Vulnerability

CLIMADA uses impact functions to represent vulnerability. Those impact functions link input wind gusts intensity to a mean

damage degree (MDD), representing the percentage of the exposure asset value damaged at the given wind intensity. Thus,170

each daily hazard value at each of the hazard data grid-cells is converted into a MDD, which CLIMADA then combines to

the LitPop exposure data to compute damages at the exposure level. As a first step, we derive projections of winter windstorm

damage under historical and future climate conditions using one impact function, which has been designed in Schwierz et al.

(2010, hereafter Sw2010), and which is already implemented in CLIMADA. This function has been directly derived from
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an insurer’s loss model and is based on past claim data in the United Kingdom and was cross-validated with other European175

countries.

As a second step, we test the sensitivity of our results by considering a different impact function, which uses wind speed values

above a threshold instead of absolute wind intensity. This excess-over-threshold impact function (hereafter CubEOT) relies on

the assumption that damages only occur when wind is in excess of a local threshold, computed at the grid-cell level, and that

the damages are proportional to the cube of the excess-over-threshold intensity. This cubic excess-over-threshold relation has180

first been derived by Klawa and Ulbrich (2003), and then further used in a number of studies modelling winter storm damage

in Europe (e.g., Pinto et al., 2007; Leckebusch et al., 2007; Donat et al., 2010b, 2011; Pinto et al., 2012). Consistent with our

event definition, we use as a local threshold value the 98th percentile of the daily surface wind maximum computed over the

historical period. We also give an upper limit to the damages potentially achievable, by assuming a constant MDD when wind

intensities are more than double their 98th percentile value. The function CubEOT is defined as:185

MDDi,t =


MDDmax if vi,t > 2 · v98,i

MDDmax ·
(

vi,t

v98,i
− 1

)3

if 2 · v98,i ≥ vi,t ≥ v98,i

0 otherwise

(2)

where MDDi,t is the MDD computed for the day t and model grid cell i, MDDmax is a constant corresponding to the

maximum MDD achievable and determined during calibration, vi,t is the daily sfcWindmax for day t at model grid cell i, and

v98,i is the 98th percentile of the sfcWindmax variable at model grid cell i, computed over the winter periods of the historical

period. The Sw2010 and CubEOT impact functions are shown in Fig. 3.190

We apply the impact functions to our entire study domain, without calibrating the functions for specific regions or specific

asset types (e.g. residential, industrial), due to limited availability of calibration data. Calibrating the impact functions at a

regional, or country-specific level, or deriving impact functions for different asset types requires long records of historical loss

data, at a fine spatial resolution and for different asset types. Such data was not publicly available at the time of this study.

Considering European-wide damage functions for all asset types can indeed contribute to less realistic damage estimates in195

absolute terms when investigating the damages at a regional or country-specific level. However, this study investigates the

relative changes in the damages comparing future to historical climate conditions, hence we expect inter-regional differences

in vulnerability to partly cancel out when normalizing with the historical-climate baseline. Furthermore, this approach allows

a better comparison of the damages between the different regions, and is also commonly used in other similar studies (e.g.

Schwierz et al., 2010; Donat et al., 2011; Pinto et al., 2012; Meiler et al., 2023). We also assume a vulnerability to wind200

damage constant in time, consistently with other studies (e.g. Schwierz et al., 2010; Pinto et al., 2012; Meiler et al., 2023).

Hence, vulnerability is modelled according to the historical baseline, and we do not project changes of vulnerability in time.

As in the case of exposure, our assumption of constant vulnerability in time should be borne in mind when investigating results

of our risk projections.

8



Figure 3. The two impact functions considered in this study. Panel (a) shows the empirical curve based on recorded winter storm losses from

a reinsurance company from Schwierz et al. (2010); Panel (b) shows the Cubic excess-over-threshold from Klawa and Ulbrich (2003). For

the two curves, the red bands indicate the calibration uncertainty accounted for in the uncertainty and sensitivity analysis (see Sect. 2.6).

2.4 Damage and risk metrics205

We use primarily the following damage and risk metrics to present our damage projections:

1. Average Annual Damage (AAD): The average annual damage represents the sum of all the damages occurring during

a period, divided by the number of years in this period. The average annual damage is a relevant risk metric for the

insurance industry, as it informs on the damages accumulated over a certain period.

2. Exceedance Frequency Curves (EFCs): Exceedance frequency curves allow us to visualize the distribution of the dam-210

ages in the frequency-intensity domain. Considering a damage event set covering a period of N years, we can order the

damage events by intensity, and assign to each damage event an exceedance frequency. For instance, the intensity of the

most intense damage event being reached or exceeded only once over the whole period covered by the dataset, receives

an exceedance frequency of 1
N , and the intensity of the second most intense damage event reached or exceeded twice,

receives an exceedance frequency of 2
N , etc. Alternatively, one can consider the Return Period (RP) of an event, which215

is the inverse of the exceedance frequency, and corresponds to the time interval during which a certain event intensity

is expected to not be exceeded. It has to be noted that the intensity of an event with a certain return period is based on

fewer events as the return periods considered increase, thus increasing the sampling uncertainty of the statistic (Welker

et al., 2021). For instance, the intensity of an event with a return period of 30 years will be based on one event only for a

30-years-long dataset, and the intensity of a 15 years return period event will be based on two events.220

This study investigates the changes in damages in both the spatial, and frequency-intensity dimension. Changes in the damages

in the spatial dimension are investigated using spatial maps of the change in the average annual damage, and by examining
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the multi-model distribution of the changes in average annual damage, and damage amounts with return periods of one and

15 years, aggregated to a regional level. Future changes in the average annual damage, and damages for return periods of one

and 15 years are presented in the form of a future-minus-historical change relative to the historical reference period. As only225

changes in the climate conditions are considered in this study and future changes in exposure and vulnerability are neglected,

we refer to the future-minus-historical change relative to the historical reference period as Delta Climate. For the computation

of the spatial maps resolved at the exposure level, a constant value of one is added to the historical damages, to avoid dividing

by zero in regions where no damages are modelled during the historical period. We investigate frequency-intensity changes of

the damages in a changing climate by comparing exceedance frequency curves of the damages aggregated to the entire study230

domain obtained for the future and historical climate conditions.

2.5 Model calibration and validation

We use WG10 from the ERA5 reanalysis regridded at 1° × 1° resolution as hazard data to compute damages over a control

period. We then compare the modelled damages to recorded damages retrieved from the EM-DAT database (Guha-Sapir, 2021).

The damages recorded in the EM-DAT database only cover a period spanning from 1998 to 2020, and we thus use the 12 years235

which overlap with our historical period of 1980 to 2010 as a control period. We first ensured that the AADs computed

using each impact function over the control period reproduce to a reasonable order of magnitude the AAD computed with

the recorded damages of EM-DAT. The Sw2010 impact function yielded realistic damage estimates but the CubEOT impact

function required calibration, as it yields damage estimates that are higher by about two orders of magnitude in comparison to

the AAD of EM-DAT. We thus recalibrated the CubEOT impact function by rescaling its MDD scale by a multiplicative factor240

MDDmax, computed as the ratio of the AAD from EM-DAT over the ADD obtained with the uncalibrated CubEOT function

during the control period:

MDDmax =
AADEM -DAT

AADERA5,control
(3)

Next, we controlled that both impact functions are able to produce realistic damage estimates for the ten storm events present

in the EM-DAT dataset (Anatol, Calvann, Cilly, Desiree, Fanny, Emma, Erwin, Jeanett, Klaus, Kyrill, Lothar, Martin; Cilly,245

Desiree, and Fanny are registered as a single storm event in the EM-DAT database). For all storm events, our modelling

framework underestimates the damages, resulting in a mean absolute percentage error of 78% and 66% for the Sw2010 and

CubEOT impact functions respectively. However, we consider those errors as acceptable in the scope of this study, and validate

our modelling framework, as it is able to produce sufficiently realistic damage estimates for major European winter storm

events.250

2.6 Uncertainty and sensitivity quantification

The uncertainty and sensitivity analysis carried out in this study is done entirely with CLIMADA’s unsequa module and follows

the essential steps described in Kropf et al. (2022). We first define input variables and input parameters that represent relevant

factors of uncertainty in the modelling of winter storm damage over Europe in a changing climate. Those factors of uncertainty
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relate to uncertainties in the modelling of the hazard, exposure, and vulnerability. We assess the uncertainty in the hazard data255

by varying the GCMs and SSPs used to generate the storm days. In addition, we assess the effect of internal variability on

the hazard by considering different model members for each GCM-SSP combination. We thus select 14 GCMs that provide

at least three model members for the five experiments: historical, SSP126, SSP245, SSP370, and SSP585. See Tab. A2 for a

list of the climate models used for the uncertainty and sensitivity analysis. The choice of the climate model, future climate

scenario, and model members are reflected by the modid, scenid, and memid uncertainty parameters. Each parameter is an260

integer index corresponding to a unique climate model, future climate scenario, or model member, and is drawn uniformly over

the possible set of values for each uncertainty factor: modid ∈ (0,1,2, ...,13), scenid ∈ (0,1,2,3), and memid ∈ (0,1,2). We

choose uniform distributions as we assume each of the possible parameter values to have equal probability. Uncertainty in the

modelling of the exposure is accounted for by varying the m and n exponents of the LitPop exposure data, which respectively

govern the weight given to the population count and nightlight intensity data layers used for the spatial disaggregation. Varying265

the m and n exponents allows us to simulate uncertainty in the geographical distribution of the physical assets, with higher

values of n emphasizing highly populated areas, and lower values of n less densely populated areas (Kropf et al., 2022).

According to Eberenz et al. (2020), m= 1, and n= 1 is the best performing parameterization for total value distribution in

space. Hence, taking this parameterization as a basis, we generate eight additional exposure datasets combining values of m

and n taken from a list: m,n ∈ (0.75,1,1.25), assuming variations of ±25% in the m and n parameters to lead to reasonable270

variations in the generated exposure dataset. The parameter fexp represents the choice of the exposure dataset, and is uniformly

drawn over nine index values: fexp ∈ (0,1,2, ...,8), assuming all generated exposure layer to be equally plausible. We quantify

the uncertainty associated with the functional form of the impact function by using two different impact functions to model

the damages: the Sw2010 and the CubEOT impact functions (c.f., Fig. 3). Each curve represents a commonly-used approach

in the field of winter windstorm damage modelling, the former representing a more empirically risk-data driven modelling275

of the vulnerability, and the latter being more statistically motivated. The parameter impfid represents the choice of the

impact function and is drawn uniformly over the two possible index values impfid ∈ (0,1), as we consider both functions

to be equally valid choices. Important uncertainties can also arise as a result of the calibration of an impact function. We

estimate those uncertainties by perturbing the input-intensity and output-MDD scales of the impact functions with two separate

multiplicative factors xscale and yscale, which we draw separately from a uniform distribution xscale, yscale ∈ [0.80,1.20]. We280

choose boundaries for the uncertainty parameters of 0.80 and 1.20 as we estimate an error of ±20% to be a reasonable estimate

of the error occurring in the modelling of European winter storms damages (Prahl et al., 2012). Note that we do include

uncertainty in the vulnerability (two different functional forms) and the exposures (9 different urban distributions). However,

we do not include uncertainty in the exposures and vulnerability projections as we do neither include changes in the exposures

nor the vulnerability for future scenarios.285

We select the variance-based Sobol´ sensitivity indices as sensitivity metrics (Sobol, 2001). Using the quasi Monte Carlo

sampling scheme and the computation methodology described in Saltelli et al. (2010), we generate 32768 samples and compute

first order (S1), and total order (ST) Sobol´ sensitivity indices for several damage and risk metrics. First order Sobol´ sensitivity

indices represent the direct contribution of a model’s uncertainty factors to the model output variance. Total order Sobol´
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Figure 4. First order Sobol′ sensitivity indices (S1) for the future-minus-historical change relative to the historical period (Delta Climate)

in winter storm damage in Europe, comparing a future (2070-2100) to a historical period (1980-2010). Panel (a) shows results for the

Delta Climate in average annual damage (AAD), and in damage amounts with return periods of one, 15, and 30 years (rp1, rp15, and

rp30), aggregated over all exposure points of the entire European domain; Panel (b) shows results for the Delta Climate in average annual

damage (AAD), and in damage amount with a return periods of 15 years (rp15), aggregated over all exposure points in each of the seven

regions defined in Fig. 2: British Isles (BI), Iberian Peninsula (IP), Western Europe (WEU), Central Europe (CEU), Mediterranean and

Balkan region (MED), Scandinavia (SC), and Eastern Europe (EEU). The uncertainty factors (cf. sec. 2.6) are modid: climate model choice,

memid: climate model member choice, scenid: future climate scenario choice, and impfid: impact function choice. The vertical black bars

in (a) and (b) indicate the 95th percentile confidence intervals.

sensitivity indices represent the sensitivity to a factor including all its higher order interactions with the other uncertainty290

factors.

3 Results

We first conduct an uncertainty and sensitivity analysis to determine the dominant factors of uncertainty in the projection of

winter windstorm damage in a changing climate. Secondly, we present the Delta Climate in winter windstorm damage, using

the findings of the uncertainty and sensitivity analysis to restrict the analysis to the components of the projection ensemble295

which are the most relevant for the uncertainty in the projections.

3.1 Sensitivity analysis

We conduct a sensitivity analysis using Sobol´ sensitivity indices to determine the most relevant uncertainty factors for pro-

jections of the Delta Climate in winter storm damage in Europe. We determine the leading uncertainty factors at a continental

scale and study the influence of considering damage events with increasingly longer return periods on the sensitivity. To do so,300
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we investigate sensitivity on the average annual damage, and on damage amounts with return periods of one, 15, and 30 years,

aggregated over the entire domain. As a second step, we assess whether the results of the sensitivity analysis vary according to

the region considered, by considering sensitivity on the average annual damage and on damage amounts with return periods of

15 years, aggregating over the seven different sub-regions defined in Fig. 2. We consider for our sensitivity analysis the Delta

Climate in the damage and risk metrics, where Delta Climate refers to the future-minus-historical changes of the metrics with305

respect to the historical period (c.f. Sect. 2.4).

Fig. 4a displays first order Sobol´ sensitivity indices (S1) for the Average Annual Damage (AAD), and for damages corre-

sponding to return periods of one, 15, and 30 years (rp1, rp15, rp30), aggregated over the entire domain. Confidence intervals

obtained by bootstrapping are plotted to inform on the precision of the estimated sensitivity indices and on the convergence of310

the sensitivity calculation. The confidence intervals indicate that the number of samples is sufficient to reach convergence and

to obtain sufficiently precise estimates of the sensitivity indices. The values of the first order sensitivity indices indicate that the

choice of the climate model (modid) is alone responsible for almost 70% of the total variance of the projection ensemble for

the average annual damage. Climate model uncertainty also accounts for about 60%, and 45% of the total variance for damage

amounts with return periods of respectively one and 15 years, but the contribution of this uncertainty factor drops to 20%315

for damage amounts with return periods of 30 years. The uncertainty associated with the use of different ensemble members

(memid) ranks second, with values of the first order sensitivity indices not exceeding 10%, and the uncertainty associated with

the future climate scenario (scenid) ranks third, with values of the first order sensitivity indices not exceeding 5%. Therefore,

climate model uncertainty is the dominant uncertainty for average annual damage and damage amounts with return periods

up to 15 years when aggregating the results to the entire domain. Overall, the first order sensitivities to the impact function320

calibration factors xscale, and yscale, and to the exposure layer fexp are negligible for the four damage metrics here consid-

ered. Those three parameters were thus removed from Fig. 4a and b, and are ignored in the further analyses. Complete figures

including the uncertainty contribution from the xscale, yscale, and fexp parameters can be found in the appendix (Fig. B1).

For damages with return periods higher than 15 years, the sum of all first order sensitivity indices drops below 50%, indi-

cating that interactions between the different uncertainty factors become more important than the direct contributions of the325

uncertainty factors taken separately (Saltelli, 2002). We explain this increasing importance of interactions between uncertainty

factors by the sampling uncertainty associated with increasing return periods. In our modelling framework, damages with re-

turn periods of 15 years and higher are based on two and one damage events respectively, which renders the estimation of the

damage metrics highly influenced by sampling uncertainty. In consequence, the sensitivity analysis cannot clearly separate the

contributions of the different uncertainty factors, as those become confounded with the sampling uncertainty.330

Alternatively, we examine total order Sobol´ sensitivity indices (ST), as those indices inform on the total contribution of an

uncertainty factor to the uncertainty, including all the interactions with the other uncertainty factors (Fig. B1a). The total order

sensitivity indices also emphasize the dominance of the climate model uncertainty, as the total order sensitivity indices for the

modid parameter are systematically higher than the total order sensitivity indices for the other uncertainty factors. Therefore,

the climate model uncertainty remains the dominant uncertainty factor for damages with return periods of 15 years and higher.335
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The choice of the ensemble member (memid), of the future climate scenario (scenid), and of the impact function (impfid)

rank respectively second, third and fourth in terms of total order sensitivity. Interestingly, the values of the total order sensitivity

indices increase with the return period for the memid, scenid, and impfid parameters, but slightly decrease with the return

period for the modid parameter. This increase of the total order sensitivity indices with the return period suggests an increasing

importance of the memid, scenid, and impfid uncertainty factors when investigating damages with increasing return periods.340

We test the assumption that interactions between the uncertainty parameters are indeed associated with the sampling un-

certainty by repeating the sensitivity analysis, but combining the three ensemble members from each climate model instead

of considering the different ensemble members separately. Combining the different ensemble members of a climate model

instead of considering the members separately allows us to decrease the sampling uncertainty. The results of the sensitivity345

analysis obtained when considering the 90 years of modelled climate instead of separate 30 year periods are shown in Fig. B2.

In contrast with the results of the sensitivity analysis obtained when considering the ensemble members separately, the sum of

the first order sensitivity indices increases, indicating that considering longer time periods indeed helps to decrease the inter-

actions between the uncertainty factors. In addition, we observe that climate model uncertainty remains the dominant source

of uncertainty for projections of damage amounts with return periods up to 30 years as the first order sensitivity index to the350

climate model is larger than 0.5 for the rp30 metric. Furthermore, the total and first order sensitivities to both the future climate

scenario and impact function choice decrease when considering the combined simulations. This decrease indicates that the ap-

parent increasing contribution of the future climate scenario and impact function uncertainty when considering damages with

increasing return periods is at least partly associated with sampling uncertainty. Thus, the increasing relevance of the impact

function and future climate scenario should not be over-interpreted, as this increase is likely associated with the inability of355

the sensitivity quantification framework to differentiate between the different uncertainty factors when assessing damages with

increasing return periods.

The sensitivity analysis conducted on the average annual damage and damage amounts with a return period of 15 years aggre-

gated to the seven regions reveals that climate model uncertainty also dominates the uncertainty at a regional scale, as the values

of the first order sensitivity indices for the modid parameter are systematically the highest in all regions (Fig.4b). Similarly360

as for the sensitivity analysis conducted for the results aggregated to the entire domain, the sums of the first order sensitiv-

ity indices decrease when damages with longer return periods (here rp15) are considered. We also note some inter-regional

variations. For instance, the sensitivity to the impact function is higher in the Mediterranean region than in the other regions,

when considering the average annual damage. This regional variability in the sensitivity to the impact function suggests that

the design of the impact function can become an increasingly important factor of uncertainty when assessing damages at a365

regional level. However, we remind that this regional variability should be interpreted with care, as the effects of sampling

uncertainty can be expected to increase when investigating smaller spatial scales.

Overall, our results emphasize the dominance of the climate model uncertainty when investigating the Delta Climate in winter

windstorm damage over Europe. However, the sensitivity quantification framework which we use does not allow us to clearly

separate between the different sources of uncertainty when the return period of the estimated damage approaches the duration370
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of the hazard dataset. Our findings are consistent with previous studies which also found the choice of the climate model to

be a dominant factor of uncertainty for projections of winter storm damage over Europe in changing climate conditions (e.g.

Leckebusch et al., 2007; Pinto et al., 2007; Donat et al., 2011; Schwierz et al., 2010). In contrast, our analysis does not show

the choice of the ensemble member or the future climate scenario to be important factors of uncertainty, which is partly in

contradiction with Donat et al. (2011) and Pinto et al. (2012). However, the fact that we use a different ensemble of climate375

models compared to these studies can potentially explain the differences in the results of the sensitivity study. In particular, we

use a larger number of climate models, whose agreement on the patterns and intensities of the future changes in extreme sur-

face winds is limited. This large ensemble of climate models probably leads our damage projections to be more uncertain than

the previously mentioned studies. We can expect to find similar results with an increased relevance of the internal variability

and future climate scenario by considering a less uncertain ensemble of climate models. Furthermore, we note that the results380

are also partly sensitive to the uncertainty and sensitivity quantification method used, as Severino (2022) found the internal

variability to become the dominant source of uncertainty when considering damage amounts with return periods of eight years

and higher, using similar data but using a different uncertainty and sensitivity quantification method.

We also do not find impact function uncertainty to be particularly relevant for our projections. However, we expect that385

considering changes in the damages in absolute terms should increase the importance of uncertainties in the impact function,

as the impact function is known to be a relevant factor of uncertainty in the assessment of winter storm damage (e.g. Koks and

Haer, 2020).

3.2 Future-climate changes in winter windstorm damage

In this section, we inspect spatial and regional patterns in the projections of the Delta Climate in winter storm damage in Eu-390

rope. We first examine the results with a focus on the climate model spread, as the sensitivity analysis of the previous Sect. 3.1

highlighted the dominance of the climate model uncertainty for the damage projections. Next, we briefly investigate the in-

fluence of using different future climate scenario on the results, as we expect this aspect to be relevant for authorities, policy

makers and stakeholders involved in climate change mitigation and adaptation in Europe.

395

3.2.1 Regional projections and climate model uncertainty

We focus on the climate model spread by considering a fixed impact function, Sw2010 shown in Fig. 3a, a fixed future climate

scenario, SSP585, and a fixed exposure data layer obtained with LitPop’s default parameterization (m=1, n=1). We use spatial

maps of the average annual damage resolved at the exposure level to study the spatial patterns in the damages. We then study

the multi-model agreement in the projections of several damage metrics, and investigate the variation of the multi-model agree-400

ment at a regional scale, by showing boxplots of the multi-model distributions of the average annual damage, and of damages

with return periods of one, and 15 years, aggregated to the seven regions defined in Fig. 2. As before, we consider the changes

in the damage metrics relative to the historical period (Delta Climate).
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Figure 5. Regional changes in winter storm damage in Europe, comparing an SSP585 future (2070-2100) to a historical period (1980-2010),

and using the impact function from Schwierz et al. (2010) to compute the damages. Panel (a) shows a spatial map of the multi-model

median of the future-minus-historical change relative to the historical period (Delta Climate; %) in average annual damage, computed at

each exposure point, where the hatching represents regions where more than 75% of the GCMs agree on the sign of the change in average

annual damage; Panel (b) shows boxplots of the multi-model distributions of the future-minus-historical changes relative to the historical

period (Delta Climate; %) in Average Annual Damage (AAD), and in damage amounts with return periods of one, and 15 years (rp1, rp15),

aggregated over all exposure points in each of the seven regions defined in Fig. 2: British Isles (BI), Iberian Peninsula (IP), Western Europe

(WEU), Central Europe (CEU), Mediterranean and Balkan region (MED), Scandinavia (SC), Eastern Europe (EEU), and over the entire

European domain (EU). The boxplots’ colored boxes represent the 25th and 75th percentile range (inter-quartile range) of the distributions,

and the grey lines inside the boxes represent the medians. The boxplot whiskers are drawn at distances of 1.5 times the inter-quartile range

(IQR) below and above the 25th and 75th percentiles of the distributions or at the minimum and maximum data points when those points fall

at a distance of less than 1.5 times the IQR. The diamonds represent outlying data points outside the whiskers. The red line represents the

0-% change line, which corresponds to no change in the future-climate damages with respect to their historical value.

We first investigate the spatial pattern of the change in the Average Annual Damage (AAD), as projected by the median of the

multi-model ensemble of 30 GCMs (Fig. 5a). The multi-model median change shows increased future-climate winter storm405

damages within a band extending from the south of England to the Baltic states, throughout northern France, the Benelux,

Denmark, Germany, and southern Sweden. In contrast, future storm damage is expected to decrease over northern Scandinavia

and north-eastern Europe, as well as over the Iberian Peninsula and the Mediterranean. Parts of south-eastern Europe and the

Balkan Peninsula also show a potential increase in the damages for the future period, although the signal is weaker and more

scattered. The hatching on Fig. 5a highlights regions where 75% or more of the climate models agree on the sign of the change410

in the average annual damage. Overall, the climate models agree well over regions where a negative Delta Climate in the

damages is expected (e.g. Iberian Peninsula, Italy, Poland, and northern Scandinavia). In contrast, the climate models tend to

disagree over regions where a positive Delta Climate in the damages is expected, except over limited parts of southern Sweden,

and western Latvia, where the model agreement reaches or exceeds 75%.
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We investigate the multi-model spread at a regional scale, by examining boxplots of the multi-model distribution of the regional415

changes in three damage metrics, the Average Annual Damage (AAD), and damage amounts with return periods of one and 15

years (rp1, rp15) in Fig. 5b. The boxplots’ horizontal grey lines represent the medians, and the colored boxes the Inter-Quartile

Ranges (IQR) of the regional distributions. The boxplots’ whiskers represent either the minimum and maximum data points, or

1.5 times the IQR if the minimum and maximum data points fall beyond this distance. Data points falling beyond a distance of

1.5 times the IQR are represented by grey diamonds. Boxplots displaying the multi-model distribution of the absolute damages420

modelled for the historical 1980-2010 period and in the different regions are shown as reference in the appendix (Fig. B3).

The boxplots in Fig. 5b confirm an important climate model uncertainty in all regions considered, with the boxplots’ whiskers

spanning -80% to +170% in certain regions and for certain damage metrics. Apart from the average annual damage and dam-

age amount with a return period of one year in the Iberian Peninsula region, the 0%-change line is always covered by the

colored boxes of the boxplots, indicating that the climate model agreement on the sign of the changes is always less than425

75%, at the level of the regions considered. Disregarding the important spread, the multi-model medians of the ensemble show

positive changes in the average annual damage in three regions: British Isles (BI, +16%), Western Europe (WEU, +17%), and

Scandinavia (SC, +13%); and negative changes in four regions: the Iberian Peninsula (IP, -28%), Central Europe (CEU, -3%),

the Mediterranean and Balkan region (MED, -15%) and Eastern Europe (EEU, -35%). Aggregating the results to the entire

European domain results in an increase in the average annual damage of +13%.430

We recall that even small changes in the average annual damage might result in significant damage amounts, as the damages

accumulate over the years. As an illustration, we show in absolute terms the future-minus-historical difference of the accumu-

lated damages, resulting from the accumulation of 20 years of average annual damage over the historical and the future SSP585

period. The differences between the damages accumulated over 20 years of the future period and the damages accumulated

over 20 years of the historical period yield +987 mn USD for the British Isles, +997 mn USD for Western Europe, +175 mn435

USD for Scandinavia, -164 mn USD for Central Europe, -45 mn USD for the Mediterranean and Balkan region, -186 mn USD

for the Iberian Peninsula, and -37 mn USD for Eastern Europe, for a total of +2.7 bn USD for the entire European domain.

To better understand the spatial and regional patterns in the damages, we investigate the spatial patterns of changes for each

individual climate model (not shown). While about half of the models project changes in extreme surface winds and damages

consistent with an eastward extension of the North Atlantic storm track into Europe, the remaining models project changes in440

extreme surface winds which cannot be straightforwardly linked to such an extension of the storm track. Furthermore, using

changes in the winter-half-year-averaged monthly-mean zonal winds at 850 hPa as a proxy for changes in the storm track lo-

cation, we observe a potential link between the storm track tilt, and increased damages in the Balkan. Climate models showing

an intensification of damages over Northern Europe tend to be linked to a southwesterly tilted intensification of the westerly

winds, whereas models projecting damages in more southern locations are linked to a more westerly or northwesterly intensi-445

fication of the westerly winds. This tilt of the low-level winds can then potentially explain the increased surface winds in the

Balkans, suggesting that increased winds are a consequence of enhanced lee cyclogenesis, resulting from the blocking of the

flow by the Alpine ridge. Further analysis is required in order to examine this hypothesis in more detail.

17



Our results are in agreement with the consensus of an eastward extension of the storm track into Europe, with numerous450

studies finding a similar pattern, using various data and methods (e.g., Pinto et al., 2007; Schwierz et al., 2010; Donat et al.,

2011; Pinto et al., 2012; Little et al., 2023). In particular, our results are in line with the findings of Little et al. (2023) in terms

of the spatial pattern and intensity of the changes. However, we find somewhat different results, in some regions, compared

to other studies. For instance, Donat et al. (2011) and Pinto et al. (2012) find a pattern of damages extending over Poland,

whereas we find a pattern of damages extending further north, with decreased damages over Poland. We also find a weaker455

signal for a positive change in storm damage over the British Isles and northwestern Europe than Little et al. (2023). This

difference in the results is probably partly associated with the fact that they obtain their projections of future storm damage by

scaling future changes in storm severity with projected increases in population, which accounts for about 50% of the projected

changes in storm damage over those regions. Another plausible explanation for the difference in the results lies in the different

multi-model ensembles used in the different studies. Finally, we note that the potential increase of the damages in the Balkan460

region has not been observed in previous studies, but that Little et al. (2023) also finds some signal for an increase in the

meteorological storm severity index over this region for the SSP585 scenario.

3.2.2 Sensitivity to the future climate scenario

In addition, we investigate the sensitivity of the results to the future climate scenario by showing the regional boxplots of the

multi-model distributions (Fig. 6) and the damage maps of the multi-model median (Fig. B4) of the Delta Climate in average465

annual damage computed over 14 climate models using SSP126, SSP245, SSP370, and SSP585. See Tab. A2 for a list of the 14

climate models considered for the multi-scenario assessment of this section. The regional boxplots show that the multi-model

distributions are partly sensitive to the future climate scenario in certain regions, as the multi-model distributions derived with

scenarios corresponding to stronger future warming (SSP245, SSP370, SSP585) are shifted towards less negative changes in

the average annual damage when compared with a scenario of lower future warming (SSP126). This sensitivity to the future470

climate scenario is visible in four out of the seven regions of the domain (British Isles, Western Europe, Central Europe, and

Scandinavia), and for the projections aggregated to the entire domain. In regions where the ensemble of climate models agrees

well on a negative Delta Climate in the average annual damage (Iberian Peninsula, Mediterranean, and Eastern Europe), there

is no marked difference between the different future climate scenarios, except in the Eastern Europe region, where projections

obtained using SSP585 are associated with a multi-model distribution indicating less negative Delta Climate. For the projections475

aggregated over the entire domain, the multi-model distributions gradually shift towards more positive Delta Climate in average

annual damage, as future climate scenarios corresponding to higher warming are considered. However, this sensitivity to the

warming level is less clear when investigating results at a regional level.

Using the damage maps (Fig. B4), we find the SSP126 scenario to be associated with a marked decrease in storm damage

over the entire domain, and a signal for increased future-climate storm damage to emerge as scenarios of higher warming are480

considered (SSP245, SSP370, SSP585). Our results thus indicate that the Delta Climate in storm damage partly scales to the

future change in temperatures, where more moderate increases in temperature can result in larger decreases in storm damage

over Europe. This increase in the damages for future climate scenario of higher warming is consistent with previous studies
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Figure 6. Boxplots of the multi-model distributions of the regional changes in winter storm damage in Europe, comparing different future

(2070-2100) climates to a historical period (1980-2010). The boxplots show the multi-model distributions of the future-minus-historical

changes relative to the historical period (Delta Climate; %) in Average Annual Damage (AAD), aggregated over all exposure points in

each of the seven regions defined in Fig. 2: British Isles (BI), Iberian Peninsula (IP), Western Europe (WEU), Central Europe (CEU),

Mediterranean and Balkan region (MED), Scandinavia (SC), Eastern Europe (EEU), and over the entire European domain (EU), and using

four different shared socio-economic pathways (SSP126, SSP245, SSP370, SSP585) to model the future climate. The boxplots’ colored

boxes represent the 25th and 75th percentile range (inter-quartile range) of the distributions, and the grey lines inside the boxes represent

the medians. The boxplot whiskers are drawn at distances of 1.5 times the inter-quartile range (IQR) below and above the 25th and 75th

percentiles of the distributions or at the minimum and maximum data points when those points fall at a distance of less than 1.5 times the

IQR. The diamonds represent outlying data points outside the whiskers. The red line represents the 0-% change line, which corresponds to

no change in the future-climate damages with respect to their historical value.
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Figure 7. Exceedance Frequency Curves (EFCs) for future (2070-2100) SSP585 conditions, and historical (1980-2010) winter storm damage

aggregated to the entire European domain. Each EFC is obtained with an ensemble of opportunity approach by combining 20 random

subsamples of 20 years of data drawn from a random subselection of 20 climate models. Bootstrapped distributions of the EFCs are derived

to simulate the combined effects of internal variability and climate model uncertainty. The damages are estimated using the impact function

from Schwierz et al. (2010) . Solid lines represent the medians, and dashed lines the 5th and 95th percentiles of the distributions of the

multiple EFCs generated via bootstrapping. The arrows highlight that the intensity of a damage event with a return period of 100 years under

historical climate conditions corresponds to the intensity of a damage event with a return period of 28 years under future SSP585 climate

conditions.

suggesting an increased number of cyclonic bombs over the British Isles and Western Europe for scenarios of high global

warming (e.g. Zappa et al., 2013; Priestley and Catto, 2022; Little et al., 2023). However, we note that the influence of using485

different future climate scenarios is still limited when compared to the influence of the choice of the climate model used,

as is highlighted in our sensitivity analysis (Sect. 3.1). Furthermore, we see some differences between the regional patterns of

changes obtained with the set of 14 climate models used for the multi-scenario assessment, and the patterns of changes obtained

with the full ensemble of 30 climate models. In particular, the multi-model median computed using 30 climate models indicates

stronger regional increases in the damages, and further highlights the choice of the climate model to be the major contributor490

to the uncertainty in the projections. In this case, some of the climate models projecting the stronger increases in the future

damages are missed when the analysis is restricted to this set of 14 climate models.

3.3 Ensemble of opportunity

In this section we investigate the changes in extreme damage events with long return periods under future-climate conditions

by taking an ensemble of opportunity approach. Figure 7 displays the Exceedance Frequency Curves (EFCs), computed for the495

historical and future SSP585 periods using the ensemble of opportunity. First, we randomly sample with replacement storm
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days corresponding to 20 winter seasons for each GCM and each study period (historical and future). Next, we randomly

sample without replacement 20 GCMs out of the initial 30. We then combine those 20 × 6 × 20 = 2400 months of data to

one long simulation. Hence, each EFC represents a random realization of 2400 winter months, corresponding to 400 winter

seasons. Finally, we use a bootstrapping approach, where we generate 1000 random realizations of the EFCs, and compute500

approximate confidence intervals using 5th and 95th percentiles of the bootstrapped distribution. This bootstrapping approach

using a random subsampling on both the storm days and the climate models used to generate the EFCs allows us to estimate

the combined effects of internal variability and climate model uncertainty on the projections.

The EFCs generated using the ensemble of opportunity approach reveal a considerable increase in future-climate damages

with respect to historical damages. The average difference between the median EFCs of the two bootstrapped distributions505

obtained for the future and historical climates reveals an average increase in intensity of future-climate storm damage of 66%

with respect to historical storm damage. This increase in intensity means that, for instance, damages with an expected return

period of 100 years under current climate would have a return period of only 28 years under future climate conditions. The

90% confidence intervals of the historical and future curves show almost no overlap for damage amounts with return periods

below 30 years. The overlap between the two confidence intervals gradually increases for damage amounts with return periods510

of 30 years and higher. This limited overlap between the confidence intervals of the EFCs suggests that the intensification in

future-climate damages is robustly projected by the ensemble of 30 climate models for damages with return periods below

30 years, and this despite the effect of internal variability on the projections. Our analysis using the ensemble of opportunity

approach thus suggests storm damage events under future 2070-2100 SSP585 climate conditions to be overall more intense

than their historical counterparts. Such results are compatible with previous studies, as for instance with Schwierz et al. (2010),515

who found that damages with return periods of 100 years can potentially increase by 50% to 150% for Europe’s end-of-century

climate, and with Pinto et al. (2012), who found a potential for the frequency of extreme damage events (i.e. with return periods

of 50 or 100 years) to increase by a factor of about two to four.

The investigation of the Delta Climate of the damages in the spatial dimension in the previous section revealed climate change

to affect European wind storm damage with a regional heterogeneity, with some regions seeing a potential decrease in future-520

climate risk, and some other an increase. This section highlights a tendency of the 30 climate models considered in this study

to project overall more intense winter windstorms-related damages under future climate conditions, regardless of the location

of the storm damage in the study domain. Bringing together the results of the two sections thus suggests that both the location

and the intensity of the windstorms will change as climate changes. This is consistent with studies projecting a decrease in the

frequency of windstorms over Europe (e.g. Seneviratne et al., 2021), and studies suggesting a potential increase in the number525

and wind speed intensity of the most extreme extratropical cyclones over the North Atlantic and Europe (e.g. Zappa et al., 2013;

Priestley and Catto, 2022). In particular, we suggest a decrease in the number of windstorm events to contribute to the decrease

in future-climate average annual damage observed over some regions, and an increase in both the number and intensity of

windstorm events over the western part of the domain (British Isles, northwestern France and Benelux) to contribute to an

increase in future-climate average annual damage in those regions.530
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4 Summary, discussion and conclusion

In this paper, we investigate changes in winter storm damage risk over Europe in a changing climate, and assess the importance

of diverse sources of uncertainty in the projections. We find large uncertainties in the projections of the Delta Climate in Eu-

ropean winter windstorm damages, and climate model uncertainty to be the dominant factor of uncertainty in the projections.

Using the median to measure the general tendency of a multi-model ensemble of 30 general circulation models, we find re-535

gional increases in winter storm damage risk over western, and northern-central Europe, and a decrease over the rest of Europe,

in agreement with an eastward extension of the North Atlantic storm track into Europe. On average, we find the British Isles,

Western Europe, and Scandinavia to be at risk of increased winter windstorm damage under future climate conditions, with the

median of the multi-model ensemble projecting increases in average annual damage of +16%, +17%, and +13% respectively.

We find a moderate decrease in the damages in Central Europe (-3%), and more marked decreases in the Iberian Peninsula (-540

28%), the Mediterranean (-15%) and Eastern European (-35%) regions. In order to illustrate the uncertainty in the multi-model

distribution we here provide the 25th and 75th percentiles, respectively: We find changes in average annual damage of -19%

and +74% for the British Isles, -35% and +55% for Western Europe, -8.9% and +44% for Scandinavia, -25% and +44% for

Central Europe, -41% and -3% for the Iberian Peninsula, -30% and +1% for the Mediterranean, -55% and +15% for Eastern

Europe, and -24% and +60% for the results aggregated over the entire European domain. Hence, fewer than 75% of the climate545

models agree on the sign of the change in all regions apart from the Iberian Peninsula.

Overall, the climate model agreement on the Delta Climate in winter storm damage is poor over the regions where the dam-

ages are expected to increase according to the multi-model median, but the climate model agreement improves over the regions

where the damages are expected to decrease according to the multi-model median. Using an ensemble of opportunity approach,

we also find evidence for an increase in the intensity of future-climate extreme damage events, with for instance damages as-550

sociated with return periods of 100 years under current climate becoming damages associated with return periods of only 28

years under future SSP585 climate conditions. Therefore, our analysis highlights climate change to induce changes in winter

storm damage over Europe affecting both the spatial and the frequency-intensity domain, with different regions potentially

experiencing increases or decreases in the risk of winter windstorm damage, and with overall more intense winter windstorm

damage events under future climate conditions.555

Overall, our results are consistent with previous studies that assessed changes in winter storm damage risk over Europe

under changing climate conditions, using global or regional climate models. The spatial and regional patterns of damages that

we find are in line with an eastward extension of the North Atlantic storm track into Europe in winter, consistent with findings

based on previous CMIP phases (for CMIP5, see e.g. Zappa et al., 2013), and on CMIP6 (e.g. Little et al., 2023). However,560

we emphasize that the projections of storm damage are highly dependent on the climate model chosen, and that not all climate

models show changes in extreme surface wind speeds and wind damages consistent with an eastward extension of the North

Atlantic storm track. The substantial disagreement of the GCMs on the pattern of future changes of extreme surface winds

over Europe in winter is not surprising, given the known difficulties of low-resolution climate models to simulate extratropical
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cyclones (Seneviratne et al., 2021), and to represent regional circulation patterns and their changes (Zappa and Shepherd, 2017;565

Fernandez-Granja et al., 2021). Our results thus emphasize a significant disagreement on the future changes in extreme surface

winds over Europe among the climate models participating in CMIP6, consistent with the findings of Kumar et al. (2015),

who highlighted large inter-model differences in projections of extreme surface winds among CMIP5 climate models. Our

study did not explore potential causes for the significant disagreement on the future changes in extreme surface winds we find

among the climate models. Hence, we encourage future research aimed at providing insights on this large inter-model spread.570

For instance, using a modelling framework similar to ours but investigating tropical cyclone damage risks, Meiler et al. (2023)

found a link between the increase in damages associated with tropical cyclones and the climate model sensitivity. Exploring

the link between extratropical cyclones and storm track dynamics and climate model sensitivity can provide insights into the

causes of the climate model disagreement in the future change in extreme surface winds over Europe.

575

Addressing the shortcomings of our study, we should emphasize that our uncertainty and sensitivity analysis only covers

part of the uncertainty associated with the modelling of winter windstorm damage in a future climate. Other potentially im-

portant uncertainty factors might have been missed, either because we choose not to include them (e.g. storm day detection

uncertainty), or because we were not aware of them (on the concept of unknown unknowns, see e.g. Kundzewicz et al., 2018;

Zumwald et al., 2020). In particular, our analysis does not include future changes in exposure or vulnerability, and focuses580

solely on the hazard side of the risk modelling. We stress that for a complete view of future storm damage risks in Europe,

changes in exposure and vulnerability should be accounted for, as those two components can be expected to have a significant

influence on the outcome of the risk projection (Cremen et al., 2022). An example of a study investigating changing risks due

to extreme meteorological events using a modelling framework similar to ours but including some projection in future expo-

sures can be found in Meiler et al. (2023). In this study, changing exposure is indeed shown to contribute significantly to the585

risk projections of tropical cyclone damage, by notably interacting non-linearly with climate change effects. Both the outputs

from our risk projections and from our uncertainty-sensitivity analysis are a reflection of the uncertain input factors which we

consider in our damage-risk framework, and we can expect our results to change when considering different uncertain input

factors in our damage model, for instance a different number of climate models and ensemble members, additional impact

functions, a more developed modelling of the exposure and vulnerability, and different distribution and values for the uncer-590

tainty factors. The sensitivity of our results to the input data is already visible as for instance the multi-model median computed

over 30 global climate models is significantly different from the multi-model median computed over an ensemble of only 14

climate models. While the high dependency of the outcome of the risk projection to the choice of the climate models reflects

that this factor of uncertainty is the most relevant relative to the other factors of uncertainty examined in this study, our results

should by no means be taken as evidence that future changes in exposure and vulnerability do not matter for future changes in595

winter windstorm damage risk over Europe. As a final remark considering our modelling of the uncertainty, we stress that the

uncertainty we quantify in this study is likely only a partial representation of the overall uncertainty, and this partial depiction

of the uncertainty should be borne in mind when interpreting the confidence intervals or uncertainty estimates we derive.

Regarding the climate data used to compute the damages, we found that the surface wind maxima outputs from some of
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the GCMs considered in this study were subjected to significant biases when compared to the ERA5 reanalysis. We partly600

overcome this limitation by conducting a bias-correction based on percentile mapping, and take the approach of including all

models in our analysis, despite their bias in the representation of surface winds under current and historical climate conditions.

Alternatively, an approach consisting in selecting the climate models based on their performance in representing current and

historical climate processes can contribute to obtain more robust projections of historical- and future-climate winter windstorm

damage. However, such a selection should be done in a way that the uncertainty associated with the climate models is still605

adequately represented. An example of a careful performance-based screening of climate models participating in CMIP6 can

be found in Palmer et al. (2023). In addition, we expect that using an approach based on dynamical downscaling can bring sig-

nificant improvements in the damage estimations (see e.g. the EURO-CORDEX project; Jacob et al., 2014). Using a dynamical

downscaling approach should improve the representation of extreme surface winds over regions with complex topography, and

allow to obtain more accurate and spatially refined estimates of the future changes in extreme winds and wind damages.610

From a risk management perspective, our uncertainty and sensitivity analysis can provide valuable information for decision

makers interested in the assessment of the future risks of winter windstorm damage in Europe , despite the potentially partial

depiction of risks mentioned earlier. Our findings highlight the climate model uncertainty to be a key factor of uncertainty, and

we encourage actors in the risk management sector to account for this factor in their decision process. In particular, we suggest615

risk-friendly decision makers to base their decisions on projections from climate models which are close to the median of the

multi-model ensemble, or on the median of the projections directly. On the other hand, we suggest risk-averse decision makers

to base their decisions on climate models which are projecting more significant increases in winter windstorm damage under

future climate conditions, by for instance selecting climate models whose projections are close to the 90th percentile of the

multi-model ensemble. To help decision makers in selecting climate model projections appropriated to their need, we rank the620

30 climate models according to their projected future change in average annual damage in Tab. A1. We expect such a ranking

of climate models based on results aggregated over the entire European domain to be of particular value for end-users inter-

ested in the assessment of winter storm damage risk at the scale of the entire European continent. For instance, this ranking

can serve as a reference for the climate model developers community and inform the modelers on the performance of their

model regarding projections of extreme surface winds over Europe. However, for end-users interested in investigating winter625

storm damage risk at a more regional level, we recommend a more careful selection of the climate models, with an individual

assessment of the patterns of changes in future-climate winter windstorm damage projected by the different climate models

over the region of interest.

To our knowledge, our study is the first quantification of projected changes and the uncertainty of winter windstorm damage630

under changing climate conditions that covers such an extensive number of CMIP6 models, and which investigates uncertainty

associated with modelling of the hazard, the exposure, and the vulnerability. As it stands, the large climate model disagreement

in the future changes of extreme surface winds over Europe is the limiting factor in the projections of winter windstorm damage

over Europe under future climate conditions. This large disagreement must be reduced in order for the impact of climate change
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on future winter windstorm damage in Europe to be successfully assessed. Our findings thus motivate further research and635

efforts aimed at improving the representation of windstorms and the European winter climate by general circulation models.

Additionally, our study emphasizes the benefits of using large ensembles of climate models for climate impact assessment

studies to obtain optimal estimates of projected climate impacts. Our study also provides a common framework that can serve

as guidance for future climate risk assessment studies, where a large ensemble of GCMs’ projections is successfully combined

with an open-source and user-friendly weather and climate risk assessment model such as CLIMADA.640

Code and data availability. CLIMADA is openly available at GitHub https://github.com/CLIMADA-project/climada_python (last access:

23 December 2022), and https://doi.org/10.5281/zenodo.5947271 (gabrielaznar et al., 2022) under the GNU GPL license (GNU operating

system, 2007). The documentation is hosted on Read the Docs https://climada-python.readthedocs.io/en/stable/ (last access: 23 December

2022) and includes a link to the interactive tutorial of CLIMADA. In this publication, CLIMADA v3.2.0, deposited on Zenodo (gabrielaznar

et al., 2022) was used. Winter storm days generated from ERA5 (1980-2010) and CMIP6 models (1980-2010 and 2070-2100) used as hazard645

data in this study are available through the CLIMADA data API https://climada.ethz.ch/data-types/ (last access: 26 January 2024).
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Table A1. Variant names, nominal resolution (Nominal res. (km)), and future-minus-historical change relative to the historical period in the

average annual damage (AAD change (%)) of the different climate models considered in this study. The x symbol denotes missing ensemble

member.

Variant name Nominal res. AAD change

Future climate scenario historical ssp585 (km) (%)

Ensemble member id 0 1 2 0 1 2

Climate model

GFDL-CM4 r1i1p1f1 x x r1i1p1f1 x x 100 544.6

CMCC-CM2-SR5 r1i1p1f1 x x r1i1p1f1 x x 100 217.4

ACCESS-CM2 r4i1p1f1 r5i1p1f1 x r4i1p1f1 r5i1p1f1 x 250 172.3

CNRM-CM6-1-HR r1i1p1f2 x x r1i1p1f2 x x 50 127.0

CMCC-ESM2 r1i1p1f1 x x r1i1p1f1 x x 100 78.8

MPI-ESM1-2-HR r1i1p1f1 r2i1p1f1 x r1i1p1f1 r2i1p1f1 x 100 71.3

MIROC-ES2L r1i1p1f2 r2i1p1f2 r3i1p1f2 r1i1p1f2 r2i1p1f2 r3i1p1f2 500 68.9

GISS-E2-1-G r1i1p1f2 x x r1i1p1f2 x x 250 58.3

HadGEM3-GC31-LL r1i1p1f3 r2i1p1f3 r3i1p1f3 r1i1p1f3 r2i1p1f3 r3i1p1f3 250 58.1

MPI-ESM1-2-LR r1i1p1f1 r2i1p1f1 r3i1p1f1 r1i1p1f1 r2i1p1f1 r3i1p1f1 250 50.1

BCC-CSM2-MR r1i1p1f1 x x r1i1p1f1 x x 100 44.9

CNRM-CM6-1 r1i1p1f2 r2i1p1f2 r3i1p1f2 r1i1p1f2 r2i1p1f2 r3i1p1f2 250 41.1

MRI-ESM2-0 r1i1p1f1 r2i1p1f1 r3i1p1f1 r1i1p1f1 r2i1p1f1 r3i1p1f1 100 35.6

EC-Earth3-CC r1i1p1f1 x x r1i1p1f1 x x 100 29.7

MIROC6 r1i1p1f1 r2i1p1f1 r3i1p1f1 r1i1p1f1 r2i1p1f1 r3i1p1f1 250 27.3

IPSL-CM6A-LR r1i1p1f1 r2i1p1f1 r3i1p1f1 r1i1p1f1 r2i1p1f1 r3i1p1f1 250 19.7

ACCESS-ESM1-5 r1i1p1f1 r2i1p1f1 r3i1p1f1 r1i1p1f1 r2i1p1f1 r3i1p1f1 250 5.9

FGOALS-g3 r1i1p1f1 r3i1p1f1 r4i1p1f1 r1i1p1f1 r3i1p1f1 r4i1p1f1 250 5.8

HadGEM3-GC31-MM r1i1p1f3 r2i1p1f3 r3i1p1f3 r1i1p1f3 r2i1p1f3 r3i1p1f3 100 4.0

AWI-CM-1-1-MR r1i1p1f1 x x r1i1p1f1 x x 100 -2.6

CNRM-ESM2-1 r1i1p1f2 r4i1p1f2 r5i1p1f2 r1i1p1f2 r4i1p1f2 r5i1p1f2 250 -6.7

UKESM1-0-LL r1i1p1f2 r2i1p1f2 r3i1p1f2 r1i1p1f2 r2i1p1f2 r3i1p1f2 250 -16.5

NESM3 r1i1p1f1 r2i1p1f1 x r1i1p1f1 r2i1p1f1 x 250 -27.2

CanESM5 r1i1p1f1 r2i1p1f1 r3i1p1f1 r1i1p1f1 r2i1p1f1 r3i1p1f1 500 -28.1

EC-Earth3-Veg r1i1p1f1 r2i1p1f1 r3i1p1f1 r1i1p1f1 r2i1p1f1 r3i1p1f1 100 -32.9

EC-Earth3 r1i1p1f1 r3i1p1f1 r4i1p1f1 r1i1p1f1 r3i1p1f1 r4i1p1f1 100 -32.9

EC-Earth3-Veg-LR r1i1p1f1 r2i1p1f1 r3i1p1f1 r1i1p1f1 r2i1p1f1 r3i1p1f1 100 -35.1

INM-CM5-0 r1i1p1f1 x x r1i1p1f1 x x 100 -35.1

INM-CM4-8 r1i1p1f1 x x r1i1p1f1 x x 100 -44.7

KACE-1-0-G r1i1p1f1 r2i1p1f1 r3i1p1f1 r1i1p1f1 r2i1p1f1 r3i1p1f1 250 -82.5
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Table A2. Variant names of the additional ensemble members used for the uncertainty and sensitivity analysis using the SSP126, SSP245,

and SSP370 experiments.

Variant name

Future climate scenario ssp126 ssp245 ssp370

Ensemble member id 0 1 2 0 1 2 0 1 2

Climate model

CanESM5 r1i1p1f1 r2i1p1f1 r3i1p1f1 r1i1p1f1 r2i1p1f1 r3i1p1f1 r1i1p1f1 r2i1p1f1 r3i1p1f1

CNRM-CM6-1 r1i1p1f2 r2i1p1f2 r3i1p1f2 r1i1p1f2 r2i1p1f2 r3i1p1f2 r1i1p1f2 r2i1p1f2 r3i1p1f2

CNRM-ESM2-1 r1i1p1f2 r4i1p1f2 r5i1p1f2 r1i1p1f2 r4i1p1f2 r5i1p1f2 r1i1p1f2 r4i1p1f2 r5i1p1f2

EC-Earth3-Veg r1i1p1f1 r2i1p1f1 r3i1p1f1 r1i1p1f1 r2i1p1f1 r3i1p1f1 r1i1p1f1 r2i1p1f1 r3i1p1f1

EC-Earth3-Veg-LR r1i1p1f1 r2i1p1f1 r3i1p1f1 r1i1p1f1 r2i1p1f1 r3i1p1f1 r1i1p1f1 r2i1p1f1 r3i1p1f1

IPSL-CM6A-LR r1i1p1f1 r2i1p1f1 r3i1p1f1 r1i1p1f1 r2i1p1f1 r3i1p1f1 r1i1p1f1 r2i1p1f1 r3i1p1f1

MIROC-ES2L r1i1p1f2 r2i1p1f2 r3i1p1f2 r1i1p1f2 r2i1p1f2 r3i1p1f2 r1i1p1f2 r2i1p1f2 r3i1p1f2

UKESM1-0-LL r1i1p1f2 r2i1p1f2 r3i1p1f2 r1i1p1f2 r2i1p1f2 r3i1p1f2 r1i1p1f2 r2i1p1f2 r3i1p1f2

MRI-ESM2-0 r1i1p1f1 r2i1p1f1 r3i1p1f1 r1i1p1f1 r2i1p1f1 r3i1p1f1 r1i1p1f1 r2i1p1f1 r3i1p1f1

FGOALS-g3 r1i1p1f1 r3i1p1f1 r4i1p1f1 r1i1p1f1 r3i1p1f1 r4i1p1f1 r1i1p1f1 r3i1p1f1 r4i1p1f1

ACCESS-ESM1-5 r1i1p1f1 r2i1p1f1 r3i1p1f1 r1i1p1f1 r2i1p1f1 r3i1p1f1 r1i1p1f1 r2i1p1f1 r3i1p1f1

MIROC6 r1i1p1f1 r2i1p1f1 r3i1p1f1 r1i1p1f1 r2i1p1f1 r3i1p1f1 r1i1p1f1 r2i1p1f1 r3i1p1f1

MPI-ESM1-2-LR r1i1p1f1 r2i1p1f1 r3i1p1f1 r1i1p1f1 r2i1p1f1 r3i1p1f1 r1i1p1f1 r2i1p1f1 r3i1p1f1

KACE-1-0-G r1i1p1f1 r2i1p1f1 r3i1p1f1 r1i1p1f1 r2i1p1f1 r3i1p1f1 r1i1p1f1 r2i1p1f1 r3i1p1f1
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Figure A1. Physical assets distribution measured in USD, obtained by combining population density layer and nightlight satellite imagery,

using year 2018 produced capital as the macroeconomic indicator and using the base parameterization of LitPop (cf. Litpop method Eberenz

et al., 2020).

Appendix B: Results

B1 Uncertainty and sensitivity analysis
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Figure B1. Total and first order Sobol′sensitivity indices (ST, S1) for the future-minus-historical change relative to the historical period

(Delta Climate) in winter storm damage in Europe, comparing a future (2070-2100) to a historical period (1980-2010). Panels (a) and (b)

respectively show ST and S1 indices for the Delta Climate in average annual damage (AAD), and in damage amounts with return periods of

one, 15, and 30 years (rp1, rp15, and rp30), aggregated over all exposure points of the entire European domain; (c) and (d) respectively show

ST and S1 indices for the Delta Climate in average annual damage (AAD), and in damage amount with a return periods of 15 years (rp15),

aggregated over all exposure points in each of the seven regions defined in Fig. 2: British Isles (BI), Iberian Peninsula (IP), Western Europe

(WEU) Central Europe (CEU), Mediterranean and Balkan region (MED), Scandinavia (SC), and Eastern Europe (EEU). The uncertainty

factors (cf. sec. 2.6) are modid: climate model choice, scenid: future climate scenario choice, memid: climate model member choice,

impfid: impact function choice, xscale: impact function input intensity scaling factor, yscale: impact function output MDD scaling factor,

and fexp: the exposure layer choice. The vertical black bars in (a), (b), (c), and (d) indicate the 95th percentile confidence intervals.
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Figure B2. Total and first order Sobol′sensitivity indices (ST, S1) for the future-minus-historical change relative to the historical period (Delta

Climate) in winter storm damage in Europe, comparing a future (2070-2100) to a historical period (1980-2010), and combining members

from the climate models into single 90 years simulations. Panels (a) and (b) respectively show ST and S1 indices for the Delta Climate in

average annual damage (AAD), and in damage amounts with return periods of one, 15, and 30 years (rp1, rp15, and rp30), aggregated over all

exposure points of the entire European domain. The uncertainty factors (cf. sec. 2.6) are modid: climate model choice, scenid: future climate

scenario choice, impfid: impact function choice, xscale: impact function input intensity scaling factor, yscale: impact function output MDD

scaling factor, and fexp: the exposure layer choice. The vertical black bars in (a) and (b) indicate the 95th percentile confidence intervals.

B2 Future-changes changes in winter windstorm damage
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Figure B3. Regional projections of winter storm damage in Europe, for the reference historical period of 1980-2010. The barplots show

the multi-model medians of the damages in absolute terms (USD) for the Average Annual Damage (AAD), and for damage amounts with

return periods of one, and 15 years (rp1, rp15), aggregated over all exposure points in each of the seven regions defined in Fig. 2: British

Isles (BI), Iberian Peninsula (IP), Western Europe (WEU), Central Europe (CEU), Mediterranean and Balkan region (MED), Scandinavia

(SC), Eastern Europe (EEU), and over the entire European domain (EU). The vertical error bars represent the standard deviations of the

multi-model distributions in each region.
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Figure B4. Regional changes in winter storm damage in Europe, comparing different future (2070-2100) climates to a historical period

(1980-2010). Panels (a), (b), (c), and (d) show spatial maps of the multi-model median of the future-minus-historical change relative to

the historical period (Delta Climate; %) in average annual damage, computed at each exposure point and using four different shared socio-

economic pathways (SSP126: panel (a), SSP245: panel (b), SSP370: panel (c), SSP585: panel (d)) to model the future climate. The hatching

represents regions where more than 75% of the GCMs agree on the sign of the change in average annual damage.
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