

1	Parent material influences soil abiotic N ₂ O production
2	from chemical oxidation of hydroxylamine
3	Suyun Li ¹ & Cai Gan ² , Danni Cai ¹ , Jiani Ma ¹ , Shurong Liu ^{1,*}
4	¹ School of Agriculture, Sun Yat-Sen University, Shenzhen 518107, China;
5	² School of Resources and Environment, Huazhong Agricultural University, Hubei
6	430070, China;
7	& The two authors contributed the same.
8	* Correspondence: Shurong Liu (<u>liushr28@mail.sysu.edu.cn</u>)
9	

10	Abstract. Hydroxylamine (NH ₂ OH) and nitrite (NO ₂ ⁻) represent pivotal nitrification
11	intermediates that substantially govern soil abiotic N2O production. Yet, the intricate
12	factors influencing the abiotic formation of N2O from chemical reactions involving
13	NH ₂ OH and NO ₂ ⁻ remain uncertain. This study was designed to reveal the impacts of
14	land use type and parent material on soil abiotic N2O production in response to NH2OH
15	and NO_2^- amendments. Our investigation revealed that land use type exerted no
16	significant influence on abiotic production of N ₂ O with NH ₂ OH and NO ₂ ⁻ addition.
17	Nevertheless, the parent material exhibited a notable ($P < 0.01$) effect on N ₂ O
18	production intrigued by NH2OH addition. Specifically, a markedly higher abiotic N2O
19	production from NH2OH was observed in soils developed from Quaternary red clay
20	than those derived from granite. Subsequent analysis demonstrated that the soils
21	originating from Quaternary red clay displayed significantly higher manganese (Mn)
22	content in comparison to those originating from granite. This finding consistently aligns
23	with the close correlation between the abiotic N_2O production via chemical oxidation
24	of NH ₂ OH and Mn content of soil. Furthermore, the site preference (SP) values for N_2O
25	arising from NH ₂ OH and NO ₂ ⁻ addition were 25-30‰ and around 20‰, respectively,
26	aligning with the expected ranges characterizing ammonia oxidation and
27	chemodenitrification processes. Our findings provide valuable insight into the distinct
28	influence of parent material on soil abiotic N2O production via chemical oxidation of
29	NH ₂ OH, contributing to a better understanding of the underlying mechanisms, and
30	highlight the significance of soil factors in regulating abiotic N2O production within
31	soil ecosystems.

32 1 Introduction

33	Nitrous oxide (N ₂ O) holds a pivotal position in the atmosphere, both as a long-lived
34	greenhouse gas and a precursor to nitric oxide, contributing to the depletion of
35	stratospheric ozone (IPCC, 2007). Agricultural soil ecosystems contributed to 52% of
36	anthropogenic N ₂ O emissions due to the large input of nitrogen (N) fertilizers (Tian et
37	al., 2020). Recent findings have revealed that N_2O production in soil is influenced by
38	both biotic and abiotic processes (Heil et al., 2016; Liu et al., 2019, 2018; Wei et al.,
39	2022). Notably, abiotic processes may contribute to 29.3-37.7% of global total N_2O
40	production (Wei et al., 2022). Hydroxylamine (NH ₂ OH) and nitrite (NO ₂ ⁻) emerge as
41	critical N intermediates that significantly contribute to abiotic N2O production.
42	However, the intricate factors influencing abiotic N ₂ O production from these two
43	intermediates were still under investigation.

Hydroxylamine and NO2⁻ are two crucial intermediates within N cycle (Heil et al., 44 45 2016). Hydroxylamine can be released into the extracellular environment by ammoniaoxidizing microorganisms (Liu et al., 2017), methane-oxidizing microorganisms 46 (Versantvoort et al., 2020), heterotrophic nitrifiers (Stouthamer et al., 1997; Verstraete 47 48 and Alexander, 1972) and dissimilatory nitrate reduction to ammonium microorganisms 49 (Giblin et al., 2013; Hanson et al., 2013). Subsequently, NH₂OH undergoes oxidation mediated by soil metal oxidants, such as manganese oxide (MnO₂) and ferric ion (Fe³⁺), 50 leading to the formation of N2O. Additionally, NH2OH can undergo fixation by soil 51 organic matter to form compounds known as oximes (Porter, 1969). Considerable 52 accumulation of NO2⁻ has been observed during nitrification in soils due to the 53

uncoupling of ammonia and nitrite oxidation (Duan et al., 2020a; Tierling and 54 Kuhlmann, 2018). Nitrite can also accumulate during the denitrification process in 55 anaerobic conditions (Burns et al., 1996). Remarkably, this accumulated NO2⁻ 56 undergoes chemical reactions with ferrous iron and soil organic matter, giving rise to 57 58 the intriguing phenomenon known as chemodenitrification (Nelson and Bremner, 1970, Wei et al., 2020). And various chemical properties of soil, such as pH, Fe concentration 59 60 and organic matter content, have been demonstrated to exert significant influences on 61 chemodenitrification (Chalk and Smith, 2020).

62 Generally, parent materials exert a significant impact on soil formation processes, leading to alteration in various soil physical and chemical properties, including soil pH 63 and organic matter concentration (Miller and Donahue, 1990). Additionally, it has been 64 65 documented that land use types and agricultural management practices, such as the 66 application of inorganic N fertilizers and organic manure, have a marked influence on physical and chemical properties of soils (Zhang and Xu, 2005). For instance, the long-67 term utilization of mineral fertilizers in orchard soils is frequently associated with soil 68 69 acidification (Guo et al., 2010; Yan et al., 2018). Consequently, it is reasonable to anticipate variations in abiotic N2O production in soils derived from different parent 70 materials and those under divergent land use types. 71

In our study, we conducted a laboratory incubation experiment to investigate the impacts of land use type and parent material on abiotic N₂O production through the addition of NH₂OH and NO₂⁻. Gamma (γ) sterilization and site preference (SP) techniques were used to reveal the contribution of abiotic processes to N₂O production

76	from different sources (Casciotti et al., 2010; Jung et al., 2014; Sutka et al., 2008, 2006).
77	Previous research has revealed that distinct SP values for N2O produced through
78	various microbial and chemical processes. Specifically, SP values for N ₂ O molecule
79	yielded by purely cultured ammonia-oxidizing archaea (AOA) have been documented
80	in the range of 13.1-34‰ (Jung et al., 2014), while ammonia-oxidizing bacteria (AOB)
81	exhibit SP values spanning from 14.2‰ to 38.2‰ (Casciotti et al., 2010). Additionally,
82	Sutka et al. (2008) found that fungal denitrification had SP values ranging from 22.8‰
83	to 40‰. In contrast, bacterial denitrification processes presented a low SP range, falling
84	in the scope of -5.9-0.7‰ (Haslun et al., 2018; Lewicka-Szczebak et al., 2014; Sutka et
85	al., 2006; Toyoda et al., 2005; Yamazaki et al., 2014). Furthermore, SP values of N_2O
86	produced through chemical reactions has been identified spanning a wide range of 16.8-
87	35.6‰ (Buchwald et al., 2016; Grabb et al., 2017; Heil et al., 2015, 2014; Jones et al.,
88	2015). Notably, Duan et al. (2020a) reported that SP values of N_2O produced from
89	chemical reactions involving NH2OH and NO2-, ranging from 27.4‰ and 36.5‰ in
90	greenhouse vegetable soils. Nevertheless, the understanding of SP values stemming
91	from abiotic N ₂ O production due to NH ₂ OH and NO ₂ ⁻ addition in different soils remains
92	limited. Therefore, in this study, we hypothesized that: 1) soil parent material and land
93	use type could exert an influence on abiotic N2O production from chemical reactions
94	involving NH ₂ OH and NO ₂ ⁻ due to the variations of soil physico-chemical properties;
95	2) SP values of N_2O molecule yielded from chemical oxidation of NH_2OH and NO_2^{-1}
96	chemodenitrification fall in the scope of abiotically-produced N2O in previous studies.

97 2 Materials and methods

98 2.1 Sample collection and chemical analysis

99	Fifteen soils from five sites in mainland China (Fig. 1): Changsha (CS, 113°19'E,
100	28°33'N), Tongcheng (TC, 113°46'E, 29°13'N), Taoyuan (TY, 111°31'E, 29°14'N),
101	Dangyang (DY, 111°48'E, 30°41'N) and Xianning (XN, 114°22'E, 30°0'N) were
102	collected for this study, representing a range of land use types and parent materials. At
103	each site, soils were collected from the top 20-cm layer. After removing litters and plant
104	roots, soils were placed into sealed bags and transferred to the laboratory of Huazhong
105	Agricultural University. Soils were naturally dried in a well-ventilated room, then
106	passed through a 2-mm sieve and stored at room temperature.

Basic soil physicochemical properties were analyzed before the incubation. Briefly, 107 the metallic elements were determined with inductively coupled plasma optical 108 emission spectrometry (Agilent 5110 ICP-OES, Agilent, USA). Total carbon (C) and N 109 contents were analyzed with an elemental analyzer (FlashSmart 11206125, Thermo 110 Scientific Inc., USA). Ammonium (NH4⁺) and nitrate (NO3⁻) were extracted with 1 M 111 KCl (dry soil: solution = 1:10 w/w) and shaken for 24 h and determined with ion 112 chromatography (Thermo Scientific, USA). Soil pH was measured with a pH probe 113 114 after shaking soil with 1 M KCl (dry soil: solution = 1:10 w/w). Dissolved organic C 115 (DOC) content was analyzed with acid-base titration method, while dissolved organic N (DON) content was calculated by total dissolved N (determined by ultraviolet 116 spectrophotometer) minus dissolved inorganic N (NH4⁻ and NO3⁻). The detailed 117 information of soil chemical properties is shown in Table 1. 118

119 2.2 Soil sterilization

120	Half of the soils were irradiated under 20 kGy (⁶⁰ Co) at Huada Biological Technology,
121	Guangzhou, China. After that, the soils were rewetted with sterilized deionized water
122	to reach around 40% water-holding capacity (WHC), and then incubated for 72 h at
123	28 °C. The sterilized soils (1.0 g) were used to check irradiation efficiency by plating
124	the soil slurries (soil : water = 1:1) on sterilized R2A medium, incubating for 72 h, 28 $^{\circ}$ C.
125	Neither bacteria nor fungi was observed, demonstrating that the irradiation process was
126	successful.

127 2.3 Amendment of NH₂OH and NO₂⁻ solutions

Sterilized and non-sterilized soils (0.5 g) were weighed into 12-ml gas chromatography 128 (GC) vials (labco, England). Then, sterilized deionized water was added to bring the 129 soil moisture to 40% WHC. Vials were then incubated for 72 h at room temperature (25 130 131 ± 1 °C). After that, NH₂OH and NaNO₂ solution were filtered through 0.22-µm filters and added to the vials to bring the soil to 60% soil WHC. Then, the vials were sealed 132 133 tightly and incubated for 7 h at 25 °C. The added NH2OH and NO2⁻ concentration were 5 mg N kg⁻¹ soil and 50 mg N kg⁻¹ soil, respectively. The concentration of added NO₂⁻ 134 mimicked the maximum level that can achieve after N fertilizer application; as for the 135 concentration of NH2OH added, 10-times smaller than amended NO2⁻ and much higher 136 137 than its natural content, the relatively high dose is beneficial for producing significant amount of N2O and for further study of SP determination. At the end of incubation, 20 138 ml 99.9% N2 was injected to the vials and then 20-ml headspace gas was collected from 139

- 140 the vials. N₂O concentration in the headspace gas was analyzed by using an Agilent
- 141 7890A Gas Chromatograph.

142 Conversion rates of added NH₂OH and NO₂⁻ to N₂O were also calculated to predict
143 the relative role of NH₂OH and NO₂⁻ in N₂O production, which were calculated by the
144 following equations

145
$$[N_2O-N, NH_2OH] - [N_2O-N, control] / [NH_2OH-N]$$
 (1)

- 146 $[N_2O-N, NO_2^-] [N_2O-N, control] / [NO_2^--N]$ (2)
- where $[N_2O-N, NH_2OH]$ is the concentration of N_2O-N derived from NH_2OH amendment; $[N_2O-N, control]$ the concentration of N_2O-N derived from the control and $[N_2O-N, NO_2^-]$ the concentration of N_2O-N derived from NO_2^- amendment; $[NH_2OH-$
- 150 N] and [NO₂⁻-N] represent the concentration of added NH₂OH and NO₂⁻, respectively.
- 151 2.4 Analysis of ¹⁵N site preference of N₂O
- To further explore the pathways of N₂O generation, the isotope experiment was performed. Soil (0.5 g) was weighed into a 12-ml labco vial followed by the addition of NH₂OH and NO₂⁻ solution, and then the vial was sealed tightly. The vials were incubated at 25 °C for 7 hours and 20 ml headspace gas was collected following the same steps mentioned above, to determine the ¹⁵N site preference of N₂O by using an isotope ratio mass spectrometer (Toyoda and Yoshida, 1999). ¹⁵N^{bulk} and ¹⁵N^{α} were monitored, ¹⁵N^{β} could be calculated by the following equations

159
$$\Delta^{15} N^{\beta} = {}^{15} N^{\text{bulk}} - \delta^{15} N^{\alpha}$$
 (3)

160 Site preference is defined as

161	$SP = \delta^{15}N^{\alpha}$ -	$\delta^{15}N^{\beta}$
-----	--------------------------------	------------------------

162 2.5 Statistical analysis

163 Analysis of variance (ANOVA) was performed for analyzing the differences in N₂O 164 emissions among non-sterile and γ -irradiated samples. Tukey's post-hoc tests were 165 utilized to identify significant differences at *P* < 0.05. The ANOVA also evaluated the 166 percentage of total variance explained by land use types and parent materials. Spearman 167 correlation analysis was performed to find relationship between N₂O emissions and 168 possible variables. All the statistical analyses were conducted in R (version 4.0.3, R 169 Foundation for Statistical Computing, Vienna, Austria).

170 3 Results

3.1 Effects of parent material and land use on soil physicochemical properties 171 172 Parent material had significant (P < 0.05) effects on several soil properties, including soil texture composition, DOC content, NO3⁻ content, Mn and Fe contents (Table 2, Fig. 173 2). Soils developed from late Pleistocene sediment have the largest amount of silt and 174 clay content, as well as NO₃⁻ and Fe contents among all the parent materials. Soils 175 176 developed from granite showed a characteristic of the largest proportion of sand and the least Fe content among all the parent materials. The Mn content in soils from 177 Quaternary red earth was significantly (P < 0.05) higher than that from granite and late 178 Pleistocene sediment. 179

180 For land use type, the most affected properties were silt content, soil pH, TC, TN and

(4)

181

182	among all the land use types. Tea fields had the largest $\mathrm{NH_4^+}$ content, and paddy soil
183	showed the highest pH and the largest TC and TN among all the land use types.
184	3.2 Effects of parent material and land use type on N_2O production with
185	NH ₂ OH and NO ₂ ⁻ addition
186	Parent material had a significant ($P < 0.05$) influence on N ₂ O production from soils
187	amended with NH ₂ OH (Fig. 3a, 4a). Soils developed from Quaternary red clay and late
188	Pleistocene sediment have relatively higher N_2O production (0.77-4.76 mg N kg ⁻¹ soil
189	and 1.97-2.11 mg N kg ⁻¹ soil, respectively) with NH ₂ OH addition than those developed
190	from granite (0.16-1.07 mg N kg ⁻¹ soil). In the treatments with NO ₂ ⁻ addition, N ₂ O
191	production from different parent materials were in the range of 0.18-0.82 mg N kg ⁻¹ soil
192	and showed insignificant difference (Fig. 3b, 4b). Land use type showed little influence
193	on N_2O emissions among the 15 soils with NH_2OH and NO_2^- addition (Fig. 4). Average
194	N_2O production from the five land use types were in an approximate range (0.98-2.28
195	mg N kg ⁻¹ soil and 0.39-0.50 mg N kg ⁻¹ soil, respectively) with NH ₂ OH and NO ₂ ⁻¹
196	addition.

NH4⁺ content (Table 2). Forest soil had the least TC and TN content, and lowest pH

197 The conversion ratios of NH₂OH to N₂O in soils from Quaternary red clay (50.9%) 198 was significantly larger than that from late Pleistocene sediment (27.7%), and granite 199 (7.2%) (Table 3). Around 90% of NH₂OH to N₂O came from abiotic processes in soils 200 from Quaternary red clay, while the ratios were around 69% for soils from late 201 Pleistocene sediment and granite. The effect of land use types on the conversion ratios

202	of NH ₂ OH to N ₂ O was not significant, with ratios ranging from 16.5% to 34.6%. The
203	conversion ratios of NO_2^- to N_2O was much smaller than that of NH_2OH to N_2O , with
204	ratios ranging from 0.93% to 11.6%. Neither parent material nor land use types affected
205	the conversion ratios of NO_2^- to N_2O . Most (68.4-98%) of N_2O with NO_2^- addition came
206	from abiotic processes.
207	3.3 Effects of soil factors on N ₂ O production with NH ₂ OH and NO _{2⁻} addition
208	In non-sterile samples, N ₂ O production was positively ($P < 0.05$) correlated to soil Fe
209	and Mn content with NH ₂ OH addition, whereas N ₂ O production was negatively ($P <$
210	0.05) correlated to soil Fe content and pH with NO_2^- addition (Fig. 5).
211	In γ -irradiated samples, N ₂ O production was positively ($P < 0.05$) correlated to soil
212	Mn content with NH2OH addition. However, soil Fe content did not affect N2O
213	production significantly in γ -irradiated samples with NO ₂ ⁻ addition (Fig. 5). Conversely,
214	N ₂ O production was negatively ($P < 0.05$) correlated to soil pH with NO ₂ ⁻ addition, but
215	correlated to soil DON positively ($P < 0.05$) (Fig. 5).
216	3.4 Site specific ¹⁵ N isotopic signatures of N ₂ O
217	Soils named DY1, CS1, TC3, TC5 were used for stable isotopic signature determination.
218	The SP values of N_2O ranged from 26.8‰ to 28.4‰ with NH ₂ OH addition in non-
219	sterile soils, which fell in the scope of SP values from nitrification (Fig. 6). The SP

- 220 value of N_2O ranged from 18.2‰ to 21.6‰ with $NO_2^{\text{-}}$ addition in non-sterile soils,
- which fell in the scope of SP values from chemodenitrification (Fig. 6). γ sterilization
- 222 had no effect on the SP values of N2O with NH2OH addition, with SP value ranged

223	from 24.5‰ to 28.9‰. Nevertheless, γ sterilization had significant ($P < 0.05$) effects
224	on the SP values of N_2O with NO_2^- addition, with SP value ranged from 20% to 22.7%.
225	The $\delta^{18}\text{O-N}_2\text{O}$ values ranged from 31.7‰ to 34‰ with NO_2^- addition in non-sterile
226	soils, which also fell in the scope of values derived from denitrification. Nevertheless,
227	the $\delta^{18}\text{O-N}_2\text{O}$ value ranged from 5.7‰ to 15.6‰ with NH_2OH addition in non-sterile
228	soils, which was much lower than the values observed in nitrification.

229 4 Discussion

Parent materials and land use types may have significant influences on soil basic 230 physicochemical properties. During soil formation, changes occur in soil physical and 231 chemical properties, such as soil pH and organic matter concentration (Alfaro et al., 232 233 2017; Angst et al., 2018). Moreover, the mineralogy of parent material can interact with soil management practices, including land use types and long-term fertilization, thereby 234 influencing basic soil properties (Stone et al., 2015; Sun et al., 2016). In this study, 235 parent materials had a significant influence on soil texture. Quaternary red clay and late 236 Pleistocene sediment resulted in fine-textured soil while granite led to coarse-textured 237 238 soil, which was similar to previous studies (Deng et al., 2015; Hu et al., 2003). In 239 addition, significant differences in Mn and Fe contents across parent materials were observed. Soils developed from Quaternary red clay had the highest Mn content while 240 241 soils generated from granite had the lowest Mn and Fe contents, which was consistent with earlier studies (Blume and Schwertmann, 1969; Bromfield et al., 1983). For total 242 C and total N as well as NH4⁺-N content, land use types explained more variance than 243

244

245	we observed significant difference in soil pH across land use types, which was not
246	aligned with previous studies (Lauber et al., 2008; Zhang et al., 2018).
247	The conversion rates of NH_2OH to N_2O in the sterilized acidic soils ranged from 3.7%
248	to 84.8% (data not shown), most of the results were fallen in the scope of earlier reports.
249	Bremner et al. (1980) reported that NH ₂ OH addition increased N ₂ O production in
250	sterilized soils, with conversion rates of NH ₂ OH to N ₂ O varied from 34% to 80%.
251	Recently, Liu et al. (2019) revealed the conversion rates of NH_2OH to N_2O fell in the
252	scope of 73-93%. Interestingly, we observed that parent material had significant effects
253	on N ₂ O production from NH ₂ OH addition. Soils developed from Quaternary red clay
254	had the highest N2O production and late Pleistocene sediment the second largest, while
255	granite led to the lowest N_2O yield. This was mainly attributed to the much higher Mn
256	content in Quaternary red clay and high concentration of Fe in late Pleistocene sediment
257	than granite. Furthermore, Spearman correlation coefficients suggested that the
258	conversion rates of NH_2OH to N_2O were positively correlated to Mn and Fe content in
259	soils (Fig. 5), which were consistent with the results shown by Bremner et al. (1980)
260	and Liu et al. (2019).
261	Sterilization has affected the conversion rates of NH ₂ OH to N ₂ O significantly, with

parent materials which was consistent with the study of Zhang et al. (2018). However,

Sterilization has affected the conversion rates of NH₂OH to N₂O significantly, with decrease of N₂O production after γ sterilization. Moreover, SP values were found in the range from 25‰ to 29‰ in both sterilized and unsterilized soils (Fig. 6), which were similar with the results of Jung et al. (2014) that SP values of N₂O produced by AOA ranged from 13.1‰ to 34‰. However, Heil et al. (2015) demonstrated SP values of

 $34.1 \pm 1.9\%$ from a sterilized cropland soil with NH₂OH addition. In an earlier study, Heil et al, (2014) reported that the SP value of N₂O generated from chemical reactions with NH₂OH ranged from 33.9‰ to 35.6‰. Based on our findings, we inferred that N₂O produced from NH₂OH in acidic soils can be attributed to the combination of archaeal ammonia oxidation and abiotic reactions. However, further research is still necessary to fully elucidate factors influencing SP values in abiotic N₂O production pathways.

273 Regarding the conversion of NO_2^- to N_2O , NO_2^- addition increased N_2O production 274 with conversion rates of 4.3% to 16.3%, which were in lined with the results of Venterea et al. (2003). Nevertheless, parent materials and land use types did not affect the 275 conversion of NO2⁻ to N2O significantly. Correlation analysis showed that the 276 277 conversion rates of NO2⁻ to N2O were negatively correlated to pH values and Mn 278 content, and positively correlated to DON and C content (Fig. 5). Similar results were revealed by Liu et al. (2019) that soil properties, such as DOM, Fe, and Mn content, 279 had strong effects on the contribution of NO2⁻ to N2O formation. Moreover, significant 280 281 difference of N2O production following NO2⁻ addition was observed among non-sterile and sterilized acidic soils, which was probably due to the increased soil dissolved 282 organic matter caused by γ sterilization (Berns et al., 2008). Nonetheless, SP values 283 indicated that N₂O converted from NO₂⁻ was produced mainly via abiotic pathways. 284 285 Our results were in line with the results reported by Liu et al. (2019), who found irradiation of soil had little influence on N₂O production in strongly acidic forest soils 286 287 following NO₂⁻ addition.

288	In supporting, SP values of N ₂ O produced from soils amended with NO ₂ ⁻ were found
289	in the range of 18‰ to 23‰ (Fig. 6), which were consistent with the results reported
290	by Jones et al. (2015), who revealed that SP values of N_2O formed via NO_2^- reduction
291	by Fe (II) were in the range of 10.0-22‰. Similarly, Wei et al. (2017) reported that N_2O
292	generated from NO2 ⁻ reduction with soil organic matter fractions at pH of 3.4 had a SP
293	value of 20.27-26.14‰. Whereas, Toyoda et al. (2005) found that N_2O produced via
294	NO2 ⁻ reduction with trimethylamine-borane had a constant SP of approximately 30‰.
295	Moreover, higher SP values of N ₂ O abiotically produced were reported by Heil et al.
296	(2014), which were in the range of 34-35‰. It seems like SP values of N_2O chemically
297	produced are in the relatively high-value scopes. However, $\delta^{18}\text{O-N}_2\text{O}$ values measured
298	in this study were lower than previously reported results, implying that a weaker
299	fractionation during chemical reactions with NH ₂ OH in both non-sterile and sterilized
300	soils. In conclusion, SP values obtained from this experiment shed some light in abiotic
301	N ₂ O production processes with application of NO ₂ ⁻ and NH ₂ OH to the same soil.

302 5 Conclusions

303 Our findings underscore the significant influence of parent materials on soil 304 physicochemical properties, particularly Mn contents, and its potential effect on abiotic 305 pathways to N₂O production in acidic soils. Furthermore, the accumulation of NH₂OH 306 and NO₂⁻ amplifies the role of abiotic mechanisms, with their influence tightly linked 307 to specific physicochemical properties of the soil. SP values reveal the contribution of 308 abiotic processes of NH₂OH and NO₂⁻ to N₂O production in the tested soils additionally.

309	Further investigation should focus on the effects of parent materials on the activity and							
310	abundance of microbial community and portion of biotic $\mathrm{N_2O}$ production to total $\mathrm{N_2O}$							
311	production.							
312								
313	Code availability. The R codes used for (bio)statistical analyses are available upon request.							
314								
315	Author contributions. Shurong Liu: Conceptualization, Methodology, Supervision,							
316	Writing-Review & Editing. Suyun Li: Investigation, Data curation, Writing-Original Draft,							
317	Writing-Review & Editing, Visualization. Cai Gan: Resources, Investigation, Writing-Original							
318	Draft. Danni Cai: Investigation. Jiani Ma: Writing-Review and Editing.							
319								
320	Competing interests. The contact author has declared that none of the authors has any							
321	competing interests.							
322	Acknowledgements. This research was supported by Province natural science fund of							
323	Guangdong (2022A1515010786) to S. L. We sincerely appreciated the anonymous reviewers							
324	and editors for their critical and valuable comments to help improve this manuscript.							
325	References							
326 327	Alfaro, F. D., Manzano, M., Marquet, P. A., and Gaxiola, A.: Microbial communities in soil chronosequences with distinct parent material: the effect of soil pH and litter quality, Journal							

328 of Ecology, 105, 1709–1722, https://doi.org/10.1111/1365-2745.12766, 2017.

329 Angst, G., Messinger, J., Greiner, M., Häusler, W., Hertel, D., Kirfel, K., Kögel-Knabner, I.,

- 330 Leuschner, C., Rethemeyer, J., and Mueller, C. W.: Soil organic carbon stocks in topsoil and
- subsoil controlled by parent material, carbon input in the rhizosphere, and microbial-derived
 compounds, Soil Biology and Biochemistry, 122, 19–30,
- 333 https://doi.org/10.1016/j.soilbio.2018.03.026, 2018.

334	Berns, A. E., Philipp, H., Narres, HD., Burauel, P., Vereecken, H., and Tappe, W.: Effect of						
335	gamma-sterilization and autoclaving on soil organic matter structure as studied by solid state						
336	NMR, UV and fluorescence spectroscopy, European Journal of Soil Science, 59, 540-550,						
337	https://doi.org/10.1111/j.1365-2389.2008.01016.x, 2008.						
338	Blume, H. P. and Schwertmann, U.: Genetic Evaluation of Profile Distribution of Aluminum,						
339	Iron, and Manganese Oxides, Soil Science Society of America Journal, 33, 438-444,						
340	https://doi.org/10.2136/sssaj1969.03615995003300030030x, 1969.						
341	Bremner, J. M., Blackmer, A. M., and Waring, S. A.: Formation of nitrous oxide and dinitrogen						
342	by chemical decomposition of hydroxylamine in soils, Soil Biology and Biochemistry, 12,						
343	263-269, https://doi.org/10.1016/0038-0717(80)90072-3, 1980.						
344	Bromfield, S. M., Cumming, R. W., David, D. J., and Williams, C. H.: Change in soil pH,						
345	manganese and aluminium under subterranean clover pasture, Australian Journal of						
346	Experimental Agriculture, 23, 181-191, https://doi.org/10.1071/ea9830181, 1983.						
347	Buchwald, C., Grabb, K., Hansel, C. M., and Wankel, S. D.: Constraining the role of iron in						
348	environmental nitrogen transformations: Dual stable isotope systematics of abiotic NO2-						
349	reduction by Fe(II) and its production of N2O, Geochimica et Cosmochimica Acta, 186, 1-						
350	12, https://doi.org/10.1016/j.gca.2016.04.041, 2016.						
351	Burns, L. C., Stevens, R. J., and Laughlin, R. J.: Production of nitrite in soil by simultaneous						
352	nitrification and denitrificatio, Soil Biology and Biochemistry, 28, 609-616,						
353	https://doi.org/10.1016/0038-0717(95)00175-1, 1996.						
354	Casciotti, K. L., Sigman, D. M., and Ward, B. B.: Linking Diversity and Stable Isotope						
355	Fractionation in Ammonia-Oxidizing Bacteria, Geomicrobiology Journal,						
356	https://doi.org/10.1080/01490450303895, 2010.						
357	Chalk, P. M. and Smith, C. J.: The role of agroecosystems in chemical pathways of N ₂ O						
358	production, Agriculture, Ecosystems & Environment, 290, 106783,						
359	https://doi.org/10.1016/j.agee.2019.106783, 2020.						
360	Deng, H., Yu, YJ., Sun, JE., Zhang, JB., Cai, ZC., Guo, GX., and Zhong, WH.: Parent						
361	materials have stronger effects than land use types on microbial biomass, activity and						
362	diversity in red soil in subtropical China, Pedobiologia, 58, 73-79,						
363	https://doi.org/10.1016/j.pedobi.2015.02.001, 2015.						
364	Duan, P., Zhang, Q., and Xiong, Z.: Temperature decouples ammonia and nitrite oxidation in						
365	greenhouse vegetable soils, Science of the Total Environment, 8,						
366	https://doi.org/10.1016/j.scitotenv.2020.139391, 2020a.						
367	Duan, P., Shen, H., Jiang, X., Yan, X., and Xiong, Z.: The contributions of hydroxylamine and						
368	nitrite to NO and N ₂ O production in alkaline and acidic vegetable soils, Journal of Soils and						
369	Sediments, 20, 2903–2911, https://doi.org/10.1007/s11368-020-02645-9, 2020b.						
370	Giblin, A., Tobias, C., Song, B., Weston, N., Banta, G., and Rivera-Monroy, V.: The Importance						
371	of Dissimilatory Nitrate Reduction to Ammonium (DNRA) in the Nitrogen Cycle of Coastal						
372	Ecosystems, oceanography, 26, 124-131, https://doi.org/10.5670/oceanog.2013.54, 2013.						
373	Grabb, K. C., Buchwald, C., Hansel, C. M., and Wankel, S. D.: A dual nitrite isotopic						
374	investigation of chemodenitrification by mineral-associated Fe(II) and its production of						
375	nitrous oxide, Geochimica et Cosmochimica Acta, 196, 388-402,						
376	https://doi.org/10.1016/j.gca.2016.10.026, 2017.						

377	Guo I H. Liu X. I. Zhang Y. Shen I I. Han W. X. Zhang W. F. Christie, P. Goulding						
378	K W T Vitousek P M and Zhang F S: Significant Acidification in Major Chinese						
379	Croplands, Science, 327, 1008–1010, https://doi.org/10.1126/science.1182570, 2010.						
380	Hanson T. Campbell B. Kalis K. Campbell M. and Klotz M. Nitrate ammonification by						
201	Nautilia profundicala AmH: experimental evidence consistent with a free hydroxylamine						
202	intermediate Frontiers in Microbiology 4 https://doi.org/10.3389/fmich.2013.00180.2013						
202 202	Hachine I.A. Octrom N.E. Hagg E.L. and Octrom D.H.: Estimation of isotone variation of						
202	N O during denitrification by <i>Degudamanage guraafagiang</i> and <i>Degudamanage chlorowenhis</i>						
304 205	N2O during dentification by <i>Fseudomonas aureojuciens</i> and <i>Fseudomonas chiororaphis</i> .						
200	https://doi.org/10.5194/bg-15-3873-2018. 2018.						
200 207	Heil I Wolf B Brüggemann N Emmenegger I. Tuzson B Vereecken H and Mohn L.						
387	Heil, J., Wolf, B., Brüggemann, N., Emmenegger, L., Tuzson, B., Vereecken, H., and Mohn, J.:						
388	Site-specific ¹⁵ N isotopic signatures of abiotically produced N_2O , Geochimica et						
389	Cosmocnimica Acta, 139, $72-82$, https://doi.org/10.1016/j.gca.2014.04.057, 2014.						
390	Heil, J., Liu, S., Vereecken, H., and Brüggemann, N.: Abiotic nitrous oxide production from						
391	hydroxylamine in soils and their dependence on soil properties, Soil Biology and						
392	Biochemistry, 84, 107–115, https://doi.org/10.1016/j.soilbio.2015.02.022, 2015.						
393	Heil, J., Vereecken, H., and Bruggemann, N.: A review of chemical reactions of intrification						
394	Chemical reactions of nitrification intermediates in soil European Journal of Soil Science						
395	Chemical reactions of nitrification intermediates in soil, European Journal of Soil Science,						
396	6/, 23–39, https://doi.org/10.1111/ejss.12306, 2016.						
397	Hu, X., Cheng, T., and Wu, H.: Do multiple cycles of aeolian deposit-pedogenesis exist in the						
398	reticulate red clay sections in southern China?, Chinese Science Bullitin, 48, 1251–1258,						
399	https://doi.org/10.1007/BF03183947, 2003.						
400	IPCC: AR4 Climate Change 2007: Synthesis Report — IPCC, 2007.						
401	Jones, L. C., Peters, B., Lezama Pacheco, J. S., Casciotti, K. L., and Fendorf, S.: Stable Isotopes						
402	and Iron Oxide Mineral Products as Markers of Chemodenitrification., Environmental						
403	Science and Technology, 49, 3444–3452, https://doi.org/10.1021/es504862x, 2015.						
404	Jung, MY., Well, R., Min, D., Giesemann, A., Park, SJ., Kim, JG., Kim, SJ., and Rhee,						
405	SK.: Isotopic signatures of N_2O produced by ammonia-oxidizing archaea from soils, ISME						
406	Journal, 8, 1115–1125, https://doi.org/10.1038/ismej.2013.205, 2014.						
407	Lauber, C. L., Strickland, M. S., Bradford, M. A., and Fierer, N.: The influence of soil properties						
408	on the structure of bacterial and fungal communities across land-use types, Soil Biology and						
409	Biochemistry, 40, 2407–2415, https://doi.org/10.1016/j.soilbio.2008.05.021, 2008.						
410	Lewicka-Szczebak, D., Well, R., Köster, J. R., Fuß, R., Senbayram, M., Dittert, K., and Flessa,						
411	H.: Experimental determinations of isotopic fractionation factors associated with N2O						
412	production and reduction during denitrification in soils, Geochimica et Cosmochimica Acta,						
413	134, 55-73, https://doi.org/10.1016/j.gca.2014.03.010, 2014.						
414	Liu, S., Han, P., Hink, L., Prosser, J. I., Wagner, M., and Brüggemann, N.: Abiotic Conversion						
415	of Extracellular NH2OH Contributes to N2O Emission during Ammonia Oxidation,						
416	Environmental Science and Technology, 51, 13122–13132,						
417	https://doi.org/10.1021/acs.est.7b02360, 2017.						
418	Liu, S., Schloter, M., and Brüggemann, N.: Accumulation of $\mathrm{NO_2^-}$ during periods of drying						
419	stimulates soil N_2O emissions during subsequent rewetting: Nitrite stimulates N_2O emissions						
420	during rewetting, European Journal of Soil Science, 69, 936-946,						

421	https://doi.org/10.1111/ejss.12683, 2018.
422	Liu, S., Schloter, M., Hu, R., Vereecken, H., and Brüggemann, N.: Hydroxylamine Contributes
423	More to Abiotic N2O Production in Soils Than Nitrite, Frontiers in Environmental Science,
424	7, https://doi.org/10.3389/fenvs.2019.00047, 2019.
425	Miller, R. W. and Donahue, R. L.: Soils: An Introduction to Soils and Plant Growth, Prentice
426	Hall, 796 pp., 1990.
427	Nelson, D. W. and Bremner, J. M.: Gaseous products of nitrite decomposition in soils, Soil
428	Biology and Biochemistry, 2, 203-IN8, https://doi.org/10.1016/0038-0717(70)90008-8,
429	1970.
430	Porter, L. K.: Gaseous Products Produced by Anaerobic Reaction of Sodium Nitrite with Oxime
431	Compounds and Oximes Synthesized from Organic Matter, Soil Science Society of America
432	Journal, 33, 696-702, https://doi.org/10.2136/sssaj1969.03615995003300050023x, 1969.
433	Stone, M. M., Kan, J., and Plante, A. F.: Parent material and vegetation influence bacterial
434	community structure and nitrogen functional genes along deep tropical soil profiles at the
435	Luquillo Critical Zone Observatory, Soil Biology and Biochemistry, 80, 273-282,
436	https://doi.org/10.1016/j.soilbio.2014.10.019, 2015.
437	Stouthamer, A., Boer, A. P. N., Oost, J., and Spanning, R.: Emerging principles of inorganic
438	nitrogen metabolism in Paracoccus denitrificans and related bacteria, Antonie van
439	Leeuwenhoek, 71, 33-41, https://doi.org/10.1023/A:1000113824961, 1997.
440	Sun, J., He, F., Shao, H., Zhang, Z., and Xu, G.: Effects of biochar application on Suaeda salsa
441	growth and saline soil properties, Environmental Earth Science, 75, 630,
442	https://doi.org/10.1007/s12665-016-5440-9, 2016.
443	Sutka, R. L., Ostrom, N. E., Ostrom, P. H., Breznak, J. A., Gandhi, H., Pitt, A. J., and Li, F.:
444	Distinguishing nitrous oxide production from nitrification and denitrification on the basis of
445	isotopomer abundances, Applied and Environmental Microbiology, 72, 638-644,
446	https://doi.org/10.1128/AEM.72.1.638-644.2006, 2006.
447	Sutka, R. L., Adams, G. C., Ostrom, N. E., and Ostrom, P. H.: Isotopologue fractionation during
448	N2O production by fungal denitrification, Rapid Communications in Mass Spectrometry, 22,
449	3989-3996, https://doi.org/10.1002/rcm.3820, 2008.
450	Tian, H., Xu, R., Canadell, J. G., Thompson, R. L., Winiwarter, W., Suntharalingam, P.,
451	Davidson, E. A., Ciais, P., Jackson, R. B., Janssens-Maenhout, G., Prather, M. J., Regnier, P.,
452	Pan, N., Pan, S., Peters, G. P., Shi, H., Tubiello, F. N., Zaehle, S., Zhou, F., Arneth, A.,
453	Battaglia, G., Berthet, S., Bopp, L., Bouwman, A. F., Buitenhuis, E. T., Chang, J.,
454	Chipperfield, M. P., Dangal, S. R. S., Dlugokencky, E., Elkins, J. W., Eyre, B. D., Fu, B.,
455	Hall, B., Ito, A., Joos, F., Krummel, P. B., Landolfi, A., Laruelle, G. G., Lauerwald, R., Li,
456	W., Lienert, S., Maavara, T., MacLeod, M., Millet, D. B., Olin, S., Patra, P. K., Prinn, R. G.,
457	Raymond, P. A., Ruiz, D. J., van der Werf, G. R., Vuichard, N., Wang, J., Weiss, R. F., Wells,
458	K. C., Wilson, C., Yang, J., and Yao, Y.: A comprehensive quantification of global nitrous
459	oxide sources and sinks, Nature, 586, 248-256, https://doi.org/10.1038/s41586-020-2780-0,
460	2020.
461	Tierling, J. and Kuhlmann, H.: Emissions of nitrous oxide (N ₂ O) affected by pH-related nitrite
462	accumulation during nitrification of N fertilizers, Geoderma, 310, 12-21,
463	https://doi.org/10.1016/j.geoderma.2017.08.040, 2018.

464 Toyoda, S. and Yoshida, N.: Determination of Nitrogen Isotopomers of Nitrous Oxide on a

465	Modified Isotope Ratio Mass Spectrometer, Analytical Chemistry., 71, 4711-4718,							
466	https://doi.org/10.1021/ac9904563, 1999.							
467	Toyoda, S., Mutobe, H., Yamagishi, H., Yoshida, N., and Tanji, Y.: Fractionation of N2O							
468	isotopomers during production by denitrifier, Soil Biology and Biochemistry, 37, 1535–1545,							
469	https://doi.org/10.1016/j.soilbio.2005.01.009, 2005.							
470	Venterea R T Groffman P M Verchot L V Magill A H Aber I D and Steudler P A							
471	Nitrogen oxide gas emissions from temperate forest soils receiving long-term nitrogen inputs							
472	Global Change Biology, 9, 346–357, https://doi.org/10.1046/i.1365-2486.2003.00591.x.							
473	2003							
474	2003. Versantvoort W Pol & Jetten M S M van Niffrik I. Reimann I. Kartal R and On den							
475	Camp. H. J. M.: Multiheme hydroxylamine oxidoreductases produce NO during ammonia							
476	oxidation in methanotrophs. Proceedings of the National Academy of Sciences, 117, 24450							
477	24463 https://doi.org/10.1073/pnas.2011299117.2020							
478	Verstraete, W. and Alexander, M.: Heterotrophic Nitrification by Arthrobacter sp. Journal of							
479	Bacteriology, 110, 955–961, 1972.							
480	Wei, J., Amelung, W., Lehndorff, E., Schloter, M., Vereecken, H., and Brüggemann, N.: N ₂ O							
481	and NO_x emissions by reactions of nitrite with soil organic matter of a Norway spruce forest.							
482	Biogeochemistry, 132, 325–342, https://doi.org/10.1007/s10533-017-0306-0, 2017.							
483	Wei, J., Zhang, X., Xia, L., Yuan, W., Zhou, Z., and Brüggmann, N.: Role of chemical reactions							
484	in the nitrogenous trace gas emissions and nitrogen retention: A meta-analysis, Science of							
485	The Total Environment, 808, 152141, https://doi.org/10.1016/j.scitotenv.2021.152141, 2022.							
486	Yamazaki, T., Hozuki, T., Arai, K., Toyoda, S., Koba, K., Fujiwara, T., and Yoshida, N.:							
487	Isotopomeric characterization of nitrous oxide produced by reaction of enzymes extracted							
488	from nitrifying and denitrifying bacteria, Biogeosciences, 11, 2679–2689,							
489	https://doi.org/10.5194/bg-11-2679-2014, 2014.							
490	Yan, P., Shen, C., Fan, L., Li, X., Zhang, L., Zhang, L., and Han, W.: Tea planting affects soil							
491	acidification and nitrogen and phosphorus distribution in soil, Agriculture, Ecosystems &							
492	Environment, 254, 20-25, https://doi.org/10.1016/j.agee.2017.11.015, 2018.							
493	Zhang, M. K. and Xu, J. M .: Restoration of surface soil fertility of an eroded red soil in southern							
494	China, Soil and Tillage Research, 80, 13-21, https://doi.org/10.1016/j.still.2004.02.019,							
495	2005.							
496	Zhang, Y., Ding, H., Zheng, X., Ren, X., Cardenas, L., Carswell, A., and Misselbrook, T.: Land-							
497	use type affects N ₂ O production pathways in subtropical acidic soils, Environmental							
498	Pollution, 237, 237-243, https://doi.org/10.1016/j.envpol.2018.02.045, 2018.							
499								

502 Figure 1. The geographical locations of the five sampling sites: Dangyang (DY), Xianning

503 (XN), Taoyuan (TY), Tongcheng (TC) and Changsha (CS).

501

506 Figure 2. Manganese (Mn), iron (Fe) contents and pH values of the fifteen soils. Capital and

507 lowercase letters indicate significant difference in Fe and Mn contents, respectively. The

- 509
- 510

⁵⁰⁸ difference in pH values is insignificant.

512 of NH₂OH (a) and NO₂⁻ (b) by parent material. Asterisks indicate significantly (P < 0.05)

- 514 standard deviation (SD, n = 3).
- 515

⁵¹³ higher values between non-sterile and γ -sterilized samples at one soil. Error bars represent

517 **Figure 4.** Emissions of N₂O from soils amended with NH_2OH (a) and NO_2^- (b), which were

518 sorted by parent material and land use type. Capital and lowercase letters indicate significant

519 difference among non-sterile and γ-sterilized soils, respectively. No letters indicate

- 520 insignificant difference.
- 521

Figure 5. Spearman correlation coefficients between soil N₂O production from different amendments and soil properties after 7-hour incubation. One asterisk represents a significance under P < 0.05; two asterisks represent a significance under P < 0.01.

Figure 6. Relationships between the SP and $\delta^{18}O$ values of N_2O in nonsterile and y-sterilized soils after NH₂OH and NO₂⁻ addition. The selected soils are DY1, CS1, TC3, TC5. Parameter references are listed as follow: (Buchwald et al., 2016; Frame and Casciotti, 2010; Grabb et al., 2017b; Haslun et al., 2018; Heil et al., 2015, 2014; Jinuntuya-Nortman et al., 2008; Jones et al., 2013; Jung et al., 2014; Lewicka-Szczebak et al., 2014; Maeda et al., 2015; Ostrom et al., 2010; Rohe et al., 2017; Santoro et al., 2011; Sutka et al., 2008, 2006; Toyoda et al., 2005; Well and Flessa, 2009; Yamamoto, 2017; Yamazaki et al., 2014; Yang et al., 2014).

Parent material	Land use	Soils	Silt (%)	Clay (%)	Sand (%)	Hq	TC (g/kg)	TN (g/kg)	DOC (mg/kg)	DON (mg/kg)	NH4 ⁺ (mg/kg)	NO ₃ ⁻ (mg/kg)
	Tea	XN	9.9	33.13	56.97	5.29	9.64	1.043	13.43	9.91	3.41	9.17
	Tea	TY1	37.08	34.47	28.45	4.56	12.31	0.931	17.92	7.07	8.33	3.61
Quate mary	Fruit	TY2	52.51	31.88	15.61	5.08	8.77	0.97	14.86	9.08	5.88	5.88
red clay	Forest	TY3	40.43	40.87	18.7	4.37	11.13	0.97	16.62	11.59	18.52	6.89
	Vegetable	TY4	51.87	33.9	14.23	4.77	8.96	1.022	15.35	7.64	5.71	7.65
	Paddy	TY5	43.48	35.33	21.2	5.59	8.2	1.022	13.24	7.64	18.85	5.99
	Tea	CS1	35.54	31.7	32.76	4.6	12.24	1.204	24.38	40.98	89.29	13.83
	Forest	CS2	21.32	26.96	51.73	4.61	3.26	0.255	13.28	5.05	4.06	3.94
Late	Tea	TC1	23.22	26.47	50.32	5.05	4.58	0.413	10.99	3.92	9.2	2.56
Pleistocene	Fruit	TC2	4.59	19.19	76.22	5.3	3.45	0.399	16.9	5.12	8.72	3.63
sediment	Forest	TC3	30.64	22.54	46.81	4.71	1.25	0.207	12.15	3.06	3.9	5
	Vegetable	TC4	35.13	33.5	31.37	5.05	11.74	1.166	13.51	8.33	5.66	8.66
	Paddy	TC5	6.85	29.92	63.23	5.56	20.78	1.876	22.97	6.27	14.94	3.07
Cumito	Fruit	DY1	48.49	39.71	11.79	4.66	8.91	0.999	12.86	24.3	1.98	20.19
OTALLIC	Forest	DY2	43.23	51.52	5.25	5.06	8.27	0.939	12.67	14.36	3.54	15

26

Table 1. Summary of soil properties in this study.

27

553 554

- 556 **Table 3.** The conversion ratios (%) of NH_2OH and NO_2 to N_2O and the contribution ratios (%)
- 557 of abiotic N_2O production to the total N_2O emission with NH_2OH and NO_2^- addition.

	MH ₂ OH		Ν	O ₂ ⁻
	Conversion ratio(%)	Abiotic contribution (%)	Conversion ratio(%)	Abiotic contribution (%)
Quaternary red clay	$50.9\pm26.1a$	$90.0 \pm 16.4 a$	9.3 ± 4.0a	$91.2 \pm 21.2a$
Granite	$7.2 \pm 3.1c$	$69.3\pm25.7b$	$10.3\pm5.0a$	$87.5\pm15.2a$
Late Pleistocene sediment	$27.7 \pm 4.4 b$	$69.2 \pm 15.4 b$	12.5 ± 1.2a	98.2 ± 4.1a
Tea field	$28.9\pm34.3a$	$76.6 \pm 28.4 ab$	$10.9 \pm 6.2a$	$98.0\pm27.1a$
Fruit field	$34.6\pm23.0a$	$77.4\pm20.8ab$	$9.7\pm3.1a$	$95.6\pm6.5a$
Forest soil	$16.5\pm12.2a$	$83.4 \pm 19.5 a$	$11.6 \pm 3.0a$	$97.9\pm3.7a$
Vegetable soil	$23.7 \pm 15.0 a$	$54.1 \pm 14.1 b$	$8.8\pm2.1a$	$68.4\pm28.4b$
Paddy soil	$39.7\pm32.0a$	$91.6\pm8.6a$	$8.1\pm4.1a$	$85.9\pm9.6ab$

558

559