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Abstract. Air pollution is a major health hazard, and while air quality overall has been improving in industrialized nations,

pollution is still a major economic and public health issue, with some species, such as ozone (O3), still exceeding the standards

set by governing agencies. Chemical transport models (CTM) are valuable tools that aid in our understanding of the risks of

air pollution both at local and regional scales. In this study, the Polair3D v1.11 CTM of the Polyphemus air quality modeling

platform was set up over Quebec, Canada to assess the model’s capability in predicting key air pollutant species over the5

region, at seasonal temporal scales and at regional spatial scales. The simulation by the model included 3 nested domains, at

::::::::
horizontal

:
resolutions of 9km by 9km, 3km by 3km, and two 1km by 1km domains covering the cities of Montreal and Quebec.

We find that the model accurately captures the spatial variability and seasonal effects, and to a lesser extent, the hour-by-hour

or day-to-day temporal variability for a fixed location. The model at both the 3km and the 1km resolution struggled to capture

high frequency temporal variability, and showed large variabilities in correlation and bias from site to site. When comparing10

the biases and correlation at a site-wide scale, the 3km domain showed slightly higher correlation for carbon monoxide (CO),

nitrogen dioxide (NO2) and nitric oxide (NO), while ozone (O3), sulfur dioxide (SO2) and PM2.5 showed slight increases

in correlation at the 1km domain. The performance of the Polair3D model was in line with other models over Canada, and

comparable to Polair3D’s performance over Europe.
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1 Introduction

Air pollution is a major health hazard that affects millions of lives globally, and is seen as one of the largest contributors to

global disability-adjusted life-years (GBD 2015 Risk Factors Collaborators, 2016). While air quality overall has been improv-

ing in Canada, some species, such as ozone (O3), still regularly exceed the standards set by governing agencies (e.g., Ministry

of the Environment and Climate Change, 2016). Furthermore, the Canadian government (Health Canada, 2022a) estimated in20

2019 that the economic impacts of air quality related health risks are over100 billion Canadian Dollars per year, and that air

pollution is linked to 15,300 premature deaths every year in Canada.

Industrial and traffic emissions play a large role in determining urban air quality (e.g., Rai, 2016; Batisse et al., 2017;

Wallington et al., 2022; Health Canada, 2022b). In the province of Quebec in Eastern Canada, 410 premature deaths were

attributed to traffic related air pollution in 2015 (Health Canada, 2022b). Quebec sees higher levels of particulate matter than25

the national average, and similar results for nitrogen dioxide (NO2) and sulfur dioxide (SO2). Additionally, industrial emis-

sions and proximity to industrial facilities in Quebec have been associated with adverse health outcomes such as asthma onset

in childhood (Buteau et al., 2020), short-term risk of hospitalization in children (Brand et al., 2016) and a decrease in lung

function (Smargiassi et al., 2014). As opposed to traffic emissions which mainly take place in densely populated areas, high-

emitting industries in Canada are also found in rural areas (Jeong et al., 2011). These regions typically do not have other major30

sources of air pollution, which results in large gradients in pollution levels in nearby communities.

Environment and Climate Change Canada (ECCC) operates about 250 air pollutant monitoring stations as part of their Na-

tional Air Pollution Surveillance (NAPS) program (NAPS, 2016), of which 131 are in Quebec (and some may only be reporting

limited time periods and/or limited pollutant species). Given the size of the country, and the province, this is far too sparse to

be useful in conducting spatial variability analyses of air pollutants. Modeling the sources, chemistry, dynamic transport of35

atmospheric pollutants is crucial in understanding tropospheric pollution events and mitigating health impacts by identify-

ing affected regions and sensitivity to various emissions. While the ECCC GEM MACH Chemical Transport Model
:::::
There

::
are

:::::::
mainly

:::
two

::::::::
Chemical

:::::::::
Transport

::::::
Models

:
(CTM)

::::
used

::
in

:::::::
Canada,

::::::::::::
GEM-MACH

:::
run

:::
by

::::::
ECCC,

::::
and

::::::::
USEPA’s

::::::::::
Community

::::::::
Multiscale

::::
Air

::::::
Quality

:::::::::
Modeling

::::::
System

:::::::::
(CMAQ).

:::::
While

:::
the

::::::
ECCC

:::::
GEM

:::::::
MACH

:
has been used to model the atmosphere

over Canada (including Quebec )
::::::::
including

:::::::
Quebec (Chen et al., 2020; Health Canada, 2022b), we attempt to assess the per-40

formance of and validate the Polair3D CTM of the Polyphemus air quality modeling platform (Mallet et al., 2007) coupled

with emissions derived from both ECCC and the United States emission inventories using the Sparse Matrix Operator Kernel

Emissions (SMOKE) emissions-processing system, for key pollutant species: carbon monoxide (CO), O3, NO2, NO, SO2 and

particulate matter smaller than 2.5 µm in diameter (PM2.5). The Polair3D model has seen little use over North America and

particularly over Canada, aside from one example over Ontario, Canada (Minet et al., 2021) and a coarse-resolution study45

covering all of North America by Sartelet et al. (2012).
:::::
Unlike

:::::::
CMAQ,

::::::
which

::
is

::::::
mainly

:::::
used

::
at

::::::
larger,

:::::::
regional

::::::
scales

::
at

::::::
coarser

:::::::::
resolutions

::::
(i.e.,

:::::::::
horizontal

:::::::::
resolutions

::::::
higher

:::
than

::::::::
∼1km2),

::::::::
Polair3D

::
is

::::::
known

::
to

::
be

:::::
robust

::
at
:::::
these

:::::
higher

::::::::::
resolutions

::::::::::::::::::
(Thouron et al., 2017),

:::
and

:::
we

::::
aim

::
to

:::::
assess

:::
the

:::::
model

:::::::::::
performance

::
at

::::
these

::::::
higher

:::::::::
resolutions

::
as

::::
well

::
as

::
at
::::::
coarser

::::::::::
resolutions

::::
with

:::::
larger

::::::::
modeling

::::::::
domains. In this study, we aim to present a novel use of this model over Quebec, Canada, using a longer
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modeling period and a larger modeling domain, to assess the ground (surface) level model performance at seasonal temporal50

scales and at regional spatial scales.

2 Methods

2.1 Model Setup

The Polyphemus platform (Mallet et al., 2007) was used for this analysis. Polyphemus is an open source suite of models devel-

oped at the Centre d’Enseignement et de Recherche en Environnement Atmosphérique (CEREA), and in this study, Polair3D55

(Sartelet et al., 2002; Mallet and Sportisse, 2004; Pourchet et al., 2005; Boutahar et al., 2004), a CTM within the Polyphemus

platform, was utilized. The newest version (v1.11) of the model (Kim et al., 2023) was used, with an updated aerosol chem-

istry module called SSH-aerosol (Sartelet et al., 2020). This module combines SCRAM (Size-Composition Resolved Aerosol

Model), which simulates the dynamics and the mixing state of atmospheric particles, SOAP (Secondary Organic Aerosol Pro-

cessor), which models the partitioning of organic compounds, and H2O (Hydrophilic/Hydrophobic Organics), which simulates60

the formation of semi-volatile organic compounds formed via the oxidation of Volatile Organic Compounds (VOCs). Polair3D

is a Eulerian atmospheric CTM, and includes preprocessing modules for formatting and creating binary input files for meteo-

rology, biogenic emissions, surface deposition, and initial/boundary conditions. Anthropogenic emissions inventories will be

discussed later in Section 2.2. For calculating biogenic emissions and deposition at the surface, land-use data from GLC2000

was used (Bartholomé and Belward, 2005).65

The meteorology field was taken from pre-run WRF data (NCAR, 2023). The model configuration
::::::::
modeling

:::::::
domain

::::::::
comprises

::::
four

:::::::
domains

::::
that

::::
have

:::::
27km,

:::::
9km,

::::
3km,

::::
and

::::
1km

::::
grid

:::::::
spacing,

::::::::::
respectively,

::::
with

::::::::
two-way

::::::
nesting.

::::
The

:::::::
number

::
of

::::::
vertical

:::::
levels

::
is

::
42

::::::::
spanning

::::
from

:::
the

::::::
surface

::
to

::::
100

::::
hPa.

:::::
Initial

:::
and

::::::
lateral

:::::::
boundary

:::::::::
conditions

::
of

:::::::::::
meteorology

::::
were

::::::::
provided

::
by

:::
the

:::::
North

:::::::::
American

::::::::
Regional

:::::::::
Reanalysis

:::::::
(NARR)

::::::::::::::::::::
(Mesinger et al., 2006)

:::::
which

::
is

:::::::
available

::
at
::
a
:::::
32km

::::
grid

:::::::
spacing

::::
with

::
30

:::::::
vertical

:::::
levels.

:::::
Each

:::::::
30-hour

:::::::
forecast

::::
was

:::::::::
initialized

:::::
every

:::::
00:00

:::::
UTC

:::
and

::::
had

:
a
::::::

6-hour
:::::::

spin-up
:::::
time.

:::::
Thus,

:::
the

::::
first

::
670

::::
hours

:::
of

::::::::
forecasts

:::
are

::::::::
discarded

::::
and

::::::::
replaced

::::
with

::::::::
forecasts

:::::::
initiated

:::::
with

:::
the

:::::::
previous

:::::
cycle

:::
for

:::::::::::
overlapping

:::::
times.

:::::
Grid

:::::::
nudging

:::
was

:::::::
applied

:::
for

:::::::::
horizontal

:::::
wind,

:::::::::::
temperature,

:::
and

::::::::
humidity

:::
for

:::::::
vertical

:::::
levels

::::::
above

:::
the

::::::::
planetary

::::::::
boundary

:::::
layer

:::::
(PBL)

::::::
height

::
in

:::
the

::::::
largest

::::::::
domain.

::::::::::::::
Parameterization

::::::::
schemes

::::
used

::
in
::::

the
:::::::::
simulation

:::
are

:::
as

:::::::
follows:

::::::
Purdue

::::
Lin

:::::::
scheme

::::::::::::::::::::
(CHEN and SUN, 2002)

::
for

::::::::::::
microphysics,

:::
the

:::::
Rapid

::::::::
Radiative

:::::::
Transfer

::::::
Model

::
for

::::::
GCMs

:::::::::
(RRTMG)

:::::::::
Shortwave

:::
and

:::::::::
Longwave

:::::::
Schemes

:::::::::::::::::
(Iacono et al., 2008),

:::::::::::::::::::
Mellor–Yamada–Janjic

::::
PBL

:::::::
scheme

:::::::::::
(Janjić, 1994),

:::::::::::::
Grell–Devenyi

:::::::
ensemble

:::::::
scheme

::::::::::::::::::::::
(Grell and Dévényi, 2002)75

::
for

:::::::
cumulus

::::::::::::::
parameterization

::::::
which

:::
was

::::::
applied

::::
only

::
to

:::::::
domain

:
1
:::
and

::
2,

::::::
Unified

:::::
Noah

::::
land

::::::
surface

::::::
model

::::::::::::::::::::
(Chen and Dudhia, 2001)

:
,
:::
and

:
a
:::::::::
3-category

:::::
urban

:::::::
canopy

:::::
model

::::::::::::::::
(Chen et al., 2011)

:::
for

:::::
urban

:::::
areas.

:::::
WRF

::::::::::
temperature,

::
as

::::
well

::
as
:::::
wind

:::::::::::::
speed/direction

:::
was

::::::::
compared

:::::::
against

:::::::::::
observational

::::
data

::::
from

:::::::::::::
meteorological

::::::
stations

::::::::
operated

::
by

::::::
ECCC

::::
prior

::
to

:::::
using

:::::
them

::
in

::::::::
Polair3D.

::::
From

::::
this

::::
WRF

::::::::::::
configuration,

:::::::::::
meteorology

::::
from

:::
the

::::
9km,

:::::
3km,

:::
and

::::
1km

::::::::
domains

::::
were

:::::
used.

:::
The

::::::
model

:::::::::::
configuration is as

follows: The model was run in 3 nested domains; the largest and coarsest-resolution domain was roughly 9km by 9km grid-cell80

resolution (edges), and within it, a smaller domain of about 3km by 3km resolution was run, and lastly, 1km by 1km resolution

runs were performed over the cities of Montreal and Quebec. The modeling domains are shown in Figure 1 (note that parts of

3



Figure 1. The modeling domains used in this study.

the 9km and 3km domains include the United States (US)). The model was run for four seasons out of 2018, with four weeks

per season (January for winter, April for spring, July for summer, and October for fall), for a total of 16 weeks of model data.

Spin-up was done for 1 week for each run. Boundary conditions for the outermost domain, and the initial conditions for each85

of the runs were derived from CAM-Chem assimilated data (Tilmes et al., 2015).

The model was run with a 10-minute time step, and output was averaged and saved hourly. The model was run with vertical

grids going up to 6000m, but only data from the lower-most layer (surface) was saved.
:::
The

::::::
vertical

::::::::
resolution

::
is
::
as

:::::::
follows:

::::
0m,

::::
20m,

:::::
40m,

::::
90m,

::::::
150m,

::::::
250m,

:::::
400m,

::::::
800m,

::::::
1500m,

:::::::
2400m,

:::::::
3500m,

:::
and

:::::::
6000m. For 1km resolution runs, the small domain

size led to numerical instabilities, and the time steps were lowered to 5 minutes and 1 minute for Montreal and Quebec City,90

respectively. In this study, CO, O3, NO2, NO, SO2 and PM2.5 from the model were examined, although data for other species

were also saved.
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2.2 Emissions

A Sparse Matrix Operator Kernel Emissions (SMOKE) emissions-processing system was used to prepare the Polair3D emis-

sions input files (CMAS-SMOKE). Emission processing involves three major steps: spatial allocation, temporal allocation, and95

chemical speciation. Canadian and US emissions in the domain were calculated based on SMOKE-ready formats of the Cana-

dian emission inventory (Sassi et al., 2021) and US national emission inventory
:::::::
National

::::::::
Emission

::::::::
Inventory (EPA: Emissions

Modeling Platforms), along with their temporal allocation and chemical speciation data. Spatial allocations for the three nested

domains were generated using both Canadian and US spatial allocator inputs (CMAS-SA; CMAS-DB).

Canada’s Air Pollutant Emissions Inventory (APEI) also known as the Canadian criteria-air-contaminants (CAC) emissions100

inventory, is prepared and published by ECCC. The APEI is a comprehensive inventory of anthropogenic emissions of 17 air

pollutants including CO, ammonia (NH3), nitrogen oxides (NOx), PM2.5, particulate matter smaller than 10 µm in diameter

(PM10), SO2, and VOCs at the national, provincial, and territorial levels. It is compiled from many different data sources. The

APEI is developed by the Pollutant Inventories and Reporting Division (PIRD) of ECCC. The inventory databases compiled

by PIRD are modified by the Air Quality Modelling Applications Section (AQMAS) of ECCC for emissions processing with105

SMOKE. For further details of the SMOKE-ready format of the Canadian 2015 APEI inventory refer to Annex 2 of the 1990-

2015 Air pollutant emission inventory report: Environment and Canada (2017).

The US National Emission Inventory (NEI) is the second inventory used in this study. NEI includes emissions for the six

criteria air pollutants (CAPs) and 187 hazardous air pollutants. The CAP-related emissions are NH3, CO, Pb, NOx, particulate

matter (PM2.5, PM10, organic carbon, and black carbon), SO2, and VOC. Data on US emissions are derived in several ways:110

continuous measurements, estimates based on infrequent source samples, and estimates based on average emission rates. In

this study, we use a combination of SMOKE-ready formats of NEI 2014 and 2017 inventories from EPA (EPA: Emissions

Modeling Platforms).

The emission sectors nonpoint, on road, and nonroad in both Canadian and US inventories were processed in SMOKE as area

sources. The point source sectors in both inventories were processed as either 2-dimension (2D) or 3-dimension (3D) (layered)115

elevated point source emissions. Emissions from point sources such as airports and mines are considered 2D elevated sources.

Industrial emissions (e.g. electric power generation, commercial facilities) are calculated as 3D layered emissions. SMOKE

analyzes the stack parameters of each facility as well as the meteorology to determine the layers’ emissions. SMOKE accesses

the stack parameters such as the height, the diameter, and the temperature directly from the industrial emissions reported in the

Canadian and US inventories. Meteorology-Chemistry Interface Processor (MCIP) was used to generate the necessary mete-120

orology files (e.g. GRID_CRO_2D, MET_CRO_2D, MET_DOT_3D) for SMOKE volume emission processing (EPA-CMAQ).

:::::
There

:::
are

::::::
known

:::::::::
aberrations

::
in

:::
the

::::::
ECCC

::::::
offroad

:::::::::
emissions

::
in

:::::::
January.

:::
To

::::::
correct

:::
for

::::
this,

:::
the

::::::
offroad

:::::::::
emissions

::
in

:::::::
January

::::
were

:::::::
replaced

:::
by

::::
those

::
of

:::::
April

:::::::
(offroad

::::::::
emissions

:::
do

:::
not

::::
vary

::::::::::
significantly

:::
by

::::::
season).

::::::
These

:::::::::
aberrations

::::
were

:::
not

::::
seen

::
in
::::
any

::
of

:::
the

::::
other

::::::
sectors

:::
nor

::
in
::::
any

::
of

:::
the

:::::
other

::::::
months.

:

The Polair3D model contains a Size-Composition Resolved Aerosol Model (SCRAM). Thus, the PM AE6 speciated SMOKE125

output must be incorporated into an input for SCRAM. This conversion is shown in Figure 2. The size distribution of the PM

5



Figure 2. SMOKE PM output conversion to Polair3D PM input

species was applied based on the SNAP (Selected Nomenclature for Air Pollution) sectors. The SNAP sectors include com-

bustion in energy and transformation industries, non-industrial combustion plant, combustion in the manufacturing industry,

production processes, extraction and distribution of fossil fuels and geothermal energy, solvent and other products, road trans-

port other mobile sources, and machinery, waste treatment and disposal, and agriculture (EMEP/EEA, 2019). A 5-bin size130

distribution was applied to each species that was derived from the 10-bin SNAP size distribution values consistent with the

Polair3D inputs. For the Polair3D model, primary organic aerosol (POA) species also need to be divided into three cate-

gories based on volatility. Hence, first, the POA species were divided into low (POAlP), medium (POAmP), and high volatility

(POAhP) and then we applied the 5 bin size distribution for each subspecies.

2.3 Surface Observations135

Model results were compared against surface observations to validate the model and assess its performance in modeling key air

pollutant species at the surface level. Surface observations collected as part of the National Air Pollution Surveillance (NAPS)

program (NAPS, 2016) were used in this analysis.
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The air pollution species examined in this study (CO, O3, NO2, NO, SO2 and PM2.5) are reported by some, but not all NAPS

sites; many NAPS sites only report some of the species, and some sites may not have data during the modeling time period.140

To assess the modeling performance, several statistics were examined: Pearson correlation coefficient (R), mean relative

difference (MRD), mean squared error (MSE), mean bias (MB) and normalized mean bias (NMB). MRD, MSE, NB and

NMB were calculated by subtracting NAPS from the model (i.e., MRD = 100.× Model−NAPS
Model , MSE = E[(Model−NAPS)2],

NB = Σ[Model−NAPS]
N and NMB = 100.× Σ[Model−NAPS]

Σ[NAPS] ). These statistics were chosen following Emery et al. (2017).

::::::::::
Additionally,

:::
for

:::::
NO2 :::

and
::::::
PM2.5,

:::
the

::::::
model

::::
was

::::::::
compared

::::::
against

::::::::::
assimilated

:::::::
monthly

:::::::
ground

::::
level

:::::::
National

:::::
LUR

:::::
(land145

:::
use

:::::::::
regression)

:::::::
dataset

:::::::
products

:::::
from

:::::::::
Canadian

:::::
Urban

:::::::::::::
Environmental

::::::
Health

::::::::
Research

:::::::::::
Consortium

:::::::::
(CANUE)

:::
(for

::::::
NO2)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Hystad et al., 2011; Weichenthal et al., 2017; DMTI Spatial Inc., 2015)

:::
and

:::::::::::
Atmospheric

::::::::::
Composition

::::::::
Analysis

:::::
Group

:::::::
(ACAG)

::
for

::::::::
(PM2.5)

:::::::::::::::::::::::
(van Donkelaar et al., 2021).

::::
The

::::::::
CANUE

::::
NO2:::::::

dataset
::::
was

::::::::
developed

:::::
from

:::::
2006

::::::
NAPS

::::
data

:::::
using

::::
land

::::
use

::::::::
regression

::::::
model

:::::
taking

::::
into

::::::
account

:::::::
various

:::::::::
geographic

::::::::
variables

::::
(road

::::::
length

:::::
within

:::
10

:::
km,

::::
area

::
of

::::::::
industrial

::::
land

:::
use

::::::
within

:
2
:::
km

::::
and

:::::::
summer

:::::::
rainfall)

:::
and

:::::::
satellite

::::
data

:::::
(from

:::::
2005

::
to

::::::
2011)

:::::::::::::::::
(Hystad et al., 2011).

::
In

::::
this

:::::::
dataset,

:::::::
monthly

:::::::
averages

:::
of150

::::
NO2 :::

are
:::::
given

:::
for

::::
each

:::::::::
Canadian

:::::
postal

:::::
code

:::::::::::::::::::::
(DMTI Spatial Inc., 2015)

:
,
:::
and

::::
the

::::::::::
comparison

:::::::
analysis

::::
with

:::
the

::::::
model

::::
was

::::
done

:::::
using

:::
the

:::::
3km

::::::::
resolution

::::::
model

:::
by

::::::
binned

::::
into

:::
the

::::::
closest

::::::
model

::::
grid

::::
cell.

:::::
2018

:::::::
monthly

:::::::
dataset

::::
was

::::
used.

:::::::
ACAG

:::::
PM2.5::::::

dataset
::
is

::::::
derived

:::
by

::::::::::
assimilating

::::::
aerosol

::::::
optical

:::::
depth

::::::
(AOD)

::::::::
retrievals

::::
from

:::
the

::::::
NASA

:::::::
MODIS,

::::::
MISR,

::::::::
SeaWIFS,

::::
and

:::::
VIIRS

::::::::::
instruments

::::
with

:::
the

::::::::::::
GEOS-Chem

:::::::
chemical

::::::::
transport

::::::
model,

::::
and

:::
was

:::::::::
calibrated

::
to

::::::
global

:::::::::::
ground-based

:::::::::::
observations

::::
using

::
a
::::::::::::
geographically

::::::::
weighted

:::::::::
regression

:::::::::::::::::::::::
(van Donkelaar et al., 2021)

:
.
:::
The

:::::::
dataset

:::
has

:
a
:::::::::

resolution
::
of

:::::
0.01◦

::
by

:::::
0.01◦

:
.
::::
The155

:::::::::
comparison

:::::::
analysis

::::
was

::::
done

:::::
using

:::
the

::::
3km

::::::
model

:::::::::
resolution,

:::
and

:::
the

::::::
ACAG

::::::
dataset

:::
was

::::::
binned

::::
into

:::
the

::::::::
Polair3D

::::::
similar

::
to

::
the

:::::::
analysis

:::::
done

::::
with

:::
the

:::::::
CANUE

::::::::
National

::::
LUR

:::::::
dataset.

::::
2018

:::::::
monthly

::::::
dataset

::::
was

:::::
used.

2.4 Test Scenario
::::::::
Scenarios

As discussed in Section 1, industrial emissions have been associated with adverse health outcomes. Understanding the behavior

of the model under various emissions scenarios is important for performing pollution exposure analyses. To enrich the model160

validation findings, and to qualitatively assess the behavior of the Polair3D model under varying emissions scenarios, a run

with no industrial emissions was performed for the same domain and time frames. Other emissions (such as biogenic and traffic

emissions) were kept
::
the

:::::
same. All other variables and input files, including the meteorology and the model configurations,

were kept the same as the base case (i.e., with all emissions)scenario.

::::::::::
Additionally,

::::
two

:::
test

:::::::::
scenarios,

:::
one

::::
with

::::
only

:::
the

:::::::::
emissions

::::
from

:::::::
smelter,

:::::::
refinery

:::
and

:::::::
foundry

::::::::
industries

::::::::::
suppressed,

::::
and165

::::::
another

:::::::
scenario

:::::
with

::::
only

:::
the

::::::::
emissions

:::::
from

:::::
paper

::::
and

::::
pulp

:::::::
industry

::::::
turned

:::
off,

:::::
were

::::
run.

:::::
These

::::::::
scenarios

:::::
were

:::::::
adapted

::::
from

:
a
:::::
study

:::
by

:::::::::::::
Liu et al. (2024)

:
.
::
As

::::
with

:::
the

:::
no

:::::::
industry

:::::::
scenario,

:::
all

::::
other

::::::::
variables

:::
and

:::::
input

::::
files

::::
were

::::
kept

:::
the

:::::
same

::
as

:::
the

::::
base

::::
case.
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3 Results and Discussions

3.1 3km Resolution170

The 3km modeled monthly averages (for January, April, July and October) for the entire domain are presented in Figure 3

for CO, O3, NO2, NO, SO2 and PM2.5 (a note about these figures is that if the concentrations are above or below the scale,

chosen here to exclude the lowest and the highest percentile, the figures will show white; this was done to preserve important

spatial details in the mid-range of the data). For O3, 8-hour maximum daily average (MDA8) was examined as recommended

by Emery et al. (2017).175

A site-wide analysis, that is, comparing monthly averages across all NAPS sites, resulted in higher correlation for CO, O3

and NO2 than NO, SO2 and PM2.5. CO exhibited a high correlation coefficient (R) of 0.95 across 27
:::
0.91

::::::
across

:::
28 data

points, while NO showed the lowest correlation at R= 0.31
:::::::
R= 0.27

:
(see Table 1). Correlation plots for all species at the

3km resolution can be found in Figure 4. Both O3 and NO showed higher correlation in winter than in the summer, going

from R= 0.91
:::::::
R= 0.83

:
in January down to 0.33

:::
0.63

:
in July for O3, and 0.52 to 0.21

::::
0.27

::
to

::::
0.03

:
for NO. While NO2180

correlation did go down over the summer, it was not to this extent (R= 0.82
:::::::
R= 0.69

:
in January, down to 0.73

::::
0.53 in July).

Sartelet et al. (2012) reported, in their study using the Polair3D model covering all of North America (at a coarser-resolution

of 0.25° by 0.25°), O3 correlation of 0.604, comparable to our overall correlation of 0.76
:::
0.85. Both modeled O3 and NO2

showed some overestimation bias, with MRD=13% and 43
:::::
21.4%

::::
and

::::
33.5%, respectively (see Figure 5).

::::::
Indeed,

::::
NO2::::

and

:::
SO2:::::

both
::::::
showed

:::::::::::::
overestimation

::::::
biases,

::::::
despite

:::::
CAC

:::::::::
emissions

:::::
being

::::::
thought

:::
to

::::::::::::
underestimate

::::::::
emissions

::
of
:::::

these
:::::::
species185

::::::::::::::::::
(Krzyzanowski, 2009).

:
Minet et al. (2021) saw large overestimations of O3 in their Polair3D validation effort, and attributed

it to MOZART4 boundary conditions; the boundary conditions in this study were derived from CAM-Chem. Also of note is

the result that MRD in O3, a photochemically reactive pollutant that typically peaks in summer time in the troposphere, was

similar in both summer and winter (12% and 16
:::::
18.2%

::::
and

::::
23.5% for July and January, respectively).

NO, on the other hand, showed overestimation overall (see Figure 4d), but the calculated MRD was -29
::::
-59.2% (indicating190

under estimation), likely resulting from a few very high values seen in the NAPS data. This is similar to the GEM-MACH

model over North America, which also overestimated CO, O3, NO2 and NO (Stroud et al., 2020; Makar et al., 2015). In fact,

the GEM-MACH model over Toronto, Canada, was shown to overestimate NO2 to a larger extent than O3, much like the results

presented here (Stroud et al., 2020).

PM2.5 performance showed mixed results; the bias was relatively small with an overall MRD of 3.6
:::
-3.9%, but correlation195

varied significantly from R= 0.89
:::::::
R= 0.82

:
in January, to R= 0.37

::::::::
R= 0.36 in July (and 0.63

:::
0.45

:
overall). Minet et al.

(2021) also noted the poor correlation for modeled PM2.5 in their study that examined Polair3D performance during a particular

summer day (in August). Model performing worse in the summer was a common theme seen in all species except for SO2,

which had the opposite trend with R= 0.37
:::::::
R= 0.57

:
in January and 0.57 in July, and peaking at 0.88 in October

:::
0.66

::
in
::::
July.

The correlation is comparable to a study by Sartelet et al. (2012) who reported a correlation of 0.504 for PM2.5. Modeled SO2200

showed overestimation as well, with MRD=75%.
::::::
66.5%.

:::::::
Another

:::::::::
noteworthy

:::::
point

::::
here

:
is
::::
that

::::::::::
correlations

::
of

:::
CO

:::::
were,

:
in
:::::
most

:::::
cases,

:::::
better

::::
than

::::
those

:::
of

::::
other

:::::::
primary

::::::::
(emitted)

::::::::
pollutants

::::
like

::::
NO2,

::::
NO

:::
and

:::::
SO2;

:::
this

::::
may

::
be

::::::::
explained

:::
by

:::::::::::
uncertainties

::
in

8



::::::::
emissions

:::::::::::::::
(Kim et al., 2018).

:

The model performance was more challenging when looking at individual sites. An example of O3 time series and correlation

plots from January are shown in Figure 6; this plot shows the NAPS data and the modeled O3 over a NAPS site in Montreal205

(NAPS ID: 50135) in January
::::
July (both the raw comparison and comparison using the MDA8 metric are shown). For the

raw comparison, while the correlation was poor, the
:::::
There

:::
was

:::::::::::
considerable

::::::::
variability

::
in
::::::::::
correlation

::::
from

:::
site

::
to

::::
site;

:::
this

::::
site

::::::
showed

::::::::
relatively

:::::
good

:::::::::
correlation,

:::::::::
especially

:::
for

:::
the

::::
raw

::::::::::
comparison.

::::
The model showed relatively small biases for O3 and

captures the overall ranges seen in observational data (NAPS mean values were within the model mean ± 1 model standard

deviation for most sites). MDA8 O3 comparison fared better, with a much higher correlation across most sites
:::::::
generally

:::::
fared210

:::::
better

::
in

:::::
winter

:::::::
months

::::::::
(January),

::::
with

:::::
worse

::::::::::
correlation

::
in

::::
other

:::::
times

::
of

:::
the

:::::
year;

::
the

::::
July

::::
plot

:::::
shows

::::::
worse

:::::::::
correlation

::::
with

::
the

:::::::
MDA8

:::
than

:::::
with

::
the

::::
raw

::::::::::
comparison.

For all species, there was considerable variability in correlation coefficients from site to site, and resampling (e.g., 6 hour

average) the dataset did not lead to improved correlation (up to 48 hour averages were tried in this analysis), although as

noted above, for O3, comparison using MDA8 did result in better correlation. NAPS data are reported to the nearest integer215

values, meaning the data is quite coarse, leading to “discretization” artifacts that can clearly be seen in Figure 6a. These results

suggest that the model is better at capturing the spatial variability and seasonal effects, rather than hour-by-hour or day-to-day

temporal variability for a fixed location.
:::::::::::
Furthermore,

:::::
NAPS

:::::
sites

:::
are

::::::::::
categorized

:::
into

:::::::
several

::::::::
site-types,

:::::::::
including

:::::::
regional

:::::::::
background

:::::
(RB),

:::::::
general

:::::::::
population

::::::::
exposure

::::
(PE),

::::
and

::::::::::::::::::::
transportation-influenced

::::
(T),

:::
and

:::::
when

::::::
looking

::
at
::::::::::
correlations

:::::
from

:::
this

::::::::::
perspective,

:::
the

::::::
highest

:::
O3:::::::::

correlation
::::
was

::::
seen

::::
with

:::
the

:::
RB

::::
sites

:::
that

:::::::
indicate

:::
that

:::
the

::::::
model

::
is

:::
able

::
to
:::::::
capture

:::
the

::::::
overall220

::::::
amount

::
of

::::::::::
background

:::
O3 :::

that
::
is

:::::::::::::::::
generated/destroyed.

::::::::::
Correlations

:::
for

::::
NO2::::

and
:::
NO

::::
were

:::::
poor

::
for

:::
PE

::::
sites

:::::::::
(generally

::
in

:::::
urban

:::::
areas);

:::::::::
suggesting

::::
that

::::
there

:::
are

:::::
large

:::::::::::
uncertainties

::
in

::::::::
emissions.

:

:::::::::::
Comparisons

::::
with

:::
the

:::::::
National

:::::
LUR

:::::::
monthly

::::
NO2::::::

dataset
:::::
show

::::::::
relatively

:::::
good

:::::::::
agreements

:::
for

:::
all

::::
four

:::::::
months.

::
R

::::::
ranged

::::
from

::::
0.82

::
in

::::
July

::
to

::::
0.86

::
in

:::::::
October.

::::
The

:::::::::
correlation

::::
plots

::::
can

::
be

::::
seen

::
in

::::::
Figure

::
7.

::::::::
Although

:::
the

::::::
model

::::
mean

::::
was

::::::
higher

::::
(i.e.,

::
the

::::::
model

::
is

:::::::::::::
overestimating)

:::
for

::
all

:::::::
months

:::::
except

:::
for

:::::::
January,

:::::
MRD

::::::
ranged

:::::
from

:::::
-48%

::
to

:::::
-22%.

::::
This

::::::::
indicates

:::
that

::
in

::::::
places225

:::::
where

:::
the

:::::
model

::
is
::::::::::::::
underestimating,

:::
the

::::::
model

::::::::::::
underestimates

:::
by

:
a
:::::
large

::::::
margin;

:::::::
because

:::::
MRD

:::::::::
calculation

::::::::
involves

:::::::
dividing

::
by

:::
the

::::::
model

:::::
value,

::
if
:::
the

::::::
model

::::::
values

:::
are

:::::
small

::::
(and

:::::::
smaller

::::
than

:::
the

::::::::
National

::::
LUR

:::::::
values),

::::
the

:::::
MRD

:::::::
becomes

::
a
:::::
large

:::::::
negative

:::::::
number.

:::
The

::::::::
collation

::::::
against

::::::
ACAG

::::::
PM2.5::::::

showed
::::::::

relatively
::::::

worse
::::::::::
correlations.

:::::::
Highest

::
R

::::
was

::::
0.59

::
in

:::::
April,

::::
and

:::::
worse

:::::::::
correlation

::::
was

::::::::
R= 0.45

::
in

:::::::
October.

::::
The

:::::::::
correlation

:::::
plots

:::
can

:::
be

::::
seen

::
in

::::::
Figure

::
8.

:::::
MRD

::::::
ranged

::::
from

:::::
-80%

::
to

::::::
-10%,

:::
and

:::
the

:::::
model

:::::
mean

::::
was

:::::
lower

::::
than

:::
the

::::::
ACAG

::::
mean

:::
for

:::
all

::::::
months

::::::
except

:::
for

:::::::
October.

:
230

Site-wide comparison summary table showing correlation (R), mean relative difference (MRD), mean squared error (MSE)

(see Section 2.3 for more detail) and number of data points (N), using data from all four simulation months (January, April,

July and October) for the 3km run, 3km run with comparisons restricted to NAPS monitoring sites found in the 1km domain

only, and 1km run. Species R MRD MSE N R MRD MSE N R MRD MSE N 0.5exCO 0.95 -1.4 1170 27 0.81 2.4 8314 24

0.74 2.38 4779 24 1.5exO3 0.76 13.5 246 143 0.70 -4.2 156 72 0.61 -2.5 2906 72 1.5exNO2 0.73 42.9 411 74 0.70 49.6 466235

63 0.73 47.8 310 63 1.5exNO 0.31 -29.9 79.7 71 0.26 7.9 91.0 61 0.48 0.52 25.7 61 1.5exSO2 0.69 75.4 90.1 40 0.76 76.0 111

28 0.83 73.3 27.4 28 1.5exPM2.5 0.62 3.63 34.9 122 0.70 42.3 60.3 64 0.75 41.3 54.3 64 1.5ex
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Figure 3. Monthly averages (January, April, July and October, from top to bottom) of the Polair3D model at the 3km resolution for (from

left to right) CO, O3, NO2, NO, SO2 and PM2.5. All units are in µg/m3. Note that if the concentrations are above or below the scale (chosen

here to exclude the lowest and the highest percentile), the figures will show white; this was done to preserve important spatial details in the

mid-range of the data).

Table 1. Site-wide comparison summary table showing correlation (R), mean relative difference (MRD), mean squared error (MSE)
::::::
(µg/m3

:
), mean bias (MB)

:::::
(µg/m3

:
), normalized mean bias (NMB), (see Section 2.3 for more detail) and number of data points (N), using data from

all four simulation months (January, April, July and October) for the 3km run, 3km run with comparisons restricted to NAPS monitoring

sites found in the 1km domain only(and excluding the grid cell over the Pierre Elliot Trudeau Airport site in Montreal), and 1km run. For

O3, MDA8 was first calculated, and used for this analysis (see Section 3.1 for more detail).

3km
3km with 1km

domain sites only
1km

Species R MRD MSE MB NMB N R MRD MSE MB NMB N R MRD MSE MB NMB N

CO 0.90
:::
0.91 -13.4

:::
-12.7

:
1758

:::
1803 -18.9

:::
-17.1

:
-7.9

::
-7.1

:
27

::
28 0.90

:::
0.91

:
-13.9

:::
-13.1

:
1868

:::
1945 -20.3

:::
-17.7

:
-8.3

:::
-7.2 23

::
24 0.91 -16.4

:::
-13.3

:
1706

:::
2156 -28.4

:::
-17.2

:
-11.5

::
-7.0

:
24

O3 0.84
:::
0.85 22.1

:::
21.4 498

::
466

:
20.2

:::
19.5 28.2

:::
27.3 143

:::
144 0.88

:::
0.86

:
22.9

:::
21.9 511

::
504

:
20.6

:::
20.0 29.4

:::
28.8

:
72 0.66

:::
0.70

:
8.21

:::
5.69 432

::
383

:
12.9

:::
11.1 18.5

::
15.9

:
72

NO2 0.79
:::
0.70 37.4

:::
33.5 210

::
214

:
12.3

:::
11.5 85.3

::
78 74

::
75 0.78

:::
0.67

:
41.9

:::
39.3 214

::
288

:
12.7

:::
12.3 84.0

::
79 62

::
67 0.56

:::
0.41

:
43.0

:::
45.8 285

::
751

:
13.5

:::
18.4 87.4

::
118

:
63

:
67

:

NO 0.60
:::
0.27 -42.2

:::
-59.2

:
17.9

:::
30.2 1.8

::
1.2 34.3 71 0.61 -15.4 17.5 1.6 28.7 60 28 -26.6 34.0 1.3 22.1 61 1.5exSO2 :

72
:

0.25 69.7
:::
-29.1 28.9

:::
32.4 4.1

::
1.2 272

:::
21.5 40

::
65 0.13

:::
0.04

:
73.5

:::
-19.6 37.3

:::
2844 4.8

::
13.9

:
336

::
248 24 0.58 74.3 17.8 4.1 283 24 1.5exPM2.5 0.63 2.23 34.7 2.7 39.2 122 0.68 39.4 60.1 6.1 81.7 64 0.38 38.6 49.5 5.7 75.1 65

Site-wide comparison summary table showing correlation (R), mean relative difference (MRD), mean squared error (MSE) (µg/m3), mean bias (MB) (µg/m3), normalized mean bias (NMB), (see Section 2.3 for more detail) and number of data points (N), using data from all four simulation months (January, April, July and October) for the 3km run, 3km run with comparisons restricted to NAPS monitoring sites found in the 1km domain only (and excluding the grid cell over the Pierre Elliot Trudeau Airport site in Montreal), and 1km run. For O3, MDA8 was first calculated, and used for this analysis (see Section 3.1 for more detail). Species R MRD MSE MB NMB N R MRD MSE MB NMB N R MRD MSE MB NMB N 0.5exCO 0.95 -1.4 1170 5.2 2.2 27 0.81 2.4 8314 25.1 10.2 24 0.74 2.38 4779 20.3 8.2 24 1.5exO3 0.84 22.1 498 20.2 28.2 143 0.88 22.9 511 20.6 29.4 72 0.66 8.21 432 12.9 18.5 72 1.5exNO
::

SO2 0.73 42.9 411 16.7 115 74 0.70 49.6 466 18.3 120 63 0.73 47.8 310 15.7 103 63 1.5exNO 0.31 -29.9 79.7 4.5 88.3 71 0.26 7.9 91.0 5.0 91.5 61 0.48 0.52 25.7
:::
66.5 2.6

:::
22.7

:
48.1

::
3.4

:
61 1.5exSO2 ::

224
:

0.69 75.4 90.1 6.7 441 40 0.76
:::
0.52

:
76.0

:::
66.0 111

::
27.6

:
7.5

::
3.8 411

:::
209 28 0.83

:::
0.65

:
73.3

:::
74.1 27.4

:::
2427 4.8

::
19.4

:
262

:::
1061

:
28

PM2.5 0.62
:::
0.45 3.63

:::
-3.90 34.9

:::
22.1 2.9

::
1.8 42.8

:::
26.3 122

:::
123 0.70

:::
0.39

:
42.3

:::
34.0 60.3

:::
35.5 6.6

::
4.7 87.5

:::
61.7

:
64

::
65 0.75

:::
0.55

:
41.3

:::
41.2 54.3

:::
51.6 6.2 82.7

::
81.4

:
64

:
65

:
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Figure 4. Monthly average site-wide correlation plots at the 3km resolution for CO, O3, NO2, NO, SO2 and PM2.5, for (a), (b), (c), (d), (e)

and (f), respectively. For O3, MDA8 was first calculated, and used for this analysis (see Section 3.1 for more detail). For O3, PM2.5 and NO,

the model grid on the western part of the Montreal Island (grid cell containing the Pierre Elliot Trudeau Airport) exhibited extreme values in

January, possibly due to high emissions. PM2.5 and NO were the most seriously affected. The grid cell over the Pierre Elliot Trudeau Airport

was not included in this analysis. This hotspot was also seen in the 1km runs, which was run with a finer-resolution emissions inventory. All

units are in µg/m3.

3.2 1km Resolution

The 1km model was run over the cities of Montreal and Quebec City (see Figure 1 for the domains). As noted in Section 2,

the time step of the model was shortened to 5 minutes and 1 minute for Montreal and Quebec City, respectively, down from240

10 minutes, to increase model stability at these small domains (see Section 2.1). The modeled monthly averages (for January,

April, July and October) for the entire domains are presented in Figures 9 and 10 (for Montreal and Quebec City, respectively)

11



Figure 5. Monthly average site-wide comparison box plots at the 3km resolution for (a) CO, (b) O3, (c) NO2, (d) NO, (e) SO2 and (f) PM2.5.

For O3, MDA8 was first calculated, and used for this analysis (see Section 3.1 for more detail). For O3, PM2.5 and NO, the grid cell over the

Montreal Airport was not included in this analysis. All units are in µg/m3.

for CO, O3, NO2, NO, SO2 and PM2.5.

When comparing the biases and correlation at a site-wide scale, the higher resolution 1km runs did not result in strictly

better performance. Indeed, when analyzing the same sites (i.e., restricting the 3km analysis to the NAPS sites seen in the245

smaller 1km run), the coarser 3km model showed slightly higher correlation for CO, NO2 and while O3,
:::
and

:::::
while

:
SO2 and

PM2.5 showed increases in correlation when running at the 1km resolution, the differences were small, for example going

from 0.84 to 0.88
:::
0.52

::
to

::::
0.65

:
(for 3km and 1km, respectively) for O3 :::

SO2:
(see Table 1, note that MDA8 metric was used for

O3)). Examining the model performance site by site showed similar results. Running the model at an increased resolution may

be an effective way to downscale the data, but it does not appear to make the simulation more temporally accurate. Similar250

results were reported by Russell et al. (2019). Their model (GEM-MACH) did not show improvements in “standard scoring

methodologies” (such as correlation with surface observation sites) when increasing their model resolution from 2.5km to 1km.

To assess the model performance during the daytime versus nighttime, a similar site-wide analysis was done but this time

separating the daytime data and nighttime data. The results can be seen in Figures 11 and 12, for correlation and box plots,

respectively. One noteworthy result is that the slope was higher during the day for all species except SO2. Correlation was255

higher for CO, O3, NO and PM2.5, and was slightly lower for NO2 and SO2. Furthermore, O3, a secondary pollutant that is
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Figure 6. Correlation ((a) for raw data, and (c) for MDA8) and time series ((b) for raw data, and (d) for MDA8) of NAPS data and the

modeled O3 over a NAPS site in Montreal (NAPS ID: 50135) in January
:::
July. All units are in µg/m3.

created and destroyed photochemically and thus heavily affected by sunlight, showed higher correlation during the day than

night (see Figure 11 correlation plot), and at the same time showed large underestimation biases during the night (See Figure

12 boxplot). This suggests that the model is capable of modeling O3 during the day but struggles to simulate the background

O3 during the night when photochemical reactions are low and/or nonexistent. For CO, correlation was significantly higher260

during the day than night (R= 0.91 versus 0.20
:::::::
R= 0.73

::::::
versus

:::::
-0.69), although the difference was less extreme when looking

at individual months.
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3.3 Comparison with Other Models

Polair3D performance over Canada is in line with models, such as GEM-MACH, over Canada. A study by Russell et al. (2019)

which examined the performance of GEM-MACH over Alberta, Canada at both 1km and 2.5km resolutions, saw similar cor-265

relations. In their study, they calculated correlation coefficients for O3, SO2, and PM2.5 to be 0.496 (0.506 for 1km), 0.290

(0.230 for 1km) and 0.201 (0.216 for 1km), respectively, compared to 0.76 (0.61
:::
0.85

:::::
(0.70 for 1km), 0.69 (0.83

:::
0.52

:::::
(0.65 for

1km) and 0.62 (0.75
:::
0.45

:::::
(0.55 for 1km) for our study (see Table 1). Russell et al. (2019) found normalized mean biases for O3,

SO2, and PM2.5 to be 52.7% (55.9% for 1km), 113% (137.6% for 1km) and -26.8% (-25.6% for 1km), respectively, compared

to our NMB of 28.2% (18.5
:::::
27.3%

:::::
(15.9% for 1km), 441% (262

::::
224%

:::::
(1061% for 1km) and 42.8% (82.7

:::::
26.3%

:::::
(81.4% for270

1km).

Comparing against a similar study by Stroud et al. (2020) that examined short-term GEM-MACH performance over Toronto,

Ontario, Canada for O3 and NO2 at both 10km and 2.5km resolution using NAPS surface observations, also show comparable

correlations; .
:
While their modeling duration was much shorter (limited to several days in July 2015) and thus a direct com-275

parison could not be made, their study saw correlation coefficients of 0.62 and 0.77 for O3 and NO2, respectively, compared

to 0.84 and 0.73
:::
0.85

::::
and

::::
0.70

:
for our 3km resolution runs. Similar to the comparison with Russell et al. (2019), our model

showed higher biases; they saw O3 normalized mean biases of 5.4% with their 2.5km resolution run, compared to 18.5
:::
21.4%

for our 3km run, and 28.2% for NO2 compared to 115
::
78% for our 3km run.

280

Our Polair3D runs can also be compared to other studies that used the same model over Europe. Lugon et al. (2020) found

in their study that Polair3D, over Paris, France at 1km resolution, underestimated NO2, while our study overestimated it. A

large-scale (spanning all of Europe), low resolution (0.5° by 0.5°) and long-term (2000-2008) Polair3D study by Lecœur and

Seigneur (2013) reported correlation coefficients of 0.629 and 0.591 for O3 and PM2.5, respectively, comparable to our 3km

values (0.76 and 0.62
:::
0.85

::::
and

::::
0.45 for O3 and PM2.5, respectively).285

3.4 Test Scenario
::::::::
Scenarios: Effects of Industrial Emissions

To assess the model behavior under varying emissions scenarios, a run with no industrial emissions was performed for the

same domain and time frames. Monthly averages plots showing “full emissions” (regular) run subtracted from “no-industrial-

emissions” run are shown in Figures 13, 14 and 15, for 3km, Montreal 1km and Quebec City 1km runs, respectively. Here,

the negative values (the blue areas) indicate industrial emission hotspots, showing the local influences of these industrial sites.290

Locations corresponding to major industrial emitters (sites with the top 20% and top 50% emissions for the 3km and 1km runs,

respectively) from the NPRI inventory are shown in the same figures; in these plots, the black X’s indicate NPRI emissions

corresponding to each species, except for O3, NO and NO2, where NOx emission sites were used. In the 3km figures, a distinct

hotspot by the Montreal Pierre Elliot Trudeau Airport can be seen for NO and O3 (albeit not as large in magnitude as some of

the other areas in Montreal) in January but not for the other months. In both 3km and 1km runs, O3 showed strong seasonal295

14



variation due to the photochemical nature of its creation and destruction.

The model generally captures the spatial variability of industrial emissions, and captures spatial gradients related to prox-

imity to industrial sources. Industrial contribution is not high overall (e.g., compare Figures 3 and 13). However, large spatial

gradients in emissions contributions are clearly visible, for example over Montreal (Figure 14) where clear hotspots can be

distinguished even at the intracity level, and because of the large spatial gradients, it remains a concern for health issues in300

certain areas of Quebec with high industrial activities.

:::
The

::::
test

:::
run

::::
with

:::
the

:::::::
smelter

:::
and

:::::::
refinery

:::::::
industry

::::::::::
suppressed

::::::
showed

:::::::::
reductions

:::::::
mainly

:::::::
centered

::::::
around

:::::::::::::
Trois-Rivières.

::::
This

:::
can

::
be

::::
seen

:::
in

:::::
Figure

:::
16.

::::::::::::
Trois-Rivières

::
is
::::::::
Canada’s

::::::
oldest

::::::::
industrial

::::
city.

:::::::::
Comparing

:::::::
Figures

::
13

::::
and

::
16

::::::
shows

:::
that

::::
CO

::::::::::
contribution

::::
from

:::::::
smelter

:::
and

:::::::
refinery

:::::::::
industries

:::
are

:::::::::
substantial.

::::
The

:::::::
scenario

:::::
with

::::
only

:::
the

::::::::
emissions

:::::
from

:::::
paper

::::
and

::::
pulp

:::::::
industry

:::::
turned

:::
off

:::::::
showed

::::::
similar

:::::::
results.

::::::
Figure

::
17

::::::
shows

:::
the

:::::
deltas

:::
in

:::::::
monthly

::::::::
averaged

:::::::::::::
concentrations.

:::::
Paper

:::
and

:::::
pulp305

:::::
deltas

::::
were

::::::
highest

::::::
around

:::::::
Thurso,

::::::::::
Sherbrooke,

::
as

::::
well

:::
as

::::::::::::
Trois-Rivières.

4 Conclusions

In this study, the Polyphemus Polair3D CTM was run over Quebec, Canada to assess the model’s capability in predicting key

air pollutant species over the region at the ground (surface) level model, at seasonal temporal scales and at regional spatial

scales. This represents a novel use of the Polair3D model; this study presents, the best of our knowledge, the first time the310

Polair3D model was used over Quebec, Canada with a long enough modeling period to capture seasonal effects, and a large

modeling domain spanning urban to rural areas.

The model was run in 3 nested domains; the largest and coarsest-resolution domain was roughly 9km by 9km grid-cell

resolution (edges), and within it, a smaller 3km by 3km resolution was run, and lastly, a 1km by 1km resolution runs were

performed over Montreal and Quebec City. The model was run with meteorology field from pre-run WRF, and SMOKE315

emissions-processing system was used to prepare the emissions input files. Canadian and United States (US) emissions in

the domain were calculated based on SMOKE-ready formats of the Canadian emission inventory and US national emission

inventory
::::::
National

::::::::
Emission

:::::::::
Inventory, along with their temporal allocation and chemical speciation data. Spatial allocations

for the three nested domains were generated using both Canadian and US spatial allocator inputs. The model was run for four

seasons out of 2018, with four weeks per season (January for winter, April for spring, July for summer, and October for fall),320

for a total of 16 weeks of model data. Spin-up was done for 1 week for each run. Boundary conditions for the outermost

domain, and the initial conditions for each of the runs were derived from CAM-Chem assimilated data.

The model at the 3km resolution showed varying levels of performance for different pollutant species. The model at both

the 3km and the 1km resolution struggled to capture high frequency temporal variability, at least at the surface, and showed

large variabilities in correlation and bias from site to site. Doing a site-wide analysis (i.e., comparing monthly averages across325

all sites) suggested that the model is better at capturing the spatial variability and seasonal effects, rather than hour-by-hour or

day-to-day temporal variability for a fixed location.

When comparing the biases and correlation at a site-wide scale, the higher resolution 1km runs did not result in strictly better
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performance; when analyzing the same sites (i.e., restricting the 3km analysis to the NAPS sites seen in the smaller 1km run),

the 3km model showed slightly higher correlation for CO, NO
:::
O3,

::::
NO2, and NO 2 and while O3,

::
and

::::::
while SO2 and PM2.5330

showed increases in correlation, the difference were not large
:::
(CO

:::::::::
correlation

::::
was

:::
the

:::::
same

:::
for

::::
both

::::::
cases). Examining the

model performance site by site showed similar results; Running the model at an increased resolution may be an effective way

to downscale the data, but it does not appear to make the simulation more temporally accurate.
:::::::::
Comparing

::::::
against

::::::::
CANUE

:::::::
National

::::
LUR

::::
NO2:::::::

showed
::::
high

::::::::::
correlations,

:::::::
ranging

:::::::
between

::::::::
R= 0.91

::
(in

:::::
July)

:::
and

::::
0.86

:::
(in

::::::::
October). At the 1km resolution,

another analysis was conducted, separating day and night time data; one noteworthy result from this analysis is that the slope335

was higher during the day for all species except SO2. Correlation was higher for CO, O3, NO and PM2.5, and was slightly

lower for NO2 and SO2. Furthermore, O3, a secondary pollutant that is created and destroyed photochemically and thus

heavily affected by sunlight, showed higher correlation during the day than night, while and at the same time showed large

underestimation biases during the night. This suggests that the model is capable of modeling O3 during the day but struggles to

simulate the background O3 during the night where photochemical reactions are low and/or nonexistent. For CO, correlation340

was significantly higher during the day than night (R= 0.91 versus 0.20
::::
-0.69), although the difference was less extreme when

looking at individual months.

A test scenario, where the model was run without industrial emissions, showed that the model generally captures the spatial

variability of industrial emissions, and captures spatial gradients related to proximity to industrial sources. While industrial

contribution is not high overall, large spatial gradients were seen in its contributions, even at intracity scales.345

The performance of the Polair3D model over Quebec was in line with other models like GEM-MACH over Canada albeit

with higher biases overall, and comparable to the performance of Polair3D over Europe, where the model was developed. For

key air pollutants such as O3 and NO2, Polair3D showed similar correlations and comparable biases.

Code availability. The Polyphemus platform, including the Polair3D CTM used in this study, is available at https://doi.org/10.5281/zenodo.

10067062 (Kim et al., 2023).350
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Figure 8.
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Figure 9. Monthly averages (January, April, July and October, from top to bottom) of the Polair3D model at the 1km resolution over Montreal

for (from left to right) CO, O3, NO2, NO, SO2 and PM2.5. All units are in µg/m3.

Figure 10. Monthly averages (January, April, July and October, from top to bottom) of the Polair3D model at the 1km resolution over Quebec

City for (from left to right) CO, O3, NO2, NO, SO2 and PM2.5. All units are in µg/m3.
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Figure 11. Monthly average site-wide correlation plots, separated between day (red) and night (blue) data points, at the 1km resolution for

(a) CO, (b) O3, (c) NO2, (d) NO, (e) SO2 and (f) PM2.5. For NO, the grid cell over the Pierre Elliot Trudeau Airport was not included in this

analysis. All units are in µg/m3.
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Figure 12. Monthly average site-wide box plots, separated between day and night data points, at the 1km resolution for (a) CO, (b) O3, (c)

NO2, (d) NO, (e) SO2 and (f) PM2.5. For NO, the grid cell over the Pierre Elliot Trudeau Airport was not included in this analysis. All units

are in µg/m3.

Figure 13. Monthly averaged plots (January, April, July and October, from top to bottom) showing the model with full emissions subtracted

from a run with no industrial emissions, at the 3km resolution for (from left to right) CO, O3, NO2, NO, SO2 and PM2.5. The X’s indicate

NPRI emissions corresponding to each species, except for O3, NO and NO2, where NOx emission sites were used. All units are in µg/m3.
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Figure 14. Monthly averaged plots (January, April, July and October, from top to bottom) showing the model with full emissions subtracted

from a run with no industrial emissions, at the 1km resolution over Montreal for (from left to right) CO, O3, NO2, NO, SO2 and PM2.5. The

X’s indicate NPRI emissions corresponding to each species, except for O3, NO and NO2, where NOx emission sites were used. All units are

in µg/m3.
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Figure 15. Monthly averaged plots (January, April, July and October, from top to bottom) showing the model with full emissions subtracted

from a run with no industrial emissions, at the 1km resolution over Quebec City for (from left to right) CO, O3, NO2, NO, SO2 and PM2.5.

The X’s indicate NPRI emissions corresponding to each species, except for O3, NO and NO2, where NOx emission sites were used. All units

are in µg/m3.
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Figure 17.
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showing
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with
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subtracted
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from
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a
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with
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and
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at
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for
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to
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