

1 **Distribution, chemical and molecular composition of high and**
2 **low-molecular-weight humic-like substances in ambient aerosols**

3 Xingjun Fan^{a,b,*}, Ao Cheng^a, Xufang Yu^a, Tao Cao^{b,c}, Dan Chen^a, Wenchao Ji^a,
4 Yongbing Cai^a, Fande Meng^a, Jianzhong Song^{b,**}, Ping'an Peng^b

5

6 ^a College of Resource and Environment, Anhui Science and Technology University,
7 Fengyang 233100, P. R. China

8 ^b State Key Laboratory of Organic Geochemistry, Guangzhou Institute of
9 Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P. R. China

10 ^c University of Chinese Academy of Sciences, Beijing, 100049, PR China

11

12 * Corresponding authors

13 E-mail addresses: fanxj@ahstu.edu.cn (Xingjun Fan), songjzh@gig.ac.cn (Jianzhong
14 Song)

15

16

17 **Abstract**

18 Humic-like Substances (HULIS) encompass a continuum of molecular weight
19 (MW) ranges, yet our understanding of how HULIS characteristics vary with MW is
20 still limited and not well-established. In this study, a combination of ultrafiltration and
21 solid-phase extraction protocols was employed to fractionate the high MW (HMW, >1
22 kDa) and low MW (LMW, < 1kDa) HULIS fractions from ambient aerosols collected
23 during summer and winter at a rural site. Subsequently, comprehensive
24 characterization by using total organic carbon, high-performance size exclusion
25 chromatography (HPSEC), UV-vis and fluorescence spectroscopy, Fourier-transform
26 infrared spectroscopy (FTIR), negative electrospray ionization high resolution mass
27 spectrometry (ESI- HRMS) were conducted. The results revealed that HMW HULIS
28 were dominated by larger-sized chromophores, substantially constituting a higher
29 fraction of total organic carbon and UV absorption at 254 nm than LMW HULIS.
30 While both HMW and LMW HULIS shared similar fluorophore types and functional
31 groups, the former exhibited higher levels of humification and a greater presence of
32 polar functional groups (e.g., -COOH, >C=O). HRMS analysis further unveiled that
33 molecular formulas within HMW HULIS generally featured smaller sizes but higher
34 degrees of unsaturation and aromaticity compared to those within LMW HULIS
35 fractions. This observation suggests the possibility of small molecules assembling to
36 form the HMW HULIS through intermolecular weak forces. Moreover, HMW HULIS
37 contained a higher proportion of CHON but fewer CHO compounds than LMW
38 HULIS. In both HMW and LMW HULIS, the unique molecular formulas were

39 primarily characterized by lignin-like species, yet the former displayed a prevalence
40 of N-enriched and highly aromatic species. Additionally, HMW HULIS contained
41 more unique lipids-like compounds, while LMW HULIS exhibited a distinct presence
42 of tannin-like compounds. These findings provide valuable insights into the
43 distribution, optical properties, and molecular-level characteristics of HULIS in
44 atmospheric aerosols, thereby advancing our understanding of their sources,
45 composition, and environmental implications.

46

47 **Keywords:** Humic-Like Substances, molecular weight fractionation, optical
48 properties, high-performance size exclusion chromatography, negative electrospray
49 ionization-high resolution mass spectrometry

50

51 **1. Introduction**

52 HUMic-Like Substances (HULIS) are complex and heterogeneous mixtures of
53 water-soluble organic matters (WSOM) that are of great importance in the
54 atmospheric environment. They usually share similar physicochemical properties (e.g.,
55 acidity, absorption, fluorescence, functional groups) with naturally occurring humic
56 substances (Graber and Rudich, 2006; Zheng et al., 2013) and are prevalent in fog,
57 clouds, rainwater and ambient aerosols (Birdwell and Valsaraj, 2010; Fan et al., 2016a;
58 Santos et al., 2012). With substantial hygroscopic and surface-active properties,
59 HULIS enhance the hygroscopic growth of particles, thereby contributing to the
60 formation of the cloud condensation nuclei and ice nuclei (Chen et al., 2021a; Dinar et
61 al., 2007). Moreover, acting as an important component of brown carbon (BrC),
62 HULIS effectively absorb near-ultraviolet and visible light, thus influencing the
63 global radiative balance and atmospheric chemistry processes (Bao et al., 2022;
64 Zhang et al., 2020). Furthermore, HULIS have the potential to catalyze the formation
65 of reactive oxygen species, leading to potential adverse health effects (Ma et al., 2019;
66 Zhang et al., 2022b).

67 The chemical composition of atmospheric HULIS exhibit significant
68 heterogeneity and typically comprises macromolecular compounds containing
69 aromatic rings with highly conjugated structures, as well as long-chain hydrocarbon
70 with polar groups (e.g., -OH, -COOH, -NO₂) (Fan et al., 2013; Huo et al., 2021). To
71 unravel the structural characteristics and properties of HULIS, a range of analytical
72 techniques, including absorption and fluorescence spectroscopy, Fourier transform

73 infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (^1H NMR),
74 have been utilized (Huo et al., 2021; Qin et al., 2022; Zou et al., 2020). These studies
75 have provided insights into the overall structural characteristics of complex HULIS,
76 including their abundances, chemical and optical characteristics (Huo et al., 2021;
77 Mukherjee et al., 2020; Win et al., 2018; Zhang et al., 2022b; Zheng et al., 2013). In
78 recent years, high-resolution mass spectrometry (HRMS) techniques, such as Fourier
79 transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and orbitrap
80 HRMS, in combination with electrospray ionization (ESI), have emerged as powerful
81 tools for elucidating the molecular-level characteristics of HULIS (Lin et al., 2012;
82 Sun et al., 2021; Wang et al., 2019; Zou et al., 2023). By utilizing HRMS, researchers
83 have gained deeper insights into the complexity and chemical heterogeneity of
84 HULIS at the molecular level.

85 Operationally, HULIS are defined as the hydrophobic fraction of water-soluble
86 organic matter (WSOM) typically extracted through solid-phase extraction (SPE)
87 protocol (Fan et al., 2012; Zou et al., 2020). Thus, the abundance and characteristics
88 of HULIS are contingent upon the chemical composition of WSOM. Previous studies
89 have shown that aerosol WSOM, often seen as water-soluble brown carbon (BrC), are
90 comprised of a continuum of molecular weight (MW) species, as revealed by
91 high-performance exclusion chromatography (HPSEC) analysis (Di Lorenzo et al.,
92 2017; Fan et al., 2023; Wong et al., 2019). These studies have highlighted that BrC
93 typically consist of both high-MW (HMW) and low-MW (LMW) chromophores in
94 various aerosols. For example, BrC emitted from fresh biomass burning (BB) are

95 dominated by low MW chromophores (Di Lorenzo et al., 2017; Wong et al., 2019).
96 However, BrC derived from aged BB aerosols and ambient aerosols tend to possess
97 more HMW chromophores that are highly chemically resistant (Di Lorenzo et al.,
98 2017; Fan et al., 2023; Wong et al., 2019). Further characterizations of different MW
99 BrC can be conducted using an ultrafiltration (UF) protocol (Fan et al., 2021). This
100 approach enabled researchers to obtain the distributions of content, chromophores and
101 fluorophores within various MW BrC fractions. Despite these advancements, the
102 chemical structures and molecular composition of different MW HULIS fractions
103 remain poorly understood. Consequently, a combination of UF and SPE protocols for
104 the fractionation and characterization of MW-separated HULIS is crucial, as it not
105 only provides insights into MW distributions but also illuminates the chemical
106 heterogeneities of aerosols HULIS.

107 In this study, a combination of UF-SPE isolation protocol was developed to
108 fractionate and characterize the MW HULIS fractions. Two distinct sets of ambient
109 PM_{2.5} samples collected during summer and winter periods were utilized to facilitate a
110 comparative analysis of MW HULIS. Initially, the WSOM were fractionated into
111 high-MW (HMW, >1 kDa) and **low-MW** (LMW, <1 kDa) species using the UF
112 protocol. Subsequently, the resulting MW **WSOM** fractions underwent SPE to obtain
113 different MW HULIS fractions. The obtained HMW and LMW HULIS fractions were
114 comprehensively characterized using advanced analytical techniques, including total
115 organic carbon analysis, UV-vis and fluorescence spectroscopy, HPSEC, and HRMS
116 to unveil their abundances, absorption and fluorescence properties, and molecular

117 characteristics. The findings of this study hold great significance in advancing our
118 understanding of the definition and molecular profiles of HULIS, as well as
119 facilitating further investigations into their potential impacts on the atmospheric
120 environment.

121

122 **2. Materials and methods**

123 **2.1. Atmospheric fine particles sampling**

124 Atmospheric PM_{2.5} were sampled on the rooftop of a building within the campus
125 of Anhui Science and Technology University (32.21°N, 118.72°E), around 20 m above
126 ground level. Detailed information regarding the sampling site can be found in our
127 previous studies (Cao et al., 2022; Fan et al., 2021). The PM_{2.5} samples were collected
128 using a high-volume PM_{2.5} sampler (JCH-1000, Juchuang Ltd., Qingdao) onto
129 prebaked quartz fiber filters (8 × 10 inches, Whatman). Sampling took place from
130 July 25 to August 12, 2021, during summer, and from December 19, 2021 to January
131 6, 2022, during winter. Blank filters were also collected as control samples. All
132 aerosol PM_{2.5} filter samples were stored at -20 °C in a freezer prior to analysis. The
133 atmospheric pollutant data (NO₂, SO₂ and O₃) near sampling site during sampling
134 period were obtained from the website (<https://www.aqistudy.cn>) and are summarized
135 in Table S1. Additionally, the fire spots were investigated using data from the website
136 (<https://firms.modaps.eosdis.nasa.gov/map/>) and are visualized in Fig. S1.

137

138 **2.2. Application of UF-SPE for isolating MW HULIS fractions**

139 Punches of summer and winter aerosol PM_{2.5} filter samples were taken and
140 combined for the extraction of water-soluble organic matter (WSOM), respectively.
141 The filters were immersed in 300 mL of ultrapure water and subjected to
142 ultrasonication for 30 min. The resulting suspensions were then filtered through a 0.22
143 μm membrane (Φ 47 mm, Jinteng, China) to obtain bulk WSOM samples. These bulk
144 filtrates were further subjected to UF and SPE in tandem to obtain different MW
145 HULIS fractions. Please refer to Fig. S2 for a schematic representation of the
146 fractionation steps.

147 Before UF, the bulk WSOM were diluted to DOC concentration below 30 mg/L
148 to minimize the concentration effects and prevent the accumulation of organic matters
149 at the membrane surface during UF. The detailed UF procedure followed the profile
150 described in our previous study (Fan et al., 2021). Briefly, each bulk WSOM solution
151 was passed through a pre-cleaned 1 kDa cut-off membrane in a stirred UF cell
152 (Amicon 8200, Millipore, USA), with a pressure at 0.2 MPa applied by ultrapure N₂.
153 The concentration factor was \sim 10. The resulting retentate was considered as HMW
154 (>1 kDa) WSOM, while the permeate solutions represented the LMW (<1 kDa)
155 WSOM. Finally, each MW fraction was diluted to the initial volume for further
156 treatment and analysis. Mass balances of WSOM during one-step UF process
157 generally ranged from 92% to 99%, as determined by total organic carbon (TOC) and
158 UV absorption at 254 nm (UV₂₅₄), indicating good performance of UF without
159 substantial loss or organic contamination.

160 Subsequently, SPE was applied to isolate the so-called HULIS fractions from the

161 bulk and each MW fraction of WSOM, following the protocol proposed in our
162 previous studies (Fan et al., 2013; Zou et al., 2020). Briefly, the acidified aqueous
163 samples were passed through pre-activated HLB columns (Waters Oasis, 500 mg/6
164 mL, USA). The fractions retained on the resins (referred to as HULIS) were eluted
165 with pure methanol and dried using a gentle stream of pure N₂. Finally, the bulk,
166 HMW and LMW HULIS fractions were obtained. A blank filter control was
167 performed using the same procedure described above, and the analysis signals of
168 samples were corrected by blank control.

169

170 2.3. HPSEC analysis

171 The apparent MW distributions of MW HULIS fractions were analyzed using a
172 high-performance liquid chromatography (HPLC) system (LC-20AT, Shimadzu,
173 Japan) equipped with a refractive index detector (RID-10A, Shimadzu) and a diode
174 array detector (SPD-M20A, Shimadzu). The wavelength of the diode array detector
175 was set at 254 nm. Separation was performed using an aqueous gel filtration column
176 (Polysep-GFC-P 3000, Phenomenex) preceded by a guard column (Polysep-GFC-P,
177 Phenomenex). The mobile phase consisted of a mixture of water and methanol (90:10
178 v/v) containing 25 mM ammonium acetate (Di Lorenzo et al., 2017; Wong et al.,
179 2019). The sample injection volume was 100 µL, and the flow rate was maintained at
180 1 mL min⁻¹. The HPSEC calibration was performed using a series of polyethylene
181 glycol (PEG) standards (Kawasaki et al., 2011; Zhang et al., 2022c). The
182 chromatographic peak areas were integrated to represent the abundances of

183 corresponding MW species. It should be noted that the MW values estimated here are
184 nominal rather than absolute **due to the lack of appropriate standards for column**
185 **calibration** (Fan et al., 2023; Wong et al., 2017).

186 The weight-average MW (Mw), number-average MW (Mn) and polydispersivity
187 (ρ), were determined using the following equations (Song et al., 2010):

$$M_w = \frac{\sum_{i=1}^n (h_i M W_i)}{\sum_{i=1}^n h_i} \quad (1)$$

$$M_n = \frac{\sum_{i=1}^n h_i}{\sum_{i=1}^n (h_i / M W_i)} \quad (2)$$

$$\rho = \frac{M_w}{M_n} \quad (3)$$

188 where h_i and $M W_i$ are the absorption intensity of the chromatogram and the MW of
189 molecules corresponding to the i th retention time, respectively.

190

191 2.4. Measurements of WSOC content and optical properties

192 The concentration of water-soluble organic carbon (WSOC) in HMW and LMW
193 HULIS was measured using a Shimadzu TOC analyzer (TOC-VCPN, Japan)
194 following the non-purgeable organic carbon protocol.

195 The UV-vis spectra were recorded using a UV-vis spectrophotometer (UV 2600,
196 Shimadzu, Japan) over a wavelength range of 200-700 nm with 1 nm increments.
197 Excitation-emission matrix (EEM) spectra were determined using a fluorescence
198 spectrophotometer (F4600, Hitachi, Japan). The scanning ranges for excitation (Ex)
199 and emission (Em) wavelengths were 200-400 and 290-520 nm, respectively, with a
200 scanning speed was 12,000 nm/min.

201 To characterize the chemical and optical properties of MW HULIS fractions,

202 several commonly used spectra parameters were calculated, including the specific UV
203 absorbance at 254 nm (SUVA₂₅₄), the UV absorbance ratio between 250 and 365 nm
204 (E₂/E₃), spectra slope ratios (S_R), the absorption Angstrom exponent (AAE), and mass
205 absorption efficiency (MAE₃₆₅), fluorescence indices (FI), biological index (BIX), and
206 humification degree (HIX) (Fan et al., 2021; Li et al., 2022; Wu et al., 2021). Further
207 details can be found in Text S1 of the Supporting Information (SI).

208

209 2.5. HRMS analysis and data processing

210 The MW HULIS fractions were analyzed using a Q-Exactive mass spectrometer
211 (Thermo Scientific, Germany) equipped with a heated electrospray ionization (ESI)
212 source. The system operated in negative ESI mode with a resolution of 140,000 at m/z
213 = 200. The detection mass range was set from 60 to 900 m/z. To ensure accurate mass
214 measurements, mass calibration was carried out using a commercial standard mixture
215 of ESI-L Low Concentration Tuning Mix (G1969-85000, Agilent, USA).

216 The acquired mass spectra were processed using Xcalibur software (V2.2,
217 Thermo Scientific). The mathematically possible formulas for all ions were calculated
218 with a signal-to-noise ratio (s/n) ≥ 5 using a mass tolerance of 5 ppm. The assigned
219 molecular formulas followed specific constraints, with limitations on the following
220 elements: C ≤ 50 , H ≤ 100 , O ≤ 20 , N ≤ 3 , S ≤ 2 . Additionally, the elemental ratios of
221 H/C, O/C, N/C, and S/C were constrained to the ranges of 0.3–3.0, 0–3.0, 0–0.5, and
222 0–2.0, respectively. The double-bond equivalents (DBE) and modified aromaticity
223 index (AI_{mod}) values of the assigned neutral assigned formula (C_cH_hO_oN_nS_s) were

224 calculated using the equations (4-5) (He et al., 2023; Song et al., 2022):

$$\text{DBE} = 1 + \frac{1}{2}(2c - h + n) \quad (4)$$

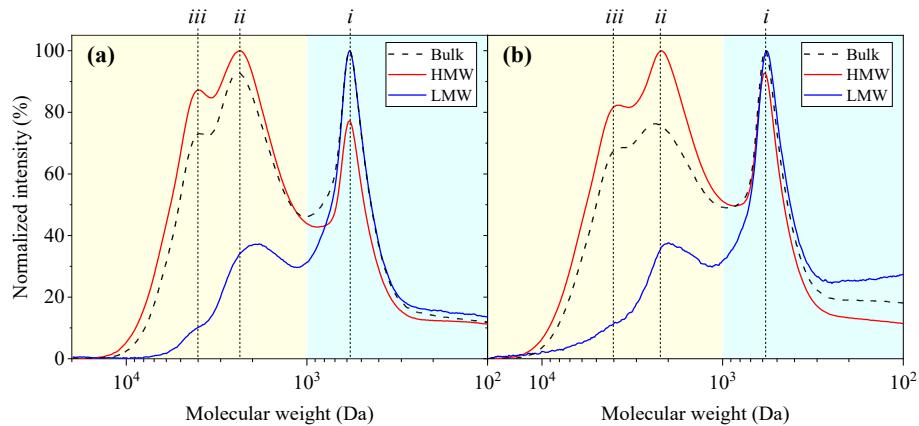
$$\text{AI}_{mod} = \frac{1 + c - 0.5o - 0.5n - 0.5h}{c - 0.5o - n} \quad (5)$$

225 The intensity-weighted molecular parameters (X_w) of MW, H/C, O/C, DBE, and
226 AI values were calculated according to the equation (6) (He et al., 2023; Zhang et al.,
227 2021; Zou et al., 2023):

$$X_w = \frac{\sum(I_i \cdot X_i)}{\sum I_i} \quad (6)$$

228 where X represents the aforementioned parameters, and I_i denote the intensity for each
229 assigned formula i .

230


231 **3. Results and discussion**

232 3.1. Size and distribution of MW HULIS fractions

233 3.1.1. Molecular size of HMW and LMW HULIS

234 Fig. 1 shows the HPSEC chromatograms of MW HULIS. Both HMW and LMW
235 HULIS exhibit MW continuum distributions ranging from 100 to 20,000 Da, which is
236 consistent with the reported distributions of BrC in BB-derived and various ambient
237 aerosol in previous studies (Di Lorenzo et al., 2017; Fan et al., 2023; Wong et al.,
238 2017). However, the chromatographic patterns for HMW HULIS clearly differ from
239 those observed for LMW HULIS in both aerosol samples. As seen in Fig. 1, HMW
240 HULIS display an additional and stronger absorption peak at around 4000 Da (peak
241 *iii*), along with a more pronounced peak at 2200 Da (peak *ii*) and a similar magnitude
242 peak at 570 Da (peak *i*) compared to LMW HULIS. This suggests that HMW HULIS

243 contain the majority of larger molecular size chromophores within the bulk WSOM.
 244 In addition, the magnitude peak at 570 Da (peak i) in HMW HULIS may indicate the
 245 incorporation of small molecule through weak interactions based on $\pi-\pi$ and/or van
 246 der Waals forces between the HULIS components (Fan et al., 2021; Piccolo, 2002).

247
 248 **Fig. 1.** Average HPSEC chromatograms of bulk, HMW and LMW HULIS fractions in
 249 (a) summer and (b) winter aerosol, respectively. The yellow and cyan shadows
 250 represent MW size regions of >1 kDa and <1 kDa, respectively.

251
 252 Moreover, the molecular size of MW HULIS can be further reflected by the
 253 differences in Mw and Mn. As listed in Table 1, the average Mw and Mn of HMW
 254 HULIS are 2233-2315 and 654-707 Da, respectively, greatly **larger** than that of LMW
 255 HULIS (989-1071 and 293-394 Da, respectively). These differences indicate that the
 256 sources and formation processes of HMW HULIS may differ from LMW HULIS.
 257 Many previous studies have demonstrated that **fresh BB HULIS generally consist of**
 258 **small molecular-sized chromophores** (Di Lorenzo et al., 2018; Di Lorenzo et al., 2017;
 259 Wong et al., 2017; Wong et al., 2019). However, a notable enhancement in the
 260 formation of large molecular-sized chromophores has been found when they undergo

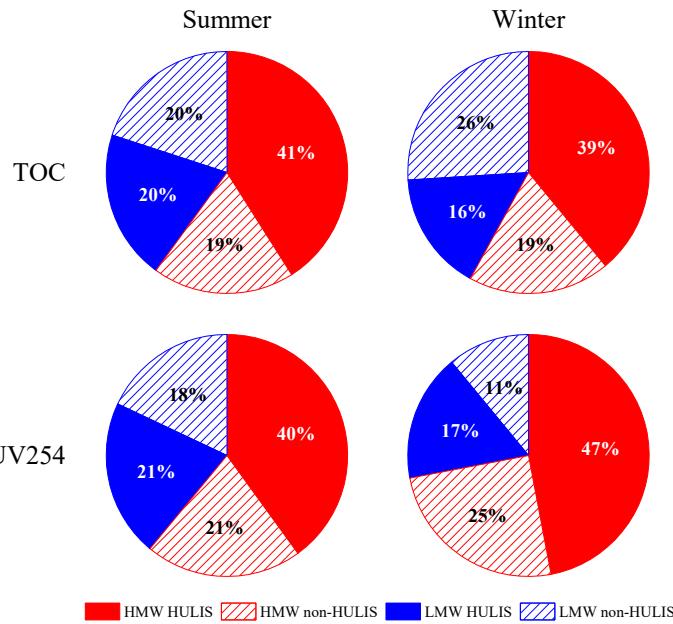
261 intricate atmospheric processes (Di Lorenzo et al., 2018; Di Lorenzo et al., 2017;
 262 Wong et al., 2017; Wong et al., 2019). Based on these limited studies, it is suggested
 263 that HMW HULIS, characterized by higher proportions of large-size chromophores
 264 and the resulting larger apparent molecular size, might be associated with the products
 265 from atmospheric aging process rather than being emitted directly by primary sources.

266

267 **Table 1.** The summary of typical quantity and quality parameters of each MW HULIS
 268 fraction from BB and ambient aerosols.

		Summer			Winter		
		Bulk	HMW	LMW	Bulk	HMW	LMW
HPSEC-derived parameters	Mw	1975±13	2315±38	1071±24	1918±56	2233±42	989±67
	Mn	591±53	707±48	394±13	525±57	654±17	293±32
	ρ	3.4±0.3	3.3±0.2	2.7±0.2	3.7±0.3	3.4±0.2	3.4±0.2
HULIS/WSOM (%) ^a	TOC	65±1	68±1	51±2	63±2	67±2	41±1
	UV ₂₅₄	66±5	65±2	55±4	67±1	65±1	61±2
Optical parameters	E ₂ /E ₃	12.02±0.54	11.72±0.31	14.98±0.98	6.30±0.24	6.54±0.16	7.24±0.43
	MAE ₃₆₅	0.21±0.02	0.23±0.01	0.20±0.01	1.04±0.02	1.06±0.01	0.88±0.00
	AAE	7.11±0.32	7.59±0.00	8.25±0.23	6.66±0.06	6.25±0.06	7.28±0.03
	FI	2.00±0.04	1.99±0.03	2.04±0.05	2.06±0.01	1.97±0.03	2.25±0.02
	BIX	0.95±0.01	0.86±0.07	1.02±0.01	0.96±0.01	0.81±0.01	1.07±0.02
	HIX	2.42±0.06	2.43±0.04	2.40±0.05	3.13±0.25	5.64±0.34	1.94±0.16

269 ^a The ratios of contents of SPE-isolated HULIS fractions to that of corresponding
 270 WSOM fractions determined by TOC and/or absorbance at 254 nm (UV₂₅₄).


271

272 3.1.2. Relative abundances of HMW and LMW HULIS

273 The contribution of MW-HULIS fractions to their corresponding MW-WSOM
 274 fractions, quantified in terms of TOC and UV absorption at 254 nm for both summer
 275 and winter aerosols are summarized in Table 1. In general, the ratios of
 276 HULIS/WSOM of HMW fractions (in terms of TOC and UV254) (65-68%) were

277 higher than the ratios (41-61%) observed for LMW fractions. This finding suggests
278 that the higher presence of hydrophobic and conjugated aromatic structures in HMW
279 WSOM, but more hydrophilic OC and non-aromatic species (e.g., aliphatic
280 dicarboxylic acid) in the LMW WSOM (Fan et al., 2012; Zou et al., 2020).

281 Fig. 2 illustrates the distribution of distinct MW fractions within reconstructed
282 WSOM, wherein “non-HULIS” refers to the content differences between the MW
283 WSOM and its HULIS fractions. The HMW HULIS fraction contributed 39-41% of
284 TOC and 40-47% of UV254 to the bulk WSOM. In contrast, the LWM HULIS
285 fraction only make up a smaller proportion, accounting for 16-20% of TOC and 17-21%
286 of UV254 within the bulk WSOM. Specifically, the ratios between HMW HULIS and
287 LMW HULIS (H/L) ranged from 1.88 to 2.75 for both summer and winter aerosols in
288 terms of either TOC or UV254. These findings emphasize that HMW HULIS
289 significantly dominate the bulk aerosol HULIS fractions. Notably, the H/L ratio for
290 winter aerosols was higher than that for summer aerosols, suggesting that larger-sized
291 HULIS contributed more to the bulk HULIS fractions in winter aerosols.

292

293 **Fig. 2.** Relative proportions of different MW fractions in summer and winter aerosols
294 determined by TOC and UV254.

295

296 The non-HULIS fractions are also important constituents within aerosol WSOM,
297 but exhibit some differences between HMW and LMW fractions. The contributions of
298 HMW non-HULIS to bulk WSOM were ~19% as determined by TOC and 21-25%
299 measured by UV254. In case of LMW non-HULIS, the contributions were higher in
300 terms of TOC (20-26%) but lower in terms of UV254 (11-18%). These results
301 indicate that the LMW WSOM contain a larger proportion of hydrophilic organic
302 species with weaker light absorption.

303

304 3.2. Optical characteristics of MW HULIS fractions

305 3.2.1. Light absorption characteristics

306 The absorption spectra of MW HULIS fractions in ambient aerosols are shown in
307 Fig. S3. These spectra exhibit a featureless shape with a general decrease in

308 absorbance as the wavelength increases, which is a typical characteristic of HULIS
309 found in rainwater, biomass burning (BB), and ambient aerosols (Huo et al., 2021;
310 Santos et al., 2009; Zhang et al., 2022b). The E₂/E₃ ratio, commonly used as an
311 indicator of the chemical characteristics of organic species, is inversely correlated
312 with higher aromaticity and larger molecular weight (Fan et al., 2021; Li et al., 2022;
313 Sun et al., 2021). As listed in Table 1, the E₂/E₃ of HMW HULIS fractions generally
314 were lower than that of LMW HULIS in both ambient aerosols. This is consistent
315 with the expectation that larger-sized HULIS generally possess more polyconjugated
316 and polymeric structures (Fan et al., 2021; Zhang et al., 2022c), leading to greater
317 aromaticity and larger molecular size.

318 MAE₃₆₅ and AAE are commonly used to characterize the light absorption
319 capacity and the spectral dependence of light absorption by aerosol chromophores,
320 respectively (Bao et al., 2022; Fan et al., 2016b; Kumar et al., 2017; Yuan et al., 2021;
321 Zou et al., 2020). As listed in Table 1, the average MAE₃₆₅ values of HMW HULIS
322 are 0.23 and 1.06 m² g⁻¹ in summer and winter aerosol, respectively. These values are
323 higher than the corresponding values of 0.20 and 0.88 m² g⁻¹, respectively, for LMW
324 HULIS. In addition, HMW HULIS presented lower AAE values, being 7.59 and 6.25
325 in summer and winter aerosol, respectively, than the corresponding values of 8.25 and
326 7.28, respectively, for LMW HULIS (Table 1). **These findings are consistent with the**
327 **observation in our previous study that larger WSOM generally own higher MAE₃₆₅**
328 **but smaller AAE values than smaller WSOM (Fan et al., 2021). Generally, the results**
329 **suggest that HMW HULIS exhibit stronger light-absorbing ability but with light**

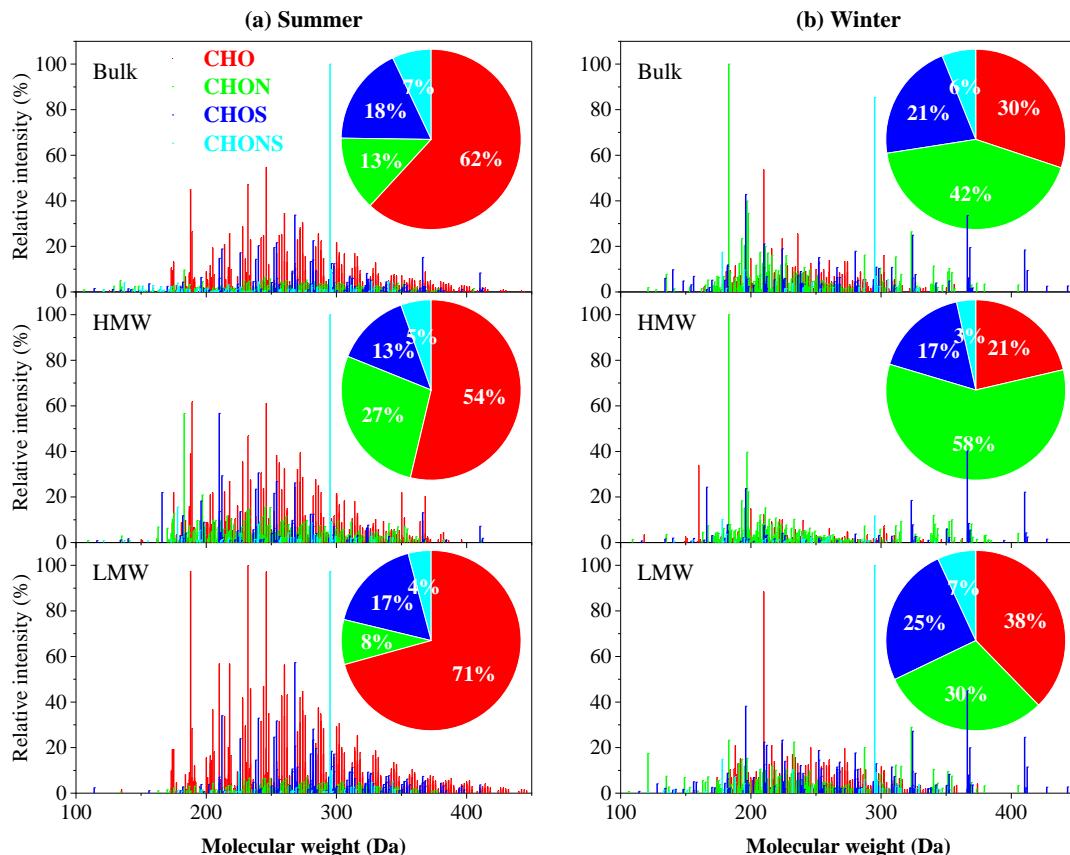
330 absorption showing a weaker wavelength dependence. It is worth noting that
331 combustion sources, such as BB and coal combustion, usually emit primary HULIS
332 with high MAE_{365} values due to the enrichment of poly-aromatic and unsaturated
333 species (Cao et al., 2021; Fan et al., 2018; Huo et al., 2021; Zhang et al., 2021), but
334 with small molecular weight distributions (Di Lorenzo et al., 2018; Di Lorenzo et al.,
335 2017; Wong et al., 2017). Furthermore, subsequent pronounced photooxidation and
336 photobleaching processes can lead to a enrichment and/or formation of large sized
337 chromophores (Di Lorenzo et al., 2018; Di Lorenzo et al., 2017; Wong et al., 2017),
338 concurrently resulting in a reduction in their absorption capacity and an enhancement
339 of their spectra dependence on wavelength (Chen et al., 2021b; Fan et al., 2019; Wu et
340 al., 2018; Wu et al., 2020; Zhang et al., 2022a). From this perspective, the SOA
341 formation might induce the generation of HMW HULIS with lower light absorption
342 capacity and weaker light absorption wavelength dependence. In contrast, LMW
343 HULIS is more likely to represent small-sized primary HULIS and/or by-products
344 resulting from the degradation and oxidation of primary large-sized HULIS.
345 Considering the complex sources of ambient HULIS, future studies should explore the
346 MW-dependent light absorption characteristics of HULIS from different sources.

347
348 3.2.2. Fluorescence characteristics

349 The EEM contours of MW HULIS fractions from both summer and winter
350 aerosols are presented in Fig. S4. These HULIS fractions from both seasons exhibit
351 similar EEM spectra features, with a predominance of humic-like fluorophores

352 (Ex/Em = 210-235/395-410 nm). This observation suggest that humic-like
353 fluorophores are fundamental constituents of both HMW and LMW HULIS, which
354 are consistent with previous findings for aerosols MW WSOM (Fan et al., 2021) and
355 bulk HULIS in BB-derived and ambient aerosols (Fan et al., 2020; Qin et al., 2018).
356 The findings imply an assembly of small and heterogeneous molecules to form bulk
357 HULIS through weak intramolecular forces (i.e., π - π , van der Waals, hydrophobic, or
358 hydrogen bonds) (Fan et al., 2021; Piccolo, 2002) and/or charge-transfer interactions
359 (Phillips et al., 2017; Qin et al., 2022). In this study, the fluorescence regional
360 integration (FRI) method was applied to characterize the fluorescent composition of
361 MW HULIS. Using FRI, EEM spectra were divided into five fluorescence regions
362 (labeled as I to V) (Fig. S4), which were successively assigned to simple aromatic
363 proteins (I and II), fulvic acid-like (III), soluble microbial byproduct-like (IV), and
364 humic acid-like (V) substances, respectively, as established in previous studies (Chen
365 et al., 2003; Qin et al., 2018; Wang et al., 2021b). As shown in Fig. S5, the large-size
366 aromatic proteins (II) and fulvic acid-like substances (III) dominated the fluorophores
367 within MW HULIS in both summer and winter aerosols, comprising approximately
368 62-64% of the total fluorescence intensity. This finding is consistent with previous
369 reports on bulk HULIS in summer and winter aerosols from industrial and urban cities
370 (Qin et al., 2018; Wang et al., 2021b). In comparison, the HMW HULIS in both
371 summer and winter aerosols generally exhibited a higher proportion of humic
372 acid-like substances (V), while having a lower abundance of small-size aromatic
373 proteins I compared to LMW HULIS. These differences are particularly pronounced

374 in winter aerosols, with the humic acid-like substances accounting for 23% in HMW
375 HULIS compared to 13% in LMW HULIS, and small-size aromatic proteins I
376 comprising 9% in HMW HULIS compared to 17% in LMW HULIS (Fig. S5).
377 Furthermore, the higher HIX values of HMW HULIS (5.64) in comparison to LMW
378 HULIS (1.94) further support these differences (Table 1). The pronounced BB
379 emissions and potential NO₂-related oxidation of OA, as evidenced by the presence of
380 more hotspots (Fig. S1) and higher concentration of NO₂ (Table S1), are likely driving
381 these marked distinctions between HMW and LMW HULIS in winter aerosols. In
382 general, these findings imply that the HMW HULIS have a stronger level of
383 humification and oxidation, while the LMW HULIS appear to be of a simpler nature
384 and are more likely associated with fresh emissions (e.g., BB).


385

386 3.3 Molecular-level insights into MW HULIS

387 3.3.1. Seasonal variations in the molecular composition of MW HULIS

388 The molecular-level characteristics of MW HULIS were examined using
389 negative ESI- HRMS analysis. It is worth noting that the ESI- HRMS could reveal
390 molecular composition of a subset of organic molecules that are biased ionized in the
391 negative ESI source rather than representing the entire HULIS composition (He et al.,
392 2023; Lin et al., 2012). Fig. 3 displays the reconstructed mass spectra of all HULIS
393 fraction in both summer and winter aerosols. Hundreds of peaks can be observed in
394 the spectra ranging from m/z 100 to 450 for all samples, with most ions being
395 abundant within the m/z 150-350 range. These spectrum characteristics are similar to

396 those previously reported for HULIS in ambient aerosols and BB emissions (He et al.,
 397 2023; Song et al., 2022; Sun et al., 2021; Wang et al., 2019; Zhang et al., 2021; Zou et
 398 al., 2023).

399
 400 **Fig. 3.** Mass spectra of bulk and MW HULIS in (a) summer and (b) winter aerosols.
 401 The pie charts represent the intensity distributions of four compound categories (CHO,
 402 CHON, CHOS, and CHONS).

403
 404 As listed in Table 2, the number of assigned formulas within MW HULIS in
 405 summer aerosols were 655-672, which was higher than the range of 470-506 observed
 406 in winter aerosols. This suggests that the MW HULIS in summer aerosols exhibited
 407 greater diversity than those in winter aerosols, mainly due to the stronger SOA
 408 formation that enhanced the heterogeneity of HULIS fractions in the summer. The

409 identified formulas were then classified into four groups (i.e., CHO, CHON, CHOS
410 and CHONS) according to their elemental composition. As depicted in pie charts in
411 Fig. 3, summer HULISs are predominantly composed of CHO (54-71%), while winter
412 HULISs feature a high concentration of both CHON (30-58%) and CHO (21-38%).
413 The notably higher content of CHO in summer HULISs are likely due to a wide
414 distribution of biogenic VOC-derived SOAs during the summer season (Li et al., 2022;
415 Sun et al., 2023). CHON content in winter HULISs is generally higher than in
416 summer ones, potentially due to more significant contributions from direct BB, as
417 well as secondary nitrogen-related chemical processes during the winter season (He et
418 al., 2023; Song et al., 2022; Zhang et al., 2021; Zou et al., 2023). This finding is
419 supported by the greater number of fire spots (Fig. S1) and higher concentrations of
420 NO₂ (Table S1) during winter. The higher proportions of CHON compounds in
421 aerosol HULIS typically lead to enhanced light absorption capabilities (He et al., 2023;
422 Song et al., 2022; Zeng et al., 2021). This provides **a potential explanation for the**
423 **higher MAE₃₆₅ values observed in** winter HULIS compared to summer HULIS.
424 Additionally, CHOS is more abundant in winter HULISs (17-25%) than in summer
425 aerosols (13-18%). Previous studies have demonstrated that both coal combustion and
426 the oxidation initiated by SO₂ can lead to the generation of larger amounts of
427 S-containing compounds (Song et al., 2018; Song et al., 2022; Zou et al., 2023). This
428 finding suggested that the increased levels of coal combustion and SO₂-related SOAs,
429 as evidenced by higher concentration of SO₂ (Table S1), are significant contributors to
430 the presence of BrC in winter compared to in summer.

431 **Table 2.** The average values of intensity-weighted molecular weights (MW), elemental ratios, double bond equivalents (DBE), modified
 432 aromaticity index (AI_{mod}) and carbon oxidation state (OS_C) for tentatively identified compounds of the bulk and MW HULIS samples.

		Elemental compositions	Number of formulas	MW_w	H/C_w	O/C_w	N/C_w	S/C_w	O/N_w	O/S_w	OM/OC_w	DBE_w	DBE/C_w	$DBE-O_w$	$AI_{mod,w}$	$OS_{C,w}$
Summer	BULK	CHO	376	276	1.39	0.59					1.91	4.69	0.39	-2.20	0.15	-0.21
		CHON	270	260	1.35	0.60	0.15		5.52		2.10	4.99	0.50	-1.17	0.27	-0.14
		CHOS	133	278	1.74	0.71		0.11		6.61	2.38	2.21	0.24	-4.41	0.02	-0.33
		CHONS	81	265	1.69	0.59	0.18	0.14	4.98	5.20	2.49	3.38	0.36	-1.95	0.09	-0.52
		Total	860	273	1.47	0.61	0.03	0.03	1.09	1.54	2.06	4.20	0.38	-2.44	0.14	-0.24
	HMW	CHO	270	264	1.41	0.55					1.85	4.51	0.38	-1.70	0.16	-0.32
		CHON	264	248	1.42	0.61	0.14		5.23		2.09	4.44	0.47	-1.33	0.24	-0.20
		CHOS	72	247	1.82	0.75		0.14		5.83	2.53	1.81	0.22	-4.07	0.01	-0.32
		CHONS	39	269	1.55	0.64	0.19	0.15	4.87	5.16	2.60	3.82	0.44	-1.65	0.14	-0.28
		Total	645	258	1.48	0.60	0.05	0.03	1.70	1.07	2.05	4.09	0.39	-1.91	0.16	-0.29
	LMW	CHO	365	275	1.34	0.64					1.97	4.82	0.42	-2.47	0.16	-0.05
		CHON	155	272	1.39	0.66	0.11		6.60		2.12	4.80	0.45	-2.09	0.18	-0.08
		CHOS	120	284	1.71	0.74		0.11		7.05	2.43	2.51	0.25	-4.58	0.02	-0.22
		CHONS	32	322	1.71	0.64	0.11	0.11	6.59	6.63	2.42	3.32	0.30	-3.41	0.06	-0.42
		Total	672	278	1.42	0.66	0.01	0.02	0.80	1.48	2.08	4.36	0.39	-2.84	0.13	-0.10
Winter	BULK	CHO	142	247	1.23	0.48					1.75	5.35	0.47	-0.05	0.32	-0.26
		CHON	194	231	1.24	0.53	0.16		3.96		1.99	5.17	0.57	0.52	0.48	-0.18
		CHOS	79	271	1.93	0.51		0.11		4.97	2.14	1.21	0.14	-3.80	0.04	-0.91
		CHONS	20	271	1.61	0.69	0.16	0.13	5.60	5.90	2.60	3.32	0.40	-2.65	0.09	-0.24
		Total	435	247	1.41	0.52	0.08	0.03	2.02	1.42	1.99	4.27	0.44	-0.77	0.31	-0.37
	HMW	CHO	138	232	1.36	0.47					1.74	4.79	0.41	0.02	0.28	-0.42

CHON	244	232	1.29	0.53	0.16	3.89	2.01	4.87	0.55	0.23	0.44	-0.23
CHOS	59	292	2.08	0.40	0.12	4.40	2.04	0.46	0.06	-4.06	0.02	-1.27
CHONS	29	236	1.74	0.48	0.22	0.20	2.82	3.02	2.57	2.88	0.38	-0.57
Total	470	242	1.46	0.50	0.10	0.03	2.37	0.85	1.98	4.04	0.43	-0.57
LMW	CHO	176	249	1.23	0.54		1.82	5.25	0.48	-0.65	0.30	-0.15
	CHON	195	239	1.34	0.49	0.16	3.99	1.95	4.88	0.52	0.29	0.45
	CHOS	107	280	1.94	0.54	0.10	5.42	2.17	1.20	0.13	-4.25	0.02
	CHONS	28	272	1.67	0.69	0.16	0.14	5.89	6.03	2.63	2.99	0.37
	Total	506	256	1.47	0.54	0.06	0.04	1.61	1.78	2.01	3.96	0.39
											-1.45	0.26
												-0.40

433 Table 2 summarizes the intensity-weighted molecular parameters for MW
434 HULIS in both summer and winter aerosols. Evidently, the MW_w of summer HULISs
435 are 258-278, which are higher than the corresponding values of 242-256 for winter
436 HULISs. It is noted that these values are considerably smaller than those revealed by
437 HPSEC analysis. This difference could be explained by several factors: (1) ESI-
438 HRMS is based towards relatively small molecules that easily protonated in negative
439 ESI mode (He et al., 2023; Lin et al., 2012); (2) SEC can provide an apparent rather
440 than accurate molecular size of molecules due to the lack of appropriate standards for
441 column calibration (Fan et al., 2023; Wong et al., 2017), and (3) the potential
442 disassembly of larger molecules stabilized by weak forces during electrospray
443 ionization of HRMS (Fan et al., 2021; Phillips et al., 2017). Nevertheless, both HRMS
444 and HPSEC indicate that summer HULISs exhibit larger sizes than winter HULISs.
445 Moreover, summer HULISs exhibit higher O/C_w ranging from 0.60 to 0.66, as well as
446 OS_{C,w} ranging from -0.29 to -0.10, which exceed the respective values of 0.50 to 0.54
447 and -0.46 to -0.37 observed in winter HULISs. Conversely, winter HULISs display
448 higher AI_{mod,w} values (0.26-0.33) than those (0.13-0.16) for summer ones. These
449 findings suggest that summer HULISs are characterized by a high degree of oxidation,
450 while winter HULISs exhibit stronger aromaticity.

451

452 3.3.2. Comparison on molecular composition of HMW and LMW HULIS

453 **CHO compounds.** The CHO compounds are prominent constituents within
454 HULIS fractions, accounting for 54% and 21% in summer and winter HMW HULIS,

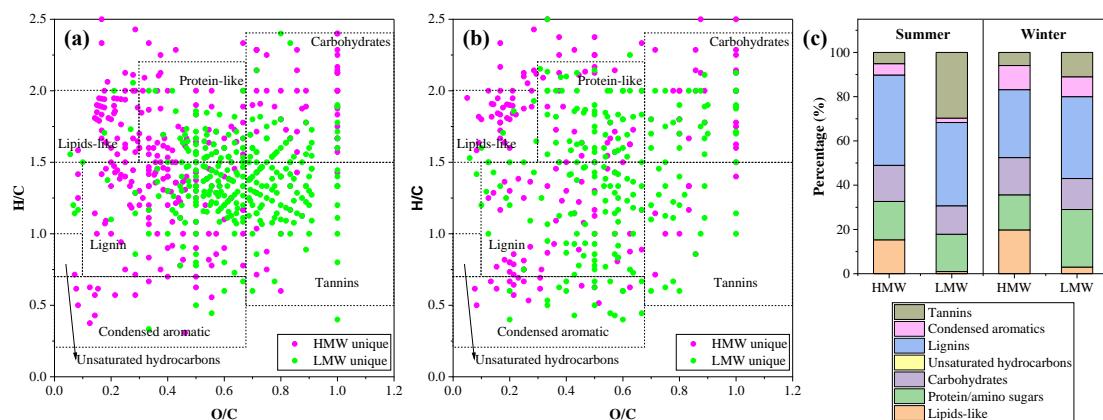
455 respectively, whereas these proportions increase to 71% and 38% in LMW HULIS
456 (Fig. 3). It is worth noting that CHO compounds that undergo deprotonation in ESI-
457 mode are likely associated with the presence of carboxyl, carbonyl, alcohol and ester
458 (Lin et al., 2012; Wang et al., 2018). Moreover, CHO compounds in LMW HULIS
459 exhibit a higher oxygenation level compared to HMW HULIS, as evidenced by the
460 higher O/C_w and OS_{C,w} values. As shown in Table 2, the O/C_w for CHO in LMW
461 HULIS are 0.55-0.64, which are higher than 0.47-0.54 observed in HMW HULIS. In
462 contrast, the H/C_w for CHO in HMW HULIS were consistently higher than those in
463 LMW HULIS, with values of 1.41 vs. 1.34 in summer and 1.36 vs. 1.23 in winter
464 (Table 2). This disparity strongly suggests a higher saturation level of CHO
465 compounds within HMW HULIS. This conclusion is further corroborated by the
466 lower DBE_w and AI_{mod,w} observed for CHO in HMW HULIS compared to LMW
467 HULIS (Table 2). It is known that these values serve as estimations of C=C density
468 and aromatic and condensed aromatic structures (Song et al., 2022; Zhang et al.,
469 2021). Taken together, the CHO compounds within HMW HULIS exhibit a more
470 aliphatic nature but lower aromaticity and oxidation levels when compared to those
471 within LMW HULIS.

472 **CHON compounds.** HMW HULIS fractions consist of a higher proportion of
473 CHON compounds compared to LMW HULIS, with proportions of 27% vs. 8% in
474 summer and 58% vs. 30% in winter (Fig. 3). This observation suggests that HMW
475 HULIS contain a higher content of N-containing components. It is noted that the
476 LMW HULIS are generally characterized by higher O/N_w values of 6.60 in summer

477 and 3.99 in winter compared to 5.23 in summer and 3.89 in winter for HMW HULIS.
478 This indicates that the CHON compounds within LMW HULIS are more highly
479 oxidized than those within HMW HULIS. In general, compounds with $O/N \geq 3$ are
480 indicative of oxidized N groups such as nitro (-NO₂) or nitrooxy (-ONO₂), while
481 compounds with $O/N < 3$ may denote the reduced N-containing functional groups (i.e.,
482 amines) (He et al., 2023; Song et al., 2022; Zeng et al., 2021). In this study, a majority
483 of the CHON compounds, comprising 73-85% in summer and 59-64% in winter,
484 exhibited $O/N \geq 3$ in both MW HULIS fractions. This suggests that high
485 concentrations of nitro compounds or organonitrates dominate the CHON compounds
486 (Sun et al., 2023; Wang et al., 2018; Zeng et al., 2021), especially in summer samples,
487 primarily due to the hydroxyl radical oxidation of biogenic or anthropogenic VOC
488 precursors, as well as BB emissions (Song et al., 2022; Sun et al., 2021; Zhang et al.,
489 2021; Zou et al., 2023). Furthermore, the CHON compounds exhibiting $O/N \geq 3$ were
490 more abundant in LMW HULIS compared to HMW HULIS, accounting for 85% vs.
491 73% in summer and 64% vs. 59% in winter. In contrast, HMW HULIS contained
492 more CHON compounds with $O/N < 3$ compared to LMW HULIS. These findings
493 collectively indicate that the CHON within HMW HULIS possess lower content of
494 nitro compounds or organonitrates than LMW HULIS. Based on FTIR analysis ([Text S2 and Fig. S6 in SI](#)), it is known that HMW HULIS contain more carboxylic groups
495 than LMW HULIS, which indicate a higher likelihood of HMW HULIS containing
496 more amino acids.

498 **CHOS and CHONS compounds.** In this study, we observed that CHOS

499 accounted for proportions of 13% to 25% in all MW HULIS fractions, while CHONS
500 had a lower proportion of 3% to 7% (Fig. 3). Notably, the distribution of CHOS
501 differed between HMW and LMW HULIS in both season samples. As depicted in Fig.
502 3, HMW HULIS contained fewer CHOS compounds compared to LMW HULIS, with
503 proportions of 13% vs. 17% in summer and 17% vs. 25% in winter. This finding
504 suggests that a greater number of CHOS compounds are incorporated into the LMW
505 HULIS fractions, which potentially leading to a reduction in the light absorption of
506 LMW HULIS (Zeng et al., 2021; Zhang et al., 2021). Furthermore, as indicated in
507 Table 2, both the CHOS and CHONS within LMW HULIS exhibited higher O/Sw
508 values than HMW HULIS in both seasonal samples. Consequently, the S-containing
509 compounds within LMW HULIS were characterized by a higher degree of oxidation,
510 primarily attributed to SO_2 -related chemical oxidation process, in comparison to those
511 in HMW HULIS. Moreover, it was observed that 61% to 92% of CHOS compounds
512 exhibited $\text{O/S} > 4$, and 3% to 43% of CHONS compounds with $\text{O/S} > 7$ for all MW
513 HULIS fractions. Among them, HMW HULIS own lower proportions of CHOS with
514 $\text{O/S} > 4$ and CHONS with $\text{O/S} > 7$ than LMW HULIS, suggesting a reduced presence
515 of potential organosulfates and nitrooxyorganosulfates within HMW HULIS (Sun et
516 al., 2023; Wang et al., 2018; Zeng et al., 2021; Zou et al., 2023).


517

518 3.3.3. Comparative analysis of unique molecular formulas in HMW and LMW
519 HULIS

520 In this study, particular emphasis was placed on the unique molecular formulas

521 within the HMW or LMW HULIS fractions. Fig. 4a, b illustrates the Van Krevelen
 522 (VK) diagram depicting the distribution of unique molecular formulas within HMW
 523 and LMW HULIS in summer and winter samples. It is evident that a majority of
 524 unique formulas within LMW HULIS are concentrated around the origin with $O/C >$
 525 0.5, accounting for 83% in summer and 64% in winter. In contrast, most formulas
 526 within HMW HULIS exhibited $O/C < 0.5$, representing about 58% for both seasonal
 527 samples. These findings indicate that the unique molecules within LMW HULIS
 528 consist of more polar O-containing organic compounds than those within HMW
 529 HULIS.

530

531
 532 **Fig. 4.** Van Krevelen diagrams for the unique molecular formulas within HMW and
 533 LMW HULIS from (a) summer and (b) winter aerosols. (c) The contributions of
 534 major substances classes in unique formulas.

535

536 The molecular formulas are further categorized into seven groups based on
 537 previous studies, including lignin-like species, protein/amino sugars, condensed
 538 aromatics, tannin-like species, carbohydrate-like species, unsaturated hydrocarbons,
 539 and lipid-like species (He et al., 2023; Sun et al., 2021; Sun et al., 2023). The

classification rules for these formulas can be found in Table S2. Fig. 4c provides an overview of the relative contributions of the number of unique formulas from each of the seven groups for HMW and LMW HULIS. The results indicate that the dominant substance class in the unique formulas within both MW HULIS are lignin-like species, accounting for proportions of 31-40%. This finding indicates that lignin derivatives are fundamental components in both HMW and LMW HULIS either in summer or winter aerosols. Additionally, there are notable differences in the molecular characteristics of lignin-like species within HMW and LMW HULIS. As listed in Table S3, lignin-like species within HMW HULIS exhibit lower MW_w and O/C_w, but higher N/C_w and AI_{mod,w} values than those within LMW HULIS in both seasonal samples. These observations suggest that the unique lignin-like substances in HMW HULIS likely contain more N-enriched and highly aromatic species, while those in LMW HULIS tend to concentrate more aliphatic O-containing compounds. These distinctions in composition and characteristics between HMW and LMW HULIS fractions provide valuable insights into their origins and transformations in the atmosphere.

Moreover, there are notable variations in the contributions of lipids-like, protein/amino sugars, carbohydrates, condensed aromatics, and tannins species between HMW and LMW HULIS. In general, HMW HULIS have a higher proportion of lipids-like species, carbohydrates and condensed aromatics than LMW HULIS in both summer and winter aerosols. Among these, the most remarkable difference in composition between HMW HULIS and LMW HULIS is seen in lipids-like species,

562 accounting for 15% versus 1% in summer and 20% versus 3% in winter (Fig. 4). As
563 reported in previous studies, lipids-like species primarily originate from biogenic
564 emissions (He et al., 2023; Li et al., 2022; Sun et al., 2021). This suggests that there is
565 a stronger contribution from biogenic emissions to HMW HULIS. Additionally, these
566 species in HMW HULIS were usually characterized by lower DBE_w and slightly
567 lower OS_{C,w} when compared to LMW HULIS (Table S3), indicating they present
568 stronger saturation and fewer oxidized substituents. On the other hand, tannins species
569 contribute a higher proportion to LMW HULIS, constituting 30% in summer and 11%
570 in winter, while comprising only 5%-6% in HMW HULIS in both season aerosols.
571 Tannin-like species are known to consist of various polyphenolic groups containing
572 hydroxyl and carboxylic functional groups (He et al., 2023; Li et al., 2022; Ning et al.,
573 2019; Sun et al., 2021). The slightly lower DBE_w but much higher DBE-O_w for
574 unique tannin-like species within HMW HULIS were observed compared to LMW
575 HULIS (Table S3), suggesting that the former ones are enriched in more unsaturated
576 O-containing functional groups, particularly carboxylic functional groups.

577

578 3.4. Atmospheric implications

579 This study provides comprehensive comparison between HMW and LMW
580 HULIS regarding their distributions, chemical structures, molecular sizes and
581 compositions. HMW HULIS appear to be larger than LMW HULIS, as evidenced by
582 both ultrafiltration natures and the MW distributions of chromophores analyzed by
583 HPSEC. However, HRMS analysis revealed that the average MW_w of identified

584 formulas within HMW HULIS were lower than those of LMW HULIS (Table 2). This
585 discrepancy can likely be attributed to the “assembled structures” that construct the
586 aerosol HULIS, as suggested in many previous studies focusing on HULIS and BrC
587 characterization (Fan et al., 2021; Fan et al., 2023; Phillips et al., 2017; Qin et al.,
588 2022). In fact, the results from EEM-FRI and FTIR analysis support the notion that
589 HMW and LMW HULIS likely consist of potential structures assembled by similar
590 basic fluorophores and functional groups. Based on this theory, HMW HULIS may
591 consist of macromolecular species primarily assembled from small molecules through
592 weak forces (i.e., π – π , van der Waals, hydrophobic, or hydrogen bonds) and/or
593 charge-transfer interactions (Fan et al., 2021; Phillips et al., 2017), which can
594 potentially disassemble during ESI ionization and form low MW molecules.

595 Based on the molecular-level characterization, significant distinctions in
596 properties between HMW HULIS and LMW HULIS become evident. HMW HULIS
597 generally exhibit stronger aromaticity but lower oxidation degree when compared to
598 LMW HULIS. In terms of molecular composition, HMW HULIS contain higher
599 quantities of CHON species but lower quantities of CHO compounds than LMW
600 HULIS. Furthermore, more lipids-like species were identified as unique molecules in
601 HMW HULIS, while more tannin-like species with abundant carboxylic groups were
602 observed as unique molecules in LMW HULIS. Given these pronounced differences
603 between HMW and LMW HULIS, it can be speculated that the higher levels of
604 aromatic structures, greater presence of CHON molecules and the presence of
605 lipids-like species may serve as driving factors in the formation of potential

606 assembled structures in HMW HULIS. Additionally, it is well-established that CHON
607 can enhance the light absorption of organic aerosols (OA), while CHO species may
608 have the opposite effect, weakening light absorption (He et al., 2023; Song et al.,
609 2022; Wang et al., 2019; Zeng et al., 2021). Therefore, it is reasonable to conclude
610 that HMW HULIS possess stronger light absorbing capability, which is consistent
611 with their larger MAE_{365} values.

612 Importantly, HMW HULIS contain **higher** amounts of carboxylic functional
613 groups, reduced nitrogen species (e.g., amines) and aromatic species than LMW
614 HULIS. These functional groups have strong complexation abilities with transition
615 metals (Wang et al., 2021a; Wang et al., 2021b), thus influencing the transformation
616 and chemical behavior of metals. Moreover, the OA-metals complex can potentially
617 enhance the catalytic generation of reactive oxygen species (ROS) in organic aerosols
618 (Win et al., 2018; Zhang et al., 2022a), thereby playing significant roles in adverse
619 health effects of OA. These results reinforce the significance of HMW HULIS in light
620 absorption, metal complexation, and the potential ROS generation ability of aerosol
621 BrC.

622

623 **4. Conclusions**

624 This study successfully isolated and characterized HMW and LMW HULIS in
625 atmospheric aerosols using the UF-SPE technique, yielding insights into their
626 distribution, optical properties and molecular-level characteristics. Both HMW and
627 LMW HULIS exhibited a continuum of MW distributions ranging from 100 to 20,000

628 Da. However, HMW HULIS displayed more extensive and intricate MW distributions,
629 suggesting differences in their sources and formation processes compared to LMW
630 HULIS. In general, HMW HULIS constituted a higher percentage of TOC and UV254
631 in aerosols compared to LMW HULIS, indicating the prevalence of hydrophobic and
632 conjugated aromatic structures in the former. Moreover, HMW HULIS exhibited
633 higher aromaticity, stronger light absorption abilities, weaker spectra dependence, and
634 stronger humification and conjugation, compared to LMW HULIS. Interestingly,
635 HRMS analysis revealed slightly lower MWw values for HMW HULIS than LMW
636 HULIS, which contradicted the HPSEC results and the nature of UF fractionation.
637 This finding strongly suggests the possibility of small molecules assembling to form
638 macromolecules in HMW HULIS. Regarding molecular composition, HMW HULIS
639 contained a higher proportion of CHON compounds, constituting 27% vs. 8% in
640 summer and 58% vs. 30% in winter, while LMW HULIS were primarily composed of
641 CHO compounds, accounting for 71% vs. 54% in summer and 38% vs. 21% in
642 winter. Both HMW and LMW HULIS featured lignin-like substances as major unique
643 molecular formulas, but HMW HULIS exhibited more N-enriched and highly
644 aromatic species, whereas LMW HULIS contained a higher proportion of polar
645 O-containing functional groups. Additionally, HMW HULIS included a greater
646 number of unique lipids-like compounds, while LMW HULIS tend to concentrate
647 more tannin-like compounds. These observations shed light on the complex nature of
648 MW HULIS, and their diverse sources and transformations. Future research should
649 expand the geographical and seasonal coverage to gain a more comprehensive

650 understanding of the molecular-level characteristics of MW HULIS in various
651 atmospheric environments. Furthermore, exploring additional physicochemical
652 properties of MW HULIS will provide valuable insights into their potential health and
653 environmental implications. Overall, this study offers valuable insights into the
654 molecular-level characteristics of aerosol HULIS, enhancing our understanding of
655 their evolution, sources and potential environmental effects.

656

657 **Author contribution**

658 **Xingjun Fan:** Methodology, Supervision, Funding acquisition, Writing-review &
659 editing. **Ao Cheng:** Sampling, Data curation. **Xufang Yu:** Writing-review & editing.
660 **Tao Cao:** Sampling, Investigation. **Dan Chen:** Investigation, Data curation.
661 **Wenchao Ji:** Formal analysis. **Yongbing Cai:** Writing-review & editing. **Fande**
662 **Meng:** Writing-review & editing. **Jianzhong Song:** Methodology, Writing-review &
663 editing. **Pingan Peng:** Writing-review & editing.

664 **Declaration of Competing Interest**

665 The authors declare that they have no known competing financial interests or personal
666 relationships that could have appeared to influence the work reported in this paper.

667 **Acknowledgments**

668 This study was supported by the Natural Science Foundation of China (42192514,
669 52100114), the Anhui Provincial Natural Science Foundation (2108085MD140,
670 2108085QB56), and the State key Laboratory of Organic Geochemistry, GIGCAS
671 (SKLOG202101), Anhui Provincial Key Science Foundation for Outstanding Young

672 Talent (2022AH030145, gxyqZD2021126).

673

674 **References**

675 Bao, M., Zhang, Y.-L., Cao, F., Lin, Y.-C., Hong, Y., Fan, M., Zhang, Y., Yang, X., Xie, F., 2022. Light
676 absorption and source apportionment of water soluble humic-like substances (HULIS) in
677 PM2.5 at Nanjing, China. *Environmental Research* 206, 112554.

678 Birdwell, J.E., Valsaraj, K.T., 2010. Characterization of dissolved organic matter in fogwater by
679 excitation–emission matrix fluorescence spectroscopy. *Atmos. Environ.* 44, 3246–3253.

680 Cao, T., Li, M., Xu, C., Song, J., Fan, X., Li, J., Jia, W., Peng, P., 2022. Technical note: Identification of
681 chemical composition and source of fluorescent components in atmospheric
682 water-soluble brown carbon by excitation–emission matrix with parallel factor analysis:
683 Potential limitation and application. *Atmos. Chem. Phys. Discuss.* 2022, 1–41.

684 Cao, T., Li, M., Zou, C., Fan, X., Song, J., Jia, W., Yu, C., Yu, Z., Peng, P., 2021. Chemical composition,
685 optical properties, and oxidative potential of water- and methanol-soluble organic
686 compounds emitted from the combustion of biomass materials and coal. *Atmos. Chem.*
687 *Phys.* 21, 13187–13205.

688 Chen, J., Wu, Z.J., Zhao, X., Wang, Y.J., Chen, J.C., Qiu, Y.T., Zong, T.M., Chen, H.X., Wang, B.B., Lin,
689 P., Liu, W., Guo, S., Yao, M.S., Zeng, L.M., Wex, H., Liu, X., Hu, M., Li, S.M., 2021a.
690 Atmospheric Humic-Like Substances (HULIS) Act as Ice Active Entities. *Geophysical*
691 *Research Letters* 48, e2021GL092443.

692 Chen, Q., Hua, X., Dyussenova, A., 2021b. Evolution of the chromophore aerosols and its driving
693 factors in summertime Xi'an, Northwest China. *Chemosphere* 281, 130838.

694 Chen, W., Westerhoff, P., Leenheer, J.A., Booksh, K., 2003. Fluorescence Excitation–Emission
695 Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. *Environ.*
696 *Sci. Technol.* 37, 5701–5710.

697 Di Lorenzo, R.A., Place, B.K., VandenBoer, T.C., Young, C.J., 2018. Composition of Size-Resolved
698 Aged Boreal Fire Aerosols: Brown Carbon, Biomass Burning Tracers, and Reduced
699 Nitrogen. *ACS Earth and Space Chemistry* 2, 278–285.

700 Di Lorenzo, R.A., Washenfelder, R.A., Attwood, A.R., Guo, H., Xu, L., Ng, N.L., Weber, R.J., Baumann,
701 K., Edgerton, E., Young, C.J., 2017. Molecular-Size-Separated Brown Carbon Absorption
702 for Biomass-Burning Aerosol at Multiple Field Sites. *Environ. Sci. Technol.* 51, 3128–3137.

703 Dinar, E., Taraniuk, I., Gruber, E.R., Anttila, T., Mentel, T.F., Rudich, Y., 2007. Hygroscopic growth of
704 atmospheric and model humic-like substances. *J. Geophys. Res.* 112.

705 Fan, X., Cai, F., Xu, C., Yu, X., Wang, Y., Xiao, X., Ji, W., Cao, T., Song, J., Peng, P.a., 2021. Molecular
706 weight-dependent abundance, absorption, and fluorescence characteristics of
707 water-soluble organic matter in atmospheric aerosols. *Atmos. Environ.* 247.

708 Fan, X., Cao, T., Yu, X., Wang, Y., Xiao, X., Li, F., Xie, Y., Ji, W., Song, J., Peng, P., 2020. The
709 evolutionary behavior of chromophoric brown carbon during ozone aging of fine
710 particles from biomass burning. *Atmos. Chem. Phys.* 20, 4593–4605.

711 Fan, X., Cheng, A., Chen, D., Cao, T., Ji, W., Song, J., Peng, P., 2023. Investigating the molecular
712 weight distribution of atmospheric water-soluble brown carbon using high-performance

713 size exclusion chromatography coupled with diode array and fluorescence detectors.
714 Chemosphere 338, 139517.

715 Fan, X., Li, M., Cao, T., Cheng, C., Li, F., Xie, Y., Wei, S., Song, J., Peng, P.a., 2018. Optical properties
716 and oxidative potential of water- and alkaline-soluble brown carbon in smoke particles
717 emitted from laboratory simulated biomass burning. *Atmos. Environ.* 194, 48-57.

718 Fan, X., Song, J., Peng, P., 2013. Comparative study for separation of atmospheric humic-like
719 substance (HULIS) by ENVI-18, HLB, XAD-8 and DEAE sorbents: elemental composition,
720 FT-IR, ¹H NMR and off-line thermochemolysis with tetramethylammonium hydroxide
721 (TMAH). *Chemosphere* 93, 1710-1719.

722 Fan, X., Song, J., Peng, P.a., 2016a. Temporal variations of the abundance and optical properties
723 of water soluble Humic-Like Substances (HULIS) in PM2.5 at Guangzhou, China. *Atmos.*
724 *Res.* 172-173, 8-15.

725 Fan, X., Wei, S., Zhu, M., Song, J., Peng, P., 2016b. Comprehensive characterization of humic-like
726 substances in smoke PM2.5 emitted from the combustion of biomass materials and fossil
727 fuels. *Atmos. Chem. Phys.* 16, 13321-13340.

728 Fan, X., Yu, X., Wang, Y., Xiao, X., Li, F., Xie, Y., Wei, S., Song, J., Peng, P.a., 2019. The aging
729 behaviors of chromophoric biomass burning brown carbon during dark aqueous
730 hydroxyl radical oxidation processes in laboratory studies. *Atmos. Environ.* 205, 9-18.

731 Fan, X.J., Song, J.Z., Peng, P.A., 2012. Comparison of isolation and quantification methods to
732 measure humic-like substances (HULIS) in atmospheric particles. *Atmos. Environ.* 60,
733 366-374.

734 Gruber, E.R., Rudich, Y., 2006. Atmospheric HULIS: How humic-like are they? A comprehensive
735 and critical review. *Atmos. Chem. Phys.* 6, 729-753.

736 He, T., Wu, Y., Wang, D., Cai, J., Song, J., Yu, Z., Zeng, X., Peng, P.a., 2023. Molecular compositions
737 and optical properties of water-soluble brown carbon during the autumn and winter in
738 Guangzhou, China. *Atmos. Environ.* 296, 119573.

739 Huo, Y., Wang, Y., Qi, W., Jiang, M., Li, M., 2021. Comprehensive characterizations of HULIS in
740 fresh and secondary emissions of crop straw burning. *Atmos. Environ.* 248, 118220.

741 Kawasaki, N., Matsushige, K., Komatsu, K., Kohzu, A., Nara, F.W., Ogishi, F., Yahata, M., Mikami, H.,
742 Goto, T., Imai, A., 2011. Fast and precise method for HPLC-size exclusion
743 chromatography with UV and TOC (NDIR) detection: Importance of multiple detectors to
744 evaluate the characteristics of dissolved organic matter. *Water Res.* 45, 6240-6248.

745 Kumar, V., Goel, A., Rajput, P., 2017. Compositional and surface characterization of HULIS by
746 UV-Vis, FTIR, NMR and XPS: Wintertime study in Northern India. *Atmos. Environ.* 164,
747 468-475.

748 Li, X., Yu, F., Cao, J., Fu, P., Hua, X., Chen, Q., Li, J., Guan, D., Tripathee, L., Chen, Q., Wang, Y., 2022.
749 Chromophoric dissolved organic carbon cycle and its molecular compositions and
750 optical properties in precipitation in the Guanzhong basin, China. *Sci. Total Environ.* 814,
751 152775.

752 Lin, P., Rincon, A.G., Kalberer, M., Yu, J.Z., 2012. Elemental composition of HULIS in the Pearl River
753 Delta Region, China: results inferred from positive and negative electrospray high
754 resolution mass spectrometric data. *Environ. Sci. Technol.* 46, 7454-7462.

755 Ma, Y., Cheng, Y., Qiu, X., Cao, G., Kuang, B., Yu, J.Z., Hu, D., 2019. Optical properties, source
756 apportionment and redox activity of humic-like substances (HULIS) in airborne fine

757 particulates in Hong Kong. *Environmental Pollution* 255, 113087.

758 Mukherjee, A., Dey, S., Rana, A., Jia, S., Banerjee, S., Sarkar, S., 2020. Sources and atmospheric
759 processing of brown carbon and HULIS in the Indo-Gangetic Plain: Insights from
760 compositional analysis. *Environmental Pollution* 267, 115440.

761 Ning, C., Gao, Y., Zhang, H., Yu, H., Wang, L., Geng, N., Cao, R., Chen, J., 2019. Molecular
762 characterization of dissolved organic matters in winter atmospheric fine particulate
763 matters (PM2.5) from a coastal city of northeast China. *Sci. Total Environ.* 689, 312-321.

764 Phillips, S.M., Bellcross, A.D., Smith, G.D., 2017. Light Absorption by Brown Carbon in the
765 Southeastern United States is pH-dependent. *Environ. Sci. Technol.* 51, 6782-6790.

766 Piccolo, A., 2002. The supramolecular structure of humic substances: A novel understanding of
767 humus chemistry and implications in soil science, *Advances in Agronomy*. Academic
768 Press, pp. 57-134.

769 Qin, J., Zhang, L., Qin, Y., Shi, S., Li, J., Gao, Y., Tan, J., Wang, X., 2022. pH-Dependent Chemical
770 Transformations of Humic-Like Substances and Further Cognitions Revealed by Optical
771 Methods. *Environ. Sci. Technol.* 56, 7578-7587.

772 Qin, J., Zhang, L., Zhou, X., Duan, J., Mu, S., Xiao, K., Hu, J., Tan, J., 2018. Fluorescence
773 fingerprinting properties for exploring water-soluble organic compounds in PM 2.5 in an
774 industrial city of northwest China. *Atmos. Environ.* 184, 203-211.

775 Santos, P.S.M., Otero, M., Duarte, R.M.B.O., Duarte, A.C., 2009. Spectroscopic characterization of
776 dissolved organic matter isolated from rainwater. *Chemosphere* 74, 1053-1061.

777 Santos, P.S.M., Santos, E.B.H., Duarte, A.C., 2012. First spectroscopic study on the structural
778 features of dissolved organic matter isolated from rainwater in different seasons. *Sci.
779 Total Environ.* 426, 172-179.

780 Song, J., Li, M., Jiang, B., Wei, S., Fan, X., Peng, P., 2018. Molecular Characterization of
781 Water-Soluble Humic like Substances in Smoke Particles Emitted from Combustion of
782 Biomass Materials and Coal Using Ultrahigh-Resolution Electrospray Ionization Fourier
783 Transform Ion Cyclotron Resonance Mass Spectrometry. *Environ. Sci. Technol.* 52,
784 2575-2585.

785 Song, J., Li, M., Zou, C., Cao, T., Fan, X., Jiang, B., Yu, Z., Jia, W., Peng, P.a., 2022. Molecular
786 Characterization of Nitrogen-Containing Compounds in Humic-like Substances Emitted
787 from Biomass Burning and Coal Combustion. *Environ. Sci. Technol.* 56, 119-130.

788 Song, J.Z., Huang, W.L., Peng, P.A., Xiao, B.H., Ma, Y.J., 2010. Humic Acid Molecular Weight
789 Estimation by High-Performance Size-Exclusion Chromatography with Ultraviolet
790 Absorbance Detection and Refractive Index Detection. *Soil. Sci. Soc. Am. J.* 74,
791 2013-2020.

792 Sun, H., Li, X., Zhu, C., Huo, Y., Zhu, Z., Wei, Y., Yao, L., Xiao, H., Chen, J., 2021. Molecular
793 composition and optical property of humic-like substances (HULIS) in winter-time PM2.5
794 in the rural area of North China Plain. *Atmos. Environ.* 252, 118316.

795 Sun, H., Wu, Z., Kang, X., Zhu, C., Yu, L., Li, R., Lin, Z., Chen, J., 2023. Molecular characterization of
796 humic-like substances (HULIS) in atmospheric particles (PM2.5) in offshore Eastern China
797 Sea (OECS) using solid-phase extraction coupled with ESI FT-ICR MS. *Atmos. Environ.*
798 294, 119523.

799 Wang, K., Zhang, Y., Huang, R.-J., Cao, J., Hoffmann, T., 2018. UHPLC-Orbitrap mass
800 spectrometric characterization of organic aerosol from a central European city (Mainz,

801 Germany) and a Chinese megacity (Beijing). *Atmos. Environ.* 189, 22-29.

802 Wang, X., Qin, Y., Qin, J., Long, X., Qi, T., Chen, R., Xiao, K., Tan, J., 2021a. Spectroscopic insight
803 into the pH-dependent interactions between atmospheric heavy metals (Cu and Zn) and
804 water-soluble organic compounds in PM2.5. *Sci. Total Environ.* 767, 145261.

805 Wang, X.B., Qin, Y.Y., Qin, J.J., Yang, Y.R., Qi, T., Chen, R.Z., Tan, J.H., Xiao, K., 2021b. The
806 interaction laws of atmospheric heavy metal ions and water-soluble organic compounds
807 in PM2.5 based on the excitation-emission matrix fluorescence spectroscopy. *Journal of*
808 *Hazardous Materials* 402, 8.

809 Wang, Y., Hu, M., Lin, P., Tan, T., Li, M., Xu, N., Zheng, J., Du, Z., Qin, Y., Wu, Y., Lu, S., Song, Y., Wu,
810 Z., Guo, S., Zeng, L., Huang, X., He, L., 2019. Enhancement in Particulate Organic Nitrogen
811 and Light Absorption of Humic-Like Substances over Tibetan Plateau Due to
812 Long-Range Transported Biomass Burning Emissions. *Environ. Sci. Technol.* 53,
813 14222-14232.

814 Win, M.S., Tian, Z., Zhao, H., Xiao, K., Peng, J., Shang, Y., Wu, M., Xiu, G., Lu, S., Yonemochi, S.,
815 Wang, Q., 2018. Atmospheric HULIS and its ability to mediate the reactive oxygen
816 species (ROS): A review. *J Environ Sci (China)* 71, 13-31.

817 Wong, J.P.S., Nenes, A., Weber, R.J., 2017. Changes in Light Absorptivity of Molecular Weight
818 Separated Brown Carbon Due to Photolytic Aging. *Environ. Sci. Technol.* 51, 8414-8421.

819 Wong, J.P.S., Tsagkaraki, M., Tsiodra, I., Mihalopoulos, N., Violaki, K., Kanakidou, M., Sciare, J.,
820 Nenes, A., Weber, R.J., 2019. Atmospheric evolution of molecular-weight-separated
821 brown carbon from biomass burning. *Atmos. Chem. Phys.* 19, 7319-7334.

822 Wu, G., Fu, P., Ram, K., Song, J., Chen, Q., Kawamura, K., Wan, X., Kang, S., Wang, X., Laskin, A.,
823 Cong, Z., 2021. Fluorescence characteristics of water-soluble organic carbon in
824 atmospheric aerosol☆. *Environmental Pollution* 268, 115906.

825 Wu, G., Wan, X., Gao, S., Fu, P., Yin, Y., Li, G., Zhang, G., Kang, S., Ram, K., Cong, Z., 2018.
826 Humic-Like Substances (HULIS) in Aerosols of Central Tibetan Plateau (Nam Co, 4730 m
827 asl): Abundance, Light Absorption Properties, and Sources. *Environ. Sci. Technol.* 52,
828 7203-7211.

829 Wu, G., Wan, X., Ram, K., Li, P., Liu, B., Yin, Y., Fu, P., Loewen, M., Gao, S., Kang, S., Kawamura, K.,
830 Wang, Y., Cong, Z., 2020. Light absorption, fluorescence properties and sources of brown
831 carbon aerosols in the Southeast Tibetan Plateau. *Environmental Pollution* 257, 113616.

832 Yuan, W., Huang, R.-J., Yang, L., Ni, H., Wang, T., Cao, W., Duan, J., Guo, J., Huang, H., Hoffmann,
833 T., 2021. Concentrations, optical properties and sources of humic-like substances (HULIS)
834 in fine particulate matter in Xi'an, Northwest China. *Sci. Total Environ.* 789, 147902.

835 Zeng, Y., Ning, Y., Shen, Z., Zhang, L., Zhang, T., Lei, Y., Zhang, Q., Li, G., Xu, H., Ho, S.S.H., Cao, J.,
836 2021. The Roles of N, S, and O in Molecular Absorption Features of Brown Carbon in
837 PM2.5 in a Typical Semi-Arid Megacity in Northwestern China. *Journal of Geophysical*
838 *Research: Atmospheres* 126, e2021JD034791.

839 Zhang, T., Huang, S., Wang, D., Sun, J., Zhang, Q., Xu, H., Hang Ho, S.S., Cao, J., Shen, Z., 2022a.
840 Seasonal and diurnal variation of PM2.5 HULIS over Xi'an in Northwest China: Optical
841 properties, chemical functional group, and relationship with reactive oxygen species
842 (ROS). *Atmos. Environ.* 268, 118782.

843 Zhang, T., Shen, Z., Huang, S., Lei, Y., Zeng, Y., Sun, J., Zhang, Q., Ho, S.S.H., Xu, H., Cao, J., 2022b.
844 Optical properties, molecular characterizations, and oxidative potentials of different

845 polarity levels of water-soluble organic matters in winter PM2.5 in six China's megacities.
846 Sci. Total Environ. 853, 158600.

847 Zhang, T., Shen, Z., Zeng, Y., Cheng, C., Wang, D., Zhang, Q., Lei, Y., Zhang, Y., Sun, J., Xu, H., Ho,
848 S.S.H., Cao, J., 2021. Light absorption properties and molecular profiles of HULIS in PM2.5
849 emitted from biomass burning in traditional "Heated Kang" in Northwest China. Sci. Total
850 Environ. 776, 146014.

851 Zhang, T., Shen, Z., Zhang, L., Tang, Z., Zhang, Q., Chen, Q., Lei, Y., Zeng, Y., Xu, H., Cao, J., 2020.
852 PM2.5 Humic-like substances over Xi'an, China: Optical properties, chemical functional
853 group, and source identification. Atmos. Res. 234, 104784.

854 Zhang, W., Li, L., Wang, D., Wang, R., Yu, S., Gao, N., 2022c. Characterizing dissolved organic
855 matter in aquatic environments by size exclusion chromatography coupled with multiple
856 detectors. Anal. Chim. Acta 1191, 339358.

857 Zheng, G.J., He, K.B., Duan, F.K., Cheng, Y., Ma, Y.L., 2013. Measurement of humic-like substances
858 in aerosols: A review. Environmental Pollution 181, 301-314.

859 Zou, C., Cao, T., Li, M., Song, J., Jiang, B., Jia, W., Li, J., Ding, X., Yu, Z., Zhang, G., Peng, P.a., 2023.
860 Measurement report: Changes in light absorption and molecular composition of
861 water-soluble humic-like substances during a winter haze bloom-decay process in
862 Guangzhou, China. Atmos. Chem. Phys. 23, 963-979.

863 Zou, C., Li, M., Cao, T., Zhu, M., Fan, X., Peng, S., Song, J., Jiang, B., Jia, W., Yu, C., Song, H., Yu, Z.,
864 Li, J., Zhang, G., Peng, P.a., 2020. Comparison of solid phase extraction methods for the
865 measurement of humic-like substances (HULIS) in atmospheric particles. Atmos. Environ.
866 225, 117370.

867

868