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Abstract.

Several general circulation models (GCMs) have showed bifurcations of their atmospheric state under a broad range of

warm climates. These include some of the more extreme global warming scenarios. This bifurcation can cause the transition

to a superrotating state, a state where its angular momentum exceeds the solid body rotation of the planet. Here we use an

idealized GCM to simulate this transition by altering a single non-dimensional control parameter, the thermal Rossby number.5

For a bifurcation induced transition there is potential for early warnings and we look for these here. Typically used early

warning indicators, variance and lag 1 autocorrelation, calculated for the mean zonal equatorial wind speed, increase and peak

just before the transition. The full autocorrelation function taken at multiple lags is also oscillatory, with a period of 25 days

preceding the transition. This oscillatory behaviour is reminiscent of a Hopf bifurcation. Motivated by this extra structure,

we use a generalised early warning vector technique to diagnose the dominant spatial modes of the horizontal windfield10

fluctuations. We find a zonal wavenumber zero pattern we call the ‘precursor’ mode, that appears shortly before and disappears

soon after the transition. We attribute the increase in the early warning indicators to this spatial precursor mode.

1 Introduction

Abrupt transitions in the climate often go by the name ‘tipping points’ and early warnings of such tipping points are currently

an active area of research (Scheffer et al., 2009; Lenton, 2011; Scheffer et al., 2012). Tipping points are loosely defined15

as small disturbances causing disproportionately large changes. One such example is the Atlantic meridional overturning

circulation (AMOC) that can abruptly change from an ‘on’ to ‘off’ state as freshwater flux into the North Atlantic is increased

(Stommel, 1961; Vellinga and Wood, 2002; Mecking et al., 2016). There are a variety of other postulated climate tipping

elements including the Amazon rainforest, Greenland ice sheet and West Antarctic ice sheet. Changes in large scale atmospheric

circulation patterns under anthropogenic climate change are also interesting possible candidates for tipping points. For example,20

there is a lively discussion on whether particular wavenumber patterns in the high latitudes are getting amplified by a ‘quasi-

resonance’(Mann et al., 2017) causing more frequent blocking events. The transition to an atmospheric superrotating state

in warm climates is another possibly relevant tipping point that could have huge impacts if it occurred. The 3D nature of

atmospheric circulation also presents interesting possibilities of novel early warning signals (EWS) of tipping points (Tantet

et al., 2015). Here we look at whether there are EWS of the tipping point to superrotation in an idealised way. However, the25
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extension of EWS we use is more generally applicable as an approach to detecting precursors of bifurcation induced changes

of state in any spatially extended or coupled system.

Mathematically tipping points can be described by (a) noise induced transitions: Probabilistic transitions between multiple

steady states induced by large amplitude noise, large here meaning that the probability of a perturbation large enough to push

the system into a different attractor over the timescale of interest is non-negligible. These events have limited predictability30

(Ditlevsen and Johnsen, 2010). (b) Rate induced transitions: These occur when the disturbance is too fast for the system to

remain sitting in its current attractor resulting in a jump to a new stable state (Ashwin et al., 2012; Wieczorek et al., 2010).

(c) Bifurcation induced transitions: These occur when the current stable system state loses stability, becoming unstable at the

bifurcation as the disturbance (or control parameter) is slowly changed. The system will then transition to a new stable state.

It is the last type, tipping due to a bifurcation, that has received the most attention as there is potential for early warnings of35

this sort of transition (Wiesenfeld, 1985; Held and Kleinen, 2004; Livina and Lenton, 2007; Dakos et al., 2008; Lenton et al.,

2012). A bifurcation of states has been reported for the atmosphere when it transitions to a superrotating state (Suarez and

Duffy, 1992; Saravanan, 1993; Shell and Held, 2004; Arnold et al., 2012; Herbert et al., 2020).

An atmospheric superrotating state is said to occur when the atmosphere rotates quicker than the planet beneath it or more

precisely, the zonal angular momentum of the atmosphere exceeds the angular momentum from the solid body rotation of the40

planet. The solid body angular momentum per unit mass LE at latitude θ of a planet rotating at angular velocity Ω with radius

r is (see figure 1)

LE = Ωr2 cos2 θ (1)

For a shallow atmosphere moving with zonal velocity u at latitude θ measured in the planet’s rotating frame, the angular

momentum per unit mass L is given by45

L =
(
Ω +

u

r cosθ

)
r2 cos2 θ (2)

A superrotating state occurs when L > max(LE) for some θ. LE is maximal at the equator (θ = 0) giving max(LE) = Ωr2.

Therefore, for a superrotating state to occur, the zonal velocity of the atmosphere u must be greater than the RHS of the

following:

u > Ωr
sin2 θ

cosθ
(3)50

This condition has a minimum u at the equator (θ = 0) where zonal velocity need only be positive (u > 0) for superrotation

to occur. Moving away from the equator (|θ|> 0) results in a sharp increase in zonal velocity required for superrotation. If

superrotation occurs, it will almost certainly be present at the equator for a given planet. If superrotation occured at a higher

latitude and not at the equator, the angular momentum increase would result in an inertially unstable atmospheric configuration.

What this means for the west to east rotating planet Earth is that the prevailing easterlies at the equator (u < 0) change to55

prevailing westerlies when transitioning to superrotation. We label the bound for superrotation uSR i.e.

uSR = Ωr
sin2 θ

cosθ
(4)
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Figure 1. Schematic of the variables used to describe a superrotating atmospheric state on a planet of radius r rotating with angular velocity

Ω. θ is the latitude taken relative to the equator and u is the zonal, horizontal velocity of the atmosphere in the planet’s rotating frame.

Superrotating atmospheres exist on Venus and Titan (Read and Lebonnois, 2018) however they may have occurred on Earth

in warmer, past climates. Caballero and Huber (2010) showed a full complexity GCM transitioned to a superrotating state

when equatorial surface temperatures got sufficiently high, within the range of temperatures thought to have existed in the60

early Cenozoic period of Earth history, 65 million years ago. This was a period where it was around 10oC warmer on average

than today. The atmospheres of other warmer periods such as the early Pliocene and Eocene may also have been superrotating

(Tziperman and Farrell, 2009). Simulations of warm climates that generate enhanced tropical convective variability seem

particularly prone to superrotation (Arnold et al., 2012) as do those where convective heating strengthens (Laraia and Schneider,

2015). This has led to the hypothesis that it may be relevant to future climate projections (Held, 1999; Pierrehumbert, 2000) and65

account for the superrotation seen in extreme global warming simulations (Huang et al., 2001). Even though the probability of
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transitioning to a superrotating state is presently thought to be low as the Earth warms into the future (Caballero and Carlson,

2018), the possibility is high risk - for example, if the prevailing Pacific equatorial westerlies switched to the easterlies of an

atmosphere with superrotation at the surface, a permanent El Nino state would result and with it, all the global impacts that

entail (Pierrehumbert, 2000). Tziperman and Farrell (2009) used this mechanism to explain the permanent El Nino state that is70

thought to have existed in the Pliocene.

Transitions to superrotating states may be smooth (Huang et al., 2001; Caballero and Huber, 2010; Mitchell and Vallis,

2010) or abrupt (Suarez and Duffy, 1992; Saravanan, 1993; Arnold et al., 2012). The smooth, gradual type seem to be more

common in simulations of global warming scenarios or warm paleoclimates with comprehensive, multilevel GCMs (Arnold

et al., 2012). Abrupt transitions are seen more commonly in models with some degree of idealisation, however that is not rule75

them out in realistic scenarios (Held, 2016). The original example of an abrupt transition to a superrotating state was found by

Suarez and Duffy (1992) in a two layer GCM as the tropical heating was increased. This transition also showed hysteresis -

that is as the tropical heating was reversed below the transition’s critical value, the superrotating state persisted to a new and

lower critical value. Arnold et al. (2012) have found similar behaviour in a higher resolution, multilevel, although still idealised

GCM. This bistability is something we will also investigate in a different setting in this manuscript.80

Tipping points and bifurcation induced transitions are often, but not necessarily, abrupt (Armstrong McKay et al., 2022;

Strogatz, 2001). The transition to superrotation reported here is smooth. Nevertheless, early warnings of the transition are

shown and therefore these simulations serve as a test bed for whether we can detect this transition before it happens.

In this manuscript the focus will be the fluctuations around the mean wind field state and how their properties change as the

atmosphere gets closer to a superrotating state, the idea being that these properties can serve as early warnings of the transition.85

We first introduce the idealised GCM used for these numerical simulations in section 2 as well as the control parameter we vary

to span Earth-like to fully rotating atmospheric states. We then describe this range of simulated mean atmospheric states in

section 3 before going to the main focus of the manuscript, early warnings of the transition. We start by calculating the widely

used early warning indicators in section 4. Motivated by the bistability in the superrotating states observed in the experiments of

Suarez and Duffy (1992) and others, we look for bistability with our control parameter in section 5. In section 6, we generalise90

the usual early warning indicators to the vector setting. This allows us to diagnose the dominant spatial patterns in the wind

field fluctuations preceding the superrotation transition as well as the dominant patterns following the transition. We discuss

and conclude in section 7.

2 Methods

We use an idealized general circulation model (GCM) to simulate the transition to superrotation. The model framework we95

use is Isca (Vallis et al., 2018) which is based on a spectral dry dynamical core obeying the primitive equations of motion of

Gordon and Stern (1982). Isca is designed to be highly configurable for use in exoplanet research both in complexity (multiple

radiation schemes and moist/dry atmospheres are options) and parameter values (planetary radius, rotation rate, fluid density

are among the many that can be altered). The configuration we use here is as simplified as possible and follows the approach
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of Mitchell and Vallis (2010) closely. Simulations are performed at T42 resolution (about 2.8o resolution at the equator) and100

with 25 vertical sigma levels (equal pressure levels σ = p/ps where p is pressure and ps is surface pressure).

The surface of the planet is prescribed to be isotropically smooth with no topography or continents present. No radiation

scheme is used either. Instead temperature is linearly relaxed to a prescribed mean annual average state (Newtonian cooling)

using the scheme of Held and Suarez (1994). In particular, the surface temperature is relaxed to the zonally symmetric profile

T0 = T [1 +
∆H

3
(1− 3sin2 θ)] (5)105

with T0 being the lowest level temperature and T the global average surface temperature. ∆H is a non-dimensional parameter

specifying the pole to equator temperature difference. The vertical temperature is assumed to relax to a moist adiabat with lapse

rate 6 K km−1 capped at a minimum of 200 K in the stratosphere. The radiative relaxation time is 40 days in free troposphere

and approximately 4 days in the boundary layer, the top of which is fixed at p/p0 = 0.7 (see Held and Suarez (1994) for

the full functional forms). As previously mentioned we follow Mitchell and Vallis (2010) closely although there are some110

minor differences: Mitchell and Vallis (2010) use T = 315 K and ∆H = 0.2, here we use T = 314K and ∆H = 0.215. As both

of these parameters combine together in a non-dimensional number that will be used as the control parameter in numerical

experiments (the thermal Rossby number, see below) these small differences should be negligible in comparing our results

with theirs.

Friction from the planet’s surface on the atmosphere acts as a negative source of angular momentum in the atmospheric115

boundary layer and this is specified as a linear, vertical height dependent (Rayleigh) drag on the horizontal velocities given by

∂v
∂t

=−kv(σ)v (6)

kv(σ) = kf max
(

0,
σ−σb

1−σb

)
(7)

where v is a vector of the horizontal velocities : = (u,v). The reciprocal of the Rayleigh relaxation time, kf , is taken to be 1/2

day−1 at the planet surface (σ = 1) and linearly decreases to zero at the top of the boundary layer at σb = 0.7. This is slightly120

smaller than the value of 1 day−1 used in Mitchell and Vallis (2010).

The horizontal momentum equations governing the atmospheric dynamics simplify in non-dimensional form when subject

to Rayleigh friction and Newtonian cooling. These equations are then governed by just a few non-dimensional parameters.

The relevant non-dimensional parameter that is varied in the experiments here and in Mitchell and Vallis (2010) is the thermal

Rossby number125

RoT =
RT0∆H

(2Ωr)2
(8)

R here is the specific gas constant for dry air (287 J K−1 kg−1). As the numerical model code is dimensional however, a

dimensional parameter must be varied and this is chosen to be the planetary radius r. By making this choice the other non-

dimensional parameters, the Ekman number and thermal relaxation time, remain unaltered.

To summarise, in the following experiments we vary the thermal Rossby number to go from Earth like atmospheric states130

(RoT = 0.02) through the transition (RoT ∼ 1) to a fully superrotating states (RoT > 1) by changing the planetary radius r
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for each simulation. All other parameters will remain fixed. Each simulation is initialized from a homogenous atmospheric

state and integrated for 3 years (1080 days). A stationary state is reached after approximately 200 days. However, in the results

following we only use the last two years of the three year simulation to ensure the model is in equilibrium.

3 Mean atmospheric state with varying RoT135

In figure 2 we show the zonal time mean windspeed u with latitude θ and height σ = p/ps after the atmosphere has reached a

stationary state (the last two years of a three year integration). Three different values of RoT are presented corresponding to an

Earth-like atmospheric state (RoT = 0.02), a state close to the superrotation transition (RoT = 0.87) and a fully superrotating

state (RoT = 11.39). The zero contour (u = 0) is shown as the black line, u < 0 are blue contours and u > 0 are red. Focussing

on the equatorial region (θ = 0), no superrotation at any vertical level is present in the Earth-like simulation (black contours140

mark the edge of the red, potentially superrotating u > 0 regions either side of the equator). Superrotation is present at RoT =

0.87 above the height of the boundary layer (σ = 0.7) but absent within it. In the RoT = 11.39 simulation, superrotation occurs

within the boundary layer but at heights above σ = 0.8. Superrotation is more likely to be found at all vertical levels at the

equator as RoT increases. Other notable features are the mid-latitude jets in the Earth-like simulation centred at σ ∼ 0.3 and at

latitude θ ∼±50o. These jets move poleward as RoT increases.145

None of the simulations show superrotation (u > 0) at the equator in the lowest two vertical levels (σ > 0.8). This is due to

Rayleigh drag within the boundary layer (σ ≥ 0.7) decelerating the horizontal flow and acting as a negative angular momentum

flux. For superrotation to occur there must be a time integrated positive flux of momentum into the equatorial region that

exceeds the time integrated negative flux from the Rayleigh drag. With the drag parameterization used, this is only possible for

the third vertical level in the model and higher (σ < 0.8). We exclusively study the wind speeds in the lowest vertical level that150

shows superrotation from here on (the third vertical level σ = (0.7 0.79] with mid point σ = 0.74). This level is still inside the

atmospheric boundary layer and so still experiences a small amount of drag however positive momentum sources can exceed

it for a range of RoT . This level lies roughly at a vertical height of ∼ 2 - 3 km above sea level.

In figure 3 we show the zonal mean wind speed (black line) with latitude θ at the third vertical level (σ = 0.74) for a range

of RoT along with the minimal u required for superrotation as a function of latitude (red line, equation 4). The threshold for155

superrotation at the equator occurs roughly at RoT ∼ 1. For values of RoT > 1 there are regions around the equator where the

black line lies above the red line threshold indicating the presence of superrotation.

We also show snapshots (t = 900 days into the simulation) of the horizontal wind field (v = (u,v)) at this vertical level

(σ = 0.74) for three different values of RoT in figure 4. The midlatitude instabilities are evident in the RoT = 0.02 simulation

and lack of superrotation at the equator (blue colour). The sign of the zonal velocity is patchy at the equator close to the160

transition (RoT = 0.87) and fully positive signifying superrotation in the RoT = 11.39 simulation.

More information on the mean states and the mechanisms of superrotation in these simulations is reported in Mitchell and

Vallis (2010). From here on we get to the main focus of this manuscript, namely we study the fluctuations around the mean

states and their properties as precursors to the transition.
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Figure 2. Vertical and zonal structure of mean u state: Zonal mean u with latitude and vertical height σ = p/p0. u > 0 contours are shown

in red, u = 0 contour is black and u < 0 are blue. An Earth-like state is shown on the LHS (RoT = 0.02), a state close to the superrotation

transition (middle plot, RoT = 0.87) and a fully superrotating state is shown on the RHS (RoT = 11.39).

4 Temporal early warning signals165

In this section we calculate early warning signals (EWS) for the varying RoT simulations with the aim of early detection of the

transition to a superrotating state. These indicators are widely used to detect abrupt transitions resulting from local bifurcations

(Lenton, 2011; Thompson and Sieber, 2011). Typically, these are designed to detect the increasing recovery time and amplitude

of small fluctuations δx(t) around the mean, stationary state denoted x of some scalar state parameter x(t) that is a function of

time t. The state of the system is therefore given by170

x(t) = x + δx(t) (9)

and is often assumed to evolve autonomously according to some function f(x) as ẋ = f(x) (overdots denote ordinary time

derivatives i.e. ẋ := dx
dt ). f(x) is a nonlinear function of x in general. Provided the fluctuations are not too large, one can

approximate the dynamics well by Taylor expanding f(x) to first order around the mean state i.e. f(x)≈ f(x) +J(x)δx

where the Jacobian is given by J(x) = ∂f(x)
∂x |x=x. In this case the dynamics of the fluctuations can be approximated with a175

linear first order ordinary differential equation (ODE) i.e.

˙δx≈ J(x)δx (10)
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Figure 3. Zonal structure of mean u state at fixed height: Zonal mean u (black line) with latitude θ at vertical level σ = 0.74 for a range

of thermal Rossby numbers (RoT ) from Earth like (RoT = 0.02) to fully superrotating (RoT = 11.39). The middle three panels are small

increments through the transition at RoT ∼ 1. The red line is the minimal u required for superrotation at that latitude. The superrotation

threshold is reached at RoT ∼ 1 at the equator.

For a time invariant mean state x (and time invariant J(x)) this simple ODE has the solution

δx(t) = eJ(x)tδx(0). (11)

There are three possible fates of an initial fluctuation of amplitude δx(0) depending on the sign of the real part of J(x): (i)180

The real part of J(x) is negative (R(J(x)) < 0); the initial fluctuation δx(0) decays and the system state will be stable to

perturbations eventually recovering to x. In this case a recovery, or e folding time can be defined as the time taken, τ , for the

fluctuation to reach 1/eth of its initial value as τ =−1/R(J(x)). (ii) The real part of J(x) is positive (R(J(x)) > 0); any

initial fluctuation will get exponentially larger with time and the system will not recover to x i.e. x is unstable. (iii) The real

part of J(x) is zero i.e. R(J(x))→ 0. In this case, perturbations will not grow or decay. This neutral stability occurs at a185

bifurcation.

Early warning indicators are designed to detect the increasingly less negative value ofR(J(x)) or equivalently the increasing

system recovery time τ as it approaches the bifurcation. This phenomenon is termed ‘critical slowing down’. One popular

indicator is the variance σ2
x of x with time

σ2
x = E[(x(t)−x)2] (12)190
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Figure 4. Snapshots of the horizontal v = (u,v) wind field at vertical level σ = 0.74 (vectors) at t = 900 days for a range of thermal Rossby

numbers (RoT ). The colour plot is the u component with red colours showing u > 0 and blue colours showing u < 0. LH panel shows an

Earth-like mean state, middle panel is the mean state just before the transition to superrotation and RH panel shows a fully superrotating

mean state.

= E[δx(t)2] (13)

where E[.] is the expectation value. For the case where x is a scalar variable with first order dynamics subject to random (white

noise) forcing, J(x) is also a real scalar and the variance is given by

σ2
x =

σ2
Q

2|J(x)| (14)

This measures the mean amplitude of the system fluctuations σx to a random mean forcing of size σQ (σQ is generally assumed195

to be constant as the bifurcation is approached). The state x becomes less stable closer to the bifurcation and J(x) gets less

negative showing up in the indicator as an increase in variance.

Another popular early warning indicator is the time lagged autocorrelation

α(tlag) = eJ(x)|tlag| (15)

which measures the recovery time of the system to perturbations. Again, for the case where x is a real, scalar variable with200

first order dynamics subject to random (white noise) forcing J(x) is a negative real number if the state is stable and α(tlag) is
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just an exponentially decaying function of tlag. As a bifurcation is approached R(J(x))→ 0 and the indicators σx →∞ and

α(tlag)→ 1.

The temporal evolution of a scalar state variable x described by a linear first order (ODE) is constrained to only permit

exponential decay from a perturbation. However, a real valued state variable x may have oscillatory behaviour and therefore205

must be described by higher order ODEs. In this case α(tlag) may have a more complicated functional form. For example, a

system with second order dynamics can have an autocorrelation function with an oscillatory term. Relevant to our case, is the

approach to a Hopf bifurcation whose α(tlag) has the generic form (Bury et al., 2020)

α(tlag) = e−
|tlag|

τ cos(ωtlag) (16)

For the Hopf bifurcation J(x) is minimally a 2 by 2 real valued (non-symmetric) matrix with complex eigenvalues, λ and210

λ∗, that appear in conjugate pairs (the ∗ denotes complex conjugation). The real part of the complex eigenvalues of J(x)

(τ =−1/R(λ)) determines the exponential decay envelope of the autocorrelation function. This envelope decays over a longer

timescale as the bifurcation is approached. Within this envelope there may also be oscillations with whose frequency is given

by the imaginary part of J(x), ω = I(λ).

In most studies, the full autocorrelation function at all values of tlag is generally not used - it is usually the value of the215

autocorrelation function at tlag = 1 (the lag 1 autocorrelation) that is used. This often works well as it is more robust to sample

size and signal to noise provided the oscillation period, P = 2π
ω , is large compared to the value of tlag that is used to evaluate

α(tlag) - formally, if ωtlag ≪ 1, then equation 16 approximates to α(tlag)∼ e−
|tlag|

τ i.e. it is a good indicator of the real part

of the Jacobian eigenvalues and therefore of critical slowing down.

We will also use the autocovariance function, R(tlag), which encodes information of both variance and autocorrelation i.e.220

R(tlag) = E[(x(t + tlag)−x)(x(t)−x)] (17)

or R(tlag) = σ2
xeJ(x)|tlag|. The variance is just given by R(0) and α(tlag) = R(tlag)

R(0) .

4.1 Temporal EWS of the superrotation transition

We apply these early warning indicators to study the transition to superrotation as follows: We look at the statistics of the

fluctuations, δu(t), around the mean zonal wind field state u where u is the time and area weighted spatial mean of a spherical225

segment centred on the equator with edges at θ± =±10o latitude. An equatorial band centred on the equator is chosen to

analyze the zonal wind field u because, as previously discussed, this is the most likely place to observe superrotation if it

occurs. Formally, we compute R(tlag) for δu(t) = u(t)−u where

u(t) =
r

A

2π∫

ϕ=0

dϕ

θ+∫

θ=θ−

u(θ,ϕ,t)cosθdθ (18)

ϕ is the longitude and A = r
∫ 2π

ϕ=0
dϕ

∫ θ+

θ=θ−
cosθdθ is the area of the spherical segment. We choose a section of the timeseries230

u(t) starting at time ts sufficiently long after the simulation spinup that the atmosphere is in an approximately stationary state.
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Figure 5. Mean u around an equatorial band: Upper LH panel - Mean zonal windspeed u(t) in a spherical segment centred on the equator and

with edges at ±10o latitude during a simulation of 3 years length (1080 days). Different colours correspond to a simulation with a different

value of RoT . We have chosen to highlight RoT ∈ {0.02 (blue) 0.87 (red) 1.93 (green)}. In the lower LH panel is δu(t) = u(t)−u, the

fluctuations in u(t) around the temporal mean u over the last two years of the simulation as a function of RoT . Dotted lines indicate u. RH

panel: The autocovariance function R(tlag) as a function of tlag . This function is oscillatory for RoT = 0.87 (red line).

In the model configuration used, the atmosphere reaches a steady state after roughly 200 days although we use ts = 361 days.

The finish time tf is chosen to be large for accurate determination of the statistical estimators. Ideally this would be tf →∞
however due to computational time we limit to tf = 1080 days. u(t) is then averaged over a period T = tf − ts to give

u =
1
T

tf∫

ts

u(t)dt. (19)235

In the upper LH panel of figure 5, we plot u(t) timeseries for selected values of RoT (0.02 is blue (Earth like), 0.87 is red

(close to the transition) and 1.93 is green (fully superrotating)) over the 3 year simulation period. The mean u over the last two

years (u) is plotted as a corresponding colored dotted line. The lower LH plot shows the fluctuations around the mean, δu(t),

as a function of RoT . The larger, oscillatory response of u(t) close to the transition is clearly visible in the timeseries. Either

side of the transition (blue and green) the timeseries looks much more random and akin to first order noisy dynamics (such as240

an Ornstein-Uhlenbeck process).

In the RH panel of figure 5 we have plotted the autocovariance function (equation 17), R(tlag), for each of the three selected

RoT values during the last two years of each simulation. The value at tlag = 0 is equivalent to the variance of u, σ2
u. One can
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Figure 6. Usual early warning indicators: Each dot is an individual simulation. Coloured dots correspond to the same coloured simulations

in figure 5. LH panel: Mean zonal windspeed u in a spherical segment centred on the equator with edges at ±10o latitude during the last 2

years of the simulation against RoT . The dotted red line is the threshold for superrotation to occur (uSR). This is nonzero as the windspeed

is averaged over a non-zero thickness latitude band. RH panels: Typical early warning indicators of a local bifurcation: upper RH panel,

variance of mean zonal u(t) and lower RH panel, lag 1 autocorrelation of mean zonal u(t).

see close to the transition (red) that variance is much higher than either side of the transition (green and blue). One can also

see the functional form of R(tlag) is also very different close to the transition showing an oscillation of around 25 days period245

contained in a exponential decay envelope (e−
|tlag|

τ ) with an e-folding time of approximately τ ∼ 35 days (see equation 16).

In contrast, either side of the transition, the response of u(t) to perturbations is neither oscillatory or long lasting.

In the LH panel of figure 6 we plot u in the equatorial spherical segment against RoT . Black dots are individual simulations,

black lines connect these values. The dotted red line is the threshold u required for superrotation, uSR, equation 4. This is

larger than the zero bound required for superrotation at the equator due to the finite latitude width of the spherical segment.250

Superrotation occurs approximately for RoT > 1. Interestingly, this plot is not monotonically increasing with RoT - there is a

local maximum at RoT ∼ 0.54 followed by a plateau to RoT ∼ 0.75 below the superrotation threshold. There is another local

(and global) maximum in u around RoT ∼ 1.9 when the atmosphere is in a fully superrotating state. In the RH panels we plot

the usual early warning indicators, variance of u(t) (upper RH, σ2
u) and lag 1 autocorrelation (lower RH, α(tlag = 1 day)).

Both indicators peak at RoT = 0.87, just below u∼ 0 suggesting this is where the atmospheric state is least stable.255
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Figure 7. Early warning indicators: Similar to figure 6 with x and y axis variables swapped and with the full autocovariance function plotted

(R(tlag)). Far LH panel: Mean zonal windspeed u vs RoT . Middle LH panel: Autocovariance function R(tlag) and how it changes with RoT

(y axis) and tlag . Oscillations of 25 day period appear for values of RoT ∼ [0.5 1.2] and have a maximum in amplitude around RoT ∼ 0.9.

RH panels: For comparison with R(tlag), typical early warning indicators (middle RH panel) variance of mean zonal u(t) and (far RH panel)

lag 1 autocorrelation of mean zonal u(t).

As shown in the RH panel of figure 5, the autocorrelation function is not necessarily only exponentially decaying with

increasing tlag required for lag 1 autocorrelation to be a good indicator of the stability of the state. However as argued in

section 4, it is a good indicator provided ωtlag is much smaller than 1. In this case ωtlag ∼ 1/4 so taking α(tlag = 1 day)

should be sufficient.

Motivated by the extra information in multiple tlag values of the autocovariance function close to the superrotation transition,260

we plot R(tlag) in the middle LH panel of figure 7 as it varies with RoT . As previously mentioned, R(tlag) encodes both

variance (R(0)) and lag 1 autocorrelation (R(1)/R(0)) as limiting cases making R(tlag) a more complete information source

and early warning precursor. We have plotted figure 6 with the axes flipped for ease of comparison to R(tlag). R(tlag) is an

even function around tlag with a maximal value at R(0).

For values of RoT < 0.57 and RoT > 1.2, R(tlag) is monotonically decreasing with |tlag| much like the exponential decay265

expected for first order dynamics. Oscillations in R(tlag) start at RoT ∼ 0.57 and remain until RoT ∼ 1.2. The start of the

oscillations coincides with the start of the plateau in u. The end of the oscillatory phase coincides when the full spherical

segment begins to superrotate (u > uSR as shown by the red dotted line). Oscillations reach a maximum in amplitude at
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RoT ∼ 0.87 just before u∼ 0. Throughout the range of their existence, the oscillations have a constant period of approximately

25 days.270

5 Evidence of bistability

As previously mentioned, Suarez and Duffy (1992) found an abrupt transition to a superrotating state in a two layer GCM when

the tropical heating was increased above a critical value. This tropical heating term was their control parameter and is different

to the control parameter we alter in these experiments (the thermal Rossby number). Not only was the transition Suarez and

Duffy (1992) found abrupt, unlike the transition in this manuscript that seems smooth, the mean state also showed bistability275

i.e. two stable states exist for the same value of the control parameter. By slowly changing their control parameter across the

transition’s critical value from non-superrotating to a superrotating state and then slowly reversing the control parameter back

again below the critical value, the superrotating state persisted to a new and lower critical value. This showed there was a

bistable region in which stable superrotating and non-superrotating states can coexist.

We next investigate whether this type of bistability is present as our control parameter is slowly changed. This is done by280

slowly increasing the value of RoT = 0.11 through the transition at RoT ∼ 1 and continuing up to RoT = 1.64. We will refer

to this part of the simulation as the ‘ramp up’. RoT is then slowly decreased from 1.64 back down to RoT = 0.11 at the same

rate. We will refer to this part of the simulation as the ‘ramp down’. As in the fixed RoT simulations, the magnitude of RoT is

changed by altering the planetary radius r. Rather than a continuous change in RoT , we step RoT by a small increment of 0.11

every 2 years of simulation due to ease of implementation in the GCM. This gives a total simulation time of 58 years. Because285

of the step transition every 2 years, there is a small transient effect in the model state before settling back to a stationary state

after approximately 200 days. To exclude any spurious effects in the early warning indicators, we calculate them only for the

last year (360 days) of each step change in RoT .

In the upper LH panel of figure 8 we show how we vary RoT with time, solid black line indicating the ramp up of RoT

and the dotted black line indicating the ramp down of RoT . In the lower LH panel we plot u(t) (grey line) in the equatorial290

band against time. The periods of increased variance are clearly visible between years 6 - 18 and 42 - 50 (also in the upper RH

panel). Some of this large amplitude response is a short transient effect from adjustment to the step change in RoT although

this quickly dies away. Black dots (ramp up) and black crosses (ramp down) in the lower LH panel are u in the last year of

the step change so avoiding this transient effect. EWS variance and lag 1 autocorrelation are shown in the upper and lower RH

panels respectively.295

Although u looks relatively symmetric about 30 years (the turn around point of the control parameter), the EWS do not. We

plot these same quantities as a function of RoT in figure 9 to assess if there is any hysteresis when the control parameter is

reversed and therefore whether bistability can be detected. In the LH panel we plot u on the ramp up (black dots) and ramp

down (black crosses). Apart from a small region around the plateau in u between RoT ∼ 0.57− 0.76 there does not appear

to be any difference in the ramp up and ramp down values of u. In the RH panels EWS differences are larger however this is300

probably due to the short length of the timeseries used to calculate these statistical estimators and small transient effects. Also,
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Figure 8. Ramped control parameter runs with time: Upper LH panel - Control parameter RoT value with simulation year. We start at

RoT = 0.11 and make stepped increases of 0.11 every 2 years to mimic a slow continuous change in the control parameter as closely as

possible. We ramp up RoT to 1.64 over a period of 30 years (black solid line) before slowly ramping down back to 0.11 over the next 28

years (dotted black line). Lower LH panel: Zonal mean wind speed u(t) in the equatorial spherical segment with time (grey lines) and u

(black dots - ramp up, black cross - ramp down) for the last year of each stepped change in RoT . Upper RH panel: Variance of u(t) in the

last year of each stepped change in RoT . Lower RH panel: Lag 1 autocorrelation α(tlag = 1) of u(t) in the last year of each stepped change

in RoT .

as the standard error in the statistical estimators for a fixed sample size grows as autocorrelation increases, estimation should

be worse in regions of large autocorrelation. Such a region exists for RoT ∈ [0.4 1.2] and this is where we find the largest

discrepancies. So we do not expect the small differences to be statistically significant.

Unlike Suarez and Duffy (1992) we find no evidence of bistability in the mean equatorial zonal wind speed. However,305

our control parameter is markedly different from theirs. This however does not completely rule out bistability - there may be

smaller regions of RoT that these simulations have not been able to resolve.

6 Spatial precursors to the transition

The oscillations in the fluctuations, δu, around the mean zonal u in the equatorial band near the transition suggest the dynamics

must be second order or higher. Motivated by this and the interesting structure in the variance and autocovariance, we next310

use a method to diagnose any higher order dynamics of the fluctuations in the full global horizontal wind field δv(θ,ϕ,t) =
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Figure 9. Ramped control parameter runs as a function of RoT , similar to figure 8 but with RoT as the x axis variable: LH panel - mean

zonal wind speed u in the equatorial spherical segment for the last year of each stepped change in RoT . Black dots show values as RoT is

on the ramped up path (years 0 - 30) and black crosses show those values as RoT is ramped back down (years 30 - 58). Upper RH panel:

Variance of u(t) in the last year of each stepped change in RoT . Lower RH panel: Lag 1 autocorrelation α(tlag = 1) of u(t) in the last year

of each stepped change in RoT . Again black dots indicate values on the ramp up of RoT and black crosses on the ramp back down.

(δu(θ,ϕ,t), δv(θ,ϕ,t)). We look at the dominant spatial vector modes of δv and their stability. These modes are studied at the

third vertical level σ = (0.7 0.79].

6.1 Vector valued state parameters

In section 4 the state parameter x(t) was a real valued scalar and the theory developed to investigate the stability of a stationary315

state, x, to small perturbations δx(t), assumed first order dynamics. We remove the restriction to scalar x and therefore make

higher order dynamics possible to describe and diagnose here. This is done by upgrading δx(t) to be an N component vector

(vectors are denoted by bold type face). We can repeat the steps in section 4 for this generalization (see Williamson and Lenton

(2015) for further details): We again want to study the response of small fluctuations δx(t) around some mean state x, to assess

the stability of that mean state - as the state becomes less stable approaching the transition, fluctuations become larger and320

longer lived. The state of the system in analogy to equation 9 is

x(t) = x+ δx(t) (20)
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Figure 10. Ramped control parameter R(tlag): Ramp up starts from the bottom of the y axis and ramp down from RoT = 1.64 continuing

up the y axis. Although there are some small differences in ramp up and ramp down these are minor and oscillations appear in roughly the

same place with the same amplitude and period.

The N components of the vector x(t) can be written explicitly as

x(t) = (x1(t),x2(t), . . . ,xN−1(t),xN (t))T (21)

Similar expressions can be written for δx and x. The superscript T denotes the matrix transpose operator. The individual scalar325

components of x(t) are indexed with i which can take the values i ∈ {1,2, . . . ,N −1,N}. Each of the xi, is assumed to evolve

autonomously, each according to a different, generally nonlinear function, fi(x). Note that each fi has the multi-variable

input x. That is, fi is a function of all {x1,x2, . . . ,xN} in general i.e. xi are coupled, possibly nonlinearly. Formally, each xi

evolves according to ẋi = fi(x). Provided the fluctuations are not too large, the dynamics are approximated well by making a

multi-variable Taylor expansion of each fi(x) to first order around the mean state i.e. fi(x)≈ fi(x)+
∑N

j=1 J(x)i,jδxj where330

instead of a single number describing the stability of the system, the Jacobian is now an N ×N matrix encoding the linear

couplings between the components of x. The element in the ith row and jth column of J is given by J(x)i,j = ∂fi(x)
∂xj

|x=x. The

dynamics of the fluctuations can be now be approximated with a linear first order ODE, however it is now a matrix equation

˙δx≈ J(x)δx (22)

Analogous to the scalar x case, for a time invariant mean state x (and time invariant J(x)), equation 22 has the solution335

δx(t) = eJ(x)tδx(0). (23)
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J(x) still determines the behaviour and fate of small perturbations from x and therefore x’s stability. However, J(x) is a

more complicated and general object than the single number of section 4 due to the couplings between the various δxi (non-

zero off-diagonal entries of J). One can uncouple the dynamics into N uncoupled modes, δx̃i, by transforming each of the δxi

into a new basis (denoted by a tilde) that are a linear combination of the old δxi i.e.340

δx̃i(t) =
N∑

j=1

a
(i)
j δxj(t) (24)

where a
(i)
j are scalar (and possibly complex) coefficients. These new δx̃i are vectors although they behave like scalars and

evolve independently of each other. Therefore one can treat the dynamics as N scalar (although generally complex, rather than

real valued) first order ODEs such as the one in equation 10. The problem of finding this new uncoupled basis, where the

off-diagonal entries of J are zero, is equivalent to finding the eigendecomposition of the Jacobian345

J = QJ̃Q−1 (25)

where J̃ is a diagonal matrix (only non-zero entries are on the diagonal) with N eigenvalues, each labelled by λi on the diagonal

of J̃ associated to the N eigenvectors of J , denoted qj , given by the jth column of matrix Q. The same Q also diagonalizes

the matrix eJ(x)t. So the new basis in equation 24 is simply given by δx̃i =
∑N

j=1(Q
−1)i,jδxj where (Q−1)i,j ≡ a

(i)
j give

the coefficients to uncouple the equations. This new basis δx̃i go by several names i.e. they are often known as linear, critical,350

normal or the eigenmodes modes.

How each of the δx̃i evolve now reduces to the N equations

δx̃i(t) = eλitδx̃i(0). (26)

and therefore again there are three possible fates of an initial perturbation of amplitude δx̃i(0) on mode i depending on the

sign of the real part of each of the λi: (i) The real part of λi is negative (R(λi) < 0); the initial fluctuation in the critical mode355

δx̃i(0) decays and this particular mode will be stable to perturbations. In this case a recovery time for this mode can be defined

as τi =−1/R(λi). (ii) The real part of λi is positive (R(λi) > 0); any initial fluctuation on this mode will get exponentially

larger with time and the mode will be unstable. (iii) The real part of λi is zero i.e. R(λi)→ 0. In this case, perturbations will

not grow or decay in this mode. This neutral stability occurs at a bifurcation.

The evolution of the fluctuations around the mean of the entire system is described by a linear superposition of all N modes360

i.e.

δx(t) =
N∑

i=1

eλitδx̃i(0) (27)

therefore all N modes must be stable for the overall system to be stable. If one or more of the modes are unstable, as time

increases the unstable mode with the most positive real part will swamp the response of the other N − 1 modes and cause the

entire system to be unstable. That is, for a stable system, the requirement must be R(λi)≤ 0 ∀i. Provided all the modes are365

stable, the δx̃i with the least negativeR(λi) will dominate the dynamics of the system simply because they decay more slowly

18

https://doi.org/10.5194/egusphere-2023-2036
Preprint. Discussion started: 13 October 2023
c© Author(s) 2023. CC BY 4.0 License.



(larger τi) than those modes associated to shorter τi (more negative R(λi)). That is, the dynamics of the entire system may be

well described by just a few (n) modes, where n < N , with the largest timescales such that

δx(t)≈
n∑

i=1

eλitδx̃i(0) (28)

where λi are ordered in increasing size i.e. R(λi)≥R(λi+1). An extreme example is when a local bifurcation is approached370

and the timescale of one (or more) of the modes τi →∞ (R(λi)→ 0) and dominates the dynamics to such a degree the system

can be described by just that one (or more) mode.

The eigenvalues λi can also have imaginary components. These give rise to oscillations in the associated mode with angular

frequency ωi = I(λi). For a real valued J , complex λi always occur in complex conjugate pairs with associated complex

conjugate eigenvectors. If eigenvalues (and therefore eigenvectors) are complex, the superposition with it’s conjugate mode375

gives a real, but time evolving spatial mode. Explicitly for a single, dominant complex (oscillatory) mode (R(λ1)≫R(λi),

∀i ̸= 1), the dynamics is

δx(t)∼ eλ1tδx̃1 + eλ∗1tδx̃∗1 (29)

∼ e−
t

τ1 [cos(ω1t)R(δx̃1)− sin(ω1t)I(δx̃1)] (30)

∼ e−
t

τ1 cos(ω1t + ϕ1)|δx̃1| (31)380

That is the mode spatially oscillates between its real and imaginary parts at angular frequency ω1. In the last line we have

defined a vector phase ϕ1 = arg(δx̃1).

For a dominant real mode, the dynamics is

δx(t)∼ eλ1tδx̃1 (32)

∼ e−
t

τ1 δx̃1 (33)385

since ω1 = 0 and I(δx̃1) = 0, there is no conjugate mode. A mode associated to a real eigenvalue has real eigenmode and

therefore the spatial pattern remains fixed, decaying exponentially and uniformly from the constant multiplier on the pattern

e−
t

τ1 . This case is analogous to the first order dynamics scalar case of section 4; the constant multiplier being the lag 1

autocorrelation and the spatial mode being analogous to the scalar variable x.

One may wonder how equation 22 describes higher order dynamics since it is a first order ODE. A N th order system can be390

written as a first order vector ODE with N dimensions. For example, the third order system

...
x + aẍ + bẋ + cx = 0 (34)

can be written as a first order vector ODE in 3 dimensions by making the identifications y = ẋ and z = ẏ so that equation 34

can be written

ẋ = y (35)395
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ẏ = z (36)

ż =−cx− by− az (37)

or as a first order vector ODE



ẋ

ẏ

ż


 =




0 1 0

0 0 1

−c −b −a







x

y

z


 (38)

which can be written more compactly in the same form as equation 22400

ẋ = Jx. (39)

Under the assumption of white noise forcing (or equivalently independent errors on δxi) one can reconstruct J from time-

series of the δxi, each timeseries sampled at an interval ∆t between time steps as follows (see Williamson and Lenton (2015)

for details)

eJ(x)∆t = AΣ−1 (40)405

Where Σ is the covariance matrix of δx and A is the lagged covariance matrix i.e.

Σ = E[δxtδxT
t ] (41)

A = E[δxt+∆tδxT
t ] (42)

One can then find the eigenmodes and eigenvalues of J (and hence their stability). For vector valued x, the analogous EWS to

the scalar case (section 4) are now matrix valued i.e.410

AΣ−1 ≡ α(tlag) (43)

Σ≡ σ2
x (44)

however we now have N modes (eigenvectors of J) associated to N timescales (eigenvalues of J). Early warning signals

autocorrelation and variance are still functions of J(x) but they are also now also matrices (autocovariance and covariance

matrices respectively). This technique is also known as Principle Oscillation Pattern (POP) analysis (Hasselmann, 1988). We415

will analyze the properties of J in the following as this is what ultimately determines stability (and the EWS which are functions

of J).

6.2 Spatial EWS of the superrotation transition

We now apply the vector technique described in the last subsection to the full spatial horizontal vector wind field δv(θ,ϕ,t)

and diagnose the dominant eigenvalues and eigenmodes as RoT is varied through the superrotation transition.420
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We identify the vector δx(t) at each time t in equation 20 to have components δxi(t) that are the δu(θi,ϕi, t) at each

horizontal grid box labelled i in the GCM with coordinates (θi,ϕi) at vertical level σ = 0.7. This two dimensional horizontal

field is area weighted by grid box size, reshaped into a column vector and concatenated with the analogous field of δv(θi,ϕi, t).

Time is also a discrete variable in the GCM output having integer day values with interval ∆t = 1 day. We label the full vector

δvt.425

As the full resolution horizontal field in this configuration of Isca has 64× 128 = 8192 grid boxes for each field of u and v,

the vector has 16 384 components. The resulting reconstructed J would therefore be a real valued, although non-symmetric

16384×16384 matrix whose calculation would be computationally costly. To reduce this cost, we project fields of δu and δv at

each time t on to their n largest empirical orthogonal functions (EOFs), the dominant eigenvectors of the covariance matrix Σ,

to capture the dominant dynamics of δv(t) (see von Storch and Zwiers (1999) for a description of the EOF technique). We use430

n = 60 which captures between 76% and 88% of the total variance depending on the value of RoT . We have experimented with

using larger n and while more of the total variance is captured, the results presented below remain invariant. This is because we

are interested in the dominant modes of the dynamics (largest eigenmodes of J) and these are well captured by the projections

on to the leading EOFs.

Using the reduced EOF basis for δvt we calculate A and Σ using the last two years of each RoT simulation and therefore435

infer J using equations 40 and 41 for the full global horizontal vector windfield fluctuations. Performing an eigendecomposition

to find the dominant modes and their stabilities on each reconstructed J results in figure 11.

6.2.1 Eigenvalues of J : Timescales and oscillation frequencies

The spectrum of each J (the first 20 eigenvalues, λi i ∈ {1,2, · · · ,20}, where R(λi)≥R(λi+1)) as a function of RoT are

shown in the middle two panels of figure 11. Generally each λi has a real and imaginary part. The real part R(λi) determines440

how dominant the associated eigenmode is in the dynamics with less negative values being more dominant. Equivalently, the

eigenmodes with the largest e folding timescales, τi, dominate the dynamics (recall τi =−1/R(λi)). We choose to represent

the real part of each eigenvalue as a timescale τi in the upper middle plot.

The imaginary part of each eigenvalue ωi = I(λi) determines the oscillation frequency of the associated eigenmode. We

choose to represent the imaginary part of each eigenvalue as the period of the oscillation P = 2π
ωi

in the lower middle plot.445

Each black dot represents one of the 20 leading eigenvalues. At low values of RoT , the timescales of the leading modes are

very close or the same (degenerate) within calculated error bounds from finite sample length tf − ts. This effective degeneracy

in J can result in some non-uniqueness in the decomposed eigenmodes. In contrast, leading τi become well separated for

RoT > 0.4 and eigenmodes can be reliably inferred. We have highlighted how the τi of three leading eigenmodes around the

transition change with RoT in the upper middle panel and the associated oscillation periods P in the lower middle panel. These450

are colour coded to the associated spatial mode i.e. black is the Earth-like mode (upper LH panel), red is the ‘precursor’ mode

(lower LH panel), blue is the ‘superrotation’ mode (upper RH panel) and magenta is the ‘swirly’ mode (lower RH panel).
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Figure 11. Spatial precursors of the superrotation transition: The 20 leading eigenvalues of the Jacobian of the global horizontal wind field

fluctuations, δv(t), around the mean state v as RoT changes. The real part of the eigenvalues, determining the stability and the dominance

in the dynamics of the associated mode, are shown in the middle upper panel as a timescale τ =−1/R(λi). The corresponding imaginary

part of the eigenvalues, determining the oscillation frequency of the associated mode, is shown as an oscillation period (P = 2π
I(λi)

). Three

of the largest eigenmodes are colour coded and tracked through different values of RoT to show how they evolve in the spectrum of J

(middle panels). In the end columns of the figure are the eigenmodes associated to the color coded eigenvalues. The exact RoT value of each

snapshot of the mode in the eigenvalue plots is denoted by a dotted circle around each eigenvalue. Eigenmodes are dynamic but are shown

at t = 0 before they oscillate with period P and damping takes place (exponential decay with timescale τ ). The colour coding indicates

δu(θ,ϕ,t) with δu < 0 (blue) and δu > 0 (red) shown. Arrows show the full vector field δv(θ,ϕ,t). The modes are Earth-like (upper LH,

black), precursor (lower LH, red), superrotation (upper RH, blue) and swirly (lower RH, magenta).

6.2.2 Eigenvectors of J : Spatial mode structure

The leading modes of J , the eigenvectors associated to the eigenvalues with the largest τi, around the transition to a superrotat-

ing state are discussed next. These are dynamic modes that change with time according to equation 29. We have tried to show455

their evolution through one full oscillation in figure 12. (Animations of these modes are also available, see video supplement

at the end of the manuscript.) These modes show how the vector wind field adjusts when perturbed from its mean state. A

analogy would be the most visible pattern of a drum skin vibration (the dominant eigenmode) from rest (the mean state) when

hit with a drum stick (the perturbation).
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Earth-like mode (black, upper LH panel, fig 11): This spatial pattern can only be identified for RoT = 0.02 which is an460

Earth-like simulation. Although it is the dominant mode, due to the close spacing of the τi at RoT = 0.02, this pattern alone

does not account for very much of the dynamics of δv. It has a time scale of τ ∼ 20 days and an oscillation frequency of

P ∼ 20 days. This mode is very jet stream like, capturing the mid-latitude instabilities. The evolution of this mode through one

full cycle is shown in the top row of figure 12.

Precursor mode (red, lower LH panel, fig 11): The red mode spatial pattern appears at RoT ∼ 0.5 and is the dominant465

mode in the fluctuation dynamics between RoT ≈ 0.75 and RoT = 0.87 although a second mode, the ‘superrotation’ mode

is similar in size during this RoT interval. At RoT = 0.87 the mode peaks in τ with a decay timescale of τ ∼ 25 days and

this is when the early warning indicators of section 4 all peak just before the transition. It is responsible for the shape of the

variance of zonal mean u in figure 6. It is also responsible for the oscillating autocovariance function R(tlag) in figure 7 as it is

a zonal wavenumber zero mode with P ∼ 25 days. This is why we refer to this mode as the ‘precursor mode’. After the peak,470

this mode then reduces quickly in importance until it is no longer detectable at RoT ∼ 1.3. It is the third largest mode from

RoT > 1. The evolution of this mode through one full cycle is shown in the second row of figure 12.

Superrotation mode (blue, upper RH panel, fig 11): The blue mode alone clearly dominates the dynamics (largest τi)

when the atmosphere becomes fully superrotating for RoT ≥ 1. It is also an important component of the fluctuation dynamics

around the transition at RoT ∼ 0.75 when it is a similar size to the red ‘precursor’ mode. This is also when it first appears as475

a mode of J . We call this mode the ‘superrotation’ mode. The e folding timescale of this mode gets as large as τ ∼ 200 days

past RoT > 1 and has an oscillation frequency of P ∼ 4 days. It is a mode with a zonal wavenumber of one. The evolution of

this mode through one full cycle is shown in the third row of figure 12. This is similar to the one identified by Mitchell and

Vallis (2010) for a fully superrotating state (RoT = 10.5) in the context of zonal mean zonal wind interactions.

Swirly mode (magenta, lower RH panel, fig 11)): The magenta mode is significant in the fluctuation dynamics after the480

superrotation transition, particularly for larger values of RoT although it is never the dominant mode. It is a mode with zonal

wavenumber 2 and oscillation frequency P ∼ 2 days. We call this mode, the ‘swirly’ mode. The evolution of this mode through

one full cycle is shown in the bottom row of figure 12.

The start of the plateau in u in figure 6 coincides with the appearance of the ‘precursor’ mode and the end with the appearance

of the ‘superrotation mode’. One could argue the plateau in u, is also a precursor to the superrotation transition. However, it485

is the appearance of the precursor mode and its properties that produce the EWS (rising variance, increasing α(tlag), R(tlag))

and herald the transition to superrotation.

7 Discussion & Conclusion

The motivation for this study came from Isaac Held’s excellent blog (Held, 2016). One of the posts on that blog introduced

the work of Suarez and Duffy (1992) who observed an abrupt transition to a superrotating state in a idealised two vertical490

level GCM as a longitude dependent heat source in the tropics was increased. The atmospheric state in this model also showed

bistability i.e. both superrotating and regular, present day atmospheric states were stable for the same value of tropical heating.
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Figure 12. Dynamic evolution of the eigenmodes of J : As the eigenmodes of δv(θ,ϕ,t) change with time according to equation 29 we have

tried to show this evolution through one full oscillation (a movie is available online) of the four selected modes in figure 11. The colour

coding indicates δu(θ,ϕ,t) with δu < 0 (blue) and δu > 0 (red) shown. Arrows show the full vector field δv(θ,ϕ,t). The columns show the

mode at the start of the cycle (t = 0) and advance by 1/4 of a cycle left to right. Exponential decay from τ is also shown as the color coding

becoming more washed out as t advances. The rows of the figure show the modes: Earth-like (upper row, black), precursor (second row, red),

superrotation (third row, blue) and swirly (bottom row, magenta).

This example has many similarities with other climate tipping points (Lenton et al., 2019) - abrupt changes in state caused

by relatively small changes in forcing parameters. These are generally regarded as low probability, high risk events. One such

example is the Atlantic meridional overturning circulation (AMOC) that can abruptly change from an ‘on’ to ‘off’ state as495

freshwater flux into the North Atlantic is increased (Stommel, 1961; Vellinga and Wood, 2002; Mecking et al., 2016). The

AMOC can also show bistability; the off state can persist as the freshwater flux is decreased back below the original threshold.

There are a variety of other widely studied climate tipping points - the Amazon rainforest, Greenland ice sheet and Arctic sea

ice to name a few - however superrotation has not received the same attention. One of the motivations of this work was to begin

to correct this deficiency.500

Unlike Suarez and Duffy (1992), where the control parameter varied (the tropical heating) is arguably relevant to future

anthropogenic climate change, our control parameter, the thermal Rossby number (RoT ), a non-dimensional number that

controls the global atmospheric dynamics, is probably not relevant to future climate change. And unlike the abrupt transition

in equatorial mean zonal u observed in Suarez and Duffy (1992), our transition is smooth as the control parameter is varied.
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The third difference is that we have not been able to detect bistability (section 5). Nevertheless, the simulations reported here505

do show early warnings of the transition and serve as a test bed for the second motivation of this manuscript, namely whether

we can detect this transition before it happens.

The usual early warnings of local bifurcation type tipping (rising variance and autocorrelation, section 4) all increase before

the superrotation transition, simultaneously peaking at RoT = 0.87 when calculated for the equatorial zonal wind speed u.

These peaks show that fluctuations around the mean state wind field grow in magnitude and persist for longer close to the510

superrotation transition, indicative of critical slowing down near a local bifurcation.

In addition, the full autocovariance function, R(tlag), showed oscillations of period P ∼ 25 days that became increasingly

less damped as the transition was approached, reminiscent of a Hopf type bifurcation (see equation 16). In a Hopf bifurcation,

a pair of complex conjugate eigenvalues of the Jacobian move in the complex plane from the negative real half and cross the

imaginary axis at the point of bifurcation (see Strogatz (2001) for details). Before the bifurcation, this results in critical slowing515

down in the dynamics (increasingly less negative R(λ)) as well as oscillations of frequency ω = I(λ). These are observed in

the superrotation transition.

The presence of oscillations in δu motivated us to use a more general technique to study the transition. The usual theory of

EWS relies on scalar state variables and first order dynamics. This does not permit oscillations or higher order dynamics. We

gave a pedagogical introduction to the more general theory in section 6 and calculated the Jacobian and normal modes for the520

full global vector wind field δv(θ,ϕ). EWS are designed to detect changes in the stability of the mean state and therefore must

be functions of the Jacobian’s eigenvalues which entirely describe the linear stability of the mean state. We therefore chose

to study the eigenvalues and eigenmodes of the Jacobian as they are the sole determinant of traditional EWS based on linear

stability analysis.

When a system approaches an abrupt transition resulting from a local bifurcation, often a single eigenmode of the Jacobian525

starts to dominate the dynamics. Close to the transition we found two eigenmodes (or spatial patterns) that the fluctuations, δv,

preferentially oscillate in, before slowly decaying back towards the mean state v. One of these modes, the precursor mode, was

a zonal wavenumber zero mode that we attribute to the 25 day oscillations in the equatorial zonal mean δu as well as the rise

in variance and autocorrelation seen in section 4. There is also a second mode of roughly the same size around the transition

- the superrotation mode - a zonal wavenumber one mode that comes to dominate the dynamics as the atmosphere becomes530

fully superrotating. Detecting the precursor mode in the spatial or temporal correlations would serve as the best EWS. These

modes were calculated for the global windfield. It is plausible that the precursor mode would be even more significant in the

dynamics of the tropics if the spatial analysis was performed over just the tropical region, rather than the entire globe.

One may wonder why oscillations are not observed for RoT > 1.3 after the precursor mode disappears from the dynamics

in the scalar EWS even though the dominant modes in this regime, the superrotation mode and the swirly mode, are oscillatory535

with periods P ∼ 4 and P ∼ 2 days respectively. This is due to their zonal wavenumbers - remember equatorial zonal u was

averaged over a latitude band in section 4. For nonzero zonal wavenumbers, the average will be always be zero as there are an

equal numbers of peaks and troughs. A zonal wavenumber zero pattern like the precursor mode however, will have a non-zero

average in a zonal mean.
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There remain questions about the dynamical mechanisms giving rise to the observed eigenmodes around the transition.540

There is a detailed analysis in Mitchell and Vallis (2010). Outstanding questions in this domain are left to a future study.

The degree of spatial correlation in the fluctuations, particularly in the precursor mode, is reminiscent of a phase transition

(Anderson, 1984). Traditionally, phase transitions are studied via the statistics of the spatial fluctuations around the mean state.

The hallmarks of a phase transition are diverging correlation length and correlation time (resulting in critical slowing down) as

well as an abrupt change in the order parameter of the state. In particular, continuous phase transitions have spatial correlation545

functions that are described by a power law at the critical point giving rise to scale invariant physics and often involve a

broken symmetry. What are the similarities with the transition to superrotation? Diverging correlation time is present (τ ) and

diverging correlation length is qualitatively present (as seen in the pattern of the precursor mode, at least zonally) although

we have not formally calculated spatial correlation functions. Dylewsky however has found quantitative evidence via a neural

network trained on the spatial information from a 2D Ising model phase transition - this trained neural network does predict550

the superrotation transition clearly before it occurs (Dylewski, pers. comm., see also Dylewsky et al. (2023)).

Detection of a power law at the transition would also require long simulations very close to, or at the critical point of RoT .

Long simulations are needed at the transition because of the diverging correlation time (a.k.a. critical slowing down). There are

also broken symmetries present: The Jacobian’s eigenvalues look to be very similar in value (degenerate), at least to the error

in their estimation, making the dynamics of the fluctuations invariant under high dimensional symmetry groups - technically555

continuous orthogonal groups (spatial rotations of the eigenmodes in their vector basis representation) of the same dimension

as the degree of the degeneracy of J . These spatial symmetries are broken to lower dimensional discrete symmetry groups

close to the transition when the eigenvalues of J become more widely separated and a few eigenmodes dominate the dynamics

of the fluctuations.

The Landau theory of phase transitions (Landau, 1937) starts with identifying a suitable order parameter, and then expanding560

the free energy as a power series of the order parameter. The order parameter takes the value zero in a disordered phase and a

non-zero value when the system is ‘ordered’. It is not clear what the order parameter would be for our case however it is not

always obvious in many instances. For example, in a Bose-Einstein condensate, it is related to the off-diagonal long range order

of the one particle density matrix and in the gas-liquid transition it is the density difference between gas and liquid. It would

be interesting to look for power laws in the spatial correlation function and determine the critical exponents, the exponents that565

determine the universality class of the transition should they exist.

Although the probability of transitioning to a equatorial superrotating atmospheric state under future climate change seems

unlikely, it is not zero (see Held (2016)). There is (limited) evidence that it has happened in the past and can happen in the

future (Huang et al., 2001; Caballero and Huber, 2010; Tziperman and Farrell, 2009). As with other tipping points, this makes

superrotation a low probability but high risk event. It would be interesting to repeat the experiment of Suarez and Duffy (1992)570

with the Isca framework, namely a more relevant way of transitioning to superrotation under climate change, and see if the

EWS identified here are still present.
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