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Abstract.
Structural restoration is commonly used to assess the de-

formation of geological structures and to reconstruct past
basin geometries. Classically, restoration is formulated as
a geometric or mechanical problem driven by geometric5

boundary conditions to flatten the top surface. This paper in-
vestigates the use of boundary conditions in restoration to
better approach the actual mechanical processes driving geo-
logical deformations. For this, we use a reverse time Stokes-
based method with negative time step advection. To be able10

to compare the results of the restoration to known states of
the model, we apply it to a model based on a laboratory
analogue experiment. In the study, we first test the behav-
ior of the restoration process with Dirichlet boundary condi-
tions such as those often used in geomechanical restoration15

schemes. To go further, we then relax these boundary condi-
tions by removing direct constraints on velocity, and replace
them with more ‘natural’ conditions such as Neumann and
free surface conditions. The horizontality of the free surface
can then be measured and used as a restoration criterion, in-20

stead of an imposed condition. The proposed boundary con-
ditions confer a larger impact of the material properties on
the restoration results. We then show that the choice of ap-
propriate effective material properties is, therefore, necessary
to restore structural models without kinematic boundary con-25

ditions.

1 Introduction

When studying the subsurface, geologists are faced with the
sparsity of available data, and need to make assumptions
based on their knowledge to fill the gaps between the obser-30

vations. Structural restoration, which aims at reversing the
tectonic deformations, was first introduced as a method to

balance cross sections and characterize shortening, allowing
in some measure to verify these assumptions (e.g., Cham-
berlin, 1910; Dahlstrom, 1969; Schönborn, 1999). More re- 35

cently, the approach evolved to assess the tectonic evolu-
tion through time (e.g., Back et al., 2008; de Melo Garcia
et al., 2012; Espurt et al., 2019; Crook et al., 2018) or to
assess the localization of deformation (e.g., Al-Fahmi et al.,
2016b; Chauvin et al., 2018). Various methods were devel- 40

oped to add more complexity and study different geologi-
cal and physical aspects, such as erosion and deposition of
sediments (e.g., Dimakis et al., 1998), isostasy compensa-
tion (e.g., Allen and Allen, 2013), thermal subsidence due to
mantle thermal effect (Royden and Keen, 1980; Allen and 45

Allen, 2013), rock decompaction due to a change of load
(e.g., Athy, 1930; Durand-Riard et al., 2011; Allen and Allen,
2013), or, at a smaller scale, the erosion and deposition of
channelized systems (e.g., Parquer et al., 2017). In this ar-
ticle, we focus on structural restoration aiming at unfolding 50

and unfaulting.
Various numerical methods have been developed for struc-

tural restoration, each using different deformation mecha-
nisms. The first implementations used geometric and kine-
matic rules (e.g., Chamberlin, 1910; Dahlstrom, 1969; 55

Gratier, 1988; Rouby, 1994; Groshong, 2006; Lovely et al.,
2018; Fossen, 2016). Numerous authors, however, stressed
out their lack of physical principles and their limitations,
for example in cases such as salt basins (Fletcher and Pol-
lard, 1999; Ismail-Zadeh et al., 2001; Muron, 2005; Maerten 60

and Maerten, 2006; Moretti, 2008; Guzofski et al., 2009; Al-
Fahmi et al., 2016a). Methods using geomechanical simula-
tions were then developed, taking into account the material
behavior inside the geological layers, and applying a set of
conditions to restore the models. In this approach, internal 65

deformation is not known a priori; it is determined from the
input mechanical behavior of rocks and the applied bound-
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ary conditions. For example, in the presence of salt struc-
tures, methods based on considering the rocks as viscous flu-
ids were introduced (Kaus and Podladchikov, 2001; Ismail-
Zadeh et al., 2001, 2004; Ismail-Zadeh and Tackley, 2010).
In these methods, the motion is computed using highly vis-5

cous fluid mechanical laws inside the stratigraphic units and
their behavior under their own weight. This is motivated by
the fact that rock salt and some sediment overburdens be-
have as viscous fluids over time scales of millions of years,
and by the reversibility of the Stokes equations. At this point,10

however, faults have been neglected in most of these restora-
tion methods, except some numerical test-cases (e.g., Schuh-
Senlis et al., 2020). Many authors have also proposed to use
linear elastic behavior and frictionless faults (Maerten and
Maerten, 2001; De Santi et al., 2002; Muron, 2005; Moretti15

et al., 2006; Maerten and Maerten, 2006; Guzofski et al.,
2009; Durand-Riard et al., 2010, 2013a, b; Tang et al., 2016;
Chauvin et al., 2018). These elastic restoration methods clas-
sically rely on boundary conditions that impose the upper-
most horizon as flat, horizontal and unfaulted at deposition20

time. The issue here is that while geological assumptions can
give an idea of the total displacement that should happen,
its discretization in time is unknown. As such, the validity
and the ability of these boundary conditions to replace the
tectonic forces applied on forward geologic deformation has25

been questionned (e.g., Lovely et al., 2012; Chauvin et al.,
2018). In particular, Chauvin et al. (2018) show that a lateral
kinematic boundary condition can be required for increasing
the accuracy of elastic restoration. Schuh-Senlis et al. (2020)
show the possible extension of the viscous fluids restoration30

method to sedimentary basins including faults, and using less
constraining boundary conditions, relying on a free surface
(with no condition enforced on it) on top and the weight of
the materials to drive the restoration process. However, the
process was only tested by applying successively a forward35

and a backward simulation on synthetic models, using the
same software, physical laws and material parameters.

In this paper, we investigate the complexity of restoring
more complex structural model obtained from an analogue,
gravity-driven, laboratory experiment, without imposing any40

boundary condition on the free surface. In this approach, the
free surface horizontality will not be imposed, but used as
a criterion to check the restoration quality. We build on the
method of Schuh-Senlis et al. (2020) and use the same creep-
ing flow restoration process. The simulations done in this45

article also use the Particle-In-Cell implementation in the
FAIStokes1 code of Schuh-Senlis et al. (2020), for which key
points are specified in Section 2.2. Creeping flow restora-
tion is chosen here for three main reasons. First, the defor-
mation inside the model is driven by gravity and backward50

time-stepping. Second, it can handle the rheology of viscous
layers (such as salt layers in geological models). Third, it al-

1Finite element Arbitrary Eulerian-Lagrangian Implementation
of Stokes

lows the faults to be considered as shear bands with a lower
viscosity instead of frictionless surfaces.

To increase the knowledge on the previous states of the 55

restored model, and be able to compare the restoration re-
sults with these states, we use an analogue experiment model
as a test-case. The purpose of analogue modeling is, with
forward experiments, to find the paleo-deformations leading
to specific geological structures (Hall, 1815; Ramberg, 1981; 60

Willis, 1894; Cobbold et al., 1989). The idea is to choose ma-
terials that present the same deformations as those observed
in geological models, but are sufficiently weak to deform at
laboratory scales. For example, the experiment presented in
this study has a size around 30 cm× 5 cm and lasts about 65

3 hours, but the properties of its materials are such that its
deformation is similar to that of a sedimentary basin sev-
eral kilometers wide, over several hundreds of thousands of
years. As a result, analogue experiments produce structural
models where not only the post-deformation state, but also 70

the paleo-state and the deformations undergone by the model
are known. For this reason, several studies have used them to
assess the results of numerical schemes, both forward (e.g.,
Buiter et al., 2016; Schreurs et al., 2016) and backward (e.g.,
Chauvin et al., 2018). 75

The outline of this paper is as follows: we first review
the concepts of Stokes flow-based restoration and the FAIS-
tokes implementation used in this study. In a second part,
we present the analogue experiment which was used, and the
numerical model created from it. In a third part, we start by 80

restoring this model using boundary conditions which im-
pose the deformation of the model, and then replace them
one by one to remove the kinematic dependance. For this,
we introduce lateral boundary conditions which aim at better
approaching the local stress state, and remove the boundary 85

condition on the top surface to leave it free. These bound-
ary conditions, however, stress the importance of the mate-
rial properties in the model, and the inability of the method
to restore the model properly without proper effective ma-
terial properties. In a last part, we show how the proposed 90

boundary conditions could be used to assess the impact of
the material parameters on the restoration, and how to find
relevant values for them.

2 Method

2.1 Creeping flow restoration 95

2.1.1 Stokes flow equations

In sedimentary basins, the deformation of rocks over long
periods of time can be modeled by viscous fluids, for which
the deformation is described by the Navier-Stokes equations.
In this case, however, we usually deal with materials that are 100

highly viscous (with a viscosity η over 1017 Pa.s), over time
scales of thousands to millions of years. The inertial part of
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the Navier-Stokes equations can then be neglected, and the
deformation is described by the Stokes equations for creep-
ing flow (Massimi et al., 2006). These equations consist of
the momentum conservation equation

∇ ·σ+f = 0 (1)5

where ∇ is the del operator, σ is the stress tensor, f is the
specific body force (usually the volumetric weight ρg), and
of the mass conservation equation for incompressible fluids
(continuity equation)

∇ ·v = 0, (2)10

where v is the velocity. The stress consists of a deviatoric
part τ and an isotropic pressure p:

σ = τ − pI, (3)

where I is the identity tensor. In the viscous flow assumption,
the deviatoric part of the stress is15

τ = 2ηD, (4)

with η the dynamic viscosity and D the infinitesimal strain
rate tensor defined by

D=
1

2

[
∇v+(∇v)T

]
. (5)

Assembling Eq. (1), (3), (4), and (5), the momentum conser-20

vation equation can be written

∇ ·
[
η(∇v+(∇v)T )

]
−∇p=−ρg. (6)

These equations describe a steady-state flow and their res-
olution provides the velocity of a fluid at a specific position
and time. When different fluids are present, the conditions25

that are applied at their boundaries, as well as their differ-
ences in density, can create instabilities such as Rayleigh-
Taylor instabilities. These instabilities make the flow non-
stationary as they advect the viscosity and density fields in
time.30

2.1.2 Backward advection

In forward simulation schemes, the Stokes equations (6) and
(2) are solved for pressure and velocity, and the material rep-
resentation of the geological model is advected from the ve-
locity at each time step. The simplest way to do it is by using35

an Euler scheme, the position x(t+∆t) of a given point of
the material model after a single time step being computed
as

x(t+∆t) = x(t)+v(t) ·∆t, (7)

where v(t) is the computed velocity of the point at time40

t. While higher-order methods exist (e.g., Ismail-Zadeh and
Tackley, 2010), particularly to stabilize the advection scheme

in the case of large time steps, we choose to present the
restoration idea with this order one approximation for sim-
plicity. This Finite-Difference approximation relies on the 45

idea that the chosen time step ∆t is small enough to approxi-
mate the velocity of a particle as a constant over this time step
(∆t is usually calculated using a Courant-Friedrichs-Lewy
(CFL) condition (Courant et al., 1928)). Since the Stokes
equations are linear and do not depend on previous time steps 50

for the computation of the velocity, we can extend this ap-
proximation to backward simulations. Instead of applying
Eq.(7), we can apply

x(t−∆t) = x(t)−v(t) ·∆t (8)

for the advection of the points of the material model, at each 55

time step, like in Fig. ??. This is the basis of backward time
stepping restoration schemes.

2.2 The FAIStokes code

The restoration scheme presented in the previous section
has been implemented in the FAIStokes code described by 60

Schuh-Senlis et al. (2020). It relies on a Particle-In-Cell
(PIC) scheme (e.g., Asgari and Moresi, 2012; Thielmann
et al., 2014; Gassmöller et al., 2018, 2019; Trim et al., 2020),
where the Stokes equations are solved using the Finite Ele-
ment Method (FEM). We here recall the main characteristics 65

of the code.

2.2.1 Material discretization

During mechanical simulations, the material properties in-
side the model are tracked using particles; each of these par-
ticles discretizes the small part of the model around it and 70

its properties. At each time step, the material properties of
the particles are interpolated from the particle swarm to the
FEM grid in order to build the stiffness matrix and its precon-
ditioner. They are then used to solve the Stokes equations, for
the velocity, on the grid. Following this, the particles are ad- 75

vected using the solution on the grid.

2.2.2 Viscosity model

During the experiments, we assume the materials to be linear
viscous fluids with constant viscosity. While the viscosity of
materials is known to vary with the temperature, we do not 80

solve the heat transport equation here. Indeed, in sedimen-
tary basins the temperature is mostly studied for the matu-
ration of source rocks, but is not assumed to have sufficient
variations to impact the viscosities on our scale. Addition-
ally, the analogue laboratory experiment considered in this 85

study (Section 3) was performed at room temperature.

2.2.3 Finite Element discretization

In FAIStokes, the Stokes equations are solved on a 2D grid
using the FEM algorithms of the deal.II library (Bangerth
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Figure 1. Example of the restoration scheme for a simple setup (a): as the arrows in (b) represent the velocity computed at a specific time
step for a forward scheme, the advection of the material model in a restoration scheme is done with the opposite of the computed velocity,
shown in (c).

et al., 2007; Arndt et al., 2019, 2020). Quadrilateral Taylor-
Hood Q2 ×Q1 elements, satisfying the Ladyzhenskaya-
Babuška-Brezzi (LBB) condition for stability (Donea et al.,
2004), are used.

2.2.4 Grid and solvers5

The grid and solvers come from the deal.II code. In the right-
hand side of Eq. (6), the norm of the gravity vector g of is al-
ways 9.81 m.s−2 in our simulations, and its direction can be
modified to introduce a tilt in the model. The matrix system
is solved using an iterative FGMRES (Flexible Generalized10

Minimum Residual) solver preconditioned by a block matrix
involving the Schur complement (Kronbichler et al., 2012).
The grid is adaptively refined and coarsened using deal.II’s
features, based on the position of the faults and the viscosity
variability in the elements. An Arbitrary Lagrangian Eulerian15

(ALE) scheme is also applied on the grid, as explained in the
next paragraphs.

2.2.5 Velocity interpolation

Once the Stokes equations are solved in the domain, the ve-
locity is interpolated on the particle swarm using a Q2 in-20

terpolation scheme. Depending on whether the simulation is

forward or backward, the displacement of each particle is
computed using either Eq. (7) or (8). The value of the time
step ∆t is determined from the CFL condition. Finally, the
advection is done with a 2nd-order Runge-Kutta scheme in 25

space.

2.2.6 Top surface displacement

During the simulations, the top surface of the model coin-
cides with the top of the computation grid, meaning there is
no volume between them. The boundary conditions on this 30

interface are then applied directly to the nodes at the top of
the grid. The top surface and model interfaces are tracked
by sets of passive tracers in the simulations with an initial
horizontal spacing ten times lower than the material particles
spacing. They are advected at each time step the same way 35

as the particle swarm that represents the model. After its dis-
placement or during the setup of the grid, the point swarm
discretizing the top surface is used as a reference to move
vertically the nodes of the grid at the top of the model, so
that they match the top surface. This vertical displacement is 40

then propagated to the rest of the grid. The free surface sta-
bilization algorithm proposed by Kaus et al. (2010) is used
in all the simulations which consider the top surface as a free
surface.
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3 Presentation of the analogue model

3.1 Analogue experiment description

The analogue model used in this study comes from the defor-
mation of a structural sandbox experiment made by IFPEN2

and C&C Reservoirs3, 2016, DAKS TM (Digital Analogs5

Knowledge System). This experiment aimed to reproduce
gravity-driven extensional passive margin structures overlay-
ing a salt layer. The experiment setup is shown in Fig. 2 and
presented hereafter.

Two initial layers were deposited in the model box, form-10

ing the pre-growth strata: a layer of 18 mm of silicone SMG
36 and a layer of 4 mm of sand. On the right-hand side, no
boundary was set, while walls were present on the three other
sides to prevent the material from moving other than verti-
cally on these interfaces. The model box was then inclined15

with a 1.5◦ angle to simulate a basinward tilt, inducing natu-
ral gravity-driven extension towards the right-hand side. The
experiment lasted for 256minutes, during which 12 new lay-
ers of alternatively pyrex and sand were deposited to simulate
stratigraphic growth. This deposition was made in stages, at20

specific time intervals of between 10 and 18 minutes, shown
in Table 2. These new layers flattened the topography by fill-
ing the depressions. The basal silicone material, with a vis-
cous fluid behavior, aims at representing a basal salt layer.
The sand and pyrex layers represent clastic sedimentary de-25

posits. The properties of the silicone, sand and pyrex layers
are shown in Table 1.

3.2 Analysis of the experiment using X-ray
tomography

The model resulting from the experiment was analyzed using30

X-ray computed tomography (CT). This method allows the
computation of cross-sections without physically cutting the
model. As CT is non-destructive, it does not need the consol-
idation of the model beforehand and avoids the deformation
that could occur during the cutting. CT is also fast enough35

to be used to track the evolution of the experiment. The dif-
ferentiation of the layers in the cross-sections is done thanks
to the difference of density and X-ray attenuation. The X-
ray tomography images have been taken every two minutes
and their resolution is 0.62 mm per pixel. As X-ray tomog-40

raphy is sensitive to density, layer interfaces can be hard to
pinpoint where the density contrast is weak. No images have
been taken during the deposition of sand and pyrex layers, so
there are also small time gaps at these moments. These im-
ages, however, make it possible to determine both the times45

between each layer deposition in the forward (laboratory) ex-
periment, as well as the height of the topography after the
deposition of each layer (Table 2). The tomography images
only cover the left part of the model, so the material flowing

2https://www.ifpenergiesnouvelles.fr
3https://www.ccreservoirs.com

on the right-hand side of the model is not tracked. This also 50

means that the velocity on the right-hand side of the model,
and the total amount of extension, are not known. While
these are key parameters in understanding basin-forming dy-
namics, we will show in Section 4 how the study circumvents
this limitation. 55

In the present work, we use a cross-section taken at the end
of the experiment (Fig. 3) to create an initial model on which
to test our restoration method. While this implies working
in 2D and therefore ignoring out-of-plane displacements, it
reduces significantly the computation time for the restora- 60

tion process, so that more tests on the impact of the different
restoration settings can be performed.

3.3 Creation of the numerical model

To digitize the cross section in Fig. 3, we first rotate it left
by 1.5◦ to horizontalize the model base and cut it to a rect- 65

angular shape. This eases the digitization process and allows
for the easier construction of the computation grid around
the model. A graphical user interface developed for FAIS-
tokes is then used to digitize the interfaces and the faults in
the cross-section. Finally, a particle swarm is created, and 70

the fault and interface lines are used to define the layers and
determine the material properties of the particles. The parti-
cle swarm contains 667087 particles at the beginning of the
restoration, with a distance of 0.14 mm between each parti-
cle. This ensures a minimum of 20 particles per cell during 75

the simulation (for the most refined parts of the grid), even
when the adaptive refinement of the grid changes during the
simulations.

In the faults, the viscosity of the particles is taken minimal
at the position of the fault line (representing the fault core), 80

and increases with a power-law towards the boundary of the
shear band, as inspired by Faulkner et al. (2006). The shear
band thickness is different for each fault (Table 3). Indeed, a
close look to the cross-section in Fig. 3 shows that each fault
has a different width of deformation around its core. 85

The obtained geometry input to the restoration process can
be seen in Fig. 4. In the following numerical experiments, we
assume that the model behavior can be approximated using
creeping flow as well as geological models, not only in the
silicone layer which is chosen to behave so, but also in the 90

brittle and ductile sand and pyrex layers. As there is no in-
ertial part in the deformation of the materials during the ex-
periment, the Stokes approximation can be used. In this type
of model, the compaction and decompaction of materials can
be important, so we choose to focus on the first restoration 95

step to avoid taking it into account. In the numerical experi-
ments that follow, we make the choice of working at labora-
tory scale (width of 280 mm and duration of 256 minutes),
and we use the known silicone viscosity to reduce the num-
ber of parameters to test. 100

https://www.ifpenergiesnouvelles.fr
https://www.ccreservoirs.com
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Figure 2. Setup of the creation of the laboratory analogue model from IFPEN and C&C Reservoirs.

Table 1. Physical properties of the silicone, sand and pyrex layers for the analogue experiment. From IFP and C&C Reservoirs (2006).

Physical properties Sand Pyrex Silicone SGM36
Rheological behavior Brittle Ductile (Newtonian)
Density 1.3 - 1.5 1.2 0.97
Grain size (µm) 100-120 80-120 Not applicable
Internal friction angle 40◦ 32-36◦ Not applicable
Cohesion (mPa) 0.001-0.002 > 0.005 Not applicable
Viscosity (Pa.s) Not applicable 5.104

Natural analogue brittle rocks ductile rocks
(sandstones, limestones) (salt, undercompacted shales)

4 Boundary conditions for restoration

In geomechanical restoration, specific boundary conditions
have been used, such as flattening the top surface and ap-
plying specific deformation to remove fault throw (by tying
the curves representing the footwall and hangingwall cut-5

off of horizon surfaces at faults for example) (Muron, 2005;
Chauvin, 2017). Because viscous behavior cannot be handled
by elastic material, interfaces between brittle sediments and
basal salt layers have usually been considered as free sur-
faces (e.g., Stockmeyer and Guzofski, 2014). Here, we start10

with simple boundary conditions and show their impact on
the deformation inside the model. We then show how more
physical assumptions can be used to remove the kinematic
part of these boundary conditions. No boundary conditions
are applied on the faults, and their deformation depends en-15

tirely on the viscosity difference between them and the rest
of the model, specified in Section 3.3. In the experiments de-
scribed in this section, the material properties shown in Ta-
ble 4 are used. The density of the layers comes from the data
(Table 1), and the density of the particles inside the faults is20

assumed to be the same as in the rest of the layer they be-
long to. The viscosity of the silicone is known, and we set
the viscosity of the sand and pyrex as ten times higher. The
viscosity at the fault core is set to be the same as inside the
silicone. The uncertainty of the viscosity of the sand, pyrex25

and fault cores will be adressed in Section 5). In all the fol-
lowing experiments, the left boundary condition is set to a

free slip and the bottom boundary condition is set to a no
slip.

4.1 Restoration using kinematic boundary conditions 30

The first boundary conditions we test are kinematic: in the
numerical experiment, the motion inside the model is driven
both by gravity and by the velocity applied at the boundaries.
For each layer, the top surface is flattened using a Dirichlet
condition: the vertical component of the velocity on the top 35

nodes of the grid at time t is set to

vy(n,t) =−Yfinal − y(n,t)

Tsimulation − t
(9)

with n the index of the node, y(n,t) its altitude, Tsimulation

the duration of the restoration for the current top layer, and
Yfinal the height of the topography at the end of the restora- 40

tion of the layer (determined from the tomography images
and shown in Table 2). The velocity computed in Eq. (9) is
in the forward sense, as it is then applied with a backward
advection scheme (as in Fig. 1). Following Chauvin et al.
(2018), the right boundary is set to a fixed flow. As we con- 45

sider incompressible flow, the kinematic conditions must en-
sure the conservation of model volume during the simulation.
This means that the volume change due to the topography
evolution ∆Vtop must be compensated by the volume enter-
ing at the right boundary ∆Vright: 50

∆Vtop =∆Vright. (10)
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Table 2. Duration of the restoration simulation and topography height after deposition of each layer of the analogue model. The indices of
the layers are shown in Fig. 4.

Layer index Simulation duration (minutes) Topography height (mm) Material
1 18 52.6 sand
2 12 50.06 pyrex
3 16 48.26 sand
4 16 45.71 pyrex
5 16 44.68 sand
6 14 42.38 pyrex
7 14 40.09 sand
8 12 38.55 pyrex
9 10 37.27 sand
10 18 33.7 pyrex
11 14 31.14 sand
12 16 26.8 pyrex
13 14 22 sand
14 (pre-growth layers) 18 silicone

Figure 3. Final cross-section of the analogue experiment. The image has been obtained using X-ray tomography, with a resolution of
0.62 mm per pixel. As the range of the imaging is limited, the borders of the experiment are not present on the image. CT image from IFP
and C&C Reservoirs (2006)

Table 3. Shear band thicknesses of the fault in the analogue model.
The values come from the analysis of the final cross-section (Fig. 3).
The index of each fault is given in Fig. 4. The faults with two val-
ues have a shear thickness that is reduced at the top of the model
because they have a lower deformation range there.

Fault index Shear band thickness (mm)
1 2.2
2 1.4
3 1.8
4 2.1
5 1.2-2
6 1.2-1.8
7 1.6-3
8 1
9 1

10 1
11 1
12 1.6
13 1
14 1.4
15 1

Using the CFL condition (see Section 2.1.2), the time step
should be computed from the velocity field and change at
each time iteration for the computation to be stable. This is
an issue here, because ∆Vtop depends on the time step (com-
puted from the velocity field), and the horizontal velocity at 5

the right boundary determined from ∆Vright is necessary for
the computation of the velocity field. To get rid of this depen-
dency, we impose a fixed time step ∆t such that the volume
change is constant:

∆Vtop ≃
Vf −Vi

Tsimulation
∆t= constant. (11) 10

The horizontal flow at the right boundary is then applied as

vx(t) =
∆Vright

Y (t)∆t
=

Vf −Vi

Y (t)Tsimulation
, (12)

with Y (t) the altitude of the upper right corner of the model.
This means both that the time step and the horizontal flow
are constant, but this assumption is necessary from a compu- 15

tational point of vue.
The result at the end of the restoration of the first layer is

shown in Fig. 5. As imposed by the boundary conditions, the
topography at the end of the restoration is flat, and the fault
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Figure 4. Setup of the analogue model to input in FAIStokes for the restoration simulations. The model boundary conditions are not specified
here, as their choice and impact on the simulations are discussed in the next section. During the simulations, the tilt of the model is introduced
by rotating the gravity vector, as explained in Section 2.2.4.

Table 4. Material properties of the silicone, sand and pyrex layers in the restoration simulations of Section 4. The density of the particles
inside the faults is the same as the density of the layer to which they belong. The values coming from the laboratory experiment are indicated.

Material properties Sand Pyrex Silicone SGM36 Fault core

Density 1.4 (laboratory) 1.2 (laboratory) 0.97 (laboratory) Layer density
Viscosity ( Pa.s) 5.105 5.105 5.104 (laboratory) 5.104

throw is reduced for all the faults. An issue, however, with
the use of complete kinematic boundary conditions is the re-
sulting over-parameterization of the system, making it prone
to over-steps in the velocity if the volume flow is not per-
fectly balanced. The fixed time step can, for example, result5

in particles moving out of the model boundary in the advec-
tion step because the CFL condition is not met.

To assess the restoration of the layers below the surface,
the tomography image taken after the deposition of the last
layer is compared to the position of the restored interfaces10

at this time (Fig. 6). The tomography image is digitized, al-
lowing the computation of the vertical distance dreference(x)
between the restored interface and the actual state of the in-
terface (serving as the reference) at that time, with x the posi-
tion along the horizontal axis. This distance gives a measure15

of the error in the restoration of each interface. It is shown in
Fig. 7, along with the integral of this distance on the horizon-
tal axis, shown in Table 6.

Using these results, we see that the error is overall less than
4 mm. The largest errors appear at the right boundary, where20

the new material entering during the restoration is not known,
introducing a high uncertainty on the resulting interfaces. On
the one hand, this can be considered acceptable considering
the size of the model (52× 263 mm) and the accuracy of
the cross-section digitization (around 1 mm). On the other25

hand, it shows that focusing on the restoration of the first
layer is already enough to compare the expectations with the
restoration results and see errors.

4.2 Choosing more natural boundary conditions

This section aims at trying to remove the kinematic condi-30

tion to get more natural right and top boundary conditions.

Indeed, in the previous subsection, the top surface was set
to flattening, which induces external forces applied to the
free surface. Moreover, the right lateral boundary was con-
sidered as having a constant flow, determined from the top of 35

the tomography images because it was not known inside the
model. However, the lateral flow may vary vertically along
the boundary.

4.2.1 Relaxing the right boundary condition

First, we focus on the right boundary condition, leaving 40

the top boundary condition with the top surface flatten-
ing described in the previous section. To remove the over-
parameterization of the model, we want to replace the Dirich-
let condition imposing velocity by a force condition. Indeed,
during the laboratory experiment, the right-hand side is open, 45

and the model extends freely by flowing with the action of
gravity, so the extension front goes further all through the ex-
periment. The scope of the numerical simulations, however,
has a fixed extension in time as it focuses on the part where
the tomography images were taken. Following Gunzburger 50

and Cornet (2007), we assume that the effective condition
applied on the right boundary of the numerical model stems
from the weight of the overlying material, part of which is
transfered horizontally under a static equilibrium assump-
tion. The weight of the materials on the right side of the 55

model can then be accounted for by introducing a traction
based on the pressure on the right boundary. Here, the trac-
tion we use is based on the lithostatic pressure p(x,y) inside
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Figure 5. Result of the restoration of the first layer of the analogue model. In this case, the left boundary has a free-slip condition, the bottom
boundary is set to a no-slip condition, the top is flattened to the topography height at layer deposition, and the right boundary has a velocity
condition which adapts to the flattening condition, based on Eq. (12). (a) shows the setup at the beginning, and (b) shows the state of the
model at the end of the restoration.

Figure 6. Comparison between the cross-section image taken by X-ray tomography after the deposition of the last layer (shown in back-
ground), and the restored interfaces at that time (shown as superimposed black lines). The restoration here is performed using the kinematic
conditions defined in section 4.1.

the model:

p(x,y) = p0 +

ymax(x)∫
y

ρ(x,y)||g||ydy, (13)

with p0 the pressure at the top surface of the model (neglected
here after). In the case of the analogue model, we consider a
constant gravity vector g and the density as constant in each5

layer, which makes the lithostatic pressure piecewise linear
(Fig. 8). The Neumann traction condition applied on the right
boundary is then defined as:

hN (y) =− ν

1− ν
p(xmax,y)n (14)

where the Poisson coefficient is taken as νoverburden = 0.2910

in the sand and pyrex layers and νsilicone = 0.33 in the in-
compressible silicone layer, and n is the outward unit nor-
mal vector of the right border. This approximation of the
traction and Poisson coefficient values come both from the
literature (e.g., Gunzburger and Cornet, 2007), and tests on15

various tractions applied at this boundary to find an adequate
one.

Fig. 9 shows the distance between the restored interface
at the end of the restoration of the first layer and the actual
state of the interfaces at that time, along the horizontal axis. 20

The integral of this distance along the horizontal axis is also
computed and shown in Table 6.

While imputing this new condition on the right boundary
removes the kinematic condition and gives it more physical
sense, it also increases the freedom of the model and its sen- 25

sitivity to the material properties. The slight increase of the
error in the restoration of the interfaces, as compared to the
fully kinematic boundary conditions, could then come from
inaccurate material properties inside the model. This hypoth-
esis is also supported by the following results. 30

4.2.2 Relaxing the free surface condition

In the simulations of the two previous sections, the goal was
to test if the model could be restored with creeping flow sim-
ulations and a classical topography flattening boundary con-
dition, and to estimate the impact of the lateral boundary con- 35

ditions. While it makes the top surface go back to the state it
was at deposition time, its physical behavior is highly ques-
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interface 1 being the uppermost sand/pyrex interface (see Fig. 4). The digitization of the cross-section has an accuracy of around 1 mm.

x

y

p(y) = ρ1.||g||.(ymax - y) h1

p(y) = ρ1.||g||.h1 + ρ2.||g||.(ymax - h1 - y) h2

p(y) = ρ2.||g||.h2 + ρ1.||g||.(ymax - h2 - y)  h3

p(y) = ρ1.||g||.(h1 + h3) + ρ2.||g||.(ymax - h1 - h3 - y) h4

p(y) = ρ2.||g||.(h2 + h4) + ρ1.||g||.(ymax - h2 - h4 - y) h5

ρ1

ρ2

ρ1

ρ2

ρ1

... ...

ymax

Figure 8. Computation of the lithostatic pressure at the right boundary of the analogue model. A cos(θ) factor is then added to the value to
take into account the impact of the model tilt on the boundary.

tionnable (Lovely et al., 2012). Indeed, as the topography of
the model is in contact with air during the analogue exper-
iment, a free surface condition seems more natural. More-
over, flattening means imposing a Dirichlet condition, but
the velocity of the topography through time is not known,5

so an assumption has to be made (we here assumed a con-
stant velocity). Enforcing a velocity condition also makes it
unsure whether the other model parameters are relevant or if
they just scale well with the imposed deformation. Here, we
test the impact of having a free surface condition on the top10

boundary. For this, two restoration configurations were used
(the left and bottom boundary conditions being the same as
in the previous sections): one with the Dirichlet condition
shown in Section 4.1 and one with the Neumann condition

of the previous of Section 4.2.1. In these simulations, only 15

gravity and the right boundary condition drive the deforma-
tion. Fig. 10 shows the top surface of the model after around
15 minutes of restoration, in these two configurations. We
can see that imposing the traction (14) on the right boundary
condition is necessary to balance the model properly, or the 20

topography becomes steeper instead of becoming flat during
the restoration. When the condition on the right boundary
is set to a traction based on the lithostatic pressure, the fault
throws of all the faults are reduced during the simulation, and
the topography comes closer to being flat. While this balance 25

is encouraging, the model is far from being restored properly,
as the model deformation is not consistent with the analogue
experiment, where the velocity is lower. Too much material
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Figure 9. Same as Fig. 7 with the Neumann condition defined in Eq. (14) on the right boundary.
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Figure 10. Impact of the boundary conditions on the top surface topography, after around 15 minutes of restoration. The bottom and left
boundaries have a free-slip condition and the top is a free surface. The right boundary condition is either (a) a constant flow based on Eq. (12)
or (b) the Neumann condition defined in Eq. (14). The expected flat topography is given in (c) as a reference. We see that unphysical Dirichlet
condition deforms the topography by bringing up the left part of the model and bringing down the right part of the model. On the contrary,
using the traction based on the lithostatic pressure, the whole model is brought up and the fault throws are reduced. We can see, however,
that the material properties inside the model do not restore it properly: the top surface ends up higher than expected.

is added during the restoration, and the restored horizon is
almost universally above the horizontal datum. This shows
that removing the kinematic boundary conditions alone is
not enough to properly restore a model. The following Sec-
tion will discuss the impact of the material properties, and5

how they can be improved to obtain better restoration results
while keeping boundary conditions which do not enforce ve-
locity.

5 Model material parameters analysis

5.1 Rough estimation of the material properties 10

In the previous section, the impact of the boundary condi-
tions on the restoration of the analogue model was discussed.
It showed that removing all kinematic boundary conditions
introduced an overestimation of the amount of material en-
tering the model during the restoration. Here, we suggest that 15

finding relevant effective material properties is necessary to
improve the restoration process. In this section, the material
properties that come from the data are considered as known
and we look for the effective viscosity of the sand and pyrex
layers. The boundary conditions are set as shown in Fig. 11. 20
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The left boundary is set to a free-slip condition; the bottom
boundary is set to a no-slip condition; the right boundary uses
the Neumann traction condition defined in Eq. (14); the top
boundary condition is set to a free surface. Doing so, the im-
pact of the choice of material properties on the simulation can5

be assessed without enforcing the velocity on any boundary.
As most of the material properties are given as data, only

the viscosity of the sand and pyrex layers are left as un-
knowns. For simplicity, the viscosity is considered as ho-
mogeneous in each layer (outside the faults), with the same10

value in all the layers no matter whether they are in sand or
pyrex. In the faults, the applied viscosity is minimal at the
core and increases with a power law up to the contact with
the rest of the layers. The range of the viscosity of the sand
and pyrex (hereafter called “overburden viscosity”) is chosen15

as [105 : 107] Pa.s. The viscosity ratio between the silicone
and the overburden is then between 2 and 2.102. The range of
the fault viscosity is chosen as [5.103 : ηoverburden/2] Pa.s.
Eight experiments are conducted, following the parameter
choice shown in Fig. 12 for the viscosity of the overburden20

and faults.
To check the quality of the restoration for each experiment,

various criteria can be applied. Here, we use the expected to-
pography at the end of the restoration of the first layer as a
reference. Indeed, it corresponds to the time in the laboratory25

experiment where the last layer was deposited (18 minutes
according to Table 2), so for the model to be restored prop-
erly the topography should be flat and at a specific altitude at
this moment. The implemented criterion then corresponds to
the area between the topography of the model at any point x30

in the restoration and this reference topography. It allows a
tracking and comparison of the results throughout the simu-
lation. It is computed as:

Cexpected horizontality(t) =

xmax∫
0

|ytop(x,t)− yexpected|dx,

(15)

where xmax is the domain length, ytop(x,t) is the altitude35

of the topography along the x axis at a given time t, and
yexpected is the expected altitude of the topography at the
end of the restoration of the layer (from Table 2). This crite-
rion is hereafter referred to as the expected horizontality cri-
terion. It has several advantages: first, it is relatively simple40

to compute and track throughout the restoration simulations.
Second, it gives a value of the global difference between the
model and the expected restoration result with a flattened top
layer. Third, it can be used to compare simulations which
evolve at different velocities, and to check when they start to45

evolve in the wrong direction (i.e., creating relief in reverse
time).

The values of the expected horizontality criterion through
time for the eight experiments are given in Fig. 13. The re-
sults are shown for 18 minutes, which corresponds to the50

restoration of the first layer (Table 2). In all the experiments,
we can see that the model deformation starts by going to-
wards a flat topography at the expected altitude (the expected
horizontality criterion decreases towards zero). In experi-
ments 1 to 3, after some time this behavior changes and the 55

model topography evolves away from the expected altitude.
In the other experiments, the expected horizontality criterion
decreases, but does not reach zero before the end of the layer
restoration. In experiments 1 to 3, we let the simulations con-
tinue after the criterion started to increase, for testing pur- 60

poses. Such an increase could, in practice, be used to detect
when a restoration simulation is wrong (because of compu-
tational instabilities like those present in Section 4.2.2 with
a Dirichlet condition on the right boundary for example) and
to stop the simulation. 65

While the expected horizontality criterion is good to de-
termine the global distance between the simulations and the
expected result, it is not enough to determine the ‘best’ ma-
terial parameters for the restoration. Figures 14 and 15 show
the state of the model for each experiment at the time tfinal 70

of their last point in Fig. 13, in order to analyze the impact
of each parameter involved in the design of experiments in a
more detailed way.

In experiments 1 and 2, the rapid increase of the ex-
pected horizontality criterion is explained by the right part of 75

the model going up. The overall restoration also shows that
the thicknesses of the overburden layers increase too much,
while the fault throws are not reduced much during the simu-
lation. It can be explained by the viscosity of the overburden
being too low as compared to the viscosity of the faults. In 80

experiment 3, we observe that the fault throws are overall re-
duced, but some of them get inverted (on faults 2, 6 and 7,
with the numbering of Fig. 4), suggesting that the viscosity
of these faults is too low. In experiment 4, as in experiments
1 and 2 (but not in the same proportions), the deformation of 85

the left and right parts of the model is a bit strong, while the
fault throws are not reduced much, showing that the viscos-
ity of the faults is not low enough, while the viscosity of the
overburden is too low. In experiment 6, the fault throws are
overall reduced or canceled. Although it shows the smallest 90

value of the expected horizontality criterion (Fig. 13), faults
2, 6 and 7 (with the numbering of Fig. 4) start to invert their
throw, like in experiment 3, showing that their viscosity is
too low as compared to the viscosity of the overburden. In
experiments 7 and 8, the overall deformation is too small, 95

showing that the viscosity of both the overburden and faults
is too high.

The results of these experiments show that it is possible
to narrow down the possible values of the effective param-
eters in this type of model. It also shows, however, that the 100

viscosity of the materials at play cannot be modeled by a
unique value for all the material types. Particularly, impos-
ing the same viscosity on all the faults seems like a wrong
assumption. Indeed, fault histories and mechanical proper-
ties differ in the experiment as in real geological settings. In 105



Schuh-Senlis et al.: Application of the creeping flow restoration 13

g

F
re

e-
sl

ip
 c

on
d

iti
on

No-slip condition

Free surface condition

N
eu

m
a

nn
 c

on
di

tio
n

1 3 2 4
8 5

11 10

9 6 7

14

15
13

12

Layer index
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Faults
x

y

Fault indices

1

Figure 11. Setup of the analogue model to assess the impact of the material properties on the restoration simulations. The right boundary
uses the Neumann condition defined in Eq. (14).
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Figure 12. Design of experiments to estimate the effective material properties of the analogue model.

the following, we try to improve the simulations by imposing
a different viscosity from one fault to the other.

5.2 Fine tuning of the material parameters

Given the previous results, the viscosity of the faults looks
like an important parameter to improve restoration. More5

specifically, the fault inversion appearing only on some faults
in experiments 3 and 6 calls for a specific treatment of each
fault. In the following, we carry out tests to estimate the vis-
cosity within each fault. The material properties that were
considered as known in the previous section do not change10

(see the grey cells of Table 4). Based on the previous results,
the viscosity in the overburden layers is set to 8.106 Pa.s,
and the default viscosity at the core of the faults is set to
5.103 Pa.s (close to their value in Experiment 6). Starting
from this default value, various tests are performed by mul-15

tiplying it by different factors (from 0.75 to 3) in each fault.
The factors which give the best restoration results are shown
in Table 5. For this restoration, the values of the expected
horizontality criterion as a function of time are compared to

previous results (Fig. 16). They show that a fine tuning of 20

fault properties upgrades the global restoration and makes the
model closer to being flat at the end of the restoration simula-
tion. In order to look at a more global criterion, Fig. 17 shows
the comparison between the tomography image taken after
the deposition of the last layer and the position of the restored 25

interfaces at this time. Additionally, Fig. 18 shows, for each
layer interface, the vertical distance between the restored in-
terface and the actual state of the interface at that time, along
the horizontal axis. The integral of this distance along the
horizontal axis is given in Table 6. Overall, the analysis of 30

the restored interfaces yields lower restoration errors than
with fully kinematic boundaries. Both the visual (Fig. 17)
and quantitative comparisons of the X-ray tomography image
and the restored interfaces show that the restoration is better
on most of the interfaces. The highest errors come from the 35

faults, where the low viscosity induces a “squeezing” effect
on the material inside the shear band during the simulation,
resulting in an upward motion at their position, particularly
near the top of the model.
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to find the effective material properties inside the analogue model.

Table 5. Factors to multiply the default fault core viscosity to obtain the best restoration result in Section 5.2. The fault indices are defined
in Fig. 4.

Fault index 1 2 3 4 6 7
Multiplying factor 0.75 7 3 2 7 3

These results show that it is possible to obtain slighly bet-
ter restoration results by removing kinematic boundary con-
ditions, replacing them with more natural conditions. This,
however, passes by a long analysis of the material parameters
to find some that are as close as possible to the effective ones.5

While this process gives valuable information on the effec-
tive viscosity to apply in numerical simulations of viscous-
based models, it also shows that restoration with "natural"
boundary conditions is not as simple to obtain as one would
hope.10

6 Discussion

Previous restoration approaches have shown that geome-
chanical schemes can be used to add physical meaning to
the restoration process (e.g., Maerten and Maerten, 2001;
Muron, 2005; Moretti et al., 2006; Durand-Riard et al., 2010;15

Chauvin et al., 2018), and account for specific rheological
behavior such as that of salt rock (e.g., Kaus and Podlad-
chikov, 2001; Ismail-Zadeh et al., 2001, 2004). Recently,
Schuh-Senlis et al. (2020) showed that creeping flow restora-
tion could be applied to synthetic basin models which in-20

clude salt, faults and a free surface condition at the top. To
go further, we here applied the restoration process of Schuh-
Senlis et al. (2020) to an analogue experiment model. This
allowed us to test the results of the creeping flow restora-

tion method on a model obtained by the deformation of an 25

actual material, specifically one (sand and pyrex) that is not
ideally represented as a Newtonian fluid. The deformation
history images on a cross-section were used to quantify the
accuracy of the restoration results, and some reference rhe-
ological values of the laboratory analogue experiment (e.g., 30

silicon viscosity) were introduced in the numerical model to
make our test simpler.

While neglecting the inertial part of the Navier-Stokes
equations in simulations at the scale of the analogue model
is questionnable, this hypothesis is supported by three points. 35

First, the displacement during the experiment is sufficiently
slow to neglect any inertial effects. Second, the restoration
results back up this assertion. Third, this is a limit-case to
test the validity of the method on an analogue experiment,
and the application on the corresponding geological model 40

would verify the same hypothesis, as stated in Sect. 2.1.1.
The first tests on the analogue experiment model showed

that the first layer of the model could be restored properly
with kinematic boundary conditions such as those used in
standard geomechanical restoration. Other boundary condi- 45

tions were then tested to remove the kinematic part of the
conditions, namely a Neumann traction condition on the right
boundary, which accounts for the lithostatic pressure, and a
free surface condition on the top surface of the model. While
these boundary conditions seem to better reflect the tectonic 50

settings, the erratic results obtained suggested that changing
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Figure 14. Results of experiments 1 to 4 (Fig. 12) to find the effective material properties inside the analogue model. For each experiment,
tfinal is the restoration time at which the simulation is stopped, and for which the model is shown. tend is the time at the end of the restoration
of the first layer. The black line on each result is the expected position of the topography at the end of the restoration of the first layer.

the boundary conditions alone was not enough to restore the
model properly. They also suggested that they could be used
to detect errors in some model parameters (e.g., the other
boundary conditions and the material properties, specifically
the effective viscosity). When building on this error detection5

to find more appropriate material properties, it was shown
that the restoration results could even be improved, albeit
slightly, despite removing all kinematic conditions.

The case of the left and bottom boundaries has not been
discussed much. The tests used a free-slip condition on the10

left boundary and a no-slip condition on the bottom bound-
ary, but these assumptions are simplifications, and a friction
condition on the bottom and a Neumann condition on the

left-hand side might be more physical. Several tests showed,
however, that the difference between a free-slip and no-slip 15

condition on the two boundaries impact the simulations only
if they are otherwise unbalanced (by a wrong traction on the
right boundary, for example).

For the right boundary, our static equilibrium assumption
entails that the traction applied depends directly on the Pois- 20

son coefficient. In our study, we set this coefficient from
reference values for the type of granular material in the
model, but its impact may have to be estimated more prop-
erly and more precisely. Indeed, additional tests have shown
that while the Poisson coefficient value does not impact the 25

general behavior of the model, it can impact the value of the
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Figure 15. Same as Fig. 14 for experiments 5 to 8.

Table 6. Integral, for each interface between two layers of the model, of the distance between the restored interface at the end of the restoration
of the first layer, and its actual state at this time, digitized from the corresponding cross-section. In the first line, the restoration is done using
the kinematic conditions (flattening on top and dirichlet condition on the right) defined in Section 4.1. In the second line, the restoration is
done using the conditions defined in Section 4.2.1 (flattening on top and the Neumann condition defined in Eq. (14) on the right boundary).
In the last line, the restoration is done using a free surface on top and the Neumann condition defined in Eq. (14) on the right boundary. The
interface index corresponds to the index of the layer directly above, from the indexation of Fig. 4.

Interface index 1 2 3 4 5 6 7 8 9 10 11 12 13 Total∫
d (mm2) (Only Dirichlet con-

ditions)
191 251 258 289 207 223 178 174 188 177 181 157 130 2604∫

d (mm2) (Flattening & Neu-
mann)

211 293 313 346 264 289 245 242 264 247 240 193 207 3354∫
d (mm2) (Free top, Neumann

right boundary conditions & ef-
fective parameters)

170 190 203 225 189 198 200 196 178 204 200 174 165 2492
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Figure 16. Values of the expected horizontality criterion (Eq. (15)) through time for the restoration with a fine tuning of the fault viscosity
(yellow curve), as compared to some experiments of Section 5.1.

Figure 17. Comparison between the cross-section image taken by X-ray tomography after the deposition of the last layer (shown in back-
ground), and the restored interfaces at that time in the restoration process (shown as superimposed black lines). The restoration here is done
using the boundary conditions and model parameters of section 5.2.

‘best’ effective viscosity inside the model. Another possible
issue with the traction at the right boundary of the model is
the account of the tilt and its implications on the material on
the other side of the boundary. Here, we did not consider the
impact of the movement of this material, as the Stokes equa-5

tions ignore the inertia of the material. It poses, however, the
following question: does the movement of surrounding ma-
terials impact the horizontal pressure applied by them on the
boundaries of the model ? In which case, the traction would
have to be changed accordingly.10

The tests done on the boundary conditions of the analogue
experiment model also showed that when no kinematic con-
dition was applied, the material properties initially assumed
do not allow the restoration of the model. To study their
impact and to find the ‘best’ effective properties inside the15

model, the restoration scheme was applied to eight models
with different properties following a design of experiment.
As the viscosity of the silicone and the density of all materi-
als were known, the parameters we studied were the viscosity
inside the faults and the viscosity in the sand and pyrex lay-20

ers. The first experiments helped narrow down the range of
values for these effective viscosities, and showed that a dif-

ferent effective viscosity has to be used for each fault in the
model. Various experiments then allowed us to tune the vis-
cosity inside the faults accordingly, and decrease the restora- 25

tion error. This viscosity tuning, however, was done manually
and we could not find a relation between the viscosity differ-
ence between the faults, and their difference in age or shear
band thickness. To find how to guide the choice of the fault
effective viscosity, more tests using a local criterion on the 30

fault throw for each fault may then be necessary.
The hypothesis of a viscous fault behavior could also be

revisited in future studies. The consideration of frictional
fault surfaces might be considered, but this would compro-
mise the reversibility assumptions used in restoration meth- 35

ods to-date. Another option for future investigations could
be to consider time-varying viscosity, to decrease fault vis-
cosity down to that of the intact rock when the fault dis-
placement reaches zero. Looking into which viscous fault
behaviour drives fault inversion could also provide new in- 40

sights on basin inversion. Along the same lines, it could be
interesting to study the influence of accumulated strain (by
considering the sand and pyrex layers as visco-elastic mate-
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Figure 18. Same as Fig. 7 with the boundary conditions and model parameters of section 5.2.

rials) or of a variable viscosity in the layers (depending on
the type of layer, or on the age and altitude, for example).

An issue that remains to be adressed is the fact that a
lower viscosity inside the faults can lead to over-estimations
of the horizontal velocity for the faults. In restoration simula-5

tions, this leads to the material inside some of the faults being
pushed out by the blocks with higher viscosities on the sides.
The application of an anisotropic viscosity may remove this
issue, but has not been studied yet.

To further assess the use of creeping flow restoration with-10

out kinematic conditions, it would also be interesting to apply
it to other structural models. The use of other analogue exper-
iment setups would allow to check the validity of the condi-
tions that were found in this paper. It would also provide the
effective properties in a wider range of model deformation15

types (other extension profiles, regression, etc.). The com-
parison of the effective viscosity in different analogue mod-
els, for example, could provide interesting data when scaling
the effective properties to apply the method on models of the
subsurface at geological time scales.20

While adding more physical conditions to geomechanical
restoration is interesting in itself, the goal is also to provide a
working method for the restoration of models describing the
subsurface in real cases. Several questions would then arise.
First, the scope of this study was set on the restoration of a25

2D cross-section. This not only neglects the out-of-plane dis-
placement, but also reduces the scope of the boundary condi-
tions and material properties study. It is unsure, for example,
how the viscosity of faults would have to vary lateraly in a
3D model, to be able to restore them properly. Second, the30

boundary conditions may be more complicated, with the ad-
dition of continuous erosion and sedimentation on the topog-
raphy (compared to punctual sedimentation in the analogue
experiment). The forces at play several kilometers deep in

the underground are also unknown, and the bottom bound- 35

ary may be more complex than the free-slip and no-slip con-
ditions applied here. For example, specific flow due to up-
lift or subsidence of the layers below the model may need
to be taken into account. The pressure applied on the lateral
boundaries may also prove to be more challenging in hetero- 40

geneous media with variable density and mechanical proper-
ties. Finally, the space of material parameters to be estimated
would be much bigger than that of an analogue experiment
model. To reduce this space, research could be done on a way
to scale the effective parameters from those of the analogue 45

experiments to real-case models with the same deformation
mechanisms. Interestingly, to answer these questions, creep-
ing flow restoration could be a useful tool: using the flatten-
ing condition as a likelihood metric, the conditions that best
balance the models could be determined as the solution of an 50

inverse problem on the restoration results.

7 Conclusions

In this paper, we have shown the results obtained with the
creeping flow restoration method on a structural model ob-
tained from a laboratory scale analogue model and including 55

multiple faults. The first results show that conclusive results
can be obtained with classic kinematic boundary conditions.
The study then aimed at removing the kinematic part of the
boundary conditions to leave more freedom to the model,
and assess the impact on the restoration results. It showed 60

that when replacing kinematic conditions with force condi-
tions closer to those of the actual tectonic settings, the model
could not be properly restored without material parameters
as close as possible to the effective ones.



Schuh-Senlis et al.: Application of the creeping flow restoration 19

Using these boundary conditions, however, it was possi-
ble to assess the impact of changing the material properties
inside the model. By going closer to the effective material
properties, we were even able to obtain slightly better re-
sults than those using kinematic boundary conditions for the5

restoration. These results both improve the physical mean-
ing of the restoration, and provide valuable information on
the effective material properties to use in mechanical simula-
tions.

As such, the creeping flow restoration of this analogue ex-10

periment model shows that this restoration scheme can be ap-
plied to relatively complex structural models in 2D, without
any kinematic boundary conditions. This, however, implies a
complex trial and error process to find the effective material
properties, without which the restoration process is not pos-15

sible. We believe that further investigations and numerical
tests are needed to progress on physically-based restoration,
especially to analyze the trade-offs between geometric un-
certainties in the structural model, material behavior law and
the associated properties, and boundary conditions.20
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