
We are grateful for your constructive comments on the manuscript. Below we address
your comments individually. Our responses and changes are highlighted in red.

Author’s Reply to RC1:

L73: As someone unfamiliar with ICON, I found the description of the torus grid a bit
confusing. Is this a 2-dimensional domain? And it's only 5km large? Or is the resolution
5km, not the domain length?
Indeed, the resolution is 5 km, not the domain length. We changed the paragraph to
read (L81):

“The test case operates on a torus grid. This grid is created by a domain of 22 × 20 cells
where periodic boundary conditions are applied in x and y direction. The horizontal
resolution is 5 km, and there are 70 vertical levels in z direction. The simulation time
step is 20 s with a total simulation time of 120 min.”

L73: Why is the timestep so short? Is this how short the dynamical timestep of ICON
usually is? Is the microphysics stable with a longer timestep?

The short timestep is a reflection of the timestep on which SuperdropNet was trained.
The data from the superdroplet simulations was recorded at 20s time interval. As a
result, SuperdropNet can recursively predict 20s ahead.

The dynamical timestep of ICON varies with grid resolution, and the original bubble
experiment used a 30s timestep. We changed that to 20s to comply with
SuperdropNet's intrinsic time scale. Since SuperdropNet can predict 25 steps forward
in time, the maximum permissible timestep for microphysics is 500 s(~8 minutes).
Beyond which, SuperdropNet would generate erroneous predictions.

We added the following to the caption for Table 1:

“Note that tdyn and t2mom reflect the time step used for training SuperdropNet.”

L98: The "cold atmosphere" comment seems a bit oversimplified. In the test later in the
paper you show that there is seemingly only ice/snow without any liquid or rain. But in
many situations for temperatures below freezing mixed-phase clouds are prevalent in
the atmosphere. I would want to see a case with both liquid and ice to see how the ML



and bulk schemes work together, or if this presents an additional challenge to the
coupling.
We thank the reviewer for pointing out the possibility of a mixed-phase scenario. We
have results for the test case in a mixed-phase scenario and have added them in Fig 2c,
the appendix and the discussion in Section 4.2.1, and have updated Table 1.

L182: I do not understand the phrase "neither does coupling with SuperdropNet result
in dramatically different values" -- Do you mean that the 3 coupling approaches all give
the same results? Or is this still referring to the first part of that sentence that says no
negative values are observed?
Here we are still referring to the first part of the sentence. For clarity we changed it
to(L205):

“No negative values are observed, and the coupling with SuperdropNet does not result
in significant divergence of the simulation.”

Fig 4: I think the latent heat flux should be proportional to the evaporation (LHF =
rho*Lv*E). Therefore there is no need to show both panels (a) and (b). This is also
evident because the figures look identical.
We agree that this is redundant and hence, we have removed the panel for latent heat.
(Changed to Fig 3)

L202: As above, LHF and E are proportional, they both scale with the same factors. This
discussion doesn't make sense to me.
We agree and have subsequently removed this discussion. We now only refer to the
evaporative flux which by itself implies that similar patterns might be observed for the
latent heat flux. (Section 4.2.2)

Table 3: It would be easier to read if you swap the 3rd and 4th lines of the table so that
the processes are ordered in descending order of time taken. Also, to match the text,
and make it easier to read, you could write the times in μs rather than s. (Like L244).
We have swapped the rows and changed the unit to μs to match with the text.

L251/260: Can you not actually couple McSnow to ICON even for this very simple
dynamical warm bubble experiment? Or is this result presented in the Sharma and
Greenberg (in prep) paper? It would be very nice to show a comparison between the
emulator and the superdroplets in the online setting.
We agree that seeing superdroplets in ICON would be very interesting and would also



serve as a useful comparison for our results with SuperdropNet. However, the coupling
of McSnow to ICON is challenging. ICON is programmed to calculate the bulk moments
of the hydrometeors while McSnow, being a superdroplet based model, deals with
droplet distributions directly. The two-way coupling would require completely
overhauling the representation of atleast the warm rain processes such that ICON itself
would have to deal with droplet distributions instead of the bulk moments. We are
aware of research groups working in this direction and have been in touch with them,
but as of now, this remains a work in progress. The main disadvantage of superdroplet
models is their computational overhead. Even for our test cases, using a superdroplet
scheme would be very expensive(even if it was feasible). This is the primary challenge
that the previously mentioned research groups have been trying to address. We have
added a few lines at the end of Section 4.3.1 to address this:

“We note that coupling a superdroplet model directly to our test case in ICON is
extremely challenging. ICON represents the warm rain processes as bulk moments,
while McSnow represents them as droplet distributions. For an ideal benchmark
simulation, we would need to completely overhaul the current representation of cloud
microphysics processes in ICON and represent them as superdroplets for a two-way
coupling. At the time of conducting this research, ICON did not allow for the
representation of cloud microphysical processes as superdroplets, primarily as doing
so would be computationally expensive. This is an active area of research but as of
now, remains a work in progress, which makes SuperdropNet a cheaper, data-driven
alternative to the superdroplet simulations.”

Author’s Reply to RC2:

General comments:

The authors present their work coupling SuperdropNet into the ICON model.
SuperdropNet is a machine learning emulator of warm rain collision-coalescence. Part
of the paper explores integrating SuperdropNet into the ICON model and identifies
three methods to use. The numerical performance of these methods are compared for
a standard test-case of a warm rising bubble against the ICON bulk scheme.



The coupling is successful for all methods and produces reasonable results on
comparison with the current bulk scheme within ICON. I found this paper of merit and
an interesting read. I do have minor comments and suggestions for improvements.

I note that the emulator paper Sharma and Greenberg 2023 is in preparation, and I
appreciate the authors providing in the attached assets. If possible, it would help
support this work to have the article submitted before this work is published. However,
it does not significantly detract from this work to not yet have Sharma and Greenberg
2023 submitted.

We have now posted a preprint for Sharma and Greenberg 2024 on arxiv and are citing
that version in this study. The manuscript is under review but we hope that the
preprint would suffice.

Specific comments:

Line 25: Perhaps a more robust introduction to what an ML algorithm is, not everyone
will be familiar. You could consider referencing and discuss first usages and speedups
in atmospheric models, e.g. Chevallier et al 2000, Use of a neural-network-based
long-wave radiative-transfer scheme in the ECMWF atmospheric model, and
Krasnopolsky et al 2005, New Approach to Calculation of Atmospheric Model Physics:
Accurate and Fast Neural Network Emulation of Longwave Radiation in a Climate
Model. At the moment it is assumed that we all understand what an ML algorithm
consists of.
We changed the paragraph (lines 20 ff) by adding an explanation of ML algorithms:

“ML algorithms are statistical algorithms that are trained on data. Neural networks are
a widely used class of ML algorithms. They contain trainable parameters, the weights
and biases, that are learned from data by minimizing a cost function. The trained
algorithm can then be used for inference, i.e. application on unseen data of the same
kind. [...]”

We added the two references in the paragraph (lines 20 ff)

“This was first established by using neural networks to emulate long-wave radiative
transfer (Chevallier 2000, Krasnopolsky 2005). [...]”



Line 44: Here you say that SuperdropNet has been recently released, however I don’t
think SuperdropNet has yet been released. I understand that you have made your
integration of SuperdropNet into ICON available. I would make the distinction here, or,
point to a standalone release of SuperdropNet, as I have been unable to find it.
We agree that SuperdropNet hasn’t been released so we changed the sentence(L48) to
read “We present here the integration of SuperdropNet”.

Line 59/60: This first sentence encourages incorporating online testing/development
into an emulator. I agree with this, however it is followed by describing PyTorch,
Tensorflow, and others. It almost appears that this work is implying that PyTorch etc
have functionality for online testing/development. I suggest separating this
encouragement of online testing/development into its own paragraph.
Line 62: States that it is necessary to integrate the two programming languages with
one another. I disagree with the use of ‘necessary’. Certainly I agree that it is much
quicker and easier to use some sort of python-Fortran coupler, however I don’t think it
is entirely necessary. You could for instance write your emulator in Fortran, certainly
this has been done before.
Line 63: I don’t think the reference to Brenowitz and Bretherton 2019 supports the
claim that it is necessary to integrate the two programming languages with each other.
Brenowitz and Bretherton 2019 do provide a method of coupling, but I don’t see this
work supporting that it is ‘necessary’ to do so.
Line 64: You claim that ‘hybrid ML-ESMs must be computationally powerful enough for
verification experiments without requiring rewriting the ML code in Fortran’. It would
certainly be helpful if you didn’t have to rewrite in Fortran, if the coupled
Fortran-Python code performed similar speed-wise that would be excellent news,
however rewriting ML code in Fortran is a viable development route. I am aware of
research groups which are doing this.
We have rephrased the paragraph(L64 onwards) to address the reviewer’s four
comments as follows:

“To avoid devoting resources to the development of ML algorithms that fail in contact
with reality, we encourage incorporating online testing at an early stage. ML algorithms
are developed iteratively, and new versions should be tested quickly in their final place
of application in the Earth system model.

The popular software libraries for ML algorithm development, such as PyTorch (Paszke
et al., 2019), Keras (Chollet et al., 2023), or Tensorflow (Abadi et al., 2016), are based on



the Python language. On the other hand, ICON is written in Fortran. Online testing
requires either rewriting the ML emulator in Fortran, or integrating the two
programming languages with one another (Brenowitz and Bretherton, 2019). Since ML
algorithm development is an iterative process, frequent rewrites of the ML algorithm
would be required in the former case. In order to save developer resources, we
recommend coupling Python and Fortran at least during the stage of algorithm
development. ”

Line 73: Do you mean 2D periodic boundaries in the x-direction? The wording of ‘torus
grid’ is perhaps less common and could be confusing.
Line 73: I assume that the top and bottom of the domain is a fixed boundary and not
part of this torus? It is somewhat unclear.
Line 73: Do you mean the domain length in the x-direction is 5km? What about the
z-direction?
Line 73: It would be helpful to explicitly state that this is a 2D vertical slice, which has an
x and a z dimension.

We have changed the paragraph to read(L81):

“The test case operates on a torus grid. This grid is created by a domain of 22 × 20 cells
where periodic boundary conditions are applied in x and y direction. The horizontal
resolution is 5 km, and there are 70 vertical levels in z direction. The simulation time
step is 20 s with a total simulation time of 120 min.”

Line 82: What does McSnow stand for, looks like it might be a Monte-Carlo ice particle
physics model. It would be worth writing this.
McSnow is introduced in Brdar and Seifert. 2018 as “a novel Monte-Carlo ice
microphysics model” but this information can be misleading in our case as we use
McSnow for simulating warm rain microphysics. Hence, we decided to add “ McSnow, a
superdroplet based cloud microphysics model” in the Introduction where McSnow is
mentioned first (L50).

Line 82: The reference to Seifert and Rasp 2020 is misplaced here. In this context it
reads as if Seifert and Rasp 2020 contributed to the development of McSnow, however
this is not the case. I suggest separating this to stress the distinction between how
Brdar and Seifert, and Seifert and Rasp, both contributed to the training of
superdropNet.



We removed the reference to Seifert and Rasp 2020 (L102). We believe the next two
sentences explain the role of Seifert and Rasp 2020 reference in relation to the usage
of McSnow as well as presenting a simulation setup that was used for development of
SuperdropNet:
“In (Brdar and Seifert, 2018) McSnow was used for simulating ice particles, while in
(Seifert and Rasp, 2020) it was simulating a warm rain scenario. Similar to (Seifert and
Rasp, 2020), the training data for SuperdropNet is generated in a warm rain scenario
that describes only the conversion of cloud droplets into rain in a dimensionless
control volume. ”

Line 86: ‘we use multiple realisations of simulations to train SuperdropNet’ – it is my
understanding that this paper has nothing to do with the actual training of
SuperdropNet, and the training all happened in the (in prep) Sharma and Greenberg
2023. I would adjust this line to make the distinction obvious that Sharma and
Greenberg 2003 did the training.
It is true that SuperdropNet’s training happened in Sharma and Greenberg 2023. Since
the stochasticity of superdroplet simulations is a major feature, describing it in this
manuscript serves to give a brief account without the need for the reader to
immediately turn to Sharma and Greenberg 2023. To make the distinction clear we
have added a sentence in the paragraph before being referred here, which reads(L100):

“SuperdropNet is detailed in (Sharma and Greenberg 2024); therefore, we will provide
only a brief summary of the training procedure here”

Line 116: ‘DKRZ Levante system’. This is the first introduction of this system, I would
add a brief description of what this is.
We added the following description(L134):

“We perform the experiment with all three methods on the DKRZ Levante system.
Levante is a BullSequana XH2000 supercomputer with 3042 compute nodes using the
3rd generation of AMD EPYC CPUs (Milan) with 128 cores per node, NVIDIA A100 GPUs,
and a 130 Petabyte DDN filesystem. The nodes are connected to a Mellanox Infiniband
HDR100 fabric.”

Line 134: I would like to know what the limitations are of the DKRZ Levante system are
such that you are not able to test performance in a heterogeneous setting. Perhaps

https://www.dkrz.de/en/systems/hpc/hlre-4-levante?set_language=en


there are very good reasons, but it is unclear here.
We changed the sentence to(L154):

“Due to current limitations of the scheduling software employed in the DKRZ Levante
system, it was not possible to schedule simulations that span the CPU and the GPU
partition of the system. Thus, we were not able to test the performance in a
heterogeneous setting. ”

Lines 151-164: There are other ML libraries you could have added here. For example,
there is FTA (Fortran Torch Adapter) as used in
https://doi.org/10.3389/feart.2023.1149566. There is also the inference-engine written
in Fortran: https://github.com/BerkeleyLab/inference-engine. I’m sure there are
reasons why the authors omit these, perhaps these are not suited for this purpose, but
consider adding with reasons why they are not appropriate.
We thank the reviewer for pointing us to these additional libraries for coupling Fortran
and Pytorch. We note that FTA is similar to the libraries developed at ECMWF and
Cambridge, and cite the reference accordingly. We also note that the InferenceEngine is
restricted to feed-forward neural networks. We cite the work and discuss it accordingly
(Section 3.4):

“Four software libraries developed at ECMWF (Bonanni et al., 2022), the Cambridge
Institute for Computing in Climate Science (Elafrou et al., 2023), NVIDIA (Alexeev, D.,
2023), and Tongji University (Mu et al., 2023) address ML inference directly by exposing
the Tensorflow and Pytorch APIs for Fortran, respectively. This adds the benefit of not
requiring a Python runtime environment at the time of execution. Since we require
flexibility to use Python code beyond ML inference, and data exchange is done here via
RAM comparable to the approach described in Sect. 3.1, we did not investigate these
libraries further.

[...]

The Fortran-Keras bridge (Ott et al., 2020) allows for ML inference in Fortran based on
ML algorithms developed in the Keras framework. This limits flexibility, since only those
network layers and functionalities supported by the library can be used. On a similar
note, the implementation of the ML algorithm in Neural Fortran (Curcic, 2019) is
contingent on the library, and the Fortran InferenceEngine (Rouson et al., 2023) is
restricted to feed-forward neural networks. We chose to forego these methods since



we desire the flexibility to use any novel Pytorch developments without depending on
their integration into an external library.”

Line 169: The bulk moment scheme in the two-moment cloud microphysics module of
ICON is used, but it would be useful to include s description of how the bulk scheme
functions and represents the collision-coalescence.
We have added section 2.2 that briefly describes the main approach used in the bulk
moment scheme in ICON.

Figure 4: I do find the grey area a bit confusing for two reasons: 1. It does not appear to
have an axis. 2. On fig4a it looks like the grey area starts at -2.5kg m-2 s-1 and on fig4b
it looks like it starts at -6.5Wm-2. I think this would be rectified by adding another
labelled y-axis for the grey area.
We have changed Fig 3 accordingly by adding a second y-axis to the plot. The figure
caption reflects the change:

“[...] The gray area shows the grid-averaged rain obtained using the bulk-moment
scheme (see Figure 1).”

Fig4 description: Heat flux is mentioned here, I would state that you have a ‘larger heat
flux out of the grid-cell’.
From what we understand, the evaporative and latent heat fluxes are shown as
negative due to the convention prevalent in meteorology, where heat being absorbed
from the surroundings for phase change is denoted as negative. To make this clear, we
changed the caption for Figure 3 (numbering has changed) to “High negative values
indicate a larger amount of heat transfer.”

Fig7, lines 209-219: I would comment on how the SuperdropNet rain droplet profiles
are very smooth in comparison to the bulk moment scheme. I would like it explained
why the bulk moment scheme has these rather sharp increases at say around 4500m
at 40mins, 60mins, 80mins.
Fig 6: We were unable to find any studies that imitate our exact setup to study this
behavior. However, various studies have noted that lagrangian schemes have an
advantage over the traditional bulk moment schemes as they prevent artificial rain
formation due to the upward movement of the cloud boundary (Arabas and Shima,
2012, Andrejczuk et al., 2008, Stevens et al., 2005 ). This might explain the behavior
seen in Fig 6(ordering has been changed) as the upward movement of the cloud

https://journals.ametsoc.org/view/journals/atsc/70/9/jas-d-12-0295.1.xml?tab_body=pdf
https://journals.ametsoc.org/view/journals/atsc/70/9/jas-d-12-0295.1.xml?tab_body=pdf
https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2007JD009445
https://journals.ametsoc.org/view/journals/mwre/133/6/mwr2930.1.xml


boundary (in case of the bulk moment scheme-blue) leads to rain formation at a higher
altitude as the simulation evolves with time. But since this has not been explicitly tested
in our settings, we chose not to comment directly on it in the manuscript. Most of these
studies involved an LES simulation and/or observations for comparison. In our case we
only have a much smaller domain in a highly idealized test scenario.

Table 2: Comparing the bulk scheme to the SuperdropNet scheme seems somewhat
odd. I suppose that the scheme which SuperdropNet is based upon is not in ICON and
would be difficult to put in, so I understand why this comparison was done. I would like
some explanation for why this speed comparison is still relevant, and why the scheme
SuperdropNet is based upon cannot be put into ICON directly. I think you mention this
in your conclusions, but a brief sentence here would be helpful too.
We believe that adding the timing comparison in Table 2 shows that adding an
externally coupled module leads to a significant slow down. We changed the caption of
Table 2 to read:

“Time spent in the two-moment scheme in the ICON warm-bubble scenario, using the
bulk-moment scheme (Fortran), and SuperdropNet (Pytorch) coupled to ICON. Note
that by coupling SuperdropNet to ICON we introduce a scheme that would be
computationally intractable for cloud microphysics in standard numerical simulations.
A direct comparison of runtimes is therefore not possible.”

We have added the following lines at the end of section 4.3.1(L263) explaining why
McSnow cannot be coupled to ICON as of now:

“We note that coupling a superdroplet model directly to our test case in ICON is
extremely challenging. ICON represents the warm rain processes as bulk moments,
while McSnow represents them as droplet distributions. For an ideal benchmark
simulation, we would need to completely overhaul the current representation of cloud
microphysics processes in ICON and represent them as superdroplets for a two-way
coupling. At the time of conducting this research, ICON did not allow for the
representation of cloud microphysical processes as superdroplets, primarily as doing
so would be computationally expensive. This is an active area of research but as of
now, remains a work in progress, which makes SuperdropNet a cheaper, data-driven
alternative to the superdroplet simulations.”



Line 225: Perhaps I have missed it in this work, but how much is the speedup of
SuperdropNet over the model it is based on? This seems like an important thing to
include.
From our experience of generating training data from McSnow, and running offline
inference on SuperdropNet, the speedup varies. The speedup depends entirely on the
initial conditions of the simulation that are assumed. For simulations using a small
amount of initial water content, SuperdropNet speeds up the simulation by atleast a
factor of 100 whereas for simulations which start with a sufficiently high quantity of
water, the speedup might only be by a factor of 2. The primary reason for this is that
SuperdropNet’s inference time per simulated minute is constant whereas for McSnow,
it scales with the initial conditions of the simulation. Since this information pertains to
running SuperdropNet offline and comparing it to the training simulations from
McSnow, we decided against adding this information in this manuscript as here we
focus on “online” coupling only.

Line 263: I would argue that it ‘would likely’ rather than ‘might’ increase performance.
It’s fairly clear that you would see speedups by fully integrating a superdropNet model
written in Fortran within ICON. I do agree however, that losing flexibility of
development is a good reason why this was not done.
We agree and have changed the wording from “might” to “would likely”.(L296)

Technical corrections:

Line 7: ICON acronym should be properly introduced here.
We added the complete name in line 7

Line 22: Reference order should be in date order, i.e. Christensen and Zanna 2022
should come first.
We rearranged the order of references here to match with the rest of the
manuscript(newest first).

Line 29: Brenowitz and Bretherton (2018) should be in parenthesis.
Added the parenthesis



Line 41: ‘total droplet concentration and the total liquid water content’ would be more
explicit.
We changed it to “total droplet concentration and the total water content”(L45)

Line 55/56: References should be written in date order.
Rectified the order (L59)

Line 71: ‘testcase’ should read ‘test case’.
Changed to “test case” (L74)

Line 119: The reference to ‘Rigo and Fijalkowsi (2018)’ should be within parenthesis to
read better.
Added parenthesis (L140)

Line 171: ‘incurred’ not ‘incured’.
Changed to “incurred” (L194)

Fig4 description: Replace ‘higher’ with ‘larger’. Higher can be ambiguous and be
interpreted as ‘more positive’.
Changed to “larger” (Fig 3)

Line 263: ‘loosing’ should be written ‘losing’.
Changed to “losing” (L296)


