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S1 Coordinate system:

We use two different sets of coordinates:

– (x, y, z) the regular cartesian coordinates

– (s1, s2, n), across the slope, downslope, and normal to the slope

In the following, physical quantities denoted by a star (∗) correspond to quantities expressed in the (s1, s2, n) coordinates.5

The angle between z and n is α.

S2 Momentum balance

S2.1 Forces

In the following, P is the air pressure, and ρ is the air density.10

The forces we are considering are:

– Pressure gradient force (PGF):

– in (x, y, z): PGF =− 1
ρ ·∇(P )=− 1

ρ · (
∂P
∂x ·x+ ∂P

∂y ·y+ ∂P
∂z · z)

– in (s1, s2, n): PGF∗ =− 1
ρ · (

∂P
∂s1

· s1 + ∂P
∂s2

· s2 + ∂P
∂n ·n)

– Buoyancy force (Gravity)15
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– in (x, y z): Gravity = g · z

– in (s1, s2, n): Gravity =−g · sin(α) · s1 − g · cos(α) ·n

– Coriolis force:

– in (x, y z): Coriolis = f · v ·x− f ·u ·y, with (u, v) the wind speed coordinates in (x, y)

– in (s, n): Coriolis = f · v∗ · s1 − f ·u∗ · s2 with (u∗, v∗) the wind speed coordinates in (s1, s2)20

– Turbulence and frictional forces : F

S2.2 Momentum balance

The momentum balance equation in (x,y, n) is:


Dv
Dt =− 1

ρ ·
∂P
∂x +Fx

Dw
Dt =− 1

ρ ·
∂P
∂z − g+Fz

(1)

25

Since

v = v∗ · cos(α)−w∗ sin(α)

w = w∗ · cos(α)+ v∗ sin(α)
And

v∗ = v · cos(α)+w · sin(α)

w∗ = w · cos(α)− v · sin(α)

Dv∗

Dt
=

Dv

Dt
· cos(α)+ Dw

Dt
· sin(α) (2)

Using:


∂
∂x = cos(α) · ∂

∂s − sin(α) · ∂
∂n

∂
∂z = sin(α) · ∂

∂s +cos(α) · ∂
∂n
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We end up with the following equations in (s,n) coordinates:
Dv∗

Dt =− 1
ρ
∂P
∂s − g · sin(α)− f ·u∗ +Fs

Dw∗

Dt =− 1
ρ
∂P
∂n − g · cos(α)+Fn

(3)

35

We introduce Pr and P ′ as the background reference pressure and its perturbation, with P = Pr +P ′. Both variables are in

hydrostatic equilibrium. They depend on time, horizontal and vertical coordinates.


Dv∗
Dt =− 1

ρ
∂Pr

∂s − ρr

ρ · g · sin(α)− 1
ρ
∂P ′

∂s − ρ′

ρ · g · sin(α)− f ·u∗ +Fs

Dw∗
Dt =− 1

ρ
∂Pr

∂n − ρr

ρ g · cos(α)− 1
ρ
∂P ′

∂s − ρ′

ρ · g · cos(α)+Fn

(4)
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When the slope is small, we can approximate a hydrostatic equilibrium for w∗, meaning that:


Dw∗

Dt ≈ 0

∂P
∂n =−ρ · g · cos(α)

(5)

As Pr and P ′ are in hydrostatic equilibrium as well,
∂Pr

∂n =−ρr · g · cos(α)
∂P ′

∂n =−ρ′ · g · cos(α)
(6)45

We define ρr0 and Pr0 a constant density and a constant pressure in the horizontal dimensions which value remain close to ρ

and P . We integrate Eq. 6 with respect to the n coordinate and we divide by ρr0:

1

ρr0

h∫
n

∂P ′

∂n
dn=−g · cos(α)

ρr0

h∫
n

ρ′dn (7)

where h is a height above which P = Pr and P ′ = 0. Therefore:

1

ρr0
P ′(n) =−g · cos(α)

ρr0

h∫
n

ρ′dn (8)50

Introducing the potential temperature θ = ( P
ρR )1−κ(P0)

κ, with P0 = 1000 hPa, we use the logarithmic derivative:

∆(θ)

θ
= (1−κ)

∆(P )

P
− ∆(ρ)

ρ
(9)

In the case of a shallow circulation:

∆(θ)

θ
=−∆(ρ)

ρ
(10)

We define θr0 as the potential temperature associated with ρr0 and Pr0:55

=⇒ 1

ρr0
P ′ =−g · cos(α)

θr0

h∫
n

θ′dn (11)

We derive the previous equation with respect to s:

1

ρr0

∂P ′

∂s
=−g · cos(α)

θr0

h∫
n

∂θ′

∂s
dn (12)
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As ρr0 remains close to ρ:

1

ρ

∂P ′

∂s
≈−g · cos(α)

θr0

h∫
n

∂θ′

∂s
dn (13)60

Using the different developments and simplifications that we have made, we can rewrite Eq. (4) for the downslope coordinate:

Dv∗

Dt
=− 1

ρ
[
∂Pr

∂s
+ ρr · g · sin(α)]︸ ︷︷ ︸
Large-scale

+
g · cos(α)

θr0

h∫
n

∂θ′

∂s
dn

︸ ︷︷ ︸
Thermal wind

− ρ′

ρ
· g · sin(α)︸ ︷︷ ︸
Katabatic

−f ·u∗︸ ︷︷ ︸
Coriolis

+Fs (14)

Thermal wind THWD is then computed as follows:

THWD =
g · cos(α)

θr0

h∫
n

∂θ′

∂s
dn (15)

Eq. (14) has been derived in what we call "sigma coordinates". From here we are unable to compute the large-scale acceleration65

because we don’t have access to pr or to ρr. We will need another formula for this term.

From (1) and (3):

∂Pr

∂s
+ ρr · g · sin(α)≈−1

ρ

∂Pr

∂x
(16)

Let vr be a wind speed such that Pr and vr are in thermal-wind balance.

−1

ρ

∂Pr

∂x
=−f.vr (17)70

Using the chain rule:

vr =− 1

ρf

∂Pr

∂z
(
∂z

∂x
)|Pr (18)

Thus, with Φr the geopotential associated to Pr

vr =−ρrg

ρf
(
∂z

∂x
)|Pr

=−ρrg

ρf
(
∂Φr

∂x
)≈− 1

f
(
∂Φr

∂x
) (19)

Using the definition of the potential temperature and the derivative with respect to P :75

∂vr
∂P

=− R

fPr
(
∂Tr

∂x
)|Pr (20)

Pr
∂vr
∂P

=−R

f
(
P

P0
)

Rd
Cp (

∂θr
∂x

)|Pr
(21)
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If P and Pr are similar enough, which is a huge hypothesis, we can write:

P
∂vr
∂P

=−R

f
(
P

P0
)

Rd
Cp (

∂θr
∂x

)|P (22)80

And it leads us to this expression:

∂vr
∂ln(P )

=−R

f
(
P

P0
)

Rd
Cp (

∂θr
∂x

)|P (23)

As θr(x,y,z) = τ0(x,y)+ γ0(x,y) · z (see article), with z the altitude above ground level, we obtain:

∂θr
∂x

|P =
∂τ0
∂x

+
∂γ0
∂x

tz+ γ0 ·
∂z

∂x
|P (24)

At 500 hPa, on average, ∂γ0

∂x · z ≈ 10−2 and ∂z
∂x · γ0 ≈ 10−4 . The following simplification is thus made to compute vr:85

∂θr
∂x

|P =
∂τ0
∂x

+
∂γ0
∂x

· z (25)

S3 Choice of a lower boundary Hmin for linear interpolation of θ

In order to accurately select Hmin, it is crucial to identify the minimum height at which the vertical gradient of potential

temperature diverges. The chosen threshold for this study depends on an initial guess, which is γ500−350 computed between90

350 and 500 hPa. A sensitivity test has been conducted to determine which multiplier N of γ500−350 should be accepted as a

maximum threshold for γ0 computed between Hmin and 350 hPa. The smaller the multiplier, the likelier Hmin is to be greater

than Z500. In these cases, Hmin is way too high in the atmosphere, and there is no improvement in comparison to the initial

guess. On the other hand, the higher the multiplier, the likelier is the interpolation to extend excessively close to the surface

(Hmin < 100 m agl). As we assume the surface processes to always be active under 100 m agl, in these cases, Hmin is forced95

to this value.

The minimum value of the multiplier of γ500−350 for which Hmin is always smaller than Z500 (red line on Fig. SS1) is a

good indicator of the optimal value for the multiplier of γ500−350. This value is comprised between 3 · γ for D17 and 6 · γ for

DC.

Note that there is no substantial difference between the background potential temperature computed with 3, 5 or 7 γ, as100

shown for D17 at 7 m agl. Therefore, a compromise was reached, using 5 · γ, which is an intermediate value between the

optimal multiplier at D17 and DC.

S4 Supplementary Figures
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Fig. S1. Number of timesteps for which Hmin is greater than Z500 (orange line) and number of timesteps for which Hmin is smaller than

100 m agl and forced to 100 m agl in July 2010 at 4 different stations (a) D17, (b) D47, (c) D85, (d) DC. The red line indicates the minimum

value of the multiplier of γ for which Hmin is always smaller than Z500.

Fig. S2. θ0 (background potential temperature) computed at D47, at surface level (7 m agl) for July 2010, using 3 ·γ (blue line), 5 ·γ (orange

line) and 7 · γ (green line) threshold for determining Hmin.
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Fig. S3. Distributions of July 2010 2m MAR (black distributions) and observed (colored distributions) wind-speed at (a) D17 (b) D47 (c)

D85 (d) DC. The black and colored fits correspond to the Weibull fit respectively for MAR and for the observations. The four horizontal lines

indicate the mean wind-speed of each station.

Station Shape parameter Scale parameter

κobs κMAR λobs λMAR

D17 1.49 2.72 10.04 12.84

D47 7.14 4.42 88.96 28.72

D85 1.46 3.03 4.80 16.47

DC 1.05 1.83 1.62 4.40
Table S1. Weibull parameters associated with the distributions displayed on Fig. S3
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Fig. S4. Vertical profiles averaged over July 2010-2020 of each downslope acceleration (top panel, the x-axis extends from -15 to 15

ms−1 h−1) and cross-slope accelerations (bottom panel, the x-axis extends from -6 to 6 ms−1 h−1) for the 4 zones on the transect.
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Fig. S5. (a) Mean July 2010-2020 total wind speed, (b) wind speed associated to the sum of dominant terms, i.e. katabatic, large-scale,

thermal wind and turbulent acceleration (c) Difference between (a) and (b) at surface level (∼7 m agl), computed with 3-hourly MAR

outputs.
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Fig. S6. Comparison of MAR PGF output with our MBD PGF at the surface at D17 (a, d), D85 (b, e) and DC (c, f). Left panel (a, b, c):

3-hourly time serie comparison of MAR PGF versus MBD PGF for a winter month (August 2012). Right panel (d, e, f): scatter plot of MAR

PGF versus MBD PGF for the months of winter (June, July, August) 2010-2020.
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Fig. S7. (a) Normalized root mean square error (NRMSE) computed for the PGF (July 2010-2020) along the transect, between MAR (online)

and our MBD method, at 7 m agl. The red line indicates the average NRMSE value on the transect. (b) Histogram of the NRMSE on the

continent. The two vertical red lines represent the 5% and 95% percentiles of the total distribution for July 2010-2020.
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Fig. S8. Examples of profiles exhibiting a high Normalized Root Mean Square Error (NRMSE) between the native MAR PGF and our MBD

PGF at D17: (a) no abrupt increase in the vertical derivative of potential temperature at the top of the inversion layer (b) Intrusions of an

air-mass (characterized by a non strictly monotonous profile of potential temperature) (c) Secondary linear section with a different slope

under 500 hPa
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Fig. S9. Fourier transform of katabatic (red), large-scale (blue) and thermal-wind (pink) accelerations for the 4 stations on the transect.
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