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Abstract. Land-atmosphere (L-A) interactions are important for understanding convective processes, climate feedbacks, the 

development and perpetuation of droughts, heatwaves, pluvials, and other land-centred climate anomalies. Local L-A coupling 

(LoCo) metrics capture relevant L-A processes, highlighting the impact of soil and vegetation states on surface flux 20 

partitioning, and the impact of surface fluxes on boundary layer (BL) growth, development, and entrainment of air above the 

BL. A primary goal of the Climate Process Team on Coupling Land and Atmospheric Subgrid Parameterizations (CLASP) is 

parameterizing and characterizing the impact of subgrid heterogeneity in global and regional earth system models (ESMs) to 

improve the connection between land and atmospheric states and processes. A critical step in achieving that aim is the 

incorporation of L-A metrics, especially LoCo metrics, into climate model diagnostic process streams. However, because land-25 

atmosphere interactions span time scales of minutes (e.g., turbulent fluxes), hours (e.g., BL growth and decay), days (e.g., soil 

moisture memory), and seasons (e.g., variability of behavioural regimes between soil moisture and latent heat flux), with 

multiple processes of interest happening in different geographic regions at different times of year, there is not a single metric 

that captures all the modes, means, and methods of interaction between the land and the atmosphere. And while monthly means 

of most of the LoCo-relevant variables are routinely saved from ESM simulations, data storage constraints typically preclude 30 

routine archival of the hourly data that would enable the calculation of all LoCo metrics. 

Here we outline a reasonable data request that would allow for adequate characterization of sub-daily coupling processes 

between the land and the atmosphere, preserving enough sub-daily output to describe, analyse, and better understand L-A 

coupling in modern climate models. A secondary request involves embedding calculations within the models to determine 
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mean properties in and above the BL to further improve characterization of model behaviour. Higher-frequency model output 35 

will (i) allow for more direct comparison with observational field campaigns on process-relevant time scales, (ii) enable 

demonstration of inter-model spread in L-A coupling processes, and (iii) aid in targeted identification of sources of deficiencies 

and opportunities for improvement of the models. 

1 Introduction 

Much progress has been made in understanding and characterizing land-atmosphere (L-A) interactions in recent years (for an 40 

overview of some advances, see Santanello et al., 2018). The importance of L-A interactions has been demonstrated in the 

initiation, perpetuation, propagation and termination of droughts (e.g., Otkin et al., 2018; Roundy et al., 2013; Herrara-Estrada 

et al., 2019; Wu and Dirmeyer 2020), in the exacerbation of heat waves (Findell et al., 2017; Alizadeh et al. 2020; Petch et al. 

2020; Selten et al. 2020; Seo et al. 2020; Dirmeyer et al., 2021; Benson and Dirmeyer 2021), and in the timing of monsoon or 

rainy season onset (e.g., West Africa: Berg et al., 2017; India: Tuinenberg et al. 2014; Amazon: Wright et al., 2017). These 45 

and other studies collectively suggest the importance of accurately modelling processes at the heart of these feedbacks and 

interactions. However, output from climate model simulations is rarely saved at high enough frequencies to capture the rapidly 

changing features and fluxes that are crucial to the proper characterization of the many links in the chain of L-A interactions 

(Santanello et al., 2011). These individual linkages include:  

• The impact of surface temperature, soil moisture and vegetation on turbulent fluxes at the L-A interface,  50 

• The impact of those fluxes on boundary layer (BL) mixing and moist static energy (MSE),  

• The impact of BL processes (e.g., growth rate and buoyancy) on entrainment of air above the BL, and  

• Their cumulative impact on  

o the BL height, temperature, and humidity, and 

o the development of clouds and/or precipitation. 55 

Figure 1 schematically demonstrates that individual metrics of L-A coupling capture different aspects of these complex 

linkages. While some metrics focus on the physical processes that operate within the diurnal cycle (e.g., mixing diagrams, 

Santanello et al., 2009, 2011), others focus on the signal of L-A interactions emerging from long-term multi-variate statistics 

(e.g., the triggering feedback strength or TFS, Findell et al., 2011). Because of this complexity, we cannot select just one 

variable, metric, or timescale to assess the strength of a model’s coupling between the land and the atmosphere.  60 

The objects in Figure 1 highlight the distinction between metrics that elucidate physical processes directly (within the diurnal 

cycle) and those that look at the statistical behaviour in data aggregated into long time series, using sub-daily, daily, or longer-

term mean values in the statistical analyses. Both classes of metrics provide useful information about L-A coupling; when used 

to inform model development and improvement, the statistical metrics can reveal symptoms of model behaviour, while the 

process-oriented metrics can potentially diagnose causes. (See Neelin et al., (2023) for a detailed appreciation and application 65 

of process-oriented diagnostics to assess and improve model behaviour). For the purposes of demonstrating some of the critical 
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information that can be learned from analysing observations and models at sub-daily time scales, we will focus on the use of 

mixing diagrams (Santanello et al., 2009, 2011), two-legged metrics at multiple scales (Dirmeyer et al., 2011; Yin et al., 2023; 

Seo and Dirmeyer, 2022), and the Triggering Feedback Strength (TFS, Findell et al., 2011, 2015).  

 70 

 
Figure 1: LoCo metrics assess interactions between different parts of the earth system (y-axis) at different temporal (x-axis) scales. 
Yin et al. (2023) and Seo and Dirmeyer (2022) highlight the need to recognize that the two-legged metrics of Dirmeyer et al. (2012) 
yield results that are dependent on the temporal frequency of the input data, thus requiring a separation between hourly-to-daily 
(H2D) and monthly-to-seasonal (M2S) versions of the two-legged metrics. Esit et al. (2021) show promising predictability benefits 75 
from soil moisture initialization, extending the scope of soil moisture memory into the seasonal-to-decadal time frame. (Modified 
from Santanello et al., 2018.) 

 

Recent observational field campaigns have included high-frequency observations that can be compared to output from models 

covering a wide range of purposes and scales (e.g., ESMs, regional climate models, large eddy simulations, and single-column 80 

land-atmosphere models) to test assumptions about L-A behaviour. These include the Land–Atmosphere Feedback Experiment 
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(LAFE) at the Southern Great Plains (SGP) site near Lamont, Oklahoma, USA (Wulfmeyer et al., 2018), the Chequamegon 

Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors (CHEESEHEAD) 

in Wisconsin, USA (Butterworth et al., 2021), and the Land surface Interactions with the Atmosphere over the Iberian Semi-

arid Environment (LIAISE) experiment in northeastern Spain (Boone et al., 2021). For example, using high-frequency data 85 

from three observational towers from LAFE, Wulfmeyer et al. (2022) demonstrate some of the shortcomings of Monin-Obukov 

similarity theory (MOST, Monin and Obukhov, 1954) in the estimation of surface fluxes of sensible heat, latent heat and 

momentum in unstable conditions. The widespread use of MOST in many model parameterizations speaks to the progress 

enabled by its implementation. However, the recent acquisition of high-frequency observations like those from LAFE and 

longer-lifespan Land-Atmosphere Feedback Observatories (LAFOs) with the same instrumentation (Späth et al, 2023) expose 90 

model shortcoming which can only be evaluated with high-frequency model output. While “high-frequency” in the context of 

GCMs means something different than in the context of boundary layer turbulence (typically on the order of seconds), the data 

request presented here will enable evaluation of processes occurring on hourly to three-hourly time scales, enabling a leap 

forward in understanding both the processes themselves and ESM representations of those L-A coupling processes. 

The spatial scales of individual grid cells in ESM simulations included in the most recent Coupled Model Intercomparison 95 

Project (CMIP6) typically range from 50 km to 250 km, with models run at resolutions finer than 50 km eligible for 

participation in the High-Resolution Model Intercomparison Project (HighResMIP; Haarsma et al., 2016). These resolutions 

suggest that the footprint sampled from in situ observations (ranging from cm-scale soil moisture probes to wind- and height-

dependent flux tower sampling fetches on the order of hundreds of meters) is substantially smaller than individual ESM grid 

cells. This suggests that, when possible, observational comparisons should be made against sub-grid tiles representing 100 

fractional areas of differing land use types. However, saving tile-specific high-frequency data is likely not feasible for most 

modelling centres. Given that reality, the data request outlined here will enable previously impossible assessment of grid-cell 

mean behaviour throughout the diurnal cycle. Future work motivated by the CLASP project can extend these lines of inquiry 

to issues centred on sub-grid spatial heterogeneity, or to comparisons with global storm-resolving efforts like those of Stevens 

et al. (2019). 105 

While short-term simulations saving high-frequency output would allow for comparison of models with field campaigns, to 

accurately capture the long-term signal of L-A coupling characterized by the statistically-based L-A metrics shown in Figure 

1, sub-daily output of fields at the L-A interface must be saved as part of the routine diagnostic output from long simulations. 

Furthermore, previous studies have demonstrated that metrics assessing interactions between directly observed variables (e.g., 

TFS is not directly observed, but assesses the relationship between observed fluxes and precipitation) require longer datasets 110 

than directly observed variables (e.g., precipitation) to adequately sample the joint parameter space and compute a statistically 

robust climatology (Findell et al., 2015). 

To assess the coupling strength and details of the interactions in different parts of the L-A system of a GCM, a comprehensive 

data request would include: 

• Hourly 3D atmospheric profiles of potential temperature (θ), humidity (q), and three-dimensional winds (u, v, w); 115 
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• Hourly 3D soil profiles of moisture content (SM) and temperature (Tsoil); and 
• Hourly 2D fields of surface pressure, BL height (hPBL), precipitation (P), sensible heat flux (H), evapotranspiration 

(ET) and its component parts; near-surface (2m) temperature, humidity, and winds; net radiation (Rnet) fields 
(incoming and outgoing short- and long-wave radiation: SWdown, SWup, LWdown, LWup), and land surface 
temperature (LST). 120 

The atmospheric profiles should cover the region from the surface to the mid-troposphere in order to capture characteristics of 

air entrained at the top of the BL. The soil profiles should span from the top of the soil column down through the root zone, at 

a minimum. These data would allow for calculation of a host of LoCo metrics, including all but one of the metrics displayed 

in Figure 1, at the time scales that are most relevant to the daytime processes the metrics are meant to describe. (The GLACE-

Ω metric can only be determined with specific model simulations; see Koster et al., 2004.) However, we recognize that this 125 

would require copious amounts of archive capacity. Here we aim to reduce that request substantially and include only two-

dimensional fields. Our goal is to define a data request which is reasonable in its storage requirements, but still provides 

enough information to characterize the core aspects of the sub-diurnal processes central to L-A interactions. More specifically, 

the goal is to define a small but sufficient number of data samples per day from two-dimensional fields capturing the sub-

diurnal evolution and variability of: 130 

• Boundary layer properties (BL height; vertically-averaged or representative mixed-layer heat content, humidity, and 
advection); 

• Fluxes and radiation fields (precipitation, sensible and latent heat fluxes, net radiation or individual components); 
• A bulk measure of stability and humidity deficit above the BL, and 
• Root-zone and/or surface soil moisture and temperature conditions. 135 

In Section 2 we highlight the complexity of the L-A system, showing the many interaction pathways between individual 

component parts. In Section 3 we demonstrate why sub-daily data are required, use these results to provide substantive rationale 

for the minimum data frequency required to adequately characterize the sub-daily processes of interest, and share an example 

of the type of behaviour that could be routinely assessed if the requested data were regularly made available for model 

development and/or evaluation. In Section 4 we put forth our data request proposal, followed by conclusions in Section 5.  140 

2 Highlighting the complexity of the land-atmosphere system 

The novel “pipe diagrams” in Figure 2 compile linkages as coupling strength indices assessed from daily summertime (June-

July-August, JJA) data at the AmeriFlux tower at the SGP field site, along with corresponding diagrams from two versions of 

the National Oceanic and Atmospheric Administration (NOAA) United Forecast System (UFS) model for the grid cell closest 

to the SGP site. These coupling strength indices are modelled after the two-legged metrics, named in recognition of the two 145 

phases of interaction: the terrestrial leg, which assesses the connection between soil moisture and surface fluxes, and the 

atmospheric leg, which focuses on the connection between surface fluxes and the BL (Figure 1; Dirmeyer et al., 2011, 2014). 

Pipe diagrams from approximately 170 flux tower locations were used during recent model development, aiding the evaluation 
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of UFS Prototype 6 (P6) to Prototype 7 (P7) (Seo et al., 2023). An advantage of these diagrams is the ability to visualise a host 

of different L-A linkages at once, and thus identify systematic model biases or behaviours. 150 

The individual coupling strength indices in Figure 2 are all indicative of both the sensitivity of a target variable, T, (e.g., latent 

heat flux), to a source variable, S, (e.g., soil moisture), and the amount of observed variability:  

𝜎𝜎(𝑇𝑇)𝑟𝑟(𝑆𝑆,𝑇𝑇), (1) 

where 𝜎𝜎(𝑇𝑇) is the daily standard deviation of the target variable, and 𝑟𝑟(𝑆𝑆,𝑇𝑇) is the correlation between the two variables. In 

each pipe diagram, the absolute value of this index is proportional to the width of the link; the strength of the 𝜎𝜎(𝑇𝑇) term is 155 

listed under each variable name, and is visually revealed through the intensity of the green colour in the box around the variable 

name; the strength of the correlation term is enumerated with “r=” on each link, and is visually represented by the colour 

intensity of the link. The physically-expected sign of the correlation between each source and target variable is given by a red 

triangle on the link when a positive correlation is expected (e.g., high soil moisture is associated with high latent heat flux), 

and by a blue triangle when a negative correlation is expected (e.g., high sensible heat flux is associated with low evaporative 160 

fraction: 𝐸𝐸𝐸𝐸 = 𝜆𝜆𝜆𝜆 ⁄ (𝐻𝐻 + 𝜆𝜆𝜆𝜆), i.e., where H is sensible heat flux and 𝜆𝜆𝜆𝜆 is latent heat flux, with 𝐸𝐸 being the evaporation rate 

and 𝜆𝜆 the latent heat of vaporization). When the calculated correlation is of the opposite sign from this expectation, then the 

variability of the source term is not driving the variability of the target term, so the feedback is “severed” and the link is 

represented with a dashed line. 

Comparing Figures 2a and 2b quickly reveals that at the grid cell closest to the SGP site, the UFS P6 model exhibits stronger 165 

variability in surface fields and stronger coupling between the soils (both moisture and temperature) and the fluxes than is 

measured at the observational flux tower. Additionally, the modelled fluxes exhibit stronger coupling to 2m humidity and 

temperature than the observations show. Though observations have inherent uncertainties from measurement error and issues 

associated with the representativeness of a single point to the broader region characterized by the model grid cell, this 

information was used during the model development process, with changes being made to both the land model (Noah in UFS 170 

P6 to Noah-MP in UFS P7) and the boundary layer parameterization to improve the full spectrum of coupling strengths 

manifesting in UFS P7 (details of changes between UFS prototype versions are provided in Stefanova et al., 2022). As a result, 

the UFS P7 pipe diagram in Figure 2c is a better match to the observations of Figure 2a, than that of UFS P6 in Figure 2b.   

Pipe diagrams like Figure 2 can be extended vertically to include additional physical fields and states, accounting for additional 

links in the LoCo process chain (Santanello et al., 2018). For example, BL properties could include average BL potential 175 

temperature, humidity, or moist enthalpy, BL height, and height or pressure of the lifted condensation level (LCL). A final 

layer at the top of these pipe diagrams could include information about clouds and precipitation. The myriad of possible links 

in the process chains connecting individual elements within these pipe diagrams, and indeed within the physical land-

atmosphere system, demonstrate the complexity of interactions between the land and the near-surface atmosphere. Figure 2 

demonstrates that model parameterizations influence the modelled strength and connectivity of different parts of the L-A 180 

system, and that confronting models with process-level observations from different climate regimes can help expose model 

deficiencies and limitations. For that to be possible, however, model output must be temporally equivalent to the observations 
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in-hand, and it must adequately sample the behaviour of the physical 

processes of interest. While daily data were successfully leveraged to 

improve land-atmosphere coupling in the UFS model, the next section 185 

demonstrates some of the processes requiring sub-daily data. 

 
Figure 2: Land-atmosphere coupling pipe diagrams calculated from data 
at the US-ARM Southern Great Plains site [36.61N, 97.49˚W] and UFS 
model grid cells containing that location, demonstrating the complexity of 190 
land-atmosphere interactions, the need for more than one measure to assess 
coupling, and some of the potential inadequacies of modelled coupling at 
this example location. Widths of pipes are proportional to coupling index 
magnitude: |σ(T)r(S,T)|. Where the sign of the correlation between two 
terms is opposite of the expected coupling behavior, dashed blue links 195 
indicate severed feedbacks (see text for more information). The three faint, 
narrow, dashed lines in the bottom panel indicate weak, uncoupled 
correlations (faint blue color) and weak coupling index magnitude (very 
thin lines) for those variable pairings. Daily standard deviations in boxes 
and coupling index pipes list magnitudes and units; coupling correlations 200 
are shown as ‘r=’. (Adapted from 
http://cola.gmu.edu/dirmeyer/ufs/P6vP7_loco_chains_AMX.html.) 

 

3 Establishing the need for high temporal resolution data 

The Triggering Feedback Strength (TFS, Findell et al., 2011) is a 205 

measure of the sensitivity of afternoon rainfall occurrence to morning-

time evaporative fraction (𝐸𝐸𝐸𝐸 = 𝜆𝜆𝜆𝜆 ⁄ (𝐻𝐻 + 𝜆𝜆𝜆𝜆)). Using three-hourly 

data from the North American Regional Reanalysis (NARR; Mesinger 

et al., 2006), Findell et al. (2011) showed that high morning EF enhances 

the probability of afternoon rainfall east of the Mississippi and in 210 

Mexico, with higher EF leading to increases in afternoon rainfall 

probability of between 10 and 25% in these regions. By contrast, the 

intensity of rainfall was shown to be largely insensitive to surface flux 

partitioning, as assessed by the Amplification Feedback Strength (AFS; 

Findell et al., 2011). 215 

A follow-up study by Berg et al. (2013) showed that the Geophysical 

Fluid Dynamics Laboratory (GFDL) model AM2.1 exhibited similar 

sensitivity of afternoon rainfall likelihood on morning surface flux 

partitioning in the eastern US and Mexico, and a similar insensitivity of 

rainfall intensity to surface flux partitioning. However, the similar TFS 220 

http://cola.gmu.edu/dirmeyer/ufs/P6vP7_loco_chains_AMX.html
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results from AM2.1 and NARR occurred for different reasons. Like the two-legged metrics discussed above (Equation 1), the 

TFS is computed with a sensitivity term (the sensitivity of the probability of afternoon rain to variations in morning-time EF) 

multiplied by a standard deviation term (σEF). In contrast to the two-legged metrics, however, the calculation of the TFS is a 

summation of purposefully binned or segmented data to account for the possibility of non-uniform sensitivities in different EF 

regimes; indeed, sensitivity strength is substantially larger at EF > 0.6 than at smaller EF values (Findell et al., 2011). Berg et 225 

al. (2013) showed that the regions with high TFS values in AM2.1 were driven by larger EF variability (peak σEF values of 

0.2 in NARR, compared to 0.4 in AM2.1), while regions with high TFS values in NARR were driven by larger mean rainfall 

sensitivities (peak mean sensitivities above 2 in NARR, compared to less than 1 in AM2.1). The large values of σEF in the 

AM2.1 results also explained an additional region of high TFS values in AM2.1 in the northern central Great Plains of the US, 

extending into adjacent areas in southern Canada.  230 

Figure 3 shows the June-July-August TFS (panel a) and its two component parts (panels b and c) calculated from hourly 

European Centre for Medium-Range Weather Forecasts 5th reanalysis data (ERA5; Hersbach et al., 2018, 2020). Comparison 

with Findell et al. (2011) and Berg et al. (2013) show that NARR, ERA5, and AM2.1 exhibit the same range of sensitivity of 

afternoon rainfall triggering to morning-time flux partitioning, but in the ERA5 data, the peak TFS values of 15-25% only 

manifest in Mexico with some extension into the southern part of the mountainous US southwest. While the eastern US region 235 

shows up with relatively elevated component contributions in ERA5 (Figures 3b-c), the resultant TFS values are only 5-10% 

in most of the eastern US, and approach 15% in much of Florida (Figure 3a). The individual terms contributing to ERA5’s 

TFS results have peak values matching the smaller EF variability of the NARR data, rather than the high variability of AM2.1 

(Figure 3c here and Figure 6 of Berg et al., 2013), and sensitivities matching the smaller AM2.1 values, rather than those of 

the NARR data (Figure 3b here and Figure 7 of Berg et al., 2013). These differences across reanalysis datasets are likely 240 

impacted by differences in the data assimilation protocols and observational datasets ingested by ERA5 and NARR. In 

addition, the TFS may also be highly sensitive to each system’s parameterizations of the surface layer, boundary layer, and 

convection, since the surface fluxes at the heart of the TFS are not assimilated variables, but are wholly model dependent 

(Kalnay et al., 1996). Additional investigation is necessary to better understand these differences between the reanalyses and 

the model, but this behaviour can only be exposed with analysis of sufficiently high-frequency data. Here, data frequencies of 245 

at least 3 hours were essential to enable the separation of morning-time fluxes and afternoon precipitation events. 

 While a paucity of high-frequency data has forced many previous analyses of two-legged metrics (Equation 1) to rely on 

monthly mean data (e.g., Dirmeyer et al., 2014; Hu et al., 2021; Lorenz et al., 2015), Yin et al. (2023) highlight the need to 

recognize that the two-legged metrics yield results that are dependent on the temporal frequency of the input data (Figure 4 

and the H2D-M2S distinctions in Figure 1), in part because the magnitude of variability is dependent on the averaging period 250 

of the data being analysed, and in part because the inclusion of night time hours can mask the daytime feedbacks that are at 

the heart of the sensitivity between the variables of interest. Figure 4 shows that the assessment of the strength of the 

atmospheric leg measuring the impact of sensible heat flux, H, on BL growth (as assessed by the pressure of the lifting 

condensation level, pLCL) can be very different when using monthly (M), 24-hour entire-day (E), or daytime-only (D; 0700 to 
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1500 local time) time series. Different averaging periods of the input data effectively allow one to ask different questions about 255 

coupling: monthly-averaged data tell us about the seasonal variability of the terms being assessed and their coupling, while 

daytime-only data are needed to tell us about the direct impact of surface fluxes on BL properties, for example. In regions 

where the month-to-month variability is small (e.g., where mean H and pLCL values are similar for all summer months), 

substantial day-to-day variability in these terms will not be captured by monthly mean values (e.g., orange regions in Figure 

4). However, in regions where the progression into deeper days of summer tends to bring drier and drier conditions, differences 260 

across summer months (e.g., June compared to August) can be substantial, so monthly mean time series will still show high 

variability and potentially result in a diagnosis of a large coupling strength (e.g., blue regions in Figure 4). Comparing daily to 

sub-daily scales, Figure 4 shows about 30% disagreement in the highlighted regions with strong H-pLCL coupling determined 

from E versus D time series. The night-time component of E was shown to obscure the diurnal coupling signal in some areas, 

with complications caused by regionally-specific mechanisms (particularly in the very arid regions adjacent to the 265 

Mediterranean Sea) or UTC-

based time smoothing (Yin et 

al., 2023). These differences 

highlight the need for sub-

daily data to accurately 270 

capture the process-level 

connections between surface 

fluxes and the BL response. 

 
Figure 3: (a) The Triggering 275 
Feedback Strength (TFS; 
units of probability of 
afternoon (noon-6 pm) rain) in 
summer (JJA) based on ERA5 
hourly data from 1991 to 2020. 280 
The TFS algorithm follows 
Findell et al. (2015) but with a 
ten-bin segmentation of daily 
evaporative fraction (EF). 
Positive values indicate the 285 
morning EF positively affects 
the probability of the 
occurrence of afternoon 
precipitation. (b) The mean 
value of the sensitivity term 290 
contributing to the TFS 
(𝝏𝝏𝚪𝚪(𝒓𝒓) 𝝏𝝏𝝏𝝏𝝏𝝏⁄���������������), thus the mean 
sensitivity of afternoon 
rainfall to morning-time 
surface flux partitioning. (c) 295 
The variability term 
contributing to the TFS: the standard deviation of EF. 
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Figure 4: Two-legged metric analysis demonstrating the impact of different averaging periods on the assessment of coupling strength 
in summer (JJA and DJF for the North and the South Hemispheres, respectively). The diagnoses are based on the ERA5 (ECMWF 300 
ReAnalysis 5) reanalysis data from 1991 to 2020. The coupling strength between the sensible heat flux and pLCL is estimated by the 
TLM algorithm (Dirmeyer et al., 2006). Strongly coupled regions (top 15% percentile of land grid cells) are diagnosed by using 
different time series (i.e., D: daytime-only mean; E: 24-hour entire-day mean; and M: monthly mean). The Euler diagram is 
employed to illustrate the spatial differences between the three diagnoses. The areas of colored components in the Euler diagram 
are proportional to the sizes of specific sets. (Modified from Yin et al., 2023.) 305 

 

Seo and Dirmeyer’s (2022) thorough evaluation of the hourly evolution of BL temperature and humidity at flux tower 

observational sites can be leveraged to determine the minimum number of data points needed per day to adequately capture 

both the thermal and the moisture evolution of the BL. Figure 5a shows hourly mixing diagrams spanning all hours of the day, 

based on Seo and Dirmeyer (2022), plotting moist (x-axis) and heat (y-axis) energy content per unit mass within the mixed 310 

layer, averaged across the 10% of the 230 stations that were the most moisture-limited (red circles) and the most energy-limited 

(blue squares; see Supplemental Figure S1 for a global map with station locations). Through their detailed analysis, Seo and 

Dirmeyer highlight differences in the timing of the BL response to moisture fluxes compared to heat fluxes, with the thermal 

process chain often leading the moist process chain by 2-3 hours during the day, and rapid thermal decoupling in the late 

afternoon contrasted with a gradual decline of moist coupling throughout the evening hours. They also highlight dependence 315 

of the timing of humidity minimums on moisture availability: Figure 5a shows that the driest time for the BL is during early 

afternoon in moisture-limited regimes, but before sunrise in energy-limited regimes. Both moisture- and energy-limited regions 

show a morning time peak in BL humidity (7-9 am).  

Findell et al. (2017) showed that some of these behaviours can be captured in a statistical sense using monthly mean diurnal 

cycles of temperature and moisture, but a full step-by-step understanding of these detailed processes and interactions requires 320 

many data points per day. Figure 5b shows that 3-hourly output generally captures the critical phases and the maximum extent 
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of the diurnal excursions in T-q phase space, as well as the bulk of the diurnal asymmetry of the T-q evolution. The numbers 

to the right of each mixing diagram quantify the area within the curve (e.g., 8.26e106 J2/kg2 in the water-limited diagram of 

Figure 5a, compared to 1.23e106 J2/kg2 in the energy-limited composite) and make it clear that while the 3-hourly mixing 

diagrams underestimate the diurnal asymmetry, the process-relevant distinction of small asymmetry in energy-limited regimes 325 

compared to large asymmetry in water-limited regimes remains clear. While six-hourly data (Figure 5c) can capture the 

approximate timing of the humidity minimums (late afternoon versus early morning), such infrequent sampling can miss the 

most rapidly changing portions of the daytime T-q evolution (e.g., samples beginning at 0LST), leading to inaccurate 

assessments of the extent of the diurnal asymmetry in T-q energetic phase space. 

 330 

 
Figure 5: (a) The hourly mixing diagrams in water- (red) and energy- (blue) limited flux tower sites exhibits the coevolution of 
moisture (x axis) and thermal (y axis) energy content per unit mass within the BL (Modified from Fig. 5d in Seo and Dirmeyer, 
2022). The marks are shaded by the color determined by two-legged couplings corresponding to the local hour (referring to Fig. 5a 
in Seo and Dirmeyer, 2022). The black edged circle and square are the mean of the 24-hourly values in water- and energy-limited 335 
regimes, respectively. The colored numbers are the area within the curves (multiply displayed value by 10^6; units: [J/kg]^2); these 
values quantify the diurnal energetic asymmetry captured by each mixing diagram. Dashed black lines are lines of constant relative 
humidity. Note that x- and y-axis ranges differ. (b) The 3-hourly mixing diagrams in both climate regimes, computed with three 
different starting times: hour 0 (S0: solid), hour 1 (S1: dashed dot), and hour 2 (S2: dashed) LST. (c) The 6-hourly mixing diagrams 
as in (b), but with starting times at hours 0, 2, and 4 LST. 340 

4 Justifying our choices for how to reduce the data request 

Strategy for the reduction in time frequency 

To determine the optimal strategy for reducing the time frequency of the data request, yet still achieving the coupling 

assessment goals discussed above, we consider two possible strategies: (i) regular, gridded time intervals, or (ii) time intervals 

based on the local solar day (e.g., values for night-time, morning, and afternoon). Positive arguments for the first approach 345 

include the lack of subjectivity and the ease of implementation. Counter-arguments centre around geographic differences 
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imposed by the gridded approach. For instance, in the summertime, sunrise times along one longitudinal band differ by about 

two hours between high-latitude regions and the equator. Thus, a 5 am data point on the summer equinox would be after sunrise 

in Sweden but before sunrise in the Congo, even though both have a longitude of 18°E. This poses difficulties for investigations 

of, for example, the Triggering Feedback Strength (TFS), meant to capture the impact of early-morning evaporative fraction 350 

on afternoon precipitation (Findell et al., 2011). Capturing specific times of day becomes more complicated with reduced 

frequency of data collection or archival. Since hourly data represent 15° longitudinal bands around the globe, coarser frequency 

data inherently require grouping broad longitudinal slices into common time points. For 6-hourly data, an attempt to capture 

early-morning conditions within one 90° longitudinal slice would produce local times that might span 6 time zones, potentially 

ranging from, for example, 3 am at the western edge to 8 am on the eastern edge. Clearly processes at the land surface and 355 

within the boundary layer differ substantially between these times of day. Higher-frequency data would reduce the severity of 

these issues, albeit with more archive space required. 

Positive arguments for a data-archiving scheme linked to the solar day include fewer data points (and thus less archive capacity) 

needed to capture the three main phases of BL behavioural regimes (night-time, morning, afternoon), and a more uniform 

understanding of the solar conditions associated with each data point. However, any sub-daily selection based on the solar day 360 

requires a priori decisions that might be appropriate for one purpose, but which would restrict appropriateness for further 

study. For example, mixing diagrams are useful tools to understand BL evolution within each of the three solar day phases 

mentioned above. Saving average values within these three phases would eliminate the possibility of any sort of mixing 

diagram analysis of model behaviour. Additionally, interpretation of solar day-based data would be complicated by each 

archived data point representing different numbers of hours, both from day-to-day at one location, and from location-to-365 

location on each day. Furthermore, this strategy would require additional code being written and implemented at each climate 

modelling centre, and thus the possibility of differences in implementation quickly emerges.  

Here, we opt to make a request of regular, temporally gridded data to avoid the complications of solar day-based archiving 

and to maintain flexibility for future data usage. The negative features of the regular, gridded temporal data requests can be 

reduced with increased frequency of data storage. We propose 3-hourly data as a minimum request, with hourly or 2-hourly 370 

as improvements on that minimum. If this data request is still too cumbersome, a mask of oceanic regions can potentially be 

used to reduce the data volume by up to 2/3, though these data may be useful for the study of ocean-atmospheric boundary 

layer coupling processes. 

 

Other issues to confront  375 

In addition to decisions related to the reduction of the time frequency of data archiving, our data request must tackle difficult 

decisions related to (i) capturing mean BL properties while the height of the BL is changing, (ii) capturing adequate measures 

of the temperature and humidity gradients above the BL, and (iii) capturing soil conditions (moisture and temperature) most 

relevant to the partitioning of energy into surface fluxes of latent and sensible heat.  
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Determining average properties within the BL at any given time requires knowledge of the height of the BL (hPBL). Model-380 

computed hPBL is determined using different methods in different models, producing values which are self-consistent within 

each model’s framework and, therefore, should adequately capture the time evolution of the BL height at a given location, and 

the relative BL heights at different locations. However, night-time values of BL average properties will necessarily represent 

something different than daytime values, and values during the transition times of day will be tricky to compute and difficult 

to rely on. In addition, these times of day will change throughout the year. All of these issues suggest that care is needed in 385 

implementing these calculations and interpreting the results.  

Finally, for characterization of soil conditions most relevant to surface energy partitioning, a root-zone soil moisture would be 

most appropriate. However, since the root zone is both dynamic and dependent on vegetation type, no single depth can 

adequately capture the true root zone. Here we opt for a near-surface measure of the top 10 cm plus a slightly deeper measure 

averaged over the 10-100 cm interval. In both cases, we recognize that these are characterizations of the model’s soil wetness, 390 

but that this variable is a model-specific quantity, different from in-situ or remotely sensed measures of soil wetness, and which 

should be interpreted with recognition of the model value’s mean and variability (e.g., Koster et al., 2009, Benson and 

Dirmeyer, 2023).  

5 The Data Request 

Here we present a concrete data request, dividing the request into three categories based on the analyses that would be enabled 395 

and by the work required by model developers. Request A is the highest priority request, and focuses on standard model output 

of surface fields saved at higher frequency intervals than is currently routinely practiced, thus requiring no additional work by 

model developers, just additional archive space. This Request includes both Tier 1 and Tier 2 variables. Request B (second-

tier priority) focuses on archival of variables in the lowest 300 mb of the troposphere. Like Request A, Request B requires no 

additional work by model developers, just additional archive space, while Request C (third-tier priority) requires in-code 400 

modifications to calculate average properties within and above the BL. After each request, we briefly mention which metrics 

(mostly from Figure 1) and analyses would become possible with these additional data.  

The data length requirements of Findell et al. (2015) suggest that a minimum of ten years of data should provide for robust 

statistical analyses. Thus, for any simulation and/or time period of climatological interest, we request that these data are saved 

for at least a 10-year block of time. For historical and future scenario runs, it would be advantageous to have ten-year blocks 405 

saved at the beginning and end of the simulations. 

 

Request A: High-frequency archival of surface variables already included in standard model output: 

Table 1 details the variables included in Request A. The ten Tier 1 variables would allow for the computation of several two-

legged metrics at sub-daily time scales (including all of those included in Figure 2), soil moisture memory, TFS and AFS, 410 
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basic mixing diagrams, and the percentile soil moisture—aridity index framework of Duan et al. (2023). Assuming a 1-degree 

grid (for reference) without data compression, archival of Tier 1 variables would require approximately 13 GB/yr.  

Request A also includes several Tier 2 priority variables: deeper soil moisture information, and component terms of net 

radiation and evapotranspiration. These additional terms would allow for more in-depth understanding model depictions of 

radiative processes and of the role of vegetation in driving evaporative fluxes and feedbacks. However, they would nearly 415 

double the required archival requirements, and, thus, have been deemed Tier 2 priority variables. 

Of the ten Tier 1 variables listed in Table 1, the first eight were included at 3-hourly frequency in the HighResMIP data protocol 

(Haarsma et al., 2016), with soil temperature (tsl) saved at 6-hourly frequency and boundary layer depth (bldep) saved monthly. 

HighResMIP also included 16 other variables in their 3-hourly data request (for a total of 24 3-hourly variables), indicating 

that saving all of the Request A variables is not an insurmountable challenge. 420 

 

Priority Variable long name Units CMOR name Frequency 

1 Precipitation kg m-2 s-1 pr 3hr 

1 Surface upward sensible heat flux W m-2 hfss 3hr 

1 Surface upward latent heat flux W m-2 hfls 3hr 

1 Surface net radiation W m-2 * 3hr 

1 Near-surface (2m) air temperature K tas 3hrPt 

1 Near-surface (2m) specific humidity 1  huss 3hrPt 

1 Surface air pressure Pa ps 3hrPt 

1 Moisture in upper 10 cm of soil column kg m-2 mrsos  3hrPt 

1 Temperature of soil (in single near-surface 
layer) 

K tsl 3hrPt 

1 Boundary layer depth m bldep 3hrPt  

2 Components of surface net radiation: 
Surface downwelling longwave radiation 

Surface upwelling longwave radiation 
Surface downwelling shortwave radiation 

Surface upwelling shortwave radiation 
Ground heat flux 

W m-2  
rlds 
rlus 
rsds 
rsus 
hfdsl 

3hr 

2 Components of evapotranspiration: 
Evaporation from canopy 

Water evaporation from soil 
Transpiration 

kg m-2 s-1 
 
 

 
evspsblveg 
evspsblsoi 
tran 

 
3hr 
3hr 
3hr 

2 Moisture in 10-100 cm of soil column kg m-2 * 3hr 
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Table 1: Specifics of Request A. Grid cell average values are either 3-hourly time means (3hr) or at an instantaneous point in time 
at the end of the time interval (3hrPt). The * symbol indicates variables without standard Climate Model Output Rewriter (CMOR) 
names. 

 425 

Request B: High-frequency archival of data at several specified lower-tropospheric pressure levels: 

Table 2 details the five variables included in Request B for archival of select lower tropospheric pressure levels, specifically 

temperature, humidity, and three-dimensional winds. The priority here is to enable systematic exploration of BL processes 

throughout various stages of growth, development, and decay. Saving high-frequency data of full atmospheric profiles is not 

realistic, but saving a few select pressure levels would allow for the computation of atmospheric stability and humidity deficit 430 

in the early-morning hours (i.e., metrics like CTP and HIlow), mean properties within the BL, dθ/dz and dq/dz above the BL, 

the heated condensation framework, and more complex mixing diagrams than Request A would enable, including identification 

of advection and entrainment terms during multiple phases of BL growth and development. The six specific pressure levels 

requested are every 50 hPa between 950 and 700 hPa.  

 435 

Priority Variable long name Units CMOR name Frequency 

2 Eastward Wind at six pressure levels m s-1 ua 3hrPt 

2 Northward Wind at six pressure levels m s-1 va  3hrPt 

2 Omega (=dp/dt) at six pressure levels Pa s-1 wap  3hrPt 

2 Air Temperature at six pressure levels K ta 3hrPt 

2 Specific humidity at six pressure levels 1  huss 3hrPt 

Table 2: Specifics of Request B. The six requested pressure levels are every 50 hPa between 950 and 700 hPa. Grid cell average 
values are instantaneous in time at the end of the time interval (3hrPt). 

 

Request C: Variables requiring code modifications for internal computation: 

With Request C, we aim to enable more accurate mixing diagram work than is possible with Request B, while simultaneously 440 

reducing the archive requirements needed to assess mean properties within and above the BL. Request C entails code 

modifications to determine, at each time step, the BL mean thermal and moist energy content per unit mass (cpθ and λq, 

respectively), changes of these terms due to advection, and the mean potential temperature and humidity gradients across the 

top of the BL, given by hPBL (or the CMOR variable name bldep in Table 1). For a standard definition of hPBL, we suggest the 

Bulk Richardson number definition of Seidel et al. (2012), consistent with the data available in reanalyses such as ERA5 and 445 

MERRA2. Specifically, we request the mean BL properties vertically integrated from 0.1*hPBL to 0.8*hPBL, and mean θ and q 

gradients over the interval closest to 0.8*hPBL to 1.2*hPBL, given model level constraints (see Turner et al., 2014 for selection 

of these vertical bounds). These properties should be saved every three hours.  
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While Request C would reduce the archive requirements for mixing diagram work and provide a fuller picture of mean mixed 

layer behaviour, it would not allow for some of the other metric calculations that Request B does cover. Thus, these are 450 

complementary requests, rather than substitutes for each other. 

 

Priority Variable long name Units Frequency 

3 Mean BL heat content J kg-1 3hrPt 

3 Mean BL moisture content J kg-1 3hrPt 

3 BL heat advection tendency W kg-1 3hr 

3 BL moisture advection tendency W kg-1 3hr 

3 BL-top temperature gradient J kg-1 3hrPt 

3 BL-top moisture gradient J kg-1 3hrPt 

 Table 3: Specifics of Request C. The BL-mean properties should be vertically integrated from 0.1*hPBL to 0.8*hPBL, while the 
gradients across the BL top should be calculated over the interval 0.8*hPBL to 1.2*hPBL. CMOR names are not currently available 
for these quantities.   455 

6 Conclusions 

Increasing the time resolution of model output describing components of land-atmosphere coupling and processes within the 

land-atmosphere interface is essential to fully and accurately model, understand, and predict these processes, and to compare 

modelled processes with observational datasets. The data request described here will allow us to compare coupled earth system 

and climate models with observations from field campaigns and compare both diurnal and long-term properties of L-A 460 

interactions in different models and during model development. These sorts of comparisons are essential to fully assess the 

land-atmosphere coupling behaviours of different GCMs. Furthermore, these improvements to our understanding of processes 

at the land surface are essential to understanding the vulnerability of humans and ecosystems to changing climatic conditions 

and improving our resiliency in the face of a likely increase in extremes. 

Code and data availability 465 

The Copernicus Climate Change Service (C3S) provides access to ERA5 data freely through its online portal at 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels (Hersbach et al., 2020). 

The code for calculating two-legged metrics, TFS, and mixing diagrams can be found at https://github.com/abtawfik/coupling-

metrics (Tawfik, 2023). 

The source code for calculating diurnal mixing diagram is shared on GitHub (https://github.com/ekseo/CLASP_LoCo.git, last 470 

access: 06 July 2023; https://doi.org/10.5281/zenodo.8117559, ekseo, 2023). 
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The source code for data analysis and visualization of Figure 3 and 4 as well as the corresponding diagnostic results (i.e., 

triggering feedback strength and two-legged metrics based on ERA5 reanalysis data) are freely available on GitHub 

(https://github.com/yinzun2000/CLASP_LoCo, last access: 21 August 2023; http://doi.org/10.5281/zenodo.8304156).  

Flux tower observations used for Figures 2 and 5 are openly available from the FLUXNET2015 Tier 1 data 475 

(https://fluxnet.org/data/download-data/, Pastorello et al., 2020), the AmeriFlux network 

(https://ameriflux.lbl.gov/data/download-data/, Novick et al., 2018), the drought-2018 network 

(https://doi.org/10.18160/YVR0-4898, and Drought 2018 Team and ICOS Ecosystem Thematic Centre, 2020).  
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