
 

1 

 

Significant human health co-benefits of African emissions mitigation 
Christopher D. Wells1,2, Matthew Kasoar3, Majid Ezzati4,5,6, Apostolos Voulgarakis3,7 

 

1The Grantham Institute for Climate Change and the Environment, Imperial College London, London, UK. 
2School of Earth and Environment, University of Leeds, Leeds, UK. 5 
3Leverhulme Centre for Wildfires, Environment and Society, Department of Physics, Imperial College London, London, UK. 
4Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK. 
5MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK. 
6Regional Institute for Population Studies, University of Ghana, Accra, Ghana. 
7School of Environmental Engineering, Technical University of Crete, Chania, Greece. 10 

Correspondence to: Christopher D. Wells1 (c.d.wells@leeds.ac.uk) 

Abstract. Future African aerosol emissions, and therefore air pollution levels and health outcomes, are uncertain. and 

understudied. Understanding the future health impacts of pollutant emissions from this region is crucial.  Here, this research 

gap is addressed by studying the range in the future health impacts of Africanaerosol emissions from Africa in the Shared 

Socioeconomic Pathway (SSP) scenarios is studied, using the UK Earth System Model version 1 (UKESM1) along with human 15 

health concentration-response functions. The effects of Africa following a high-pollution aerosol pathway are studied relative 

to a low-pollution control, with experiments varying aerosol emissions from industry and biomass-burning. Using present-day 

demographics, annual deaths within Africa attributable to ambient particulate matter are estimated to be lower by 150,000 (5th 

– 95th CI: 67,000 – 234,000) under stronger African aerosol mitigation by 2090, while those attributable to O3 are lower by 

15,000. (5th – 95th CI: 9,000 – 21,000). The particulate matter health benefits are realised predominantly within Africa, with 20 

the O3-driven benefits being more widespread – though still concentrated in Africa – due to the longer atmospheric lifetime of 

O3. These results demonstrate the important health co-benefits from future emissions mitigation in Africa.  

1 Introduction 

Anthropogenic emissions of aerosols, their precursors, and reactive gases have substantial impacts on the climate. These 

impacts include a general aerosol cooling and, to a lesser extent, warming due to tropospheric O3 (Thornhill et al., 2021; Smith 25 

et al., 2020), as well as shifts in circulation patterns such as monsoons (Kasoar et al., 2018; Shawki et al., 2018; Wang et al., 

2016; Liu et al., 2018). In addition to their climate effect, aerosols contribute to fine particulate matter air pollution, termed 

PM2.5 to denote particles with diameters less than 2.5µm (Turnock et al., 2020) . Reactive gases also modify concentrations of 

O3, another important climate forcer and air pollutant (von Schneidemesser et al., 2015). Due to their relatively short lifetimes, 

the effects of aerosols on the climate and human health depends on their emission location  (Persad and Caldeira, 2018), with 30 

the health impact being particularly localised (Shindell et al., 2018). Since these species are co-emitted with greenhouse gas 

emissions, general climate change mitigation policies can lead to health co-benefits via reduced air pollution (Shindell et al., 

2018). 
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GlobalThe continent of Africa features a complex mix of air pollutant sources, both natural – such as dust from e.g. the Sahara 35 

– and anthropogenic, with continent-specific complexities such as imported second-hand high-emission vehicles (Abera et al., 

2021).  There is a broad range of possible future African pollutant emissions pathways (Abera et al., 2021), some of which 

involve drastic increases in pollutants in key regions (Turnock et al., 2020). Recent and likely future dynamics of urbanisation 

can also be expected to drive enhanced exposure to air pollutants (Abera et al., 2021; Katoto et al., 2019). Reducing air pollution 

impacts in developing countries is a key component of the Sustainable Development Goals (Coker and Kizito, 2018). 40 

 

The wide range of potential future African air pollutant emissions suggests concurrently disparate possible air pollution impacts 

over the continent. Despite this, studies assessing the human health impact of air pollution over Africa are sparse, especially 

those focused on outdoor air pollution (Abera et al., 2021), inhibiting the creation of appropriate concentration-response 

functions (CRFs) (Chen and Hoek, 2020 , Abera et al., 2021; Katoto et al., 2019; Coker and Kizito, 2018). Observational data 45 

of air pollution in Africa is sparse (Coker and Kizito, 2018), with issues on data availability (Pinder et al., 2019) and structural 

barriers to reliable data collection (Pinder et al., 2019; Katoto et al., 2019). Strong intra-regional disparities in research persist, 

with two reviews finding over half of all studies measuring outdoor air pollution impacts in sub-Saharan Africa focusing on a 

single country (South Africa), and large areas entirely unstudied (Katoto et al., 2019; Coker and Kizito, 2018).  

 50 

This study, while recognising the inadequacy of extant exposure research to effectively assess the effect of air pollutants in 

Africa, utilises recent CRFs (e.g. (Burnett et al., 2018; GBD 2019 Risk Factors Collaborators, 2020)), which incorporated high 

air pollution cohort studies from the Global South. This allows for a more accurate investigation of the effect of air pollution 

on human health in Africa than previously possible. 

 55 

Global annual average PM2.5 concentrations have increased 15-20% since the pre-industrial era to 6.9 ± 1.5 µg m-3 (Turnock 

et al., 2020) , and are thought to still be slightly increasing in recent decades by 0.2% yr-1, particularly over Asia and southern 

Africa (Gliß et al., 2021). The average concentration experienced by humans is much higher than this global average due to 

the co-location of anthropogenic sources with population centres; 69% of people are estimated to be exposed to PM2.5 

concentrations higher than 10 µg m-3 (Lelieveld et al., 2013), with an average population-weighted PM2.5 exposure of 38 µg 60 

m-3, reducing to just 11 µg m-3 when excluding fossil fuel emissions (Vohra et al., 2021). The World Health Organisation 

recommends limiting long-term exposure to less than 5 µg m-3 (World Health Organisation, 2021), lowered in 2021 from their 

previous threshold of 10 µg m-3, though there is no known safe level of PM2.5 concentrations (Silva et al., 2013). Present-day 

human health impacts of PM2.5 are substantial but uncertain, with estimates varying from 2.37 (1.33 – 2.93) million deaths yr-

1 (Partanen et al., 2018) to the more recent finding of 8.7 (-1.8 – 14.0) million deaths yr-1 (Vohra et al., 2021). In other studies, 65 

3.61 (2.96-4.21) million deaths yr-1 have been attributed to fossil-fuel PM2.5 alone (Lelieveld et al., 2019), and the Global 
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Burden of Disease 2019 (hereafter: GBD2019) estimated PM2.5-attributable deaths to be 4.14 (3.55 – 4.80) million deaths yr-1 

(GBD 2019 Risk Factors Collaborators, 2020). 

 

Anthropogenic activity has also increased annual average surface concentrations of O3, by 11.7ppb to the present-day levels 70 

of 29.9ppb (Turnock et al., 2020). O3’s lifetime is longer than that of PM2.5, but its effects are still strongly co-located with 

anthropogenic activity, with a population-weighted maximum 6-month average 1-hr daily maximum concentration of around 

57ppb (Anenberg et al., 2010). Impacts of O3 on premature mortality have been estimated to be 0.7 ± 0.3 million deaths yr-1 

(Anenberg et al., 2010) and 0.38 (0.12 – 0.73) million deaths yr-1 (Silva et al., 2016), using the same concentration-response 

functions (CRFs) (Jerrett et al., 2009). Using more recent CRFs (Turner et al., 2016) 0.6 ± 0.1 million deaths yr-1 were attributed 75 

to O3-linked respiratory causes (Shindell et al., 2018), and GBD2019 attributed 0.365 (0.175-0.504) million deaths yr-1 to O3, 

purely from Chronic Obstructive Pulmonary Disease (COPD) (GBD 2019 Risk Factors Collaborators, 2020). Note that O3 

concentrations presented in this study are annual average of the daily maximum 8-hour mean concentration, to be consistent 

with the CRFs used. 

 80 

Future impacts of air pollutants will depend on both emissions and demographic changes. The reduced air pollution from 

measures targeting the direct lowering of carbon emissions rather than relying on negative emissions technologies would 

prevent 93 ± 41 million deaths from PM2.5 and 60 ± 18 million deaths from O3 over the 21st century (Shindell et al., 2018). 

Measures compatible with 2oC2°C warming are projected to reduce life-years lost due to PM2.5 by 0.7 million yr yr-1 in Europe 

by 2050 compared to a business-as-usual scenario, despite population increases (Schucht et al., 2015). Air pollutant emissions 85 

decrease into the future in all the CMIP5-era Representative Concentration Pathway (RCP) scenarios, with reduced future air 

pollution-linked mortality (Silva et al., 2016). However, the range in aerosol emissions between the different RCP scenarios 

is far smaller than that covered by the newer Shared Socioeconomic Pathways (SSPs)(Gidden et al., 2019), which extend the 

RCP framework to include different socioeconomic and demographic trends, and are projected to have substantially different 

air pollution impacts on human health (Im et al., 2023). Thus, the future range of possible human health impacts of air pollution 90 

is larger under more recent, less explored, scenarios.  

 

Several previous studies have investigated the human health impacts of changes in global emissions, but predominantly 

consider the global response. The effect of the newer SSPs on human health has also yet to be studied in detail, with the latest 

CRFs. The continent of Africa features a complex mix of air pollutant sources, both natural and anthropogenic, with a broad 95 

range in future emissions pathways, some of which involve drastic increases in pollutants in key regions(Turnock et al., 2020). 

The wide range in potential future African air pollutant emissions suggests concurrently disparate possible air pollution impacts 

over the continent. Despite this, Africa has been historically understudied, especially in exposure-response cohort studies(Chen 

and Hoek, 2020). Nevertheless, the recent inclusion of high air pollution cohort studies from the Global South in recent CRFs 
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(e.g. (Burnett et al., 2018; GBD 2019 Risk Factors Collaborators, 2020)), allows for a more accurate investigation of the effect 100 

of air pollution on human health in Africa than previously possible with the latest CRFs.  

 

The current study investigates the potential future impacts of African emissions on air pollution, both within and beyond the 

continent. A strong mitigation control scenario (Shared Socioeconomic Pathway SSP119; see Section 2 and Figure S1) is 

compared to three experiments with a subset of African aerosol and reactive gas emissions substituted for those from a weak 105 

mitigation scenario (SSP370). These three experiments use in turn emissions of aerosol and reactive gas from the weak 

mitigation scenario from three different sources: biomass burning (BB), non-BB, and all sources. The experiments are named 

for the emissions which are substituted from SSP370, and are thus termed AerBB, AerNonBB, and AerAll respectively. 

AerNonBB features higher African non-BB emissions than the control, while BB emissions from Africa in AerBB are 

relatively reduced (Figure S1). N.B. the terminology non-BB is used in this paper to refer to the non-biomass burning emissions 110 

themselves (i.e. those from fossil fuels and biofuels), which are changed in both AerAll and AerNonBB, and so the effects of 

changed non-BB emissions are found under both experiments. BB similarly refers to biomass burning emissions, changed in 

both AerAll and AerBB. NonBB emissions are purely anthropogenic, while those from biomass burning are complexly related 

to human activity, particularly over Africa (Bauer et al., 2019), driving the counterintuitive increase in BB emissions in the 

stronger mitigation scenario. The UK Earth System Model 1 (UKESM1) is used to simulate the climate response to each 115 

emissions scenario. Ten control experiments are used, identical in their emissions but driven with different initial conditions 

to explore the internal variability (see Section 2); seven realisations of each of the three additional scenarios are simulated. 

The current study addresses these gaps using the SSPs to investigate the potential future impacts of African emissions on air 

pollution, both within and beyond the continent. Using the UK Earth System Model version 1 (UKESM1), a strong mitigation 

scenario was compared to three alternative emissions scenarios, each substituting a subset of pollutant emissions over Africa 120 

for a weak mitigation equivalent.  

Pollutant concentrations are not bias-corrected here, in order to determine the specific estimation in UKESM1 and due to the 

sparse observations over Africa. The focus is therefore on the relative impact of the scenarios, while also contextualising the 

magnitudes in relation to prior studies. 

 125 

The control scenario thus depicts a global future with strong climate mitigation policies, leading to 

relatively low greenhouse gas emissions and consequently low air pollutant levels. Each of the alternative 

scenarios represents a future in which Africa instead follows a weak mitigation scenario in its emissions of air pollutant 

precursors, allowing for an exploration of the health impacts of such a range in future trajectories. Present-day population and 

baseline mortality rates are used throughout, to isolate the effect of changing air pollutants (see Section 2). 130 
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2 Methods 

2.1 Earth System Model and Experiments 

This study uses the UK Earth System Model version 1 (UKESM1), a fully-coupled global climate model used in the CMIP6 

model intercomparison exercise. UKESM1 couples the ocean module NEMO to its atmospheric module GA7.1 and the land 135 

module GL7, with further couplings to earth system components such as the biogeochemical scheme (Sellar et al., 2019). Its 

horizontal resolution is 1.875° × 1.25°, with 85 vertical levels. The atmospheric scheme features interactive chemistry, with 

291 reactions and 84 species (Archibald et al., 2020). This is coupled to the GLOMAP-mode aerosol scheme, which simulates 

the concentrations of Black Carbon (BC), Organic Carbon (OC), Sulfate, sea salt, Primary Marine Organic Aerosol (PMOA), 

and Secondary Organic Aerosol (SOA) in five lognormal modes, four soluble and one insoluble (Bellouin et al., 2013; Mulcahy 140 

et al., 2020). GLOMAP-mode is a 2-moment scheme, calculating both aerosol mass and number concentration, allowing 

different processes to impact these independently; . it simulates both aerosol direct and indirect effects (Mann et al., 2010), 

with broader semi-direct effects enabled via the coupling to the dynamical atmosphere. Dust is treated separately within 

UKESM1 via the older 1-moment (mass only) CLASSIC scheme (Bellouin et al., 2011).  

 145 

UKESM1’s representation of surface PM2.5 and O3 has been evaluated in relation to observations and other models (Turnock 

et al., 2020) (in particular, Figures 3-8 in (Turnock et al., 2020)). In areas that are well-sampled with surface PM2.5 

measurements, UKESM1 is consistent with other CMIP6 models, exhibiting a low-bias in PM2.5 in Eastern Europe and North 

America by around 2-10µg m-3. Over oceans PM2.5 is also systematically low, but the picture over other land areas is mixed, 

compared to MERRA reanalysis. In the multi-model mean, PM2.5 concentrations over Northwest Africa are too low (Turnock 150 

et al., 2020), while those over East and Southern Africa are too high, by around 2-15 µg m-3 between models. Concentrations 

over Asia are also generally too high, with all bias patterns roughly similar between DJF and JJA. UKESM1 is typical in its 

PM2.5 bias across most regions, including northern Africa. In Sub-Saharan Africa, however, it exhibits a stronger seasonal 

cycle than other models, with the main biomass burning seasons featuring substantially higher PM2.5 concentrations than other 

models and the observational best estimate. Simulated PM2.5 concentrations are up to 50% higher than the multi-model and 155 

observational means in July and January, though they still lie close to the wide observational range. The areas of high biases 

in CMIP6 are areas with high background PM2.5 and large ranges in simulated concentrations across CMIP6, with inter-model 

standard deviations of over 20µg m-3 in the most polluted areas of northern and central Africa.  

 

CMIP6 models generally exhibit high-biases in surface O3, overestimating North American, European, and East Asian 160 

concentrations by around 10ppb in DJF and JJA compared to surface observations (Turnock et al., 2020). UKESM1 has typical 

biases in JJA (i.e. high), but overestimates the amplitude of the seasonal cycle becoming the only one of five CMIP6 models 

studied by (Turnock et al., 2020) to exhibit a low bias over Northern Hemispheric land. As for PM2.5, the areas with the largest 
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concentrations and inter-model standard deviations are the high emissions regions in Africa and Asia. UKESM1’s 

representation of O3 over Sub-Saharan Africa is much closer to the multi-model mean; the lack of local surface observations 165 

precludes a full evaluation, though the sole observational station in South Africa closely tracks the models’ regional averages 

(Figure 4 in (Turnock et al., 2020)).  

 

Aerosol Optical Depth (AOD) in UKESM1 is consistent with satellite observations in low-AOD areas, but is low-biased over 

some areas with strong aerosol emissions such as West Africa (Mulcahy et al., 2020).  170 

 

2.2 Experiments 

This study uses the Shared Socioeconomic Pathway (SSP) emissions trajectories to estimate the future health impact of 

different African emissions pathways. The SSPs are denoted SSPx-y, with x an integer referring to one of five socioeconomic 

narrative pathways, to explore different non-climate societal evolutions, and y denoting the top-of-atmosphere (TOA) radiative 175 

forcing in 2100 under a particular mitigation scenario (O’Neill et al., 2017). The SSPs therefore explore a range of future 

possible trajectories covering both socioeconomic and mitigation trends. This project uses SSP119 as a control scenario. 

Designed to be roughly consistent with strong mitigation under the Paris agreement, this follows socioeconomic trajectory 1 – 

“sustainability” (van Vuuren et al., 2017) – along with broad emissions reductions to approximately reach 1.9 W m-2 radiative 

forcing in 2100. To test the effect of weaker mitigation in Africa for different sets of emissions, three experiments are 180 

simulated, switching out the SSP119 aerosol and reactive gases emissions over Africa for their SSP370 equivalent. SSP370 

follows the socioeconomic trends in narrative 3 – “regional rivalry” (Fujimori et al., 2017) – coupled with weak mitigation, 

leading to a TOA radiative forcing of 7 W m-2 in 2100. The three experiments performed are named after the SSP370 emissions 

subset which is substituted over Africa, and are; the full set of experiments is: 

 185 

AerAll 

AerNonBB 

AerBB 

Control: SSP119 globally 

AerAll: Control, with African aerosol emissions from SSP370 190 

AerNonBB: Control, with African non-biomass burning aerosol emissions from SSP370 

AerBB: Control, with African biomass burning aerosol emissions from SSP370 

 

AerAll indicates that all aerosol and reactive gas emissions over Africa are substituted with SSP370, while emissions over all 

other areas, and for other climate forcers such as well-mixed GHGs over Africa, are kept at their SSP119 values as in the 195 

control. AerBB then switches out just the biomass-burning (BB) components of aerosols and reactive gases, and AerNonBB 

changes only the non-BB emissions (i.e. fossil fuel and biofuel) over Africa. N.B. the terminology non-BB is used in this paper 
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to refer to the non-biomass burning emissions themselves (i.e. those from fossil fuels and biofuels), which are changed in both 

AerAll and AerNonBB, and so the effects of changed non-BB emissions are found under both experiments. BB similarly refers 

to biomass burning emissions, changed in both AerAll and AerBB. NonBB emissions are purely anthropogenic, while those 200 

from biomass burning are complexly related to human activity, particularly over Africa (Bauer et al., 2019), driving the 

counterintuitive increase in BB emissions in the stronger mitigation scenario. Pollutant concentrations are not bias-corrected 

here, in order to determine the specific estimation in UKESM1 and due to the sparse observations over Africa. The focus is 

therefore on the relative impact of the scenarios, while also contextualising the magnitudes in relation to prior studies. 

 205 

The control scenario thus depicts a global future with strong climate mitigation policies, leading to relatively low greenhouse 

gas emissions and consequently low air pollutant levels. Each of the alternative scenarios represents a future in which Africa 

instead follows a more “pessimistic” scenario in its emissions of air pollutant precursors, allowing for an exploration of the 

health impacts of such a range in future trajectories. 

 210 

The aerosol emissions changed are BC and OC, and the reactive gases are C2H6, C3H8, CO, dimethyl sulfide (DMS), HCHO, 

Me2CO, MeCHO, NH3, NO, lumped non-methane volatile organic compounds (NVOC), and SO2. In UKESM1, all these 

emissions species have both BB and non-BB components except for SO2, which has only a non-BB component. All are emitted 

from the surface except a subset of BB BC and OC representing large fires, which are injected vertically uniformly from the 

surface to 3km, and aircraft NO emissions which are injected in a 3D grid. It should be noted that, since the aerosol and O3 215 

precursors are co-emitted with greenhouse gases, these scenarios changing emissions subsets are not realistic future scenarios. 

Instead, the purpose is to investigate the range of plausible human health impacts between scenarios, which are driven by the  

species altered in these experiments.  

 

Multiple ensemble members were simulated for each experiment, each initiated in 2015 with slightly different atmospheric 220 

and ocean conditions to explore the internal climate variability. Ten ensemble members of SSP119 are used for the control – 

five simulated for this study and five taken from the UKESM1 CMIP6 experiments, and seven of each of the other experiments 

are simulated. All simulations run the length of the SSP scenarios, i.e. 2015-2100. The analysis of the health impacts here 

focuses on the effects in 2090. For the O3 impacts, the five UKESM1 CMIP6 control members didn’t output the concentrations 

hourly, so only the five control experiments simulated for this project were used for the control concentrations. The local and 225 

remote climate impacts of these emissions scenarios, plus additional scenarios changing CO2 emissions similarly, are explored 

in a separate paper(Wells et al., 2023).  

 

Figure S1 indicates the time evolution of the aerosol and SO2 emissions over Africa and globally in the control (black) and 

experiments (red), with total and BB carbonaceous aerosol shown. Also shown is maps of the emissions differences for 230 

carbonaceous aerosol and SO2. Total carbonaceous aerosol emissions over Africa decline quickly in the SSP119 control, 
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consistent with general emissions mitigation, whereas they remain roughly flat in SSP370. This acts to dampen the general 

global decrease in emissions, though they still almost halve at the global level through the 21st century as the rest of the world 

follows SSP119. The BB emissions subset, however, shows the opposite (and weaker) trend, with emissions remaining 

approximately constant in SSP119 but declining in SSP370, while global emissions decline in each case. This is inconsistent 235 

with the general emissions reductions in SSP119, and is reflective of the more complex link between anthropogenic activity 

and BB emissions than between human actions and non-BB emissions. Different IAMs were used to produce the emissions 

pathways for the different scenarios (IMAGE for SSP1 and AIM/GCE for SSP3 (Fujimori et al., 2017; van Vuuren et al., 

2017)); this makes a clear understanding of the differences between complex emissions sources difficult, but it likely relates 

to different land-use activity in the scenarios. Non-BB emissions still dominate the carbonaceous aerosol emissions change, as 240 

indicated by the larger overall carbonaceous emissions in SSP370 than SSP119 over Africa. The SO2 emissions change features 

a complex pattern, with higher emissions across most of the continent in SSP370 than SSP119, but relatively lower over 

southern Africa (except South Africa). In both cases, emissions drop overall substantially, and the differing spatial changes 

over Africa approximately cancel to drive, resulting in little overall emissions difference between the scenarios. As with the 

BB aerosol changes, the specific cause of the differing trends in SO2 emissions is hard to discern, though it is driven by stronger 245 

industrial SO2 emissions in SSP119 (Gidden et al., 2018), indicating a projected faster industrialisation in SSP119 than SSP370 

in southern Africa.  

 

2.23 Health Impact Analysis 

Many studies utilise a common methodology to estimate the human health impact of a given concentration, or change in 250 

concentration, of pollutants (e.g. (Anenberg et al., 2010; Shindell et al., 2018)). Cohort studies, tracking a large population 

over many years, are used to produce empirically-determined concentration-response functions (CRFs), linking background 

air pollutant concentrations to the change in the Relative Risk (RR) of dying from a particular Cause Of Death (COD). The 

RR at zero concentration is one by definition, and increases monotonically above a Low Concentration Threshold (LCT). The 

form of RR is constrained by the fit used to derive the function. Early studies used exponential fits (Pope III et al., 2002), while 255 

others use linear relationships or power laws (Pope III et al., 2009; Ezzati et al., 2004), while more recent studies use more 

complex functional forms (Burnett et al., 2014, 2018).  

 

While various cofounding factors are controlled for – such as lifestyle and income level – it is not necessarily valid to generalise 

a RR from a single cohort to the global scale. This issue especially applies to the extrapolation of pollutant concentrations to 260 

levels outside those experienced by the cohort population. In particular, a large American Cancer Society cohort study was 

used to generate earlier RR curves, but the highest PM2.5 concentrations this cohort was exposed to were less than 30 µg m-3, 

lower than the global population-weighted average of 38 µg m-3 found by (Vohra et al., 2021). This gap can be bridged using 

data from active smoking, but this assumes a short, high exposure burst – from smoking individual cigarettes – has the same 

health effect as a lower, continuous background concentration (Smith and Peel, 2010; Pope III et al., 2009). More recent studies 265 
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use multiple cohort studies across a range of ambient exposures, significantly mitigating this issue (Burnett et al., 2018; GBD 

2019 Risk Factors Collaborators, 2020), and rendering such CRFs more applicable to highly-polluted regions than prior 

estimates. At the other end of the exposure range, the assumed LCT below which the RR is one (i.e. pollutant concentrations 

below this have no human health effect) has decreased in consecutive studies, as cohorts in ever cleaner environments still 

exhibit significant effects of air pollution; there is no biological justification for a threshold, and more recent CRFs, including 270 

that used here, use a statistical distribution to represent the LCT (GBD 2019 Risk Factors Collaborators, 2020).  

 

The “Attributable Fraction” (AF) estimates the fraction of deaths – of a particular COD – attributable to the air pollutant 

exposure (Mansournia and Altman, 2018): 

 275 

AF =  (RR − 1)/RR =  1 – (1/RR). (1) 

 

Given a COD-specific RR curve, and common grids of surface concentrations of the pollutant (either PM2.5 or O3), baseline 

population (Pop), and mortality for a specific COD (y0), the number of deaths attributable to the pollutant can be estimated as 

 280 

Deaths =  y0 ∗ Pop ∗ AF.  (2) 

 

Equation 2 is applied at each gridcell to determine the estimated annual deaths within the cell.   

 

The Concentration-Response Functions used in this study are taken from the Global Burden of Disease 2019 (hereafter: 285 

GBD2019) (GBD 2019 Risk Factors Collaborators, 2020) for PM2.5, and from (Turner et al., 2016) for O3. While studies prior 

to GBD2019 imposed functional forms of varying complexity on their CRFs, GBD2019 uses a Bayesian Meta-Regression 

method to provide the fit, with only the assumption that the CRF should be monotonic. Due to the uncertainties regarding the 

existence and level of safe low concentrations of PM2.5, GBD2019 suggests the use of a uniform distribution from 2.4-5.9 µg 

m-3 for the LCT, representing the lowest and the 5th percentile concentrations found in the background concentrations – this 290 

threshold is used in this study. The GBD2019 dataset provides 1000 “draws” of the fit for each COD-age pair, with no 

threshold; an LCT from the suggested uniform distribution was then randomly selected for each draw to complete the 

distribution.  These 1000 draws represent the uncertainty in the CRF; the median, 5 th, and 95th percentile impacts using these 

draws are calculated here to explore this uncertainty. 

 295 

GBD2019 provides CRFs for six CODs for PM2.5: Lung Cancer (LC), Chronic Obstructive Pulmonary Disease (COPD), Lower 

Respiratory Infection (LRI), Type 2 Diabetes (T2DM), Stroke, and Ischemic Heart Disease (IHD). The latter two are age-

dependent, on 5-year brackets; T2DM applies only to populations over 25 years; and the other CODs are applied to the total 

population. The CRFs for PM2.5 apply to annual average PM2.5 concentrations. 
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 300 

Following prior studies (Malley et al., 2017; Shindell et al., 2018; GBD 2019 Risk Factors Collaborators, 2020), the CRF for 

O3 in this study was taken from (Turner et al., 2016) for respiratory mortality, which includes COPD, LRI, upper respiratory 

infections, asthma, pneumoconiosis, interstitial lung disease, pulmonary sarcoidosis, and other chronic respiratory diseases. 

This CRF applies to populations over 30, and applies to the annual average of the daily maximum 8-hour mean concentration. 

An LCT of 26.7ppb, the minimum concentration found in the cohort studies used by (Turner et al., 2016) is applied here, with 305 

a sensitivity test carried out applying an LCT of 31.1ppb, representing the 5th percentile in the underlying cohort data. 

 

This study uses the following approximation for PM2.5: 

 

PM2.5 =  OC +  BC +  SO4 +  0.25 ∗ SS +  0.1 ∗ Dust. (3) 310 

 

i.e. all carbonaceous and sulfate aerosol contributes to PM2.5, but only 25% of sea salt and 10% of dust are assumed to be less 

than 2.5µm in diameter. This approximation is used in AerChemMIP (Turnock et al., 2020) and other studies (e.g. (Allen et 

al., 2021)).  

 315 

Single years of pollutant concentrations, averaged across the ensembles, were utilised in this study – 2015, 2050, and 2090. 

There are several reasons for the choice to use single years rather than e.g. averaging over a decade to smooth out interannual 

variability. The present-day value needed to be centredcentered around 2015, the start of the scenarios, since this is where the 

emissions start to diverge. All simulations were initialised from 2015, so it wouldn’t have been possible to use a larger window 

to average around 2015. If data past 2015 had been used, e.g. 2015-2025 for the present day, this would have introduced other 320 

issues: since the emissions scenarios diverge from 2015, the choice of scenario to take the data from would affect the result s, 

and this wouldn’t represent the present-day in the other scenarios; in addition, the rapid decrease in emissions from 2015 in all 

scenarios would mean the 2015-2025 average would be significantly lower than the concentrations in 2015, and therefore not 

closely represent the conditions experienced by the 2015 population distributions present-day concentrations.  

 325 

Population numbers from the SSPs in 2015 – equal between scenarios since the SSPs only diverge after 2015 – were used to 

ensure consistency across the methodology (Lutz et al., 2018). Equation 2 is applied in each model grid-cell level, using the 

pollutant concentrations output from UKESM1, so the country-level population data was re-gridded to the 1.875° × 1.25° 

UKESM1 grid. To approximately preserve present-day within-country population distributions, a high resolution (0.25° × 

0.25°) present-day population file was used (CIESIN, 2018), and a country name was assigned to each cell within this grid 330 

using a global shapefile (Sandvik, 2008). The present-day population distribution within each country was then scaled to create 

the correct total for each age-year pair, and these distributions were then re-gridded to the UKESM1 grid resolution. Baseline 
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mortality data for each COD-age pair was applied at the country-level (IHME, 2020), and re-gridded to the UKESM1 grid 

using the global shapefile.  

 335 

Present-day populations were used for the analysis for two reasons. First, to isolate the effect of changes in emissions on human 

health. Second, while the SSPs include population projections, they do not include future baseline mortality estimates, and 

present-day mortality rates cannot be assumed constant while populations and other social factors change significantly, and 

differently between scenarios. 

 340 

3 Results 

3.1 Air Pollution Impact 

Africa is a continent with a major presence of key pollutants compared to the global average, as seen in Figure S2. Based on 

our UKESM1 simulations, the organic carbon (OC) contribution to PM2.5 is generally highest in the tropical biomass burning 

regions, peaking in Africa; this is also true for atmospheric dust. The distribution of O3 is smoother than that of PM2.5, owing 345 

to its longer lifetime, with the concentrations again being higher than average near the main emissions regions, in the low 

latitudes in Africa. 

 

The changes in surface PM2.5 and O3 over Africa near the end of the century (2090) for all simulations, split into contributions 

from each component, are shown in Figure 1. Figure S3 shows the corresponding timeseries of simulated pollutants for Africa, 350 

its sub-region west Africa, neighbouring region Europe, as well as for the whole globe. The simulations explore the change in 

pollution levels in scenarios where the whole globe follows a strong mitigation pathway, while Africa follows a more 

“pessimistic” policy pathway in terms of its biomass burning aerosols (AerBB simulation; though as discussed in Section 2 

these emissions are higher in the control), non-biomass burning aerosols (AerNonBB) and all aerosols combined (AerAll) (see 

Section 2). The carbonaceous aerosol increases under AerNonBB are near the main non-biomass burning emission regions, 355 

especially in West and East Africa, while reductions under AerBB are centredcentered on the biomass burning regions North 

and South of the Equator. AerAll then exhibits features of both. Sulfate shows weaker changes, with the North African non-

BB increased emissions contrasting with the reduced emissions south of the Equator. Changes in dust are significant, with a 

substantial decrease in areas with high background dust emissions. This decrease in dust emissions is ultimately due to the 

impact of the aerosol emissions on local surface winds, which drives the emission of dust (See Figure S4 in the Supplement). 360 

O3 follows a similar pattern to the PM2.5 changes, as its concentration is modified by the reactive gases co-emitted with the 

anthropogenic aerosol species. 
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Figure 1: The change in the organic carbon (OC), black carbon (BC), sulfate, and dust aerosol contributions to surface PM2.5, 

and O3, under each emissions scenario relative to the SSP119 control in 2090 over Africa. Stippling indicates areas where the 

ensemble mean change is greater than one intra-ensemble standard deviation away from zero. 

 

3.2 Health Impact 370 

The estimated deaths in 2015 from PM2.5 (6 Causes of Death (CODs), see Section 2) and O3 (respiratory illnesses only) per 

1000km2 are shown in the top row of Figure 2. Table 1 indicates global and regional totals. The control SSP119 experiment is 

used for the air pollutant concentrations in 2015, an arbitrary choice as the SSP emissions diverge only after this year.  

Globally, 2.76 (2.11 – 3.48) million annual deaths are attributed to PM2.5, with Ischemic Heart Disease (IHD) the largest COD 

followed by Stroke, and 2.28 (1.73 – 2.70) million to O3. Deaths are highest in areas where population densities and pollutant 375 

concentrations are high: in East and South Asia, and in tropical Africa. The highest number of deaths attributable to PM2.5 and 

O3 exposure occur in Asia; Africa experiences large impacts too – 12% and 7.4% of the global total for PM2.5 and O3 

respectively.  
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The methodology of this study is not directly comparable to comprehensive estimates of the present-day impact of air pollution, 

since only one model with no bias correction is used here; the focus of the analysis is on the differences between scenarios 

instead. However, the magnitude of the estimated impacts can be contextualised against prior studies to explore the effect of 

these methodological differences. Our estimate for total present-day PM2.5-related deaths is generally lower than prior studies; 

its central estimate is lower than some (Lelieveld et al., 2019; Vohra et al., 2021; IHME, 2020; Im et al., 2023; Bauer et al., 385 

2019) , and higher than at least one other(Partanen et al., 2018). GBD2019 found higher impacts than those found here, using 

the same CRFs but different PM2.5 concentrations, and also including neonatal deaths (IHME, 2020). The number of present-

day respiratory deaths attributed here to O3 exposure is generally higher than found in previous studies, e.g. (Anenberg et al., 

2010; Silva et al., 2016) which both used an earlier, smaller CRF (Jerrett et al., 2009) than that used here. Studies utilising the 

CRFs used in this study (Turner et al., 2016) also find lower numbers of deaths than estimated here (Shindell et al., 2018; GBD 390 

2019 Risk Factors Collaborators, 2020; Malley et al., 2017) , likely due to higher O3 concentrations in UKESM1 (see Section 

2). 

The uncertainty in deaths due to the CRF (Table 1) is far larger than that from intra-ensemble pollutant variations for both 

PM2.5 and O3, consistent with prior studies determining the CRF to be the largest source of uncertainty (Turnock et al., 2016; 

Johnston et al., 2012; Li et al., 2016; Shindell et al., 2018). 395 
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Figure 2: Top row: annual deaths per 1000km2 attributable to air pollution for all CODs for PM2.5 and respiratory illnesses for 

O3 in 2015. Subsequent rows: impact of each scenario on 2090 deaths per 1000km2 attributable to PM2.5 and O3 exposure 

relative to the SSP119 control, using 2015 spatial and age-based population distributions. Stippling indicates areas where the 400 

change is greater than one intra-ensemble standard deviation away from zero. 

 

Species Region COD MeanMiddle 

RR (thousand 

deaths/yr) 

Low RR 

(thousand 

deaths/yr) 

High RR 

(thousand 

deaths/yr) 

PM2.5 Global All 2760 ± 30 2110 ± 30 3480 ± 30 

COPD 310 ± 4 245 ± 4 377 ± 4 

IHD 920 ± 10 697 ± 9 1190 ± 10 

LC 196 ± 3 148 ± 3 247 ± 3 

Stroke 870 ± 10 690 ± 10 1060 ± 10 

T2DM 197 ± 1 145 ± 1 254 ± 1 

LRI 264 ± 6 184 ± 5 361 ± 8 

PM2.5 Africa All 

 

340 ± 10 250 ± 10 430 ± 10 

Europe 58 ± 6 22 ± 3 111 ± 9 

Asia 2180 ± 30 1730 ± 20 2660 ± 30 

Central West 

Africa 

12143 ± 92 9333 ± 28 15054 ± 102 

O3 Global Resp 2280 ± 30 1730 ± 30 2700 ± 30 

Global 31.1ppb 2160 ± 30 1630 ± 30 2570 ± 40 

Africa 169 ± 3 125 ± 3 204 ± 4 

Europe 139 ± 5 100 ± 3 172 ± 5 

Asia 1680 ± 30 1290 ± 20 1970 ± 30 

Central West 

Africa 

4629 ± 1 3422 ± 1 5534 ± 1 

Table 1: Annual of deaths (in thousands) in 2015 attributable to PM2.5, shown globally in total and for each COD separately, 

and the total across several regions (definitions in Figure S2), and those attributable to respiratory illnesses caused by O3 

exposure globally and in several regions. Also shown is the effect of using a Low Concentration Threshold (LCT, above which 405 

no harm is assumed; see Section 2) of 31.1ppb on global deaths for O3, instead of the 26.7ppb used for the main results. Values 

are shown using the central CRF estimate and the 5th and 95th percentile CRF estimatess., all from GBD2019 for PM2.5 and 

Turner et al. (2016) for O3. The uncertainty given for each estimate is the estimated 5-955th – 95th percentile range across the 
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ten control ensemble members, calculated as the standard deviation multiplied by 1.6449. The region definitions are shown in 

Figure S2.  410 

 

The 2nd to 4th rows of Figure 2 show the effect on annual deaths per 1000 km2 in 2090 of the different emissions scenarios, 

relative to the SSP119 control scenario, for both PM2.5 and O3. Population distributions from 2015 are used here to isolate the 

effect of the changed pollutants. The spatial pattern of human health impacts is broadly consistent with the emissions changes, 

modulated by the population distribution. AerNonBB features higher deaths across Africa than in the control, particularly in 415 

the highly populated West and East regions, due to future increases in fossil-fuel emissions. The decrease in dust emissions in 

the southern Sahara leads to an overall reduction in PM2.5 (and hence deaths)– and therefore lower health impacts – in this 

region, indicating that (See Figure S4). This indicates that the indirect effects of pollutant emissions on atmospheric circulation 

– and therefore natural dust emissions – can have a substantial influence on their overall impact, as also noted by e.g. (Bauer 

et al., (2019) and Yang et al (2017). The lower future African biomass burning emissions in the AerBB experiment compared 420 

to the control result in significantly lower deaths across central and southern Africa. Still, the co-location of fossil fuel 

emissions with population centres causes these emissions to dominate the overall impact in AerAll.  

 

Some remote impacts of the changed emissions are visible, with Southern Europe and the Middle East exhibiting consistent 

changes with those found in North Africa. The impact in each scenario relative to the control on global and African PM2.5 and 425 

O3 annual deaths in 2090 is shown in Table 2, and the total deaths are shown in Figure 3 over Africa and globally, with 

additional regions in the Supplement. Overall, Africa following SSP370 rather than SSP119 emissions leads to around 150,000 

(5th – 95th CI: 67,000 – 234,000) additional annual deaths across Africa from PM2.5, and 15,000 (5th – 95th CI: 9,000 – 21,000) 

from O3, when the background populations are held constant (1st column of Table 2).. In Africa, air pollutant trends are 

consistent with the impact changes (Figure S3). O3 is projected to approximately match PM2.5 in its health impacts by 2090 in 430 

these scenarios, due to the weaker decline in O3 levels than in PM2.5 (Figure 3). The short pollutant lifetime, coupled with 

internal variability, causes the impacts outside Africa to be noisier than those within the continent; note that only one year 

(2090) was used for the analysis, as discussed in Section 2.3. 

 

 435 

 

 

 

 

 440 

 

 PM2.5 (Thousands of deaths in 2090) O3O3 (Thousands of deaths in 2090) 

Experiment Global Africa Global Africa 

AerNonBB 130 154 23 24 

AerBB -44 -2 -22 -18 

AerAll 151 152 25 15 

Formatted: Not Superscript/ Subscript
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Table 2: Effect of each scenario, relative to the control, in thousands of annual PM2.5 and O3 deaths in 2090 globally and just 

over Africa, using 2015 populations and the central CRF. Values are bolded when they are more than one intra-ensemble 

standard deviation away from zero. The Africa region definition is shown in Figure S2. 

 445 
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Figure 3: Annual PM2.5- and O3-attributable deaths in the control in 2015, and each scenario in 2050 and 2090, globally and 450 

over Africa, using 2015 spatial and age-based population distributions. The bars indicate the estimated deaths using the central 
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CRF estimates; the crosses and stars use the 95th and 5th percentile CRF values respectively. For each CRF value, the (much 

smaller) uncertainty due to intra-ensemble variation in pollutant concentrations is indicated with vertical error bars. This intra-

ensemble variation is defined as the estimated 5-955th – 95th percentile range across the ten control ensemble members, 

calculated as the standard deviation multiplied by 1.6449. The Africa region definition is shown in Figure S2. 455 

 

4 Discussion and Conclusions 

This study used the Earth System Model UKESM1 to explore the range of impacts from future African pollutant emissions on 

air quality and premature mortality. The strong mitigation SSP119 scenario was compared to three alternative emissions 

scenarios, each substituting a subset of pollutant emissions over Africa for their (weak mitigation) SSP370 equivalent. 460 

Compared to SSP119, SSP370 has much higher fossil fuel and biofuel emissions, but lower African biomass burning 

emissions; the reasons for this are unclear and reflect methodological challenges within the SSP framework. The increase in 

non-biomass emissions far outweighs the decrease in biomass emissions, particularly over population centres. To evaluate the 

human health impacts of the future emissions, CRFs were used from the recent GBD2019 study (GBD 2019 Risk Factors 

Collaborators, 2020) for six CODs for PM2.5, and (Turner et al., 2016) for O3 Respiratory impacts. Estimates were calculated 465 

using present-day demographics, to isolate the effect of changes in pollutants on a given population.  

 

The methodology of this study is not directly comparable to comprehensive estimates of the present-day impact of air pollution, 

since only one model with no bias correction is used here; the focus of the analysis is on the differences between scenarios 

instead. However, the magnitude of the estimated impacts can be contextualised against prior studies to explore the effect of 470 

these methodological differences. Our estimate for total PM2.5-related deaths in 2015, of 2.76 (2.11 – 3.48) million, is generally 

lower than prior studies; its central estimate is lower than some (Lelieveld et al., 2019; Vohra et al., 2021; IHME, 2020; Im et 

al., 2023; Bauer et al., 2019) , and higher than at least one other (Partanen et al., 2018). GBD2019 found higher impacts than 

those found here, using the same CRFs but different PM2.5 concentrations, and also including neonatal deaths. The dominance 

of the uncertainties in CRF over those in PM2.5 concentrations is consistent with prior research (Shindell et al., 2018). 475 

 

The number of present-day respiratory deaths attributed here to O3 exposure (2.28 (1.73 – 2.70) million) is generally higher 

than found in previous studies, e.g. (Anenberg et al., 2010; Silva et al., 2016) which both used an earlier CRF reflecting weaker 

associations between O3 and health impacts (Jerrett et al., 2009) than that used here. Studies utilising the CRFs used in this 

study (Turner et al., 2016) also find lower numbers of deaths than estimated here (Shindell et al., 2018; GBD 2019 Risk Factors 480 

Collaborators, 2020; Malley et al., 2017) , likely due to higher O3 concentrations in UKESM1 (see Section 2.1), but sparse 

observations preclude a full evaluation.  The estimated O3 impacts were not very sensitive to changes in the LCT. The 

uncertainty In deaths due to the uncertainty within each CRF (Table 1) is far larger than that from intra-ensemble pollutant 
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variations for both PM2.5 and O3, consistent with prior studies determining the CRF to be the largest source of uncertainty 

(Turnock et al., 2016; Johnston et al., 2012; Li et al., 2016; Shindell et al., 2018). 485 

 

The effect of Africa following SSP370 rather than SSP119 is estimated to result in 150,000 additional annual deaths from 

PM2.5, and 15,000 from O3, across Africa in 2090, when using 2015 populations. Due to the large decrease in aerosol emissions 

in SSP119, annual PM2.5 deaths could be similar to those due to O3 by the end of the century. However, this result may also 

be affected by the O3 biases. 490 

 

Correcting for model biases in PM2.5 and O3 concentrations in a CMIP6 model with low-biased concentrations was found to 

substantially affect estimated health impacts (Im et al., 2023), though this effect was strongest over high emissions regions, 

and dampened when using more recent non-linear CRFs. The results of the scenarios in this study should therefore be primarily 

interpreted relative to each other, as the substantial differences between scenarios are less affected by the model biases.  495 

 

Present-day populations were used in this study to isolate the effect of changes in air pollutants alone, and because of the 

difficulties in projecting changes in mortality rates. Increasing and ageing future populations will lead to higher estimated 

deaths, and hence larger reductions in deaths upon emissions mitigation. In SSP1, the present-day African population of 1bn 

increases to around 1.7bn by 2070, before declining slightly; in SSP3, it increases throughout the century, reaching 4bn by 500 

2090 (Lutz et al., 2018). Projected urbanisation (Jiang and O’Neill, 2017) will increase the co-location of population centres 

and emissions, increasing the human health impacts of air pollution (Silva et al., 2017). This co-location is already dampened 

by the coarse model grid, which reduces the estimated impacts (Li et al., 2016; Likhvar et al., 2015), an effect which will be 

more pronounced for PM2.5 than for ozone (Malley et al., 2017). Prior work has found changes in populations play a comparable 

role to those in emissions in the SSPs (Im et al., 2023), though this estimate assumed the persistence of present-day baseline 505 

mortality rates.  

 

Relatively higher non-BB aerosol south of the Sahara weakened the local surface circulation, reducing dust emissions 

sufficiently to reduce overall PM2.5 levels (and hence deaths) in some areas, demonstrating the importance of accounting for 

natural aerosols and circulation impacts when estimating the impacts of emissions changes (Bauer et al., 2019; Yang et al., 510 

2017). This effect will likely vary substantially between models, due to differing aerosol impacts and parameterisations of dust 

emissions. 

 

The CRFs used in this study are generated by combining multiple cohort studies (GBD 2019 Risk Factors Collaborators, 2020). 

The more recent CRFs used here cover a wider range of air pollutant concentrations than those in earlier studies, but there are 515 

still limitations in the representativeness of the input data. In particular, used to generate the CRFs, stemming from structural 

and historic challenges in air pollution research in Africa is underrepresented in cohort studies (Chen and Hoek, 2020).(Abera 
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et al., 2021; Katoto et al., 2019; Coker and Kizito, 2018; Pinder et al., 2019). Further research characterising appropriate CRFs 

for use in disparate regions is essential to generate more reliable estimates of air pollution impacts. If BC has a higher toxicity 

(Lelieveld et al., 2015); Coker and Kizito, 2018), future air pollutant impacts per unit concentration change of PM2.5 would be 520 

reduced as BC’s share of PM2.5 declines, and the effect of PM2.5 mitigation therefore enhanced. 

 

UKESM1’s horizontal resolution is coarser than the relevant scales for localised air pollutants from different sources, as the 

distinction between rural/urban and emissions from vehicles, factories, and domestic fuel is dampened by averaging across the 

model gridcells. Global models are incapable of resolving these distinctions, which are of relevance for policy and behavioural 525 

considerations. Models of this resolution still clearly resolve distinctions between high and low air pollutant regions (Figure 

1), and this method has been applied in many prior studies, often at coarser resolutions, to generate understandings of the 

global mortality impact of air pollution (Shindell et al., 2018; Lelieveld et al., 2019, 2013; Vohra et al., 2021; Silva et al., 2016; 

Partanen et al., 2018; Anenberg et al., 2010; Silva et al., 2017).). 

 530 

Pollutant concentrations from single years were used to estimate the health impacts (see Section 2). While the intra-ensemble 

mean was used, the variation in the concentrations manifests in large variations in the projected impacts over heavily populated 

regions which had no emissions change in our experiments, such as in Asia.  

 

The effect of different future African emissions pathways on human health is large: reductions of anthropogenic African 535 

aerosol emissions through climate mitigation within the range of the SSPs can reduce annual deaths by 150,000 for PM2.5, and 

15,000 for O3, compared to a more polluted pathway, using present-day demographics. These values can be expected to be 

larger under future increasing and ageing populations. These results are focused on 2090, but the rapid emissions drop in 

SSP119 suggests that significant benefits would occur much faster under such a scenario. Substantial near-term localised 

reductions in the impacts of air pollution could therefore be obtained as co-benefits of climate change mitigation in Africa.  540 
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