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Abstract. Severe floods with extreme return periods of 100 years and beyond have been observed in several large 

rivers in Bavaria in the last three decades. Flood protection structures are typically designed based on a 100-year 10 

event, relying on statistical extrapolations of relatively short observation time series while ignoring potential 

temporal non-stationarity. However, future precipitation projections indicate an increase in the frequency and 

intensity of extreme rainfall events, as well as a shift in seasonality. This study aims to examine the impact of 

climate change on the 100-year flood (HF100) events on 98 hydrometric gauges within the Hydrological Bavaria. 

A hydrological climate change impact (CCI) modelling chain consisting of a regional single model initial condition 15 

large ensemble (SMILE) and a single hydrological model was created. The 50 equally probable members of the 

CRCM5-LE were used to drive the hydrological model WaSiM to create a hydro-SMILE. As a result, a database 

of 1,500 model years (50 members x 30 years) per investigated time period was established for extreme value 

analysis (EVA) to illustrate the benefit of the hydro-SMILE approach for a robust estimation of the HF100 based 

on annual maxima (AM), and to examine the CCI on the frequency and magnitude of HF100 in different discharge 20 

regimes under a strong emission scenario (RCP8.5). The results demonstrate that the hydro-SMILE approach 

provides a clear advantage for a robust estimation of the HF100 using empirical probability on 1,500 AM compared 

to its estimation using the generalized extreme value (GEV) distribution on 1,000 samples of typically available 

time series size of 30, 100, and 200 years. Thereby, by applying the hydro-SMILE framework the uncertainty from 

statistical estimation can be reduced. The study highlights the added value of using hydrological SMILEs to project 25 

future flood return levels. The CCI on the HF100 varies for different flow regimes, with snowmelt-driven 

catchments experiencing severe increases in frequency and magnitude, leading to unseen extremes that impact the 

distribution. Pluvial regimes show a lower intensification or even decline. The dynamics of HF100 driving 

mechanisms depict a decline in snow melt driven events in favor of rainfall driven events, an increase of events 
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driven by convective rainfall, and almost no change of the ratio between single driver and compound events 30 

towards the end of the century.  

1 Introduction 

The devastating force of floods poses a significant threat to infrastructure, livestock, and human life. In Germany, 

two of the most severe floods in the last three decades were the 2002 and 2013 flood events (along with other 

major events in 1999, 2005, and 2016) (Thieken et al., 2016; Blöschl et al., 2013). The 2002 and 2013 events 35 

caused a total of about 17 billion Euros in economic damage due to their large spatial extent and high water levels, 

with the 2013 flood considered the most extreme event in the last sixty years (Thieken et al., 2016). However, 

different climatic and catchment conditions caused these events, with the 2002 event resulting from intense rainfall 

leading to flash floods across multiple small catchments, and the 2013 event due to high antecedent soil moisture 

from long-lasting precipitation followed by more moderate but spatially widespread rainfall (Thieken et al., 2016). 40 

In addition to precipitation magnitude, other flood drivers such as antecedent soil moisture conditions, snowmelt, 

as well as flood driving processes determined by catchment and river characteristics contribute to the non-linearity 

of the hydrological response to extreme precipitation events (Blöschl et al., 2015). Recent studies analyzing 

European flood events over the last five decades suggest an increase in the magnitude and frequency of high flows 

and flood events depending on the event type and region (Blöschl et al., 2019; Bertola et al., 2020; Blöschl et al., 45 

2015). However, this trend depends on the time frame considered for the analysis, and the evaluation period 

remains crucial for either the estimation or the development of high return periods (Blöschl et al., 2015; Schulz 

and Bernhardt, 2016). Precipitation (heavy precipitation and long-lasting rainfall) and snowmelt (in regions with 

snowmelt-governed regimes) remain the primary natural causes of flooding, with other influences (e.g., catchment 

characteristics, antecedent catchment conditions, compound events with snow- or glacier melt) and snowmelt 50 

becoming less important once a certain threshold of extreme precipitation is exceeded (Brunner et al., 2021b). 

According to the sixth Intergovernmental Panel on Climate Change (IPCC) Assessment Report, there is high 

confidence that a warmer climate will intensify wet weather and climate conditions affecting flooding (IPCC, 

2021). Even with a 1.5 °C warming limit under the Paris agreement, heavy precipitation, along with extreme 

discharge events, is likely to intensify in Europe, with increasing confidence above 2 °C warming (IPCC, 2021). 55 

For most discharge gauges, observational records begin in the 19th century or even later (Blöschl et al., 2015). 

Although most of these observations offer sufficiently long time series of data for estimating peak flows of 

moderate return periods, they still hinder a robust statistical estimation of extreme return periods, such as the 100-

year flood and above. These types of extreme hydrological events are required for structural flood protection and 
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risk management (Wilhelm et al., 2022; Brunner et al., 2021a; Blöschl et al., 2019). Brunner et al. (2021a) illustrate 60 

the challenges in modeling and predicting high flows due to data availability, process representation, and human 

influences. 

Recently, single model initial condition large ensembles (SMILE) have emerged as a powerful tool to enhance 

statistical analysis of extremes in climatological behavior (von Trentini et al., 2020; Wood and Ludwig, 2020; 

Wood et al., 2021; Aalbers et al., 2018; Martel et al., 2020). Unlike other common ensembles of different global 65 

or regional climate model (GCM/RCM) combinations, SMILEs comprise multiple equiprobable realizations 

(members) of a single GCM or GCM/RCM combination that differ only in their initial conditions, representing 

the chaotic nature of the climate system (Arora et al., 2011; Fyfe et al., 2017; Kirchmeier-Young et al., 2017; 

Sigmond et al., 2018; Leduc et al., 2019). The actual model structure, physics, parameterization, external forcings 

are preserved. Thus, SMILEs offer a profound database for analyzing internal (or natural) climate variability 70 

(Wood and Ludwig, 2020; Martel et al., 2018), separating natural variability from an actual change signal (Aalbers 

et al., 2018; Wood and Ludwig, 2020), and extreme events (Wood et al., 2021; Martel et al., 2018). Applying 

SMILEs for hydrological modelling allows for the creation of a so-called hydro-SMILE, which in turn allows for 

the exploitation of vast data for the analysis of the hydrological response of catchments to extreme precipitation 

events. 75 

Due to the high spatio-temporal resolution, this ensemble-based climate and hydrological modeling approach is 

computationally demanding. However, the high spatio-temporal resolution of a hydro-SMILE is particularly 

valuable for an enhanced representation of extreme values in models as it allows for spatially refined catchment 

features (e.g., slopes, soil characteristics, land use) and more precise values (e.g., discharge) due to higher temporal 

resolution. Thus, this study focuses on only a single region comprised by the major Bavarian river basins (upper 80 

Danube, Main, Inn) with all their tributaries to account for the computational demand as well as the advantages 

gained by the high resolution. 

In this study, a climatological SMILE is employed to drive a physically based hydrological model with high spatio-

temporal resolution for the major Bavarian river catchments. The resulting hydro-SMILE is used to answer the 

following questions: 85 

a) Is there a benefit applying a SMILE for hydrological impact modelling regarding the estimation of high 

flows of large return periods? 

b) How does climate change affect the dynamics in frequency and magnitude of extreme discharges? 

c) How are the driving mechanisms of these extreme discharges changing? 

Although the data presented in this study would allow for an analysis of events beyond the 100-year flood, we 90 

focus on this extreme event to answer these questions as this event is widely used in literature, higher return periods 
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are prone to increased uncertainties (e.g., HF1000), and it serves as design criterion for water management 

infrastructure in this region and elsewhere. The study area is first introduced in section 2.1, followed by an 

overview of the climatological SMILE post-processing in section 2.2.1. The hydrological model setup used to 

produce the hydro-SMILE along with an evaluation of its performance are then presented in section 2.2.2. The 95 

subsequent sections describe the methods to illustrate the benefit of a hydro-SMILE for the estimation of peak 

flow with high return periods (section 2.2.3), to assess the influence of climate change on the change in magnitude 

and frequency of the 100-year flood (section 2.2.4), and to determine the changes in drivers of events with 

magnitudes of at least the 100-year flood (section 2.2.5). Finally, the results of the analysis are then presented in 

sections 3.1 to 3.3 and later discussed in section 4, followed by concluding remarks in section 5. 100 

2 Study Area, Data, and Methods 

2.1 Study Area 

This study focuses on the major Bavarian rivers, including the upper Danube upstream of Achleiten, Main, Inn, 

and upstream tributaries of the Elbe, as well as their smaller and larger tributaries originating from adjacent states 

(Bade-Württemberg, Hessen, Thuringia) and countries (Austria, Switzerland, Italy, Czech Republic).  The 105 

catchments of these rivers extend beyond the political borders of Bavaria (Figure 1). The entirety of these 

catchments is referred to as the Hydrological Bavaria in this study. 

The Hydrological Bavaria covers approximately 100,000 km² and features a diverse landscape ranging from the 

Alps (with the highest point being Piz Bernina at 4049 meters above sea level; m.a.s.l) and the alpine foreland in 

the south to the southern German escarpment in the north of the study area (with the lowest point being 90 m.a.s.l 110 

at Frankfurt-Osthafen) and the eastern mountain ranges to the east (Willkofer et al., 2020; Poschlod et al., 2020). 

The complexity of these landscapes and different climatological conditions (up to 1100 mm annual total 

precipitation sums in the north, 2500 mm in the south; an mean annual temperature of 10 °C in the north, down to 

5 °C (-8 °C on alpine summits; Poschlod et al. (2020)) in the south results in a variety of runoff regimes (Poschlod 

et al., 2020). 115 

The discharge of many rivers within the Hydrological Bavaria is influenced by artificial retention structures (i.e., 

dams, retention basins), naturally formed lakes, or transfer systems (drinking water supply, low flow elevation) 

(Willkofer et al., 2020). The major river catchments were divided into a total of 98 smaller sub-catchments to 

better represent the various flow regime types of the respective gauges which are further of common interest for 

flood protection (Willkofer et al., 2020). 120 
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Figure 1: Map showing the elevation of the Hydrological Bavaria (red line) which comprises the political Bavaria 

(dashed purple line) and the 98 hydrometric gauges used in this study as well as their respective discharge regime type 

(colored dots) at their respective rivers (blue lines). 125 

2.2 Data and Methods 

To assess the impact of climate change on extreme return periods of peak flows, the hydroclimatic modeling chain 

illustrated in Figure 2 was introduced within the scope of the ClimEx project (Climate Change and Hydrological 

Extreme Events, www.climex-project.org). This common chain is divided into a climate and a hydrological impact 

section and covers three spatial scales (GCM scale, RCM scale, hydrological model scale) with increasing 130 

resolution along the chain. 
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Figure 2: The ClimEx modelling chain uses the CanESM2 large ensemble (LE, gray, not created within the ClimEx 

project) to generate the CRCM5-LE. The CRCM5-LE is then used to explore the impacts of climate change on the 

hydrology of the Hydrological Bavaria through a hydrological large ensemble (Hydro-LE) created using the 135 
hydrological model WaSiM. The SDCLIREF dataset of interpolated meteorological observations was employed to 

calibrate and validate the hydrological model as well as for the bias correction. The CRCM5-LE represents a SMILE, 

consisting of a single model that downscales output from the employed ESM using slight differences in the initialization. 

Since the introduced model chain requires a vast number of computational resources, the ClimEx project employed 

the high-performance computing systems of the Leibniz Supercomputing Centre (LRZ) as well as its technical and 140 

consultative support to migrate and adapt software and data to its systems, facilitate calculations, and provide an 

extensive amount of storage to archive the data and make them available to the scientific community (data available 

at https://www.climex-project.org). 

2.2.1 Climate data 

A SMILE composed of 50 independent members of the Canadian Earth System Model, version 2 (CanESM2) 145 

large ensemble (LE) was used as a base for all further analysis. The CanESM2-LE was produced by the Canadian 

Centre for Climate Modelling and Analysis (CCCma) and described in previous publications (Fyfe et al., 2017; 

Kirchmeier-Young et al., 2017; Arora et al., 2011; Leduc et al., 2019). All members of the CanESM2-LE used 

natural and anthropogenic forcings for the historical period from 1950 to 2005 and the representative concentration 
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pathway 8.5 (RCP8.5; van Vuuren et al., 2011) emission scenario from 2006 to 2099 (Kirchmeier-Young et al., 150 

2017; Leduc et al., 2019; Fyfe et al., 2017; Sigmond et al., 2018). The individual members differ only in their 

initial conditions rather than changes in model structure, physics, or parameters, and therefore offer a range of 

internal or natural variability of the climate system at a global scale.  

These 50 members were dynamically downscaled from ~2.85° (≈ 310 km) to 0.11° (≈ 12 km) using the Canadian 

Regional Climate Model, version 5 (CRCM5; Martynov et al., 2013; Šeparović et al., 2013) over two spatial 155 

domains, the European and the northeastern North American domains (Leduc et al., 2019). As with the CanESM2-

LE, variations between the individual members were obtained by unique initial conditions for each member, thus 

providing a range of internal or natural variability on a regional scale. The resulting CRCM5 large ensemble 

(CRCM5-LE; Leduc et al., 2019) of 50 transient members provides the basis for assessing the impact of climate 

change on hydro-meteorological extreme events for the Hydrological Bavaria.  We focus on the model years 1961 160 

to 2099 as opposed to 1950 to 2099 to account for the time it takes for the RCM to produce fully independent 

realizations due to the inertia of the ocean model (Leduc et al., 2019). A comparison between the CRCM5-LE and 

the E-OBS observational gridded dataset (Haylock et al., 2008) at the CRCM5 grid revealed biases for a historical 

period between 1980 and 2012, showing regional and seasonal variations in magnitude of temperature and 

precipitation over Europe (Leduc et al., 2019). Since the creation of RCM-LEs is challenging in terms of 165 

computational demand (performance and storage) only a few are available to date (Addor and Fischer, 2015; Leduc 

et al., 2019; Aalbers et al., 2018; Brönnimann et al., 2018). However, all of the RCM-LEs differ in their domain 

size, spatial resolution and ensemble size. All RCM-LEs are ensembles of opportunity and are dependent on the 

availability of the driving GCM-LEs which in the CMIP5-phase are all based on RCP8.5. Thus, in this study only 

a single RCM-LE as well as a single scenario was employed. 170 

Since this bias was considered to affect the behavior of the outputs of the hydrological model due to shifts in 

seasonality and magnitude, a bias correction was applied. The required meteorological data of precipitation, air 

temperature, relative air humidity, incoming shortwave radiation, and wind speed were adjusted to match a 

meteorological reference of interpolated 3-hourly station data (Sub-Daily Climate Reference, SDCLIREF; Ludwig 

et al., 2019) on the RCM grid using an adaptation of the quantile-mapping approach after Mpelasoka and Chiew 175 

(2009). This approach as described in Willkofer et al. (2018) involved using multiplicative or additive correction 

factors, and was further adapted for using 3-hourly correction factors for every quantile and month (for further 

details, see S3). To preserve an internal spread between the members, a single set of factors was deduced from a 

combination of all 50 members. Despite the numerous benefits (increasing reliability of climate change projections 

of the hydrological impact model, reducing bias in mean annual discharge) and shortcomings (disrupting feedbacks 180 

between fluxes, modification of change signals, assumption of a stationary bias) of bias correction   (e.g., 
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Teutschbein and Seibert, 2012; Maraun, 2016; Ehret et al., 2012; Dettinger et al., 2004; Chen et al., 2021; Huang 

et al., 2014), bias correction is often inevitable for climate change impact studies (Gampe et al., 2019). 

Subsequently, the bias corrected data were statistically downscaled to the hydrological model scale (500 m x 500 

m) using a mass preserving approach. This approach involved the spatial interpolation (inverse distance weighting) 185 

of anomalies for each time step from the monthly mean reference state (1981-2010) at the CRCM5-LE cell center 

points to the hydrological model scale (Brunner et al., 2021b). The interpolated time step anomalies at the 

hydrological scale  were then applied (multiplied or added) to the respective gridded monthly climatological 

reference fields of the SDCLIREF (Brunner et al., 2021b). In order to ensure the mass conservation, the 

downscaled RCM data was upscaled to the original RCM grid scale (mass conservative remapping) and compared 190 

to the RCM timestep values, to determine any correction factors necessary which were then applied to the 

downscaled grid cells to close the mass balance. 

For further details, readers are referred to a comprehensive summary in the Supplementary Materials for the 

CanESM2-LE (S1), the CRCM5-LE (S2), and the bias correction (S3). 

2.2.2 Hydrological Model WaSiM 195 

The Water balance simulation Model (WaSiM; Schulla, 2021) was employed to perform the hydrological 

simulations driven by the CRCM5-LE resulting in a hydro-SMILE (the WaSiM-LE). WaSiM is a distributed, 

mostly physically-based, and deterministic model for simulations on various spatial (1 m to 10 km) and temporal 

(minute to daily) scales with a constant time step. It includes routines for evapotranspiration, snow accumulation 

and melt, glaciers, soil water transfer, groundwater, discharge generation and routing (Schulla, 2021). The model 200 

is frequently used for hydrological climate change impact studies for small-scale to mesoscale catchments on 

various topics, such as glaciers, groundwater, and discharge (Iacob et al., 2017; Neukum and Azzam, 2012; 

JÓNSDÓTTIR, 2008). 

The model was set up in high spatio-temporal resolution (500 m and 3 h) for 98 catchments of the Hydrological 

Bavaria with a focus on high flow representation using distributed data derived from the European DEM (EU-205 

DEM;  European Environment Agency, 2013b), land use data provided by the CORINE land cover dataset 

(European Environment Agency, 2013a), distributed soil information from the European Soil Database 

(ESDBv2.0; European Environment Agency, 2013a), as well as groundwater information provided by the 

Hydrogeologische Übersichtskarte (HÜK; Dörhöfer et al., 2001) and IMHE (IHME; BGR, 2014). A single set of 

parameters for distributed parameters (i.e., evapotranspiration, soil properties) was defined globally for the entire 210 

modeling domain (Willkofer et al., 2020). Although there are abundant in situ data available for the study region, 

these are mainly provided as point measurements which are often representative of the entire catchment area and 
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therefore require interpolation to the hydrological model resolution which can introduce large uncertainties. 

Furthermore, some approaches of the hydrological model offer free parameters which cannot be measured. Hence, 

a calibration of the model for a limited number of free as well as usually locally measurable parameters was deemed 215 

necessary. For further details about the model calibration procedure we would like to refer to Willkofer et al. 

(2020). Local parameters for discharge storage components (i.e., interflow, direct flow) were calibrated using an 

automated algorithm (dynamically dimensioned search (Tolson and Shoemaker, 2007) and simulated annealing 

with progressing iterations  (Černý, 1985; Kirkpatrick et al., 1983)) minimizing a weighted combination of 

performance metrics (overall metric OM; Eq. 1), including Nash and Sutcliff efficiency (NSE; Nash and Sutcliffe, 220 

1970), Kling-Gupta efficiency (KGE; Gupta et al., 2009), the logarithmic NSE and the ratio of root mean squared 

error to standard deviation (RSR; Moriasi et al. (2007)) (Willkofer et al., 2020). A best fit would result in OM = 

0, with larger deviations from 0 indicating a worse model fit. Due to the focus on high flow representation more 

emphasis was placed on the respective measures (i.e., NSE and KGE). For further details about the model setup 

the reader is referred to Willkofer et al. (2020).  225 

𝑂𝑀 = 0.5 × (1 − 𝑁𝑆𝐸) + 0.25 × (1 − 𝐾𝐺𝐸) + 0.15 × (1 − 𝑙𝑜𝑔𝑁𝑆𝐸) + 0.1 × 𝑅𝑆𝑅   (1) 

The simulations of a single parameter set for various catchments within a heterogeneous landscape revealed 

satisfactory to very good results for most of the 98 gauges during the 30-year reference period of 1981 to 2010. 

However, for a few gauges, the model was not able to reproduce the observed discharge satisfactorily (16 (5) 

gauges showing NSE (KGE) values below 0.5, see also Figure S1 a and b in the supplements S4) (Willkofer et al., 230 

2020; Poschlod et al., 2020). Furthermore, the simulations reproduced the mean high flow sufficiently well, with 

over 60% of the gauges showing absolute deviations from observed values below 20%. Nonetheless, gauges in 

alpine or pre-alpine catchments exhibited a deficit in mean high flow values due to the lack of observed 

precipitation resulting from an undercatch of precipitation for that region (Poschlod et al., 2020). Consequently, 

the level of trust (LOT) for peak flows of return periods of 5, 10, and 20 years flood events, introduced in Willkofer 235 

et al. (2020) showed a moderate to high confidence for most catchments. The LOT further depends on the model 

performance to a certain degree, where gauges depicting a lower model performance often exhibit a lower LOT as 

well. LOT were not provided for extreme flood events (i.e., 100-year flood events) since they are subject to 

significant epistemic uncertainty due to the restricted availability of simulated data (30 years). In Brunner et al. 

(2021a) the same hydrological model simulations were evaluated on a daily timescale, in contrast to the 3-hourly 240 

timescale here, in terms of general evaluation metrics (i.e., NSE, KGE, volume efficiency, and mean absolute 

error), as well as for flood specific characteristics (i.e., number of events, mean timing of the event, mean volume, 

mean duration). The evaluation of flood characteristics showed a good agreement on the number of events showing 
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only a slight underestimation of events, a good agreement on the timing of events with only a slight delay in flood 

occurrence, as well as an overestimation of flood volume and duration. 245 

Due to the holistic calibration approach employing a single set of parameters over several heterogeneous 

catchments, the in parts poor performance of individual catchments can be expected, as catchment specific 

characteristics can only be considered to a certain extent (e.g., kastic soils, transfer systems, artificial reservoirs). 

While calibrating each catchment individually might lead to a higher performance at the respective catchment 

scale, it also increases the likelihood of overfitting. Furthermore, since the hydrological model serves for climate 250 

change impact analysis, relative change values are of more interest than changes in absolute values. Nonetheless, 

the performance must be considered for interpretation. A brief overview of the model’s performance for each 

gauge is given in the supplement materials (S4)  

The resulting hydro-SMILE comprises 50 members of transient simulated data from 1961 to 2099, providing a 

total of 6,950 model years to be exploited to analyze extreme values. 255 

2.2.3 Benefit of a hydro-SMILE for the estimation of extreme peak flows 

This study used the simulated discharge for the reference period of 1981 to 2010 out of the entire dataset to assess 

the benefits of the hydro-SMILE in estimating return levels. Like the individual members of the CRCM5-LE, the 

members of the WaSiM-LE are equally probable and, therefore, provide a comprehensive database to facilitate the 

analysis of extreme values. 260 
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Figure 3: Process chain illustrating the benefit of a hydro-SMILE for climate change impact studies on peak flows of 

extreme return periods. The process includes extreme value analysis (EVA) based on annual maximum (AM), with 

bootstrapping resampling to create n different samples of sample size (m). The probability of non-exceedance (p) and 265 
the Generalized Extreme Value (GEV) distribution with the L-Moments (LM) estimators are used to derive estimates 

for high flow values of the return period T (HFT) for the samples (m), all data (1500), and the benchmark (BM). The 

statistical analysis was performed using the extRemes package (v2.0) for R (Gilleland and Katz, 2016). 

Figure 3 illustrates the approach taken to emphasize the benefits of the hydro-SMILE in analyzing peak flows of 

high return periods for the reference period. The 30-year reference period (ref) was selected for all 50 members, 270 

resulting in 1,500 model years (50 members x 30 years) of discharge data for each of the 98 gauges. First, the 

annual maximum of each model year (hydrological year) was extracted for the analysis. Since the database consists 

of 1,500 model years, this number is considered sufficient to employ empirical non-exceedance probabilities 

(Martel et al., 2020). However, to demonstrate the benefit of the hydro-SMILE database a statistical analysis using 

the stationary Generalize Extreme Value (GEV) distribution was also conducted for comparison purposes. A 275 

bootstrapping approach with resampling was used to create 1,000 samples (n) of different sizes m (30, 100, 200) 

years (each sample without replacement). Using 1,000 samples ensures that one value of the 1,500 AM has a 

chance of >99% of being selected by chance for m = 30. The GEV was employed to estimate the return periods 

and corresponding confidence intervals. The parameters of the GEV distribution were estimated using L-Moments. 

The GEV distribution was selected as it is among the better performing methods relying on AM (Bezak et al., 280 

2014) and is the recommended choice for German gauges (Salinas et al., 2014; Fischer and Schumann, 2016). 

Although the sample size of 30 and 100 AM may be small for estimating peak flows of high return periods, they 

were selected along with a size of 200 AM as they represent an average (30 years) to rare (100 & 200 years) data 

availability of observed discharge values at different gauges (GRDC, 2021). The resulting 1,000 estimates for 

return levels of peak flows offer a comprehensive database to demonstrate the benefit of the hydro-SMILE. 285 

Additionally, the GEV was calculated using the entire 1,500 AM database for each gauge to allow for a comparison 

with a benchmark value. This benchmark for the return levels of peak discharge was deduced by applying the 

quantile based on the empirical probability of non-exceedance p (Eq. (2)) to all 1,500 AM values for each gauge, 

and it is considered to represent a robust estimate. This analysis focused on the 100-year flood, which is an event 
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of a 100-year return period 𝑇 (HF100; T = 100) and the corresponding 99th percentile 𝑝 of the distribution of the 290 

1,500 AM values as a benchmark. 

𝑝 = 1 −
1

𝑇
           (2) 

Values for the benchmark derived by the empirical probability as well as the HF100 values estimated using the 

GEV are further normalized to the benchmark to allow for a better comparison. 

2.2.4 Projection of changes in frequency and magnitude 295 

This study further investigates the dynamics of magnitude and frequency of the HF100 for three future periods (near 

future: 2020-2049; mid future: 2040-2069; far future: 2070-2099). Therefore, the robust estimates of extreme 

return levels of peak flows derived by the empirical probabilities are used for the assessment of climate change 

impacts on their magnitude (CM, Eq. (3)) and frequency (CF, Eq. (4a to c)) in the three future periods. 

𝐶𝑀 = (
𝐻𝐹𝑇𝑓𝑢𝑡−𝐻𝐹𝑇𝑟𝑒𝑓

𝐻𝐹𝑇𝑟𝑒𝑓
) ∙ 100 %         (3) 300 

𝐶𝐹 =
1

1−𝑓(𝐻𝐹𝑇𝑟𝑒𝑓
)
           (4a) 

𝑓 = 𝐹 (𝐻𝐹𝑇𝑓𝑢𝑡)           (4b) 

𝐹(𝑥) = ∑ ℎ𝑖
𝑗
𝑖=1 = ∑

ℎ(𝑥𝑖)

𝑛

𝑗
𝑖=1          (4c) 

The change in magnitude is given as the difference between the future (HFTfut) and reference value (HFTref) relative 

to the reference value in percent. The change in frequency is expressed as the return period value T and is calculated 305 

by applying the empirical cumulative distribution function F (ECDF with frequency for an event hi described as 

the ratio between the frequency for the specific event h(xi) and the number of all values n, Eq. (4c)) for the respective 

future period (f, Eq. (4b)) to the value of the 100-year flood of the reference period (Eq. (4a)). The percentile value 

of f for the reference 100-year flood value is then used to deduce the future return period by solving the empirical 

probability of non-exceedance for the return period T (Eq. (4a)). The change signals are calculated for each of the 310 

above mentioned 30-year future periods. However, this analysis requires stationarity for the underlying data. Since 

we use the entire 1,500 model years provided by the 50 members, we determine stationarity if less than 5 % of the 

members exhibit a significant trend for each individual gauge. A Mann-Kendall (MK) test for stationarity 

conducted on each individual member and gauge revealed no significant trend for the reference period (with 

significance level α = 0.01) for more than 95 % of the members along all gauges. However, for the future periods 315 

the MK test exhibits significant trends for more than 5 % of the members in 6 of the 98 gauges. Limiting the 
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evaluation periods to 20 years instead of 30 years lead to similar results for the MK test showing no apparent trend 

for all gauges in the reference period, but showing for at least one gauge a significant trend (more than 5 % of 

members with a trend) in the future periods. Studies by Poschlod et al. (2020) and Brunner et al. (2021b) conducted 

their analysis on the same database using time slices of at least 30 years as well. Thus, we choose to use 30-year 320 

periods since stationarity criteria are met in most catchments and opt for the larger database, as well as maintaining 

consistency with these studies. 

2.2.5 Dynamics in driving mechanisms 

The employed process-based hydrological model allows for a more detailed investigation of the dynamics in 

driving mechanisms of extreme discharges of the 100-year flood and beyond. First, extreme events of magnitudes 325 

of at least the HF100 are extracted for each of the 98 gauges and 50 members of the hydro-LE. To avoid sampling 

a single event multiple times a 5-day period was used to separate individual events as suggested by Svensson et 

al. (2005). The starting date of the events served as entry to extract data from potential flood drivers which include 

precipitation, melt from snow and glaciers, and soil water content prior to the event. Precipitation events were 

further separated into heavy rain events (hr) and steady rain events (sr), while there was no distinction between 330 

liquid and solid precipitation. The respective thresholds to identify and separate the different precipitation event 

types (see Table 1) were adopted from the German Weather Service (DWD, Deutscher Wetterdienst, 2024). 

Table 1: Thresholds for the identification of the driving mechanism (driver) of extreme discharge events above HF100. 

P represents the precipitation events heavy rain (hr) and steady rain (sr), Melt represents melting water from snow and 

glaciers (in mm snow water equivalent), and SWCroot represents the soil water content of the soil’s root zone. 335 

Driver Sub-category Volume  Accumulation period  

P hr 15 mm 3 h 

 hr 20 mm 6 h 

 sr 25 mm 12 h 

 sr 30 mm 24 h 

 sr 40 mm 48 h 

 sr 60 mm 72 h 

Melt snow 15 mm 2 weeks 

 glacier 15 mm 2 weeks 

SWCroot  110% * μ(SWCroot)REF 2 weeks 

 

A melt driven event (snow and/or glacier) was identified if the snow water equivalent from melt exceeded 15 mm 

prior two weeks of the event (adapted from Brunner et al., 2021b). Extreme discharge events may as well be caused 

by a superposition of these driving mechanisms and are often referred to as compound events (e.g., rain on snow, 

rain on saturated soils). Thus, if more than one driver is identified, we ascribe it to the compound event type. 340 

Furthermore, since an elevated soil water content cannot be responsible for an extreme discharge event alone, it is 
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only considered as a contributing factor and is always part of the compound event type. In this case, the 

contribution of an elevated soil water content is considered when the soil water content is 10% higher than the 

long term mean soil water content for the entire reference period. All possible combinations (single drivers and 

compound events) result in 32 different or superimposed mechanisms. To reduce complexity and to focus on 345 

specific aspects of the different drivers we aggregate the 32 possible combinations to six different major 

contributions listed in Table 2.  

Table 2: Composition of the different drivers for the analysis of the dynamics of the HF100 driving mechanisms. 

Melt vs. rainfall 

Melt only melt events and associated compounds - excluding rainfall compounds 

Rainfall all rainfall driven events and associated compounds - including compounds with melt events 

Heavy rainfall vs. steady rainfall 

heavy rainfall all event types which include heavy rain – including compounds with steady rainfall 

steady rainfall all event types which include steady rain – excluding any compounds with heavy rainfall 

Single vs. compound event 

single event all events caused by a single driver 

compound event all events caused by multiple drivers 

 

First, we analyze the dynamics of melt versus rainfall events, second the dynamics of heavy rainfall (convective 350 

events) versus steady rainfall (advective events) are investigated, and third we illustrate the dynamics of single 

drivers (any type) versus compound events (any type). 

3 Results 

3.1 Benefits of hydro-SMILEs for the estimation of extreme return periods of peak flows 

Large ensembles provide a vast amount of data, therefore they are considered to be beneficial for extreme value 355 

analysis (Kendon et al., 2008; Kjellström et al., 2013; Wood and Ludwig, 2020). The benefit of a hydro-SMILE 

to determine robust extreme hydrological discharge values for Hydrological Bavaria are analyzed, specifically for 

the 100-year flood. The robust values for the discharge gauges, derived using the empirical probability of non-

exceedance for a 100-year event, serve as a benchmark for comparison with values derived by the GEV distribution 

using three different sample sizes (30, 100, 200) of AM values (Figure 4). 360 

The results shown in Figure 4 (a, b, and c) illustrate that the estimates of HF100 are more robust with an increasing 

number of AM values used for the GEV, as indicated by the decreasing spread of the blue markers around the 

black benchmark line with increasing sample size. Table 3 summarizes the statistical characteristics of the 

deviation of the estimates from the benchmark across all 98 gauges. While the range of the relative deviation of 



15 

 

the 1,000 samples of HF100 estimates from the benchmark is between 0.33 and 2.71 when calculated with a sample 365 

size of 30 AM values (Figure 4a), this range diminishes to 0.49 and 1.91 for 100 AM values (Figure 4 b) and 0.56 

and 1.60 for 200 AM values (Figure 4 c). Therefore, the range of the 1,000 estimates diminishes with an increase 

in sample size and the values cluster more densely around the benchmark. However, despite the remaining non-

negligible range of deviations from the benchmark, the mean (1.01) as well as the median (0.98 to 1.0) across all 

values for all gauges are close to the benchmark value for different sample sizes. The inner 50 % of the 1000 370 

samples across all 98 gauges exhibit the largest deviation with a sample size of 30 AM (between 0.84 and 1.15) 

and the lowest for 200 AM (0.94 to 1.07). Therefore, only 25 percent of the samples show underestimations below 

0.84 (0.92, 0.94) and only 75 percent exhibit larger overestimations than 1.15 (1.08, 1.07) with a sample size of 

30 AM (100 AM, 200 AM). Thus, with deviations larger than 15 % for 50 percent of the estimates calculated using 

a sample size of 30 AM, only half of the estimated HF100 values are within an acceptable range (±15 %, considering 375 

model parameter uncertainty and errors in observations affecting the model quality regarding high flows) 

compared to the benchmark. This number increases with a larger sample size. 

Table 3: Summary of overall statistics of the relative deviation of the HF100 estimates from the benchmark value across 

all gauges. The table incldues the number of sample (n), sample size (m) given in annual maximum (AM) values and the 

0.25/0.75 quantile (Q25, Q75) values. 380 

N m minimum Q25 mean median Q75 maximum 

1000 30 0.33 0.84 1.01 0.98 1.15 2.71 

1000 100 0.49 0.92 1.01 1.00 1.08 1.91 

1000 200 0.56 0.94 1.01 1.00 1.07 1.60 

1 1500 0.98 1.00 1.02 1.01 1.03 1.09 

 
While the majority of gauges show estimates that are evenly distributed around the benchmark, some gauges 

exhibit a tendency towards over- or underestimation of the HF100 estimates with more values falling above or 

below the benchmark line. This behavior may be different when using more than 1000 samples to conduct the 

analysis. The difference between the benchmark value obtained from empirical probability and the estimates 385 

obtained from the GEV distribution can vary greatly depending on the samples selected from 1,500 AM values. 
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Figure 4: Comparison of HF100 estimates calculated using the GEV distribution with 1000 AM samples of a) 30, b) 100, 

and c) 200 years per gauge (blue markers) with the respective benchmark value (solid black line) for 98 gauges.  

 390 
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A comparison between the HF100 estimates derived using the empirical probability of non-exceedance and those 

obtained using the GEV distribution is shown in the supplements (S5). The values gained by the GEV distribution 

still exhibit deviations from the benchmark, although being marginally different from it. 

3.2 Changing dynamics of the 100-year peak flows in future projections 

The changes in 100-year peak flows (HF100) for the investigated gauges in Hydrological Bavaria in the 21st century 395 

are summarized for five distinct discharge regimes (defined by the Pardé coefficient) which were adapted from 

Poschlod et al. (2020) (Figure 1). The regimes comprise the glacio-nival regime of four high Alpine catchments, 

a nival regime of mostly Alpine to pre-Alpine catchments, a nivo-pluvial regime of pre-Alpine catchments, a 

balanced pluvial regime (little variation in mean monthly discharges) along the Danube and its tributaries in the 

Alpine foreland, and the unbalanced pluvial regime (more pronounced peak in monthly discharge from January to 400 

March) (Poschlod et al., 2020). One gauge that was originally assigned to its own regime in Poschlod et al. (2020) 

has been re-allocated to the pluvial (unbalanced) regime, as it exhibits a similar mean discharge behavior. 

Within the study area, the flood protection structures are typically desinged based on a stipulated estimation of 

HF100 from observations, which represent a stationary condition in the past. Any future increase in the magnitude 

and frequency of these extreme values poses a threat to these structures. Therefore, the following graphs highlight 405 

the changes of the HF100 events for the three future periods. 

Figure 5 displays violin plots that illustrate the range of changes in the magnitude of HF100 events for the different 

discharge regimes as well as the distribution of changes across the respective clusters of gauges for the near 

(horizon 2035), mid (horizon 2055), and far future (horizon 2085) periods. Overall, 78 % of all gauges (76/98) 

show an increase in magnitude for the 2035 horizon, 76 % (74/98) for the 2055 horizon, and 89 % (87/98) for the 410 

2085 horizon. 
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Figure 5: Violin-plots indicating the changes of the magnitude of the HF100 for the three future periods (near, mid, far) 

compared to the reference period, with changes presented as relative difference (Λrel) between the reference and the 

future HF100 value for each gauge. Results of the 98 gauges are aggregated for the five discharge regimes (a = glacio-415 
nival, b = nival, c = nivo-pluvial, d = pluvial (balanced), e = pluvial (unbalanced)). The figures display the total number 

of gauges per regime as well as the number of gauges depicting an increase in magnitude.  

The CCI are most severe for the glacio-nival regime (Figure 6a), as all three future periods exhibit an increase in 

magnitude of the HF100 events of at least 10% compared to the reference period. The nivo-pluvial regime (Figure 

6c) shows the smallest spread and the lowest increase in HF100 magnitude across all future periods compared to 420 
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the reference period. As the distance from the Alps increases and the discharge regimes shift from snowmelt 

influenced to more precipitation driven, the number of gauges projecting a decrease in HF100 intensities increases. 

However, the majority of gauges still exhibit an increase in intensities, with up to 18.8% for the nivo-pluvial Figure 

5c), 26.6% for the balanced pluvial (Figure 5d), and 43 % for the unbalanced pluvial regime (Figure 5e) in the far 

future. The gradient of an increase in magnitude over all three projection periods is small for the nivo-pluvial and 425 

balanced pluvial regimes, which show the least intensification of HF100 values for the respective periods. However, 

the gradient of increase is more distinct for the remaining regimes, with the largest increase in the glacio-nival 

regime (Figure 5a). The gauges in this regime depict the strongest increase in HF100 intensities for the 2085 horizon, 

with an increase of 36.6 % to 104.7 %. 

Based on the future projections of the hydro-SMILE, the discharge values of the HF100 are likely to increase for 430 

most of the gauges of Hydrological Bavaria. Consequently, the frequency of the HF100 discharge for the reference 

period also increases. Figure 6 shows the change in frequency between the future and the reference period for the 

different regimes. 
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Figure 6: Violin-plots indicating the changes of the frequency of the HF100 for the three future periods (near, mid, far) 435 
compared to the reference period, with changes presented as absolute values of return periods (T[a]) of the respective 

future period compared to the 100-year return period for each gauge. Results of the 98 gauges are aggregated for the 

five discharge regime (a = glacio-nival, b = nival, c = nivo-pluvial, d = pluvial (balanced), e = pluvial (unbalanced)). The 

figures display the total number of gauges per regime as well as the number of gauges depicting an increased frequency.  

Values indicate the new return period associated with the HF100 discharge from the reference period. This means 440 

values below 100 indicate an increase in frequency. The glacio-nival regime (Figure 6a) also exhibits the strongest 

increase in frequency among all regimes with the HF100 of the past becoming equivalent to a 31- to 43-year event 
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in the near future, thus becoming roughly two to three times more frequent. For the 2085 horizon the same HF100 

event becomes an 8- to 14-year event showing a seven to twelve-fold increase in frequency. A similar development 

is visible for some gauges in the nival regime (Figure 6b). While the violin plot for this regime indicates that the 445 

reference 100-year event will become a 70-year event for more than 50% of gauges, some gauges show no or only 

a minor increase in frequency as well. The changes for the remaining regimes are less severe, but still indicate an 

increase in frequency for up to 50 % of the respective gauges until the middle of the century and more than 50 % 

in the far future. The changes for the nivo-pluvial regime (Figure 6c) and the unbalanced pluvial (Figure 6d) regime 

show that the frequency declines for less than 50 % of the gauges in the near and mid future period. Therefore, the 450 

100-year event becomes more frequent for more than 50 % of the gauges with varying extent. While the magnitude 

of changes is similarly moderate (except for the far future) for Figure 6c and Figure 6e, projected future return 

periods for the HF100 event for Figure 6d depict stronger change signals towards higher frequencies with more than 

50 % of gauges showing values smaller than 60 years. Furthermore, the nivo-pluvial as well as the balanced and 

unbalanced pluvial regimes exhibit a slight decrease in frequency in the mid future compared to the remaining 455 

projection periods while the magnitude does not show this behavior. However, this circumstance may be explained 

by the change in driving agent from snowmelt driven events in the near future to rainfall induced events at the end 

of the century. Thus, at the 2055 horizon the shift of the ratio of both event types contributes to this slight decline 

in frequency. 

Some gauges within the nivo-pluvial and both pluvial regimes depict an in parts large decrease in frequency and/or 460 

magnitude. These gauges usually exhibit natural or artificial influences, such as the retention effect of natural 

lakes, reservoirs, or diversions or gauges of small catchments which might experience less dynamics in changes 

of flood drivers or even a reduction. 

Overall, the changes in frequency and magnitude due to the projected changes in climate according to the CRCM5-

LE become less severe with increasing distance from the Alps. Furthermore, the increase in frequency and 465 

magnitude for alpine catchments is seemingly high, but in line with the results of Hattermann et al. (2018), which 

showed comparable results for the near future period (100-year event frequency between 20 and 40 years). The 

influencing factors for these in parts severe changes are manifold. However, Brunner et al. (2021b) analyzed the 

relation between the extremeness of precipitation and discharge for 78 out of the 98 gauges within Hydrological 

Bavaria and concluded that an increase in extreme precipitation magnitude is of higher importance for extreme 470 

return levels of discharge than land surface processes, such as antecedent soil moisture or changes in snowpack 

due to warmer temperatures. If precipitation volumes are sufficiently large, they quickly saturate the soil or yield 

an excessive amount of direct runoff due to infiltration excess (Brunner et al., 2021b).  
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The mean magnitude of the annual maximum precipitation is projected to change for different temporal 

aggregation levels (3-hourly to 5-daily) in the CRCM5-LE (Wood and Ludwig, 2020), as well as the magnitude 475 

of 100-year return period rainfall increases by 10-20% and the frequency increases by 2 to 4 times (Martel et al., 

2020) for Hydrological Bavaria. The changes are associated with seasonal shifts from summer to winter events 

and are particularly pronounced in the Alpine region (Martel et al., 2020; Wood and Ludwig, 2020). Severe floods 

that occur simultaneously in different catchments of the study area are usually associated with a cutoff low Vb 

cyclone that results in prolonged precipitation events lasting up to 15 days over the same region (Stahl and 480 

Hofstätter, 2018; Mittermeier et al., 2019). Under changing climate conditions projected by the CRCM5-LE by 

the end of the 21st century employing the RCP8.5 scenario, these events are likely to intensify in volume and 

frequency during winter and spring and occur less frequently during the summer months but with an increased 

precipitation volume (Mittermeier et al., 2019). 

The spatial distribution of the dynamics in HF100 frequency and magnitude is shown in the supplements (S6). 485 

3.3 Changes in driving mechanisms 

Figures 7 shows the dynamics of three different combinations of driving mechanisms (columns of panels) listed 

in Table 1 for extreme discharge events equal to and above the HF100 between the reference period (REF) and the 

three future periods (FUT1 to FUT3) for the five different discharge regime types (rows of panels). As mentioned 

in the methodology section, the 32 possible combinations were aggregated to six groups as listed in Table 2. 490 
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Figure 7: Dynamics in driving mechanisms of floods equal to or larger than the HF100 for the five different discharge 

regimes and its change over time. The columns of panels show the composition of melt vs. rainfall driven events (left), 495 
heavy rainfall vs. steady rainfall events (center) and single vs. compound events (right). The rows of panels correspond 

to the five different discharge regimes as indicated by the regime type on the right y-axis. The bars in each individual 

panel show the cumulative ration of the different mechanisms for the reference period (REF, 1981-2010) in the first bar 

and the following bars represent the different future periods (FUT1: 2021-2040; FUT2: 2041-2070; FUT3: 2070-2099). 
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The first column of panels in Figure 7 show the changes in the ratio between snow melt driven events (excluding 500 

rainfall compounds) and rainfall driven events (including melt compounds). Panels f) - j) show the changes in the 

ratio between heavy rainfall and steady rain events (excluding snow melt events from Figure a) - e)), and panels 

k) - o) depict the changes in the ratio of events that can be attributed to a single cause and to a compound of drivers. 

The glacio-nival and the nival regimes show the highest ratio of snow melt driven events (Figure 7a and b). For 

the reference period, this event type is the major driver for the extreme discharges for the glacio-nival regime 505 

(67.7%) while for all other regimes and periods rainfall and its compounds dominates the ratio. Figures 7a to e 

also show a 7th category ‘other’ which in this case comprises events which could not be ascribed to any of the 

investigated drivers and are likely events that originate from an upstream flood. All regimes indicate a decrease in 

snow melt driven event types form the REF period to the far future (FUT3) period, with the largest decrease visible 

for the glacio-nival regime (67.7% to 20.6%). In the nivo-pluvial and pluvial regimes (Figures 7c to e) the ratio of 510 

snow melt event types becomes neglectable in the future with values of only slightly above 0%. Furthermore, the 

ratio of snow melt events diminishes from the glacio-nival and nival regime to the pluvial regimes (Figure 7c to 

e) with an increasing distance to the Alps. The pluvial regimes (Figure 7d and e) show only minor changes in the 

ratio of rainfall events from REF to FUT3 (89.3% to 80.6% for the unbalanced and 84.6% to 87.5% for the balanced 

regime). With snow melt driven events disappearing in future periods, this indicates that more events are driven 515 

factors falling in the category ‘other’ with an increase of this category especially in the nival (3.2% to 10.1%) and 

unbalanced pluvial regime (9.2% to 18.9%). Overall, these results indicate a reduction in snow accumulation 

during the winter due to an increase in winterly temperatures between 3°C and 5°C as projected by the driving 

CRCM5-LE for the end of the century (FUT3) for middle Europe (von Trentini et al., 2020). For the glacio-nival 

and nival regime the large decay of snow melt ratio also indicates a reduced contribution of melt from glaciers due 520 

to severe loss of mass towards the far future. 

Figure 7 f) – j) illustrate the dynamics in the ratio of hr and sr event types, therefore representing only the rainfall 

part of Figures 7a to e. In all five regime types, the hr event type and its compounds (including compounds with 

sr) are the dominant driver with a ratio of 58.8% in the pluvial unbalanced regime (REF) to 88.4% in the glactio-

nival regime (FUT3). The percentage of hr events increases towards the end of the century for all regimes by 4 525 

(pluvial balanced) to 17.2 (pluvial unbalanced) percent points except for the pluvio-nival regime, where the 

percentages first increase from REF in FUT1 (88.9%) and FUT2 (89.2%) and then decrease again for FUT3 to the 

level of REF (REF: 84.4%; FUT3: 84.8%). The glacio-nival and pluvial unbalanced regimes show the strongest 

increase in hr event types from REF to FUT3 with 14.7 and 17.2 percent points respectively. The dynamics for 

these regimes may be caused by an increase in summerly (between 5°C and 6.5°C), but also spring and fall 530 

temperatures towards the end of the century as projected by the CRCM5-LE (von Trentini et al., 2020). The higher 
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temperatures result in more available water vapor and thus, precipitable water in the atmosphere and a higher 

potential for convective (hr) events, especially over the Alps (Giorgi et al., 2016). Furthermore, the strong increase 

for the alpine gauges of the glacio-nival regime may be related to a stronger increase of heavy precipitation events 

over the Alps compared to regimes outside the Alps (Wood and Ludwig, 2020). In general, the balanced and 535 

unbalanced pluvial regimes show the lowest contribution of hr events (59% and 58.3% in REF) and therefore any 

change in the number of hr events or a general increase in the intensity of short duration rainfall might lead to 

more events being classified as hr compounds. Whereas in other regimes the hr compound is already large and 

hence, any changes in the rainfall dynamics will only yield a limited increase in the event classification. 

Figures 7 k) – o) illustrate the dynamics in the ratio between single driver event types and compound event types 540 

for the five different regimes. The compound class here complrises the snow melt and rainfall event types in 

Figures 7 a) – e), neglecting events classified as ‘other’. Therefore, single driver event types depict events caused 

by only one of the driving mechanisms listed in Table 1, whereas compound event types comprise all other possible 

combinations. In all five regims and time periods, compound drivers are attributed to at least 50.7% (FUT3, pluvial 

unbalanced) up to 82.9% (FUT3, nivo-pluvial) of events. Except for the two pluvial regimes (balanced and 545 

unbalanced) there is only very little change in the ratio. For these regimes the number of events caused by a single 

driver increases form REF to FUT3 by 6 and 18.8 percent points for the balanced and unbalanced regime 

respectively. This strong signal in the dynamics for the unbalanced pluvial regime indicates an increase in short 

events of high intensity which in turn may lead to a higher risk for flash floods. The nivo-pluvial regime further 

depicts a slight decrease in events caused by a single driver from REF to FUT3 by 8.8 percent points. 550 

 

4 Discussion 

The variability of statistical characteristics within a time series can affect the estimation of extreme values due to 

extraordinary events (Fischer and Schumann, 2016). The results of this study emphasize the benefit of using data 

provided by a climatological SMILE for hydrological impact studies as it provides a profound basis for extreme 555 

value statistics and allows for more accurate estimation of extreme values, as also shown by other studies 

(Champagne et al., 2020; Ehmele et al., 2020; Maher et al., 2021). However, the in parts large deviations between 

the benchmark (robust estimate derived from the empirical probability for a 100-year flood event using 1,500 AM 

values) and the estimates derived using a GEV based on different sample sizes (30, 100, 200) might be reduced 

when using an extreme value distribution which is better suited for the respective sample when enough data is 560 

available (i.e., when using a hydro-SMILEas shown here). In some cases the GEV might not be the best distribution 
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for the samples of the respective gauge which might affect the differences from the benchmark since higher 

quantiles heavily depend on the distribution (Schulz and Bernhardt, 2016). However, the approach presented in 

this study illustrates the benefit of a hydro-SMILE as it provides a more robust estimate by employing empirical 

probabilities for the deduction of extreme values. Therefore, these robust estimates allow for a more robust 565 

assessment of future dynamics of extreme high flows. 

The results of this study are subject to uncertainties (parameter, process description) as they are produced by data 

created at the end of a cascade of modeling steps usually applied for climate change impact studies as displayed 

in Figure 2. Different components (e.g., climate model, hydrological model, bias correction) affect different 

discharge characteristics or indicators (e.g., extreme indicators, mean discharge) (Gampe et al., 2019; Muerth et 570 

al., 2012; Muerth et al., 2013; Velázquez et al., 2013; Willkofer et al., 2018). A thorough assessment of the 

contribution of the chain compartments to the overall uncertainty would require an ensemble of multiple climate 

and hydrological models. 

The overall strong increase in frequency and magnitude of the HF100 in the future may be driven by deficiencies 

of the employed hydrological model, such as generalized glacier model among affected catchments, or a single 575 

snow melt approach for the entire Hydrological Bavaria (as described in Willkofer et al., 2020). However, as stated 

in the previous section, this scale of change was also found by Hattermann et al. (2018) for the upper Danube basin 

using the same emission scenario projections, but a different hydrological and climate model, which might indicate 

that the change signals are likely independent of the chosen hydrological or climate model. However, several 

gauges north of the Alps exhibit a decrease in frequency and magnitude of HF100 over the three different future 580 

periods compared to the reference period. As mentioned, these gauges are in parts affected by artificial or natural 

retention (e.g., reservoirs) or transfer systems which are implemented in the model and thus may influence the 

results. Additionally, despite the projected increase in extreme rainfall events of the CRCM5-LE even north of the 

Alps (Wood and Ludwig, 2020), the non-linear behavior of the processes involved in runoff generation may not 

translate this increase into extreme discharge events (Brunner et al., 2021a). Furthermore, this increase in extreme 585 

rainfall events is less severe north of the Alps (Wood and Ludwig, 2020), which may further contribute to the 

decline or minor increase in frequency and magnitude of the HF100 events . 

The results of the CCI on the frequency and magnitude also depend on the performance of the hydrological model. 

Since it relies on observations for parameter calibration, the quality of this data is crucial, especially for extreme 

values. For the most extreme events (e.g., HF100 and above) the river may inundate the surrounding area and the 590 

water level / discharge relationship at the gauging station used to determine discharge values may not be valid 

anymore and is likely to underestimate the peak discharge. Therefore, the actual observed discharge – and thus, 

the calibrated model – is prone to these measurement uncertainties. This is a general limitation in hydrological 
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modeling. Furthermore, the discharge of rivers within Hydrological Bavaria is heavily impacted by management 

structures for flood protection or hydro power generation, especially the southern tributaries of the Danube in the 595 

Alpine foreland and within the Alps are heavily regulated. Since the management follows somewhat fuzzy rules 

and actual data is restricted by private companies in most cases, the management rules for these structures must 

be deduced from publicly available data and implemented in the hydrological model. These rules are susceptible 

to extreme conditions as they do not allow for adaptations during model runtime (e.g., flushing a reservoir prior to 

an anticipated heavy precipitation event). 600 

The projected future changes in extreme discharges may be attributed in part, to the climatological reference 

dataset, as it affects the performance of the hydrological model as well as the CCS through bias adjustment (Gampe 

et al., 2019; Meyer et al., 2019; Willkofer et al., 2018). Precipitation in high altitudes (e.g., the Alps) may be under-

captured (Westra et al., 2014; Poschlod, 2021; Prein and Gobiet, 2017; Rauthe et al., 2013; Poschlod et al., 2020; 

Willkofer et al., 2020) resulting in an underestimation of observed precipitation in these regions, especially of 605 

extreme values. Assuming a temporally stationary bias, changes in the extremes might be overestimated due to an 

over-adjustment of the distribution of the reference period towards underestimated observations compared to the 

future periods. Furthermore, the variables are adjusted individually and thus, physical coherency as for a 

multivariate approach proposed by Meyer et al. (2019) is not guaranteed. This specifically affects discharges 

governed by snow or glacier melt of higher elevation within the Alps (Meyer et al., 2019). 610 

The analysis of the dynamics in driving mechanisms of extreme discharges of the HF100 and above involved a set 

of thresholds for several parameters (rainfall, snow/glacier melt, soil water content) as well as their combinations. 

Thresholds other than those selected according to the DWD (Deutscher Wetterdienst, 2024) may yield different 

ratios of the illustrated dynamics. The different drivers and their different combinations considered for this analysis 

could have been aggregated to other overarching categories (e.g., showing the contribution of soil moisture). 615 

However, we opted for the illustrated aggregations as changes in the extremeness of these events directly translate 

into changes in extremeness of the discharge (Brunner et al., 2021a). Furthermore, the analysis only focuses on 

discharge events which are above the benchmark 100-year flood event calculated for the reference period. Hence, 

for gauges depicting a decrease in HF100 frequency and magnitude in future periods events resulting from the 

changes in future return levels are not considered here. However, it is unlikely that the overall dynamics gained 620 

from this approach might considerably change by applying the future HF100 values as threshold to extract the 

events. 

Since the presented modelling approach only comprises one GCM-RCM combination forced by the more extreme 

RCP8.5 emission scenario as well as one hydrological model, the significance of the findings regarding the 

variance of change effects in the future on the development of extreme peak flows is limited. Furthermore, the 625 
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projected climate change signals of the CRCM5-LE were found to depict a stronger warming and drying compared 

to other large ensembles (von Trentini et al., 2020) which might result in these part extreme increase in frequency 

and magnitude of the HF100 values among many gauges of Hydrological Bavaria. 

Projected discharge extremes at the upper end of the distribution that have not been observed to date might be 

created by unrealistic compound events due to flaws in the bias correction approach (Kelder et al., 2022). Thus, 630 

these events directly influence the EVD, producing higher return values, and consequently, a larger change signal. 

However, as extreme precipitation events of various durations are expected to intensify within the studied region, 

the probability for yet unseen floods due to compounding events may also increase in the future. 

5 Conclusion 

This study emphasizes the benefit of employing a climatological SMILE with a hydrological model to create a 635 

hydro-SMILE to foster extreme value statistics and analyze the impacts of climate change on hydrological extreme 

values such as the HF100 due to the provision of a very large database. This database allows for the application of 

empirical exceedance probabilities to estimate robust discharge values of high return periods rather than statistical 

extrapolation based on extreme value distributions. The results show that the performance of statistical estimates 

largely depends on the available length of the time series as well as its values when compared to the empirical 640 

benchmark. However, even with a length of 200 AM, the variance of the scatter of HF100 estimates of the 1,000 

samples was rather large. 

As mentioned by Willkofer et al. (2020) the performance of the hydrological model allows for CCI studies - in 

this case using the CRCM5-LE to elaborate on the effects of climate change on the development of the HF100. The 

projections reveal a strong increase in the magnitude and frequency of HF100 events for Alpine and pre-Alpine 645 

catchments exhibiting a snowmelt driven discharge regime within the reference period. This strong increase in the 

magnitude and frequency is considerably smaller for catchments north of the Alps and of a more pluvial discharge 

regime. The in parts tremendous changes of HF100 intensities and frequencies may be ascribed to the emission 

scenario (RCP8.5). Thus, the addition of different SMILEs and hydrological models may foster the significance 

of the findings due to different climate projections and simulated climatological and hydrological processes along 650 

the model chain. However, the establishment of such extensive model chains requires vast computational 

resources. Nevertheless, this effort should be considered regarding the benefits this profound database offers for 

extreme value statistics, fostering the knowledge about the propagation of natural variability of the climate system 

to the hydrological response (Brunner et al., 2021b), or allowing to distinguish climate change signals (or forced 

response) from natural variability for extreme values (Wood and Ludwig, 2020; Aalbers et al., 2018). 655 
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This study further shows the benefit of a hydro-SMILE when driven by a processed based hydrological model as 

it allows for a more detailed analysis on the processes responsible for the genesis of such extreme discharges. 

Within the study area extreme discharges events larger than the HF100 are less likely to be caused by snow melt 

events in the future as higher winterly temperatures will result in less snow accumulation. Hence, rainfall becomes 

the dominant driver in the future. Further, those events are more likely to be caused by heavy than steady rainfall 660 

in the future, although the degree in dynamics may vary for the different regimes. While compound events of 

superimposing drivers might remain the major cause for discharges equal to and greater than the 100-year flood, 

the number of events caused by a single driver such as heavy rainfall is likely to increase in the future at least for 

the two pluvial regimes. 

Furthermore, the results highlight the need to incorporate climate projections in the design of new flood protection 665 

infrastructure or adapting existing structures to reduce future flood risk, not only in Hydrological Bavaria, but 

everywhere in general. Further studies are necessary focusing on flood inundation to fully analyze the extent of 

the increase and frequency of this event for the design of flood protection infrastructure. 
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