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Abstract. Exposure to element carbon (EC) and NOx is a public health issue that has been gaining 15 
increasing interest, with high exposure levels generally observed in traffic environments e.g., roadsides. 16 
Shanghai, home to approximately 25 million in the Yangtze River Delta (YRD) region in east China, has 17 
one of the most intensive traffic activities in the world. However, our understanding of the trend in 18 
vehicular emissions and, in particular, in response to the strict Covid-19 lockdown is limited partly due 19 
to a lack of long-term observation dataset and application of advanced mathematical models. In this 20 
study, NOx and EC were continuously monitored at a near highway sampling site in west Shanghai for 21 
5 years (2016-2020). The long-term dataset was used to train the machine learning model, rebuilding the 22 
NOx and EC in a business-as-usual (BAU) scenario in 2020. The reduction in NOx and EC attributable 23 
to lockdown was found to be smaller than it appeared because the first week of lockdown overlapped 24 
with the lunar new year holiday, whereas, at a later stage of lockdown, the reduction (50-70%) 25 
attributable to the lockdown was more significant, consistent with the satellite monitoring of NO2 26 
showing a reduced traffic on a regional scale. In contrast, the impact of the lockdown on vehicular 27 
emissions cannot be well represented by simply comparing the concentration before and during the 28 
lockdown for conventional campaigns. This study demonstrates the value of continuous air pollutant 29 
monitoring at a roadside on a long-term basis. Combined with the advanced mathematical model, air 30 
quality changes upon future emission control and/or event-driven scenarios are expected to be better 31 
predicted. 32 

1 Introduction 33 

Shanghai is an economic center of China, acting as a major transport hub. In 2019, the number of civilian 34 
vehicles was over 4 million in Shanghai, approximately 13% higher than that in 2017 (Ministry of 35 
Transport, 2020). On average, the daily ridership in Shanghai was over 57 million, with the turnover 36 
quantity of motor vehicles of approximately 235 million passenger car unit kilometers (Ministry of 37 
Transport, 2020). As a response to the Covid-19 outbreak, strict lockdown measures were initiated in 38 
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major cities across China in 2020, including the megacity of Shanghai in the Yangtze River Delta (YRD) 39 
region (He et al., 2020; Wang et al., 2020; Wu et al., 2021). The lockdown measures generally started in 40 
late January and lasted roughly one month, during which normal human activities were constrained 41 
substantially (Wang et al., 2020; Lin et al., 2023). The lockdown measures, such as shutting down cross-42 
city travel and requiring people to stay at home, were strictly implemented to minimize human activities 43 
(Liu et al., 2020; Zhao et al., 2020). As a result of these restrictive measures, anthropogenic emissions 44 
of air pollutants, in particular, vehicular emissions, have been found to been reduced substantially as 45 
evidenced by the evolution of NO2 which is routinely measured at the ground air quality monitoring site, 46 
as well as from the satellite monitoring (He et al., 2020; Li et al., 2021; Wu et al., 2021). 47 

The impacts of vehicular emissions of NO2 on public health are significant both through direct harm 48 
on inhalation and as a precursor to secondary pollutants such as ozone and particulate matter (PM) (Li 49 
et al., 2019; Lu et al., 2019; Lyu et al., 2022; Lin et al., 2023). Although NO2 concentration is regulated 50 
by air quality standards, limitations of NOx (NO+NO2) emission are becoming new emission standards 51 
for new vehicles (Grange et al., 2017). In addition to NOx emission, on-road vehicles were also the major 52 
source of primary PM emission, comprising various organic and inorganic species (Hallquist et al., 2009; 53 
Fuzzi et al., 2015; Lin et al., 2018; Duan et al., 2020; Lin et al., 2020). Elemental carbon (EC) or black 54 
carbon is a major component of fine PM (PM2.5) from vehicular emission (Chang et al., 2018; Lin et al., 55 
2020; Jia et al., 2021; Wang et al., 2022c). EC  is emitted as a result of incomplete combustion of gasoline 56 
or diesel in the internal combustion engine (Lin et al., 2020; Jia et al., 2021), with significant health and 57 
climate implications (Ramanathan and Carmichael, 2008; Cappa et al., 2012; Rappazzo et al., 2015). 58 
Because of the intensive traffic activities in Shanghai, exposure to EC has become a public health issue 59 
that has been gaining increasing interest, with high individual EC exposure levels generally observed in 60 
traffic environments e.g., roadsides (Lin et al., 2020; Zhou et al., 2020; Jia et al., 2021). With the recent 61 
implementation of high emission standards (e.g., China IV and V), gasoline vehicles are generally less 62 
polluted, in terms of EC emission when compared to diesel vehicles (Lin et al., 2020; Huang et al., 2022). 63 
Gasoline-powered vehicles are currently comprising over 90% of the total vehicles in China, with the 64 
trend of phasing out of vehicles with old emission standards (i.e., China I–III) (Wang et al., 2019; Wang 65 
et al., 2022a). Nevertheless, on-road vehicular emissions are still one of the major sources of NOx and 66 
EC in urban China (Zheng et al., 2018; Jia et al., 2021). Moreover, the total vehicular emission is also 67 
impacted by traffic mix and volume, vehicle ages, and vehicle speed, while meteorological variables e.g., 68 
wind speed and wind direction can impact the measured concentrations of air pollutants, making the 69 
quantification of vehicular emission challenging in the real-world ambient environment. 70 

The strict Covid-19 lockdown measures provided a unique opportunity to study the changes in event-71 
driven vehicular emissions (González-Pardo et al., 2022; Borlaza et al., 2023; Hay et al., 2023; Patel et 72 
al., 2023), formulating a scientific basis for designing future air quality mitigation strategies. However, 73 
the degree of reduction in vehicular emissions that can be attributable to the Covid-19 outbreak varied 74 
greatly in different studies (up to over two-fold differences; (Jia et al., 2020; Wang et al., 2020; Wu et 75 
al., 2021)). For example, by directly comparing the NOx concentrations before and during the Covid-19 76 
lockdown period, Jia et al. (2020) found a 56-58% reduction in NOx during the Covid-19 lockdown 77 
period in Shanghai. However, the lockdown period overlapped with the Chinese Spring Festival holiday 78 
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(Wang et al., 2020), during which human activities including traffic were already largely reduced. 79 
Moreover, meteorological conditions (e.g., wind speed and direction) may vary, and, therefore, the direct 80 
comparison between two different periods does not necessarily reflect the trend in emissions. To 81 
decouple the meteorological effects, a meteorological normalization or de-weathering process was first 82 
proposed by Grange and Carslaw (2019) using a tree-based machine learning algorithm. Vu et al. (2019) 83 
developed the de-weathering process to investigate the seasonal trend of typical air pollutants routinely 84 
measured in Beijing and the de-weathered pollutants showed a good agreement with the primary 85 
emission from the emission inventory. Using a similar de-weathering process and taking into account 86 
the holiday effects. Dai et al. (2021) showed that the reduction (-15.4%) in NO2 attributable to Covid-19 87 
lockdown was, on average, roughly half of the total reduction (-29.5%) from comparing the measured 88 
and counterfactual NO2 in a business as usual (BAU) scenario during the overlapping period in 31 major 89 
Chinese cities. The decline in NO2 attributable to the lockdowns was also shown to be not as large as 90 
expected in 11 cities globally after a de-weathering process (Shi et al., 2021). However, most of these 91 
tree-based machine learning studies did not quantify the importance of the input variables, making these 92 
the machine learning process non-explainable or like a “black box” (Lin et al., 2022; Wang et al., 2022a). 93 
An explainable machine learning algorithm such as the SHapley Additive exPlanation (SHAP) can 94 
quantify the impact of meteorological variables (Lundberg et al., 2020; Qin, X. et al., 2022; Wang et al., 95 
2022a). However, few studies have applied the explainable machine learning algorithm to study the trend 96 
in vehicular emissions. Moreover, most previous studies focused on the changes in the measured NO2 97 
concentrations, which were routinely measured in air quality monitoring site (Wang et al., 2020), while 98 
few studies reported vehicular EC emissions based on long-term (years) measurement, therefore, limiting 99 
our understanding of vehicular PM2.5 emissions under such a policy intervention and more importantly 100 
our ability to predict future air quality changes upon similar emission control strategies. 101 

In this study, hourly EC and NOx were continuously measured for five years (2016-2020) at a near 102 
highway sampling site in west Shanghai. A machine-learning model i.e., random forest, was applied to 103 
train the model to rebuild the measured EC and NOx using meteorological and temporal variables as the 104 
model input (Grange et al., 2018; Grange and Carslaw, 2019; Grange et al., 2021; Wang et al., 2022a; 105 
Lin et al., 2023). The SHAP algorithm (Lundberg et al., 2020) was used to quantify the impact of 106 
meteorological variables on the measured EC and NOx. A business-as-usual (BAU) scenario was 107 
assumed in 2020 and compared with the measured EC and NOx, quantifying the reduction attributable 108 
to the lockdown measures. Implications of future emission control measures on vehicular emissions are 109 
discussed. 110 

2 Method 111 

2.1 Field sampling 112 

Measurements of the NOx and EC were conducted continuously from 2016 to 2020 (5 years) at a near 113 
highway sampling site at the Dianshan Lake (DSL) supersite (31.09° N,120.98° E, approximately 15 m 114 
above ground), with two highways (G318 and G50) located approximately 1 km west of the sampling 115 
site. The sampling site is located in Qingpu District in western Shanghai (Fig. S1), 50 km west of 116 
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downtown Shanghai. It is at the intersection of Jiangsu, Shanghai, and Zhejiang Provinces. Windrose 117 
analysis showed that the sampling site could be affected by the two nearby highways during both 2016-118 
2019 (normal years) and 2020 with Covid-19 lockdown measures implemented (Figure S2). 119 

Details of the instrument used to measure EC and NOx were provided previously (Jia et al., 2020). 120 
Briefly, EC was measured on an hourly basis using a Sunset Carbon Analyzer (Model RT-4, Sunset Lab, 121 
USA), while hourly NO and NO2 were monitored using a Thermo Scientific gas analyzer (Thermo 42i, 122 
Thermo Fisher Scientific, Massachusetts, USA). The seasonal variation of EC and NOx is shown in 123 
Figure S3. For 2015-2019, the median of EC varied in the range of 1.0-1.5 μg m-3 with higher 124 
concentrations in winter than in summer. The median of NOx varied in the range of 45-55 μg m-3 with 125 
higher concentrations in winter than in summer for 2015-2019. The Covid-19 lockdown measures were 126 
implemented in 2020, resulting in lower concentrations of NOx/EC but a similar seasonal trend (Figure 127 
S3). Meteorological variables of air temperature (air_temp; oC), wind direction (wd; degree), wind speed 128 
(ws; m s-1), relative humidity (RH; %), pressure (hPa), and rainfall (mm) were measured using a Vaisala 129 
automatic weather station (WXT520, Vaisala Ltd., Finland) with a time resolution of 1 hour. 130 

Satellite images of NO2 were obtained from the Sentinel-5P Level-3 Near Real-Time dataset based on 131 
the observation of the TROPOspheric Monitoring Instrument (TROPOMI) for 2019 and 2020 (Lin et al., 132 
2023). The spatial and temporal distribution of vertical column densities (molecules cm-2) of tropospheric 133 
NO2 was used to study the changes in vehicular emissions as a response to strict lockdown measures 134 
implemented in 2020. 135 

2.2 Data analysis 136 

2.2.1 Machine Learning Set-up and Validation 137 

A machine learning algorithm - Random Forest (Grange et al., 2018; Wang et al., 2022a; Wang et al., 138 
2022b) was deployed to understand the impact of Covid-19 lockdown on the exhaust emissions from the 139 
near highways in 2020 based on a business as usual (BAU) scenario. A modelling workflow is shown in 140 
Figure S4. NOx and EC were used as a marker of traffic exhaust emissions as traffic was its main 141 
contributor in Shanghai (Jia et al., 2021). In this study, the diurnal patterns of EC and NOx show typical 142 
rush hours peaks during both the normal and Covid-19 lockdown periods, consistent with the emission 143 
pattern from traffic (Fig. S5). 144 

Meteorological (ws, wd, air_temp, RH, rainfall, and pressure) and time (date_unix, day of the year, 145 
weekday, hour of the day, and day of the lunar year) variables were used as model inputs to explain the 146 
hourly mean EC and NOx concentrations. The time variable of date_unix is the number of seconds since 147 
1 January 1970. Because the day of the lunar new year is different in the Gregorian calendar, it was 148 
necessary to include the day of the lunar year to better represent the Chinese New Year holiday, which 149 
usually causes a reduction in pollutant concentration during the holiday (Wang et al., 2020; Dai et al., 150 
2021). For each random forest, the number of trees in the forest was set to 300, while a minimal nod size 151 
was set to five following e (Grange et al., 2018).  152 

The time resolution for the random forest features and the target was 1 hour. The Covid-19 lockdown 153 
started in late January 2020 and lasted roughly 1 month (see Fig. 1). The number of data points modelled 154 
in the Random Forest model was 6244, covering one month before and after the start of the Covid-19 155 
lockdown for the same period for 5 years (Fig. 1). Data with missing values were excluded (8% of the 156 
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data). Data before the start of the Lunar new year (i.e., January 24, 2020) were used to train and test the 157 
model with a total number of data points of 5616.  80% (4493 data points) of the dataset was randomly 158 
selected to train the dataset, while the rest 20% (1123 data points) of the dataset was used to test the 159 
model. The training-testing percentages followed Grange et al. (2021). The random forest model was 160 
performed using the latest “rmweather” R package e (Grange et al., 2018). Based on the built forest, data 161 
after the Lunar new year was estimated using the features during the Covid-19 period, i.e., the BAU 162 
scenario (Fig. S4).  163 

Validation of the developed Random Forest was performed by comparing the time series of the 164 
predicted and measured NOx/EC for both the testing and training dataset based on the correlation 165 
coefficient R and slope between the time series of measured and predicted pollutants. A good simulation 166 
often features a high value of correlation coefficient (>0.6) and slope close to unity (Grange et al., 2021; 167 
González-Pardo et al., 2022; Qin, Y. et al., 2022). The time series of the predicted NOx/EC showed a 168 
good agreement with the measured ones with correlation coefficients in the range of 0.89-0.98 and slopes 169 
close to unity, suggesting the developed Random Forest model captured the variation of the target 170 
pollutant well. 171 
2.2.2 Quantification of the reduction in pollutants attributable to the Covid-19 lockdown 172 
Based on the developed Random Forest model, the estimated NOx and EC concentrations in a BAU 173 
scenario were derived (Fig. S3). The BAU scenario assumed everything was the same in 2020 as in the 174 
previous years. Because the random forest captured the variation of the target pollutant better than the 175 
multi-linear regression model (Table S1), the estimated NOx and EC concentrations reflected the 176 
corresponding pollutant in a BAU scenario better. The long-term measurements of NOx/EC covered 177 
multiple years were necessary to train the model as a comparison to short-term sampling. The BAU 178 
analysis was performed using a function within the “rmweather” R package (Grange et al., 2018). 179 

The estimated NOx/EC concentrations were compared with the measured ones during the holiday (the 180 
first week of the lunar year, 167 data points), transition (from day 8 to Lantern Festival, i.e., day 15; 206 181 
data points), and after the transition period (250 data points), when the lockdown measures were most 182 
restrictive. The differences between the estimated and measured NOx/EC are regarded as the portion that 183 
can be attributable to the Covid-19 lockdown measures (Grange et al., 2021). Specifically, to get the 184 
pollutant concentration in a BAU scenario, a machine learning model was trained by the data over the 185 
previous four years to capture the variability of pollutant concentrations using the same input variables 186 
as detailed in Sect. 2.3.1. After training, the grown forest was used to predict pollutant concentrations 187 
experienced beyond the training period during the Covid-19 lockdown. As a result, the time series of the 188 
predicted pollutant beyond the training period is a counterfactual, representing the model estimation of 189 
pollutant concentrations during the BAU scenario. The pollutant concentrations in the BAU scenario 190 
were subsequently compared with what was observed, with the differences (in %; Fig. S3) representing 191 
the magnitude of the reduction attributable to the Covid-19 lockdown. 192 
 193 
2.2.3 Feature importance analysis using the SHAP algorithm 194 
In this study, SHAP (https://github.com/slundberg/shap) was applied to explain the output of the machine 195 
learning model, quantifying the importance of the meteorological variables (Lundberg et al., 2020; 196 
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Oukawa et al., 2022). SHAP is a game theoretic approach that connects optimal credit allocation with 197 
local explanations using the classic Shapley values and their related extensions (Lundberg et al., 2020). 198 
SHAP analysis was performed using the Python package of SHAP (version 0.41.0) and scikit-learn 199 
(version 1.2.0). 200 

SHAP produced an interpretable machine-learning model using an additive feature attribution 201 
method (Lundberg et al., 2020).  SHAP quantified the contribution of the input meteorological variables 202 
to a single prediction at a specific time, producing a SHAP value in the same unit as the target pollutant. 203 
An overview of which meteorological variables were most important for predicting EC/NOx was 204 
obtained based on the SHAP values of every feature for every time point. The SHAP overview plot sorted 205 
meteoritical variables by the sum of SHAP value magnitudes over the entire sampling period. SHAP 206 
values were obtained to show the distribution of the impacts each meteorological variable had on the 207 
model output. 208 

3 Results and Discussion 209 

3.1 Trend of observed NOx during the holiday period and Covid-19 lockdown 210 

Figure 1a shows the time series of NOx for 4 weeks before and after the start of the Chinese lunar new 211 
year for 5 years (2016-2020) measurement at the near highway sampling site in west Shanghai (Fig. S1). 212 
To understand the impact of the Covid-19 lockdown measurements on traffic emission, we focus on the 213 
NOx time series in 2020 in comparison to the averaged time series of NOx (grey line) for the previous 214 
four years (i.e., the mean of 2016-2019). The beginning of the 2020 lockdown, starting on January 24, 215 
overlapped with the start of the Chinese New Year holiday when human activities have already been 216 
reduced to a large extent as most migrant workers leave the city for their hometowns. Therefore, the 217 
holiday effects need to be taken into account when evaluating the impact of the national lockdown 218 
measures on the measured pollutants at the near highway sampling site. 219 

For 2016-2019, a large reduction in NOx was seen during the 7-day holiday period when compared to 220 
before the holiday. After the holiday, NOx levels started to bounce back during the transition period (i.e., 221 
the period before the lantern festival at day of the year (DOY) 15) and finally reached a similar level 222 
after the transition period when compared to that before the holiday (Fig. 1a).  Specifically, before the 223 
holiday, the mean concentration of NOx was 72.8 μg m-3 (± 68.8 μg m-3; one standard deviation), while, 224 
during the holiday, NOx concentration was 22.6 μg m-3 (± 11.0 μg m-3). After the holiday, the NOx levels 225 
increased from 42.6 μg m-3 (± 29.4 μg m-3) during the transition to 60.6 μg m-3 (± 39.3 μg m-3) after the 226 
transition period. As a result, compared to the average NOx level (72.8 μg m-3) before the holiday, NOx 227 
was reduced by over 65% (i.e., 50.2 μg m-3) during the holiday for a normal year.  228 

Similar to 2016-2019, the observed NOx in 2020 was also largely reduced (60%) during the holiday 229 
period when compared to before the holiday (Fig. 1b). Specifically, the NOx before the holiday was 79.5 230 
μg m-3 (± 61.9 μg m-3), while it was 29.0 μg m-3 (± 4.2 μg m-3) during the holiday. Because the Covid-19 231 
lockdown started on the same day as the holiday, the reduction in NOx observed at the sampling site 232 
attributable to the lockdown measures was smaller than it appeared. In other words, simply comparing 233 
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the air pollutant concentration during the first 7-day of lockdown to that before the lockdown would 234 
overestimate the impact of Covid-19 on the measured air pollutant when holiday effects were strong. 235 

However, NOx remained at low levels during the transition and after the transition period in 2020, i.e., 236 
the last two weeks during the lockdown, instead of rapidly rising as observed in 2016-2019 (Fig. 1). The 237 
mean concentration during the transition period was 32.6 μg m-3 (± 9.3 μg m-3) and was 34.8 μg m-3 (± 238 
19.7 μg m-3) for the last two weeks during the lockdown in 2020, which was 25% and 50% lower, 239 
respectively, when compared to the same period for 2016-2019. Because it usually takes some time for 240 
the control measure to take effect, focusing on the first 7-day of the lockdown may not represent the true 241 
impact of the Covid-19 lockdown on air quality. Instead, as the lockdown measures took effect, a large 242 
reduction in NOx can be seen at the late stages of the lockdown when NOx was supposed to be increasing. 243 
Therefore, we focused on the comparison of NOx during the last two weeks of the lockdown (labeled as 244 
“lockdown” in Fig. 1 and afterward if not specified otherwise) to study the impact of lockdown measures 245 
on traffic emission at this sampling site (discussed in Sect. 3.4). 246 

3.2 Observed EC reduction attributable to the lockdown control policies 247 

The measured EC at the near highway sampling site showed a diurnal pattern with a clear morning 248 
rush hour peak, consistent with that for NOx (Fig. S5), suggesting EC was mainly affected by the nearby 249 
traffic. The measured EC also showed a dependence on wind speed and wind direction, with a higher 250 
concentration associated with low wind speed from the southwest direction, i.e., from the highway (Fig. 251 
S6). The conclusion of EC being mainly from traffic is consistent with previous source apportionment 252 
studies in Shanghai (Chang et al., 2018; Jia et al., 2021). 253 

Figure 2 shows the time series of EC before and during the 2020 lockdown as well as the average time 254 
series of EC (grey line) for the previous four years (i.e., the mean of 2016-2019). Similar to NOx, the 255 
2016-2019 EC level during the holiday was reduced due to the reduced traffic (Fig. 2). Specifically, the 256 
mean EC concentration was 1.08 μg m-3 (± 1.04 μg m-3) during the holiday, roughly 40% lower compared 257 
to that (1.74 ± 1.22 μg m-3) before the holiday. During the transition period for 2016-2019, EC increased 258 
to 1.03 μg m-3 (± 0.72 μg m-3). Afterward, EC increased to 1.53 μg m-3 (± 1.04 μg m-3), very close to the 259 
levels before the holiday. 260 

For the 2020 CNY holiday or the first week of the Covid-19 lockdown, EC was also reduced to a 261 
similar level (0.88 ± 0.45  μg m-3) as 2016-2019 (1.08 μg m-3; Fig. 2). Similar to NOx, the EC reduction 262 
attributable to the lockdown measures was not as large as it appeared for the period overlapping with the 263 
holiday. However, EC remained at a low level during (0.92  ± 0.58 μg m-3) and after the transition (0.78  264 
± 0.48 μg m-3) period. This is because the month-long lockdown measures kept the traffic at a low level 265 
for a prolonged time. This is consistent with the pattern observed for NOx, further confirming the 266 
measured EC and NOx at this near highway sampling site were mainly from traffic emissions. The mean 267 
EC concentration during the transition period or roughly the second week of lockdown in 2020 was 10 % 268 
lower than the same period for 2016-2019, while the mean EC concentration during the last two weeks 269 
of lockdown was 50% lower than the same period for 2016-2019. The low level of EC during and after 270 
the transition period was due to the lockdown measures, reducing the traffic volume and, therefore, 271 
reducing the corresponding traffic-related EC emission. 272 
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3.3 Rebuilding the measured NOx and EC using a machine learning algorithm 273 

The measured mass concentrations of atmospheric NOx and EC were affected by the meteorological 274 
variables including wind speed and wind direction (Fig. S5). This is particularly true for multiple years 275 
of measurement when the meteorological variables varied over these years. Therefore, the concentration 276 
measured at different years was not directly comparable when meteorological variables were varying in 277 
addition to emission strength across years. Moreover, the relationship between the measured NOx/EC 278 
and meteorological conditions was not linear. This is demonstrated by the relatively low values of 279 
correlation coefficient (i.e., Pearson’s R of 0.45-0.48 and R2 of 0.20-0.23) between the rebuilt NOx/EC 280 
and the meteorological parameters using the multilinear regression model (Table S1). Therefore, the 281 
multilinear regression model failed to rebuild the measured NOx/EC satisfactorily.  282 

Figure 3a shows the scatter plot between the time series of the rebuilt and measured NOx for the 283 
training and testing dataset.  The predicted NOx was well correlated with the measured NOx with a 284 
correlation coefficient (R) of 0.89-0.98, suggesting over 80 % of the data (R2 >0.8) can be explained by 285 
the machine learning model. This value is higher than that from the multilinear regression model (Table 286 
S1). Therefore, the machine learning model demonstrated a better performance than the multilinear 287 
regression model in capturing the relationship between the NOx and meteorological variables. 288 

Figure 3b shows the scatter plot between the time series of the predicted and measured EC for the 289 
training and testing dataset. Similar to NOx, the rebuilt EC was well correlated with the measured EC 290 
with a correlation coefficient (R) of 0.9-0.98, suggesting over 80 % (R2 of 0.81-0.96) of the EC can be 291 
explained by the machine learning model. However, for both NOx and EC, the slope for the linear fit was 292 
in the range of 0.67-0.85, suggesting the predicted values were, on average, 13-33% lower than the 293 
measured values. By examining the data, the lower than unity slope was mainly caused by the data points 294 
with high concentrations. These data points can be regarded as outliers that were not captured properly 295 
by the machine learning model since these data points deviated largely from the averaged values. 296 

To evaluate the importance of different meteorological variables, the SHAP model was applied (See 297 
method section). Figures 4a and 4b show the distribution of SHAP values (in μg m-3) obtained during 298 
the rebuilding of NOx and EC, respectively, while Figures 4c and 4d show the respective mean absolute 299 
of the SHAP values. The meteorological variable with a high SHAP value was associated with high 300 
importance, whereas a SHAP value closer to zero means the meteorological variable was less important. 301 
For NOx, ws is the most important meteorological variable (Fig. 4), with low ws contributing up to over 302 
100 μg m-3 and high ws contributing negatively to NOx (down to -40 μg m-3).  Air temperature, RH, wd, 303 
and pressure had SHAP values in the range of -40 μg m-3 to 70 μg m-3, while rainfall was least important 304 
with SHAP values of <10 μg m-3 (Figs. 4a and 4c). Similarly, ws was also the important variable for EC, 305 
with low ws contributing positively to the EC (SHAP value of up to over 2 μg m-3, Fig. 4b). Wd, pressure, 306 
air temperature, and RH had similar SHAP values (<1.5 μg m-3). Although rainfall was less important, 307 
high rainfall was associated with low SHAP values (Figs. 4b and 4d), consistent with the wet deposition 308 
of aerosol. 309 
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3.4 Trend of meteorologically normalized NOx and EC: a business-as-usual scenario 310 

To evaluate the impact of the lockdown in 2020 on the NOx/EC emission at this near highway sampling 311 
site, a business-as-usual (BAU) scenario was assumed. The BAU scenario in 2020 assumed that 312 
everything was similar to what would happen previously, i.e., without the lockdown measures. For the 313 
BAU scenario in 2020, NOx and EC would drop during the holiday, but increase their concentration 314 
levels during the transition and reach a similar level to that before the holiday (Fig. 5), similar to that 315 
observed in 2016-2019 (Fig. 1 and 2). Through the comparison of the 2020 BAU to the measured 316 
NOx/EC in 2020, the reduction in NOx/EC attributable to Covid-19 can be quantitatively evaluated. 317 

The NOx and EC concentrations during the holiday, transition, and lockdown period were normalized 318 
to that before the holiday (Fig. 5). For BAU in 2020, the NOx during the holiday was reduced to 53% of 319 
the level for that before the holiday. In comparison, the measured NOx during the holiday was 36% of 320 
the level before the holiday. Therefore, the difference (17%) between BAU-2020 and 2020 was 321 
attributable to the Covid-19 control measures. In other words, the measured NOx was roughly 30% 322 
(17%/53%) lower than what would be without the control measures. During the transition period, the 323 
NOx level for BAU-2020 returned to ~75% of the level before the holiday. In comparison, the measured 324 
NOx was only 40% of that before the holiday. Therefore, the measured NOx was approximately 45% 325 
lower than the BAU-2020. After the transition period, NOx returned to a similar level to that before the 326 
holiday for BAU-2020. However, the measured NOx was only 40% of that before the holiday. As a result, 327 
the NOx reduction attributable to the Covid-19 lockdown measures was the most significant after the 328 
transition period, which was approximately 60% of the BAU-2020. Therefore, the month-long lockdown 329 
measures kept the NOx at a low level consistently, demonstrating the effectiveness of the lockdown in 330 
reducing traffic emissions as the lockdown measures continued. 331 

Similar to NOx, EC also showed the largest reduction during lockdown when compared to the BAU 332 
2020 (Fig. 5b). Specifically, EC was roughly 60% lower during the lockdown in 2020 than the BAU 333 
scenario in 2020, while the reduction in EC was 40% and 30% lower during the transition and holiday 334 
period, respectively. As a result, both NOx and EC showed a similar level of reduction which were 335 
attributable to the lockdown measures. 336 

3.5 Reduction in traffic emission during the Covid-19 lockdown on a regional scale 337 

Figure 6 shows the TROPOMI images of NO2 in the YRD region over the same period, i.e., before the 338 
holiday and after the transition, for the years 2019 and 2020. By comparing the vertical column densities 339 
of NO2 monitored over the same period in 2019 and 2020, the evolution of satellite-monitoring of NO2 340 
showed a consistent trend with that observed from the ground monitoring at the near highway sampling 341 
site (Fig. 1-3). In particular, a great reduction (50-70%) in NO2 during the lockdown period in 2020 was 342 
seen when compared to that over the same period in 2019, whereas after the transition period in 2020, 343 
NO2 was expected to return to a similar level as that before the holiday i.e., the BAU scenario discussed 344 
in Sect 3.4. Therefore, the reduction (50-70%) in NO2 in 2020 was attributable to the lockdown measures 345 
based on the knowledge gained from the surface monitoring site. 346 

Specifically, the vertical column concentration of NO2 at the DSL was highly elevated before the 347 
holiday in 2019 with mean vertical column concentrations of over 18×1015 molecules cm-2. After the 348 
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transition period in 2019, NO2 returned to a slightly lower value (16-18×1015 molecules cm-2) compared 349 
to that before the holiday. This is consistent with the BAU scenario assumed in 2020 (Fig. 5). In 2020, 350 
NO2 before the holiday was similar to the level over the same period in 2019 (18-20×1015). However, 351 
during the lockdown period, the NO2 was 8-10×1015, 50-70% lower than in the same period in 2019. 352 
Such a reduction was attributable to the lockdown measures. In addition, the satellite images also 353 
demonstrate that traffic emissions were largely reduced during the lockdown on a regional scale in the 354 
YRD region. 355 

4 Discussion 356 

Through the comparison of EC and NOx before and during the lockdown in 2020, as well as the same 357 
period in the previous years (2016-2019), we showed that the reduction in vehicular emissions that could 358 
be attributed to the lockdown measures was complicated and cannot be achieved by simply comparing 359 
the concentration difference between before and during the lockdown. This is because vehicular 360 
emissions have their own trend during the Chinese holiday when vehicular emission was largely reduced 361 
(Dai et al., 2021). Here, we showed that, due to the overlapping of the first week of lockdown with the 362 
holiday, the reduction in vehicular emission attributable to the lockdown was smaller than it appeared. 363 
This trend can be only revealed from multiple years of continuous measurement and would be easily 364 
missed by a conventional field campaign that only lasted months. For example, Jia et al. (2020) reported 365 
a 56-58% reduction in NOx during the Covid-19 lockdown period by directly comparing the NOx 366 
concentrations to the before-holiday period in Shanghai. Here, we showed NOx was already reduced by 367 
approximately 60% during the holiday week for a normal year. Such a trend in traffic emissions during 368 
the holiday week is consistent with the findings from previous studies (He et al., 2020; Dai et al., 2021; 369 
Shi et al., 2021). Considering the holiday effect, Dai et al. (2021) reported a reduction of ~15% in NO2 370 
attributable to the Covid-19 lockdown period in Shanghai during the holiday week. This value is similar 371 
to this study's 17% reduction in NOx.  However, previous studies focusing on only the holiday week 372 
may underestimate the impact of the Covid-19 lockdown on air quality over an extended period because 373 
the holiday period lasted more than one week. During the last two weeks of the lockdown, an 50-70% 374 
reduction in both NOx/EC was attributable to the Covid-19 lockdown. Since the lockdown measures 375 
often take time to be executed more extensively, the later stages of air pollution reduction may better 376 
represent the air quality effect of Covid-19.  377 

Many studies have shown the impact of lockdown on traffic emissions, but with different degrees of 378 
impact partly (Jia et al., 2020; Wang et al., 2020; Shi et al., 2021). Most previous studies focused on gas 379 
pollutants i.e., NO2 probably because NO2 was a regular gas pollutant that is routinely measured at the 380 
air quality monitoring sites across the major Chinese cities (He et al., 2020), while few reported the 381 
particulate EC emission from traffic partly due to the scarcity of the dataset. EC is light absorbing and is 382 
regarded as a warming agent second to CO2 (Jacobson, 2001; Cappa et al., 2012; Liu et al., 2015). In 383 
addition, EC is one of the major particulate pollutants that can cause adverse health effects (Rappazzo et 384 
al., 2015).  To the best of our knowledge, this is the first study to illustrate the impact of lockdown on 385 
vehicular EC emissions at a near highway sampling site based on 5-years of continuous measurement. 386 
Such a dataset is rare in the literature since lockdown measures restrict the movement of instrument 387 
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operators. Only with good maintenance of the instrument at the sampling site can we keep the sampling 388 
going on during the strict lockdown.  389 

To decouple the effects of the meteorological variables on the measured NOx and EC, a machine 390 
learning model was trained and tested based on the 5-year dataset. The machine learning model emerges 391 
as a powerful model in air quality studies especially the development of SHAP (Lundberg et al., 2020) 392 
making the machine learning model explainable rather than a black box as in most previous air quality 393 
studies (Grange et al., 2017; Grange and Carslaw, 2019; Vu et al., 2019; Shi et al., 2021). The explainable 394 
machine learning model of SHAP showed meteorological variables especially ws and wd were key 395 
parameters that affect the measured levels with concentrations of up to 100 μg m-3 for NOx. Low wind 396 
speed was indicating poor dispersion conditions that favored the build-up of air pollutants, while wind 397 
direction pointed to the emission source from nearby traffic. Due to important the role of meteorological 398 
variables, their impact needs to be removed when evaluating the true impact of the lockdown on vehicular 399 
emissions. Here, instead of simply comparing the concentration before and during the lockdown, a BAU 400 
scenario was assumed in 2020. This relies on the rebuilding power of the mathematical model. However, 401 
to train the machine learning model, a large body of datasets is required as input. As more datasets are 402 
to be collected and used as model input, the performance of machine learning is expected to improve 403 
further. Moreover, with more variables, e.g., vehicular types, weight, and road conditions, being 404 
monitored and used as input for the model, a better prediction power of the machine learning is 405 
anticipated. Correspondingly, the air quality improvement upon future emission control scenarios can be 406 
better predicted. 407 

5 Conclusion 408 

In this study, we studied the impact of the Covid-19 lockdown on traffic emissions based on a 5-year 409 
measurement of NOx and EC using a BAU scenario analysis at a near highway sampling site in Shanghai. 410 
We showed that 1) by simply comparing the concentration before and during the lockdown, the effects 411 
of the lockdown on air pollutant emission may be over-estimated; 2) a large reduction (50-70%) in 412 
vehicular emissions of NOx and EC was attributed to the lockdown at a later stage that may better 413 
represent the impact of lockdown measures on air quality. This value is larger than previous studies 414 
because both the holiday effects and meteorological impacts were removed during this period. This large 415 
reduction in vehicular emissions at a later stage was consistent with satellite monitoring of NO2. 416 
Therefore, strict lockdown reduced both vehicular gaseous and particulate emissions significantly when 417 
holiday and meteorological effects were not affecting the trend analysis. This study demonstrates the 418 
importance of continuous monitoring at this Shanghai supersite. When coupled with an advanced 419 
mathematical algorithm, insights into the impact of human activities on air pollution can be gained based 420 
on long-term monitoring. Air quality improvement in future emission control scenarios is expected to be 421 
better predicted. 422 
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Figure 1. (a) Time series (day of the year; DOY) of the measured NOx for 4 weeks before and after the start 
of the Chinese Lunar year for the mean of 2016-2019 and 2020; and (b) Mean NOx concentrations for different 
periods, i.e., before the holiday, holiday, transition and lockdown. The time series in (a) was a 7-day rolling 
average. The error bar in (b) stands for one standard deviation. Note that the lunar DOY for 2016-2019 was 
on different Gregorian dates, but were grouped together based on lunar DOY in (a). 
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Figure 2. (a) Time series (day of the year; DOY) of the measured EC for 4 weeks before and after the start of 
the Chinese Lunar year for the mean of 2016-2019 and 2020; and (b) Mean EC concentrations for different 
periods, i.e., before the holiday, holiday, transition and lockdown. The time series in (a) was a 7-day rolling 
average. The error bar in (b) stands for one standard deviation. 
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Figure 3. Scatter plot between the predicted and measured (a) NOx and (b) EC for the testing and training 
dataset. Also shown is the linear regression between the predicted and measured values, with the correlation 
coefficient (R) and p-value in the top left. 
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Figure 4. Distribution of SHAP values (in μg m-3) for the meteorological variables i.e., features when building 
the random forest model for NOx (a) and EC (b); and mean absolute SHAP values for NOx (c) and EC (d). 
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Figure 5. Comparison of NOx (a) and EC (b) evolution between the business-as-usual (BAU) scenario and the 
measured one in 2020. All concentrations were normalized to the level before the holiday. 
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Figure 6. The spatial distribution of TROPOMI NO2 over the same period in 2019 and 2020 near the DSL 
sampling site in west Shanghai in the YRD region. 


