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Abstract. A rigorous exploration of the sea ice data assimilation (DA) problem using a framework specifically developed for

rapid, interpretable hypothesis testing is presented. In many applications, DA is implemented to constrain a modeled estimate

of a state with observations. The sea ice DA application is complicated by the wide range of spatio-temporal scales over which

key sea ice variables evolve, a variety of physical bounds on those variables, and the particular construction of modern complex

sea ice models. By coupling a single-column sea ice model (Icepack) to the Data Assimilation Research Testbed (DART)
::
in5

:
a
:::::
series

::
of

:::::::::
observing

::::::
system

:::::::::
simulation

::::::::::
experiments

::::::::
(OSSEs), the grid-cell response of a complex sea ice model is explored

with
::
to

:
a range of ensemble Kalman DA methods designed to address the aforementioned complications

::
is

:::::::
explored. The

impact on the modeled ice-thickness distribution and the bounded nature of both state and prognostic variables in the sea ice

model are of particular interest, as these problems are under-examined. Explicitly respecting boundedness has little effect in

the winter months, but correctly accounts for the bounded nature of the observations, particularly in the summer months when10

prescribed SIC error is large. Assimilating observations representing each of the individual modeled sea ice thickness categories

consistently improves the analyses across multiple diagnostic variables and sea ice mean states. These results elucidate many

of the positive and negative results of previous sea ice data assimilation studies, highlight the many counter-intuitive aspects of

this particular data assimilation application, and motivate better future sea ice analysis products.

1 Introduction15

Recent rapid Arctic change has emphasized the influence of sea ice on the global climate system, our incomplete under-

standing of its recent history, and many shortcomings of current sea ice models. The tide of interest in addressing these

issues is well-reflected in the accelerating application of data assimilation techniques in both sea ice reconstruction projects

(Schweiger et al., 2011; Sakov et al., 2012; Mu et al., 2018; Williams et al., 2022) and modelling studies (Zhang et al., 2021)

:::::::::::::::::::::::::::::::::
(Zhang et al., 2021; Korosov et al., 2023). Data assimilation, or DA, is a set of objective methods through which observations20

of a system are blended with a modeled estimate of that system. Through this blending, DA injects the real-world information

gained via the observations, which are typically limited in space and can be intermittent in time, into a model capable of in-

tegrating that information forward in a spatio-temporally continuous, physically realistic manner. DA is most commonly used
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to obtain accurate initial conditions for numerical weather prediction models, but can also be deployed in climate studies to

reconstruct unobserved variables by synchronizing observable components of a system with nature
::::::::::::::::::::::
(Brennan & Hakim, 2022)25

or to infer the correct parameterization values that should be used in earth system models
::::::::::::::::
(Zhang et al., 2021). To date, most

sea ice DA applications have employed ensemble Kalman filtering (EnKF) methods, a family of DA algorithms based on the

Kalman filter (Kalman, 1960; Evensen, 2003; Houtekamer & Zhang, 2016). EnKF methods approximate the application of a

true Kalman filter by sampling the system of interest using model ensembles. In practical applications, the adjustments made

by these filters can be considered in four steps. ,
:::::
which

:::
are

:::::::
outlined

::
in
::::
Fig.

::
1

::::::::::::::::::::::::::
(adapted from Anderson, 2022)

::
for

:
a
:::::::::::
hypothetical30

:::::::::
adjustment

::
of

:::
sea

:::
ice

:::::::::::
concentration

::::::
(SIC). Firstly, the model is used to generate an ensemble of forecasts. Secondly,

::::::::
estimates

::
of

:::
the

::::::::
observed

::::::::
quantities

::::
(e.g.

::::::
SIC)

:::
are

::::::::
calculated

:::::
from

:::
the

:::::::
model’s

::::
state

::::::::
variables

::::
(e.g.

::::::::::
categorized

:::
sea

:::
ice

::::
area

::::::::
fraction,

::::::
Aice,n).

:::::::
Thirdly,

:
a version of the Kalman filter is applied to update the model’s estimates of the observed quantity. Here, this

will be referred to as observation-space incrementing. Thirdly
::::::
Finally, the adjustments made in observation space are used to

determine the corresponding updates applied to the variables comprising the model state. This step is hereafter referred to as35

state-space regression. Together, observation-space incrementing and state-space regression are collectively known as filtering.

Lastly
::::
Once

:::::::
filtering

::
is
::::::::
complete, the updated model state is

:::
then

:
used to initialize the next forecast step. All together, this

process is termed
:::::::
referred

::
to

::
as a DA cycle.

Substantial nuance can arise in the cycling process depending on the characteristics of the system in question. This makes

DA in any earth system component model an intricate undertaking, and one often specifically tailored to the problem at hand.40

For sea ice this is particularly true, as sea ice models and observables unite many distinct challenges for DA in one system.

First
:::::
Firstly, similar to atmospheric variables such as cloud fraction, sea ice variables tend to be bounded. For example, ice

cannot be negatively thick;
::
sea

:::
ice

::::::::::::
concentration

:
(the fraction of a model grid cell covered by ice(sea ice concentration) cannot

fall below zero or exceed one. The Kalman methods applied to sea ice problems are based on assumptions that the model

ensemble and the observation error distribution are normal distributions, which thereby linearizes the filtering process. For45

system variables that are bounded, however, the use of normal distributions in the filtering algorithm can produce adjustments

during observation-space incrementing that violate physical bounds .
::
(as

:::::::::
illustrated

::
in

:::
step

::
3
::
of

::::
Fig.

::
1).

:
When these violations

are corrected (typically through a postprocessing step), the model ensemble mean is artificially shifted away from the bound,

leading to analysis inaccuraciesa
::::

bias
::
in
:::
the

:::::::::::
assimilation

:::::::
analysis. While non-Gaussian ensemble DA methods that avoid the

use of normal distributions have been proposed, their application in high-dimensional systems has been limited (Riedel &50

Anderson, 2023; Anderson, 2010).
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Figure 1.
::::::::
Schematic

::::::
example

:::
of

:
a
::::
data

::::::::::
assimilation

::::
cycle

::
in
::

a
:::
sea

:::
ice

:::::::::
application.

:
A

::::::::
univariate

::::::
example

:::
of

:
a
:::::
single

:::
data

::::::::::
assimilation

::::
cycle

::
is

:::::::
presented

::
in

:::
four

:::::
steps.

::
In

::::
step

:
1,
:::

an
:::::::
ensemble

::
of

:::
sea

:::
ice

::::
initial

::::::::
conditions

:::::
(light

::::
blue

:::::
circles)

::
is
::::::::
forecasted

::::::
forward

::::
from

::::
time

:::
tk.

:
In
::::

step
:
2
::::::
(dotted

::::
light

:::
blue

:::::::
arrows),

::
the

::::::::
ensemble

::
of

:::
sea

::
ice

:::::
states

:
is
::::::::

translated
:::
into

::
an

::::::::
ensemble

::
of

::::::::::
observational

:::::::
estimates

::::
(blue

::::::::
triangles)

::::
using

:
a
::::::
forward

:::::::
operator,

::::::::
y = h(x).

::
A

::::::::
continuous

:::::::::
distribution

:::::
shown

::
by

:::
the

::::
light

:::::
dashed

::::
blue

:::
line

::
is

::
fit

::
to

::
the

:::::::::
observation

::::::::
estimates,

:::
and

::
is

:::::::
compared

::
to

::
an

:::::::::
observation,

:::::
shown

::
as
::
a

:::
dark

::::
pink

::::
hash

::
on

::
the

::::::
y-axis.

:::
The

::::::::::
observational

::::
error

:::::::::
distribution

::::::::
associated

:::
with

:::
that

:::::::::
observation

::
is

:::::
shown

::
in

::
the

::::
dark

::::
pink

:::::
curve,

:::
and

::::::
regions

::
of

::
the

::::
error

:::::::::
distribution

:::
that

:::::
imply

::::::::::
non-physical

:::::
values

:::
are

:::::
shaded

::::
with

::::
pink

::::
dots.

::
In

:::
step

::
3,

:::
the

::::::
model’s

::::::::::
observational

:::::::
estimates

::
are

:::::::
adjusted

::
by

:::
the

:::
data

:::::::::
assimilation

::::
filter,

:::::
based

::
on

::
the

:::::::::
observation

::::
value

:::
and

::::
error

:::::::::
distribution.

::::
The

::::::
updated

:::::::
ensemble

::
of

::::::::::
observational

:::::::
estimates

::
is

:::::
shown

::
in

::
the

:::::
green

:::::::
triangles.

:::
The

::::::
amount

:::
that

::::
each

:::::::
ensemble

:::::::
member

:
is
:::::::
adjusted

::
is

::::::
referred

::
to

::
as

::
an

::::::::
observation

::::::::
increment

::::
(dark

:::::
green

::::::
arrows).

:::
The

:::::::::
observation

::::::::
increments

:::
are

:::
then

::::
used

::
to

::::::::
determine

::
the

:::::::::
state-space

::::::::
increments,

::
or

:::
the

::::::
amount

:::
that

::
the

:::::
model

::::
state

:::::::
variables

::::
need

::
to

::
be

:::::::
adjusted

::
to

::
be

::::::::
consistent

::::
with

::
the

:::::::::
observation

::::::::
increment;

::::
this

:::
step

:::::::::
(represented

::::
here

::
in

:::
the

:::::
dotted

:::
light

:::::
green

::::::
arrows)

:
is
:::::::

typically
:::::::
achieved

::
by

:::::
using

::
the

:::::
linear

:::::::::
relationship

::::::
between

::::::::::
observations

:::
and

::::
state

:::::::
variables

::
to

:::::
project

:::
the

:::::::::
observation

:::::::
increment

:::
into

:::::
model

::::
state

:::::
space.

:::::
Once

::
the

:::::
model

::::
state

:::
has

::::
been

:::::::
adjusted,

::
the

:::::
model

::
is
:::::::::
reinitialized

::
to

::::::
produce

:::
the

::::
next

::::::
forecast

::::
from

::::
tk+1

::::
(light

::::
green

:::::
circles

::
to
::::
dark

::::
green

:::::::
circles).

:::
This

:::::
figure

:::
has

::::
been

::::::::
reproduced

::::
with

::::::::
alterations

::::
from

::::::::::::
Anderson (2022)

:
.
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Secondly, the relationship between variables observed in the real world and modeled in the sea ice state is not straightforward.

Sea ice observing systems measure variables such as sea ice concentration (SIC )
:::
SIC or sea ice thickness (SIT). However, SIC

and SIT are diagnostic in modern sea ice models, which typically evolve through an ice-thickness distribution (ITD). The ITD

parameterizes sub-grid scale thermodynamic
:::
and

:::::::::
mechanical

:
processes that are strongly dependent on ice thickness (Bitz &55

Roe, 2004; Chevallier & Salas y Melia, 2012) by expressing the distribution of ice variables in a grid cell as functions of the ice

thickness. In practice, the ITD describes a range of thicknesses within each grid cell and discretizes that range into an arbitrary

number of thickness categories. Sea ice area and volume (and the snow volume atop the sea ice) are then similarly distributed

across the thickness categories (Thorndike et al., 1975) and the evolutionary equations of the sea ice model are applied to each

category individually. Observed SIC, SIT, and snow depth (SND) are aggregates of the “categorized” model variables of ice60

area (Aice,n), ice volume (Vice,n), and snow volume (Vsno,n), respectively; the latter three sets of variables represent the sea

ice state. Thus, while
::::::::
estimates

::
of

:
SIC and SIT

::::::::
calculated

::
in

::::
step

::
2

::
of

:::
the

::::
DA

:::::
cycle are updated during observation-space

incrementing when SIC or SIT observations are assimilated
::::
(step

::
3), the updates to the aggregate values are regressed out

to each of the categorized variables during the state-space regression
::::
(step

:::
4). The diagnostic SIC and SIT output at the end

of the process are then re-aggregated , updating
::::
from

:::
the

:::::::
updated categorized state variables; their accuracy relies not only65

on the direct filter updates on the aggregate quantities, but also on the model ensemble’s relationship between the aggregated

quantities and each of the categorized variables in the model state. Few studies have presented the impact of assimilating SIC or

SIT on each of the model’s categories individually, which raises the question of how well the process and impact of assimilating

any observation into distribution-based sea ice models is understood. Recent work by Williams et al. (2022) documents the

first attempt to assimilate an “observed” ice thickness distribution rather than just an aggregate observation into the sea ice70

component of a global climate model, with mixed results.

Both the non-Gaussian, bounded nature of sea ice and the relationship between aggregate observables and categorized state

variables likely have important ramifications for sea ice DA but remain under-explored. This study presents a single-column sea

ice data assimilation framework that allows for rapid hypothesis testing while retaining the thermodynamic physics and ITD of

a complex sea ice model. Within this idealized framework, the impact of using DA algorithms that respect the boundedness of75

sea ice model variables and observations is explored, as is the ITD response of the model when assimilating aggregate versus

categorized area and thickness observations. Section 2 provides an overview of the data assimilation framework and experimen-

tal methodology; Section 3 presents a discussion of the results generated by a suite of DA experiments targeting boundedness

and categorized observations; Section 4 contextualizes this work with respect to more practical sea ice DA applications; Section

5 concludes.80

2 Model and Methods

The data assimilation framework used in this study couples the Data Assimilation Research Testbed (DART, Anderson et

al., 2009) to Icepack (Icepack, 2020), a single-column version
::::::::::::::::::::::::
(version 1.3.1, Icepack, 2020)

:
,
:::
the

:::::::::::::
column-physics

::::::::
package

of the CICE sea ice model; the latter
:
,
:::::
which

:
is widely used as the sea ice component of several Earth system modelsand
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in
:
.
:::::::
Icepack

:::
can

:::
be

::::
run

::
in

::
a stand-alone sea ice studies.

::::::::::
configuration

:::
as

::
a

:::
sort

:::
of

::::::::::::
single-column

::::::
model

::::
and

::
is

::::::::
reviewed85

::
in

::::::
Section

::::
2.1.

::::::
DART

::
is
:::::::::
discussed

::
in

:::::
more

:::::
depth

::
in

:::::::
Section

::::
2.2.

:
In keeping with naming conventions developed in coin-

cident work (Riedel et al., 2023), this framework
:::
the

::::::::
collective

::::::::::
assimilation

:::::::
system is referred to as CICE-SCM-DART. A

sea ice
:::
All

::::::::::
experiments

::::::::::
performed

:::
for

:::
this

:::::
study

:::
are

:::::::::
observing

::::::
system

::::::::::
simulation

::::::::::
experiments

::::::::
(OSSEs),

::::::
which

:::::::::
assimilate

:::::::
synthetic

:::::::::::
observations

:::::::
derived

::::
from

::
a
:::::::::::::::
randomly-selected

:::::
(and

:::::::::::
subsequently

::::::::
withheld)

::::::::
member

::
of

:::
the

:::
sea

::::
ice

::::::::
ensemble.

:::
In

::::
each

::::::::::
experiment,

:::
the

::::::::
randomly

:::::::
selected

::::::::
member

:::::::::
represents

:
a
::::::
known

::::::
"true"

::::
state

::::::
against

::::::
which

:::
the

:::::::
efficacy

::
of

:::::::::::
assimilating90

::::::::::
observations

::
of

:::::::
various

::::
types

::::
and

::::
with

::::::
various

:::::::::::
uncertainties

:::
can

:::
be

::::::::
evaluated.

::::
For

::::::::
simplicity,

::
a
:::
sea

:::
ice quantity produced by a

CICE-SCM-DART experiment is hereafter differentiated from the corresponding synthetic observations assimilated
:::::::::
assimilated

:::::::
synthetic

:::::::::::
observations using the terms "modeled" and "observed", respectively.

2.1 Icepack

Icepack is maintained as the column physics module of CICE, with consistent thermodynamics, mechanical redistribution,95

and tracer support. The model evolves conditions in four independent grid cells, each with a different surface type (land, open

ocean, slab ice, or a categorized ITD). These four grid cells do not communicate in any way; as such, only output from the ITD

grid cell is retained.

For use in the CICE-SCM-DART framework, 30 instances of Icepack are forced by unique atmospheric conditions extracted

from randomly selected members of the CAM6 + DART
:
a

:::::
recent

:::::::::::::
large-ensemble reanalysis product (Raeder et al., 2021). The100

sea ice model is tuned to the atmospheric forcing by setting the
::::
Each

:::::::
instance

:::
of

::::::
Icepack

:::::
uses

:::
the

::::::
mushy

::::::::::::::
thermodynamics

::::::
scheme

::::
(kitd

::
=
:::

1)
:::
and

::::::
linear

::::
ITD

:::::::::
remapping

::::::
options

::::::::
(ktherm

:
=
:::

2),
:::
as

::::
well

:
a
::::::::::::::

Delta-Eddington
:::::::::

shortwave
::::::::
radiative

:::::::
transfer

::::::
scheme

:::
and

:::
the

::::::::
empirical

::::::
CESM

::::
melt

:::::
pond

:::::::
scheme.

:::::::::
Dynamical

::::::
forcing

::
to

:::
the

:::::::
column

:
is
::::::::
provided

::
by

:::
sea

:::
ice

::::::::::
deformation

:::::
rates

:::::::
obtained

::::
from

:::
the

::::::::
SHEBA

::::
field

::::::::
campaign

::::::::::::::
(Lindsay , 2002).

::::
The

:::::::
number

::
of

:::::::::
categories

::::
used

::
in

:::
the

::::
ITD

::
is
:::
set

::
to

::
5.

::::
The

:
snow

grain radius parameter (R_snw)
:
is

:::
set to a value of −2. This choiceprevents discontinuous behavior in ice concentration related105

to ice-albedo feedback ,
::::::
which

::
is

::::::
among

:::
the

::::::
default

:::::
values

:::
of

:
(
:::::
R_snw

:
)
::::
used

:::::
when

:::::
CICE

::
is

:::::::
coupled

::
to

::
an

:::::::::::
atmospheric

::::::
model,

:::::
avoids

:::::
rapid

::::::::
refreezing

::::::
events during the melt season and thus allows for a wider summertime ensemble spread. The number of

categories used in the ITD is set to 5.
:::
that

::::
lead

::
to

:::::::::::
unreasonably

::::
high

:::::::::::
summertime

:::
sea

:::
ice

::::::::::::
concentrations

:::::
given

::
the

:::::::::::
atmospheric

::::::
forcing

:::::::::
conditions.

:
All other sea ice model parameters are held at their default values. Each instance of Icepack is also coupled

to a slab ocean; the ocean initial conditions and heat flux convergence forcing are consistent across the
:::::::
identical

:::
for

:::
all

:
30110

members and are derived from the ocean component output of a fully-coupled historical simulation from the Community Earth

System Model (CESM2). Both the ocean and atmosphere data sets represent grid cells nearest 75.54oN, 174.45oE, a point

that straddles the East Siberian and Chuckchi Seas and experiences seasonal sea-ice advance and retreat.
:::
The

:::
use

::
of

:
a
::::::::
seasonal

::::::
location

:::
for

::::
this

::::
case

:::::
study

:::::::
allowing

:::
us

::
to

:::::::
evaluate

:::
the

:::::::::::
performance

::
of

::::
data

::::::::::
assimilation

::::
near

:::
the

:::::
upper

::::
and

:::::
lower

::::::
bounds

:::
of

:::
sea

::
ice

::::::::::::
concentration.

:
115

The ensemble is spun up over a 10-year period during which the atmospheric conditions cycle continuously over the year

2011.
:::::
2011,

:::::::
allowing

:::
the

:::
sea

:::
ice

::::::::::
simulations

::
to

:::::::
diverge

::
in

:::::::
response

::
to
:::::::::::
atmospheric

:::::::::
variability. No assimilation occurs during

this period. Once spin-up is complete, a final year-long ensemble simulation is produced as a control case for the assimilation
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Figure 2. The FREE ensemble’s three aggregate variables and the state variables from which they are derived. The aggregate variables

shown on the left (SIC, SIT, and SND) are
::
the

::::::::::
area-weighted

:
sums of the categorized state variables (category ice area, ice volume, and snow

volume on the right. There are five thickness categories, where category 1 refers to the thinnest ice (0-0.64m) and category 5, the thickest ice

(4.57m and thicker). Dark lines indicate the ensemble mean of each variable and lighter shading represents the ensemble standard deviation

around the mean.

experiments. This simulation, which is also absent any assimilation, is hereafter referred to as the FREE case and is outlined

in Fig. 2. Both categorized state variables (right) and their diagnosed aggregates (left) are shown, as both can be observed and120

adjusted by assimilation.
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2.2 DART

DART is a modular data assimilation framework developed by the Data Assimilation Research Section at the
:::
NSF

:
National

Center for Atmospheric Research. DART interfaces with many models that range in complexity from the Lorenz 3-variable

chaotic model to the Community Atmosphere Model (CAM6),
:::
the

::::::::::
atmosphere

:::::::::
component

::
of

:::
the

:::::::
CESM2

::::::
climate

::::::
model. DART125

implements the four-step cycling approach outlined in the introduction: forecast,
:::::::::
conversion

::
to

::::::::::
observation

:::::
space,

:
observation-

space incrementing,
:::
and

:
state-space regression , and re-initialization.

::::
(Fig.

:::
1). DART currently includes 10 filtering algorithms,

including variants on the ensemble Kalman filter
::::::
(EnKF;

::::::::::::
Evensen 2003)

:
and several kernel and particle filter options. The

default filter, the Ensemble Kalman Adjustment Filter (EAKF; Anderson 2001), implements a square-root filtering approach

that increases the stability and efficiency of assimilating with smaller ensemble sizes
::::::::
compared

::
to

:
a
:::::::::
traditional

:::::
EnKF. Like most130

traditional ensemble filtering approaches, the EAKF makes Gaussian assumptions for the model ensemble and the observation

error distributions.

Recently, Anderson (2022) developed a novel filtering approach known as the quantile-conserving ensemble filtering frame-

work (QCEFF). QCEFF alters the process by which the updated ensemble is sampled from the analytical blend of the model

ensemble distribution and the observation error distribution. As a result, DART users can prescribe non-Gaussian distributions135

that may better represent the model ensemble or observation of interest. For example, in the sea ice problem, QCEFF allows the

user to prescribe distributions that respect sea ice bounds, a level of detail that cannot be attained by EAKF or other Gaussian

filters. In this framework the user can prescribe a distribution for each observable or state variable, as well as differentiate the

distribution used for observation-space incrementing versus state-space regression; this kind of choice allows the user to tailor

the DA framework to the problem at hand in every step of the filtering process. When the user prescribes normal distributions140

in the QCEFF framework, the solution collapses to the EAKF.

We employ QCEFF to examine whether explicitly accounting for sea ice boundedness can improve sea ice assimilation

analyses. To do so, we compare four different filtering approaches, outlined in Table 1. These filtering approaches use vary-

ing combinations of normal and piece-wise rank histogram distributions in the observation-space incrementing and state-

space regression steps of the filter. Piece-wise rank histogram distributions prescribe no more information about the distri-145

bution of the sea ice system than can be gained from the discrete ensemble members themselves and can capture physi-

cal bounds; their use in DART’s
::::
step

:
3
:::
of

:::
the

::::::
DART filtering algorithms and for sea ice applications is discussed in more

detail in (Anderson, 2020), (Riedel & Anderson, 2023) and (Riedel et al., 2023)
::::::::::::::
Anderson (2022),

:::::::::::::::::::::::
Riedel & Anderson (2023)

:::
and

::::::::::::::::
Riedel et al. (2023). The use of bounded normal rank histogram (BNRH) distributions in state-space regression

:::
(step

:::
4)

::
of

::
the

:::::::
QCEFF

::::::::
enforces

:::::::::
appropriate

::::::
bounds

:::
by

::::
way

::
of

:
a
::::::

series
::
of

:::::::::
transforms

::
in

:::::
probit

::::
and

:::::::::
probability

:::::::
integral

:::::
space.

::::
This

::::::
aspect150

::
of

:::
the

::::::
QCEFF

::::
also

:::::
more

:::::
deftly

::::::
handles

::::::::
nonlinear

:::::::::::
relationships

:::::::
between

::::::::
observed

::::::::
quantities

:::
and

::::::::
modeled

::::
state

::::::::
variables

:::
and is

addressed in (Anderson, 2023)
::::
depth

:::
for

::::::::
idealized

::::
cases

::
in

::::::::::::::
Anderson (2023).
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2.3 Experimental Setup

All experiments performed for this study follow a perfect-model Observing System Simulation Experiment (OSSE) protocol

((Zhang et al., 2018; Riedel & Anderson, 2023; Riedel et al., 2023)), a methodology typically used to identify the impact of155

assimilating a set of proposed or synthetic observations. The use of synthetic observations allows for a close inspection of DA

filter performance given a set of observations derived from a known state. Here, several different kinds of synthetic sea ice

observations are assimilated using each of the filter types listed in Table 1. Each experiment was branched from the end of

the ensemble spin-up period, assimilated observations for a year, and was then compared to the FREE case. The assimilation

experiments presented in the results are listed in Table 2.160

The
:::::::
synthetic observations assimilated (a subset of which are presented in Fig. 3) are identical across experiments and are

derived from a randomly selected ensemble member of the FREE case, which is hereafter referred to as TRUTH. To capture

the basic influence of observation instrument and algorithmic errors on sea ice DA, observation error magnitudes are
::::::::
estimated

:::::
based

::
on

:::::::
previous

:::::
work

:::::::::::::::::::::::::::::::::
(Zhang et al., 2018; Riedel et al., 2023)

::
and

:
expressed as a function of the daily TRUTH value (listed

in Table 2
:
3). The error magnitude, which can be thought of as the second moment of a probability distribution, is then used165

to determine a prescribed observation error distribution (OED) centered on the TRUTH estimate of the observation. Each

daily observation is then randomly sampled from the OED. The resulting observation timeseries thus captures reasonable

noise around the known TRUTH. In ensemble Kalman DA studies preceding QCEFF, the OED was assumed to be a normal

distribution around TRUTH values. Here, the OED is set as a bounded normal distribution, thereby accounting for the physical

realities of sea ice observations.170

Aggregate observation values extracted are SIT and SIC. The variance of the observation error distribution for each
:::::::
synthetic

SIT observation is a linear function of the true SIT value on the order of tens of centimeters. Observation error variance for

:::::::
synthetic

:
SIC observations is a parabolic function of the true value on the order of ten percent of grid cell area. As a result,

observation error magnitudes when SIC declines in the summer months can be quite large, implying a plausible range of

observations that may exceed the SIC upper bound of 1. When used to determine a bounded OED that does not exceed 1,175

these large errors lead to summer SIC observations that are biased low relative to TRUTH. The ramifications of this bias are

discussed in Sections 3 and 3.1.

Categorized
::::::::
Synthetic

::::::::::
categorized observations are also drawn from each of the model’s area and volume ITD categories

(Aice,n and Vice,n) and are always assimilated together (i.e., assimilating Aice,n indicates that each of five area categories

are assimilated simultaneously). Categorized area and volume observation error variances are assumed to follow a uniform180

distribution in each category, weighted by the total area (and midpoint thickness, in the case of volume observations) of that

category. These errors are therefore generally less than 10% of the true category value (Fig. 3).

Because sea ice ensembles perturbed only by differing atmospheric conditions (and not by varying model parameters) are

generally under-dispersive with respect to SIC (Zhang et al., 2018; Williams et al., 2022; Riedel & Anderson, 2023), we apply

enhanced spatially-varying state-space prior inflation (El Gharamti et al., 2019) in each experiment. While the benefits of the185

spatial variation are lost on our application, the algorithm used implements an inverse gamma function that enables an increase

8



Figure 3. Synthetic observations extracted from a randomly selected member of the FREE ensemble. The observation assimilated are

shown in grey lines for SIC (top left), SIT (top right) and category ice area (Aice,01-Aice,05) on the bottom row. The TRUTH from which the

observations are generated in shown in the solid red line, while the FREE ensemble mean is shown in the dashed black line. The observation

error standard deviation (1σ) is shown as red shading around TRUTH.

or decrease in ensemble spread and outperforms alternative inflation algorithms in some cases (El Gharamti et al., 2019). The

applied inflation uses a damping factor of 0.9, a lower standard deviation bound of 0.6, and a maximum per-timestep standard

deviation change of 5%.

Spatial localization is practically uninformative in a single-column application, but we explore the effect of "category local-190

ization" in the experiments assimilating Aice,n or Vice,n. Category localization weights the covariance values between variables

in different ITD categories by zero. As a result, an observation from any of
:::
the individual ITD categories is prevented from

updating any state-space variable
:::
that

::
is

:
not also in that

::
the

:
same ITD category. In theory, this type of localization should

limit the effects of potentially spurious relationships between categories and allow us to more reasonably treat category error

variances as uncorrelated.195

Finally, since DA is not guaranteed to respect the physical bounds of a system, it is common to use some postprocessing

method to correct any non-physical adjustments made by the filter. DART includes three postprocessing options for sea ice:

two mass-aware re-scaling approaches and one rebalancing method that has been adapted from a CICE internal function

(Riedel & Anderson (2023); the current default in CICE-SCM-DART). All experiments in Table 2 make use of the CICE

rebalancing option
:::
this

::::::
default

::::::::::
rebalancing

::::::
option,

::::::
which

::::::::::
redistributes

::::
the

:::
ice

::::::::
fractional

::::::::
coverage

::
in

::::
each

::::::::
category

::
to

::::::
ensure200

:::
that

:::
the

::::::::
thickness

:::::::
bounds

:::
are

::::::::
respected

:::
and

::::
then

:::::::::
calculates

:::::::::
consistent

:::
ice

:::
and

:::::
snow

::::::::
volumes,

::::::::
salinities,

::::
and

::::::::
enthalpies

:::::
once

::
the

:::::::
updates

:::::
have

:::::::
occurred. Each experiment was rerun using the other two postprocessing methods, but since no significant

differences resulted, those additional experiments are not discussed here.
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2.4 Evaluative Metrics

To evaluate results, the ensemble means of the FREE case and each experiment (EXP) in Table 2 are compared to TRUTH205

using three metrics: mean absolute error (MAE), root mean square error (RMSE), and the coefficient of efficiency (CE). The

presented definitions are generalized such that EXP and TRUTH may represent the experiment ensemble mean and reference

"true" value, respectively, of any of CICE-SCM’s state or diagnostic variables. In this study, these metrics are applied only to

to SIC, SIT, and SND.

MAE measures the average discrepancy between the forecast (FREE or EXP) and TRUTH over the course of the forecast210

period and is defined as

MAE =

n∑
i

|EXPi −TRUTHi|
n

, (1)

where n indicates the number of timesteps in the forecast period. RMSE, defined as

RMSE =

√√√√ n∑
i

(EXPi −TRUTHi)2

n
, (2)

also evaluates how the forecast deviates from TRUTH but additionally provides a sense of whether the average discrepancy215

tends to include large outliers. RMSE is therefore always greater than MAE, but in a desirable forecast the difference between

the two will be close to zero.

CE (Nash & Sutcliffe, 1970) measures forecast skill compared to TRUTH by evaluating how efficient the forecast is as a

model of the observed system’s mean and variance,

CE = 1−
∑n

i (EXPi −TRUTHi)
2

σ2
TRUTH

, (3)220

and lies between −∞ and 1. CE equal to 1 indicates a perfect match between the forecast and the TRUTH (the numerator in

the second term of Eq. 3 is zero), while CE of 0 reflects a forecast that performs only as well as climatological prediction (the

deviations of the experiment from TRUTH are equal to the variance of the TRUTH around its mean). A negative CE indicates

that the forecast is not skillful. In general, the more positive the CE value, the better the forecast.

To couch results in a generalized framework, differences in MAE and RMSE between the EXP forecasts and the FREE225

forecast are evaluated using a percent reduction approach, thereby diagnosing the impact of assimilating observations relative

to forecast with no assimilation. For example, percent RMSE reduction (pRMSE) due to assimilating observations is calculated

as

pRMSE = 100× RMSEFREE −RMSEEXP

RMSEFREE
. (4)
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CE is a less intuitive metric from an error reduction perspective; the
::::
Many

:::
of

:::
the

::::::::::
experiments

:::::::::
performed

:::
for

:::
this

:::::
work

::::
have230

:
a
::::
high

::::
CE,

:::
due

::
to

:::
the

::::::::
idealized

:::::
nature

:::
of

::::::::::::
single-column

:::::
OSSE

:::::::::::
experiments.

::
In

:::::
order

::
to

::::::::
highlight

:::
the impact of assimilationin

this metric is therefore quantified
:
,
::
we

::::::
choose

::
to
::::::::
quantify

:::
this

::::::
metric as a CE increase (iCE),

iCE = CEEXP −CEFREE . (5)

Statistically
::
In

::::
order

::
to

:::::::::
understand

:::::::
whether

::
a)

::::::::::
assimilating

::::
with

:::::::
different

::::::::
methods

:::
and

:::::::
different

::::::::
variables

::::
leads

::
to

::::::::::
meaningful

::::::::::
adjustments

::::::
toward

:::::::
TRUTH

:::
and

:::
b)

:::
any

:::::::::::
combinations

:::
of

::::::::::
observations

::::
and

:::::
filters

::::::::::
significantly

::::::::::
outperform

:::
the

::::::
others

::::
over

:::
the235

:::::
course

::
of

:::
the

:::::
year,

:::::::::
statistically

:
significant differences between assimilation experiments

:::
the

::::::::
ensemble

:::::
mean

::::::::
timeseries

:::
of

::::
each

::::
EXP, FREE, and TRUTH are diagnosed using a Welch’s t-test.

3 Results

The results of assimilating observations of SIT, SIC, and categorized area Aice,n with an unbounded DA filter (f1_NORM) are

presented in Fig. 4. This case illustrates that CICE-SCM-DART replicates the results of larger modeling studies discussed in the240

Introduction. Assimilating SIT observations results in better sea ice analyses year-round than assimilating SIC observations,

which have an impact only during the summer months when the model ensemble is capable of capturing variations in sea

ice cover. In fact, assimilating SIC observations appears to have a negative impact on modeled SIC in Fig. 4, though this is

because our method for producing synthetic SIC observations—which are derived using a bounded normal OED—generates

SIC observations that are biased low relative to the TRUTH (Fig. 3). This is particularly true in the summer months when245

modeled SIC in TRUTH is comparatively low and the prescribed observation error variance is large (Table 2
:
3).

Unlike in
:::
the

:::::::::
unbounded

:::::
case

:
(Fig. 4

:
), when observations are assimilated with a fully bounded filter (f101_BNRH) the

bounded observation error distribution
::::
OED is appropriately accounted for and the results lie close to the FREE mean (Fig.

5).
::::
From

:::
this

:::
we

::::::::
conclude

:::
that

:::::
while

::
a
:::::::
bounded

::::
filter

:::::
does

:::
not

::::::::
overcome

:::
the

::::::
limited

:::::::
efficacy

::
of

::::::::::
assimilating

::::
SIC

:::::::::::
observations,

::::::::
respecting

:::::::::::
boundedness

::
in
:::
the

:::::::::::
assimilation

::::
does

:::::::
prevent

:::
the

::::::::::
introduction

::
of

:::::::::
additional

::::
bias

::::::
related

::
to

:::::::::::
assumptions

:::::
about

:::
the250

:::::
OED. We also note that assimilating SIC observations with 1/10th of the error prescribed in Table 2

:
3 does shift the resulting

modeled SIC closer to TRUTH (not shown), though whether such small magnitude errors are reasonable is a separate discussion

left for other work. In contrast, assimilating Aice,n observations performs at least as well as assimilating SIT observations in

the unbounded case, and will be discussed in more depth later.

A more succinct comparison of the experiments listed in Table 2 is presented in Fig. 6. In terms of modeled SIT, we255

find that the assimilation of any observation that either explicitly or implicitly
:::::::
(through

::::::::::::
categorization

::
in

::::
the

:::
ice

::::::::
thickness

::::::::::
distribution) contains information about ice thickness reduces MAE by between 80 and 95

::
70

::::
and

::
90% and improves the CE

score by ∼0.3
:::
0.1, regardless of the filter used. Assimilating categorized observations tends to outperform assimilating SIT in

terms of pMAE, but falls slightly short according to iCE. This discrepancy across metrics implies that assimilating categorized

observations may not capture as much of the observed variance in SIT as assimilating SIT observations, a conclusion supported260

by the relative pRMSE achieved in each case (Fig. A1). Experiments assimilating SIT and categorized observations are not
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Figure 4. Assimilating with unbounded algorithms. The results of using an unbounded filter (f1_NORM) to assimilate SIC (solid pink

line), SIT (solid teal) or category area observations (solid green) are shown for modeled SIC (top panel), SIT (middle panel) and SND

(bottom panel). The black line represents the FREE case (without assimilation) and the thin red lines are the randomly selected TRUTH. For

the results shown, thick lines are ensemble means and shading represents the ensemble standard deviation around the mean. Observations

are assimilated at daily intervals throughout atmospheric forcing year 2011.

significantly different from one another or TRUTH, though they are all significantly different from the FREE ensemble mean

(Fig. 7).

Adjustments to modeled SIC are more variable. The relative lack of improvement as a result of assimilating SIC compared to

SIT is not a novel result
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Blockley & Peterson, 2018; Kimmeritz et al., 2018; Mu et al., 2018; Zhang et al., 2018; Fiedler et al., 2022; Williams et al., 2022)265

, but a good confirmation that the grid-cell level responses investigated here are reminiscent of sea ice DA studies that use more

traditional ensemble filtering methods and assimilate on larger grids. For modeled SIT and SND, there is very little varia-

tion in the results as a function of the filter used (Fig. 6). For modeled SIC, larger pMAE tends to stem from cases using

unbounded regression methods (NORM) and when assimilating SIC observationsto update modeled SIC, using a bounded

12



Figure 5. Assimilating with unbounded algorithms.
::::::::::
Assimilating

::::
with

:::::::
bounded

::::::::::
algorithms. Same as Fig. 4 but for case in which

observations are assimilated using the f101_BNRH (fully bounded) filter.

filter in observation space (f101) leads to notable improvements compared to using an unbounded filter (
:::::
totally

::::::::::
unbounded

::
or270

:::::
totally

:::::::
bounded

:::::::
filtering

:
(f1)

:::::::
_NORM

::
or

:::::::::::
f101_BNRH)

::::::::::
algorithms,

::
or

:::::
when

::::::::::
assimilating

::::::::::
categorized

::::::::::
observations.

Finally, modeled SND is degraded by the assimilation of sea ice observations in all cases,
::::::
except

:::::
those

:::::
which

::::::::::
assimilated

:::::::::
categorized

:::::::::::
observations

::::
with

:
a
::::::
totally

:::::::
bounded

::::
filter. Assimilating snow depth observations has been shown to improve snow

estimates in large models when compared to cases in which snow was updated only via postprocessing (Riedel & Anderson,

2023), as well as in a single-column model when assimilated alongside sea ice observations (Riedel et al., 2023). In the275

experiments performed here, categorized snow (vsnon) is a state variable that is updated via regression with the model’s

observed quantities but no snow observations are assimilated. The
::::::
general

:
inefficacy of sea ice observations to reduce snow

bias likely derives from an ensemble relationship between sea ice variables and categorized snow that produces too much late

winter/early spring snow on thicker ice and too little on thinner ice (Fig. 8).
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Figure 6. Bias reduction and model efficiency as a function of filter type and observation kind. Percent MAE reduction (pMAE) (left

column) and CE increase (iCE) (right column) relative to the FREE forecast as a result of assimilating various observation kinds (x-axis,

see Table 2 for definitions) with each filtering method (y-axis). Results are shown for modeled SIC (top row), SIT (middle row), and SND

(bottom row). In general, lighter-toned colors indicate a more beneficial impact due to assimilation than darker-toned colors. The number

values indicate the specific pMAE or iCE associated with each experiment.
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Figure 7. Significant differences between experiments. The significance of deviations between each assimilation experiment, TRUTH,

and the unassimilated FREE ensemble mean are shown. The color gradient represents p-values for the statistical difference between each

experiment shown on the x-axis with each experiment shown on the y-axis. The rightmost columns show the p-values for differences from

TRUTH and the FREE case. Purple shades indicate insignificant difference at a p-value of 0.05, while greens indicate that the two cases in

question differ significantly at a p-value of 0.05.

3.1 Boundedness280

In general, we find the metrics in Figs. 6 and 7 have a rather weak dependence on whether or not the filter respects bounds for

modeled SIT and SND, especially when compared to the obvious dependence on the kind of observation assimilated. There is

essentially no dependency highlighted by iCE, and only minimal variation in pMAE. In terms of modeled SIC, however, the

impact of using a bounded filter is more apparent (Fig. 9). The use of bounded rank histogram distributions in observation-

space allows the filter to correctly infer the bounded nature of the observation error distribution (which respects the physical285

upper bound of 1 for SIC) and its relationship to TRUTH. The adjustments thus avoid degrading modeled SIC and lead to a

positive annual pMAE (Fig. 6) and reduced bias relative to TRUTH, particularly in the melt season, when SIC observation

errors are particularly large (Figs. 9, 5).
::::
The

::::
poor

:::::::::::
performance

::
of

:::
the

:::::::::::
intermediary

:::::
filters

::::::::::
(f1_BNRH

:::
and

::::::::::::
f101_NORM)

:::
to

:::::::
constrain

::::::::
modeled

::::
SIC

::::
(Fig.

::
6)

::::
can

::
be

:::::::::
attributed

::
to

::::
their

:::::::
inability

:::
to

:::::
adjust

::::
SIC

::
to

::::
total

:::
ice

:::::
cover

::
in
::::

the
:::::
winter

:::::::
months

::::
(not

::::::
shown).

:
290
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Figure 8. Category-level impact of assimilating with unbounded algorithms. Same as Fig. 4 but for each of the model’s area (top row),

volume (middle row) and snow volume categories (bottom row). TRUTH (the thin red line) may be difficult to identify in some panels, as

the cases assimilating SIT and Aice,n (solid teal and green lines) lie very close to TRUTH.

The under-performance of bounded filters away from the upper-bound of
:::
the

:::::::
bounded

:::::
filters

::::
with

:::::::
respect

::
to SIC is likely

due to the nature of the model state variables (categorized ice area, ice volume, and snow volume). Recall that the values being

diagnosed (SIC, SIT, and SND) are calculated from categorized quantities using forward operators, but are not themselves

state variables. This formulation leads to an issue with properly constraining modeled SIC. In the first step of the assimilation,

bounds are placed on the observed quantity, SIC, which is calculated by applying a forward operator (a simple summation) to295

the model’s forecast of the category area fractions in the ITD. Observation space incrementing respects the bounds prescribed

on the observable. However, in the second step of the assimilation, the increment calculated between the observation and

the model’s estimate of the observed quantity is mapped back onto the category-based state variables using regression. This

step also respects boundedness, but must rely on bounds prescribed by the user for each of the state variables. The only

objective bounds that can be placed on each individual category area fraction are [0, 1], meaning that the regression of the300

observation-space increment can update each of the individual category area fractions to a value anywhere in that range.

However, diagnostic SIC used to evaluate the forecast is calculated anew from the adjusted category area fractions, and is

therefore no longer constrained on [0, 1], but rather on [0, 5]. As such, while the bounded filters respect the imposed bounds

on both observed and state variables as intended (not shown), the dependency of the sea ice model on the prescribed ITD

categories confounds an attempt to truly respect upper bounds on SIC.305
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Figure 9. Seasonal impact of using bounded filters when assimilating SIC observations. The normalized probability density functions of

the differences between the EXP mean and TRUTH in each assimilation cycle are shown for modeled SIC (top row), SIT (middle row) and

SND (bottom row), along with their respective sample medians (dashed vertical lines). The dark grey distribution in each panel represents

the difference between the FREE ensemble mean and TRUTH as a reference. The differences are divided into the melt season (left column,

July 1st - September 15th) and the rest of the year (right column) and highlight the positive seasonal impact of using bounded algorithms—in

the melt season, the distributions are shifted closer to a EXP-TRUTH difference of zero when a bounded filter is used (yellow lines) than

when an unbounded one is used (pink lines). This effect is most prominent in the melt season months because the uncertainties associated

with the assimilated SIC observations are largest in these months, and thus the bounded synthetic observations are more biased relative to

TRUTH. The bounded algorithms correct for this appropriately.
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In sum, while the use of bounded assimilation filters does not produce significantly better or worse results in terms of

the impact on modeled SIT or SND, some improvements are carried through for modeled SIC. While the full impact of

boundedness in filtering is limited in this study, these filters could still provide a path to eliminating postprocessing if further

infrastructure designed to simultaneously constrain SIC and categorized area in CICE-SCM-DART were developed.

3.2 Category Assimilation310

More so than constraining the data assimilation with bounded filters, assimilating the model’s categorized ice thickness dis-

tribution directly improves the results. First, assimilating categorized area or volume (or both) tends to lead to higher MAE

reductions in modeled SIT and SIC, particularly in the cases that used unbounded regression in the multivariate adjustments

:::
use

:::::
either

::::
fully

::::::::
bounded

::
or

::::
fully

::::::::::
unbounded

:::::
filters

:
(Fig. 6a,c). Additionally, while modeled SND is found to be degraded in

:::::
nearly all cases presented here, categorized observations significantly reduce the degree to which assimilating ice observations315

increases the MAE
:::::::::
assimilated

::::
with

:
a
::::
fully

::::::::
bounded

::::
filter

:::
are

:::::
found

::
to

:::::::
increase

::::::
pMAE

:::
by

::::
20%

:
(Fig. 6e).

There also appears to be evidence that assimilating categorized observations may consistently constrain the sea ice state

regardless of the
:::::
across

:::::::
various mean state grid cell thickness

:::::::::
thicknesses. In Fig. 8, assimilating SIT observations and cat-

egorized area observations perform comparably to constrain a categorized sea ice state that is relatively thick and thus has

a non-negligible amount of ice in each category, including the thickest. By comparison, Fig. 10 (bottom row) presents a320

comparison case in which we have restricted CICE-SCM’s ability to mechanically ridge ice
:::
the

::::::::
dynamics

::::::
forcing

::
is
::::::::
withheld

::::
from

:::
the

:::::
model

::::::::::
integration, thereby preventing the buildup of ice in the thickest two ice categories .

:::
via

::::::::::
mechanical

::::::::
processes

:::
(i.e.

::::::::
ridging).

::
In

::
all

:::::
other

::::::::
respects,

:::
the

:::::
model

:::::::::::
configuration

::
is
::::::::
identical

::
to

:::::::
previous

:::::::::::
experiments.

:
This leads to an overall thin-

ner mean state , qualitatively similar to a first-year ice regime. In this thinner ice case, SIT observations cease
::
in

:::::
which

::::
SIT

::::::::::
observations

:::
fail

:
to constrain the thick ice categories(4 and 5). While the erroneous adjustments made in the thickest two ice325

categories
:::::
during

::::::::::
assimilation

:
are relatively minimal compared to the total grid-cell mean SIT , we do find

::::
(note

:::
the

::::::
y-axes

::
in

:::
Fig.

::::
10),

:::
we

:::::::
observe

:
that they lead to noticeable low biases in modeled SIC (not shown). Assimilating categorized area

observations appears to avoid this issue entirely (Fig. 10, top
:::::
bottom

:
row)—the modeled quantities produced by doing so are

consistent with TRUTH in all categories and total SIC.

There exist at least two potential applications of this finding for
:::::
result

::
in more realistic experiments. First, in more practical330

applications, the assimilation of categorized variables may avoid introducing small errors in low-concentration ITD categories

that occur when assimilating SITand thus .
::::
This

:::
has

:::
the

::::::::
potential

::
to mitigate the overall error propagation of the model during

intervals in which real-world SIT observations are historically unavailable
::
to

::::::::
constrain

:::
the

::::
state (i.e. during summer months).

Second, it has been noted in previous work that assimilating SIT can lead to biases in the sea ice edge (Riedel & Anderson,

2023), which introduces an incentive to assimilate SIC as well as SIT, despite the negative impact SIC can have on modeled335

quantities away from the ice edge. The consistency resulting from assimilating categorized observations in multiple ice states,

including thin, first-year type regimes
::::::
regimes

::
in

:::::
which

:::
the

:::
ice

::::
state

::
is

::::::
skewed

::
to
::::
one

:::
end

::
of

:::
the

::::
ITD,suggests a better solution

for constraining the sea ice state everywhere in the Arctic.
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Figure 10. Category-level impact of assimilating in a thin vs thick ice state. The model’s two thickest area categories for the standard

case (top row, THICK) are repeated from Fig. 8. A corresponding experiment in which mechanical ridging is restricted (bottom row, THIN),

leading to very low concentrations of ice in the thickest ITD categories is also shown. These results demonstrate that the strength of the

relationship between SIT observations and modeled Aice,n breaks down when some categories have very little ice and that this can bias the

modeled SIC result.

4 Discussion

This study confirms
::::
work

::::::::
reinforces

:::
the

::::::
results

::
of

::::::::
previous

::::::
studies that assimilating SIT observations

::::::::
generally improves sea340

ice analyses over assimilating SIC observations at the grid cell level
::::
alone. In these experiments, assimilating SIT followed

by SIC leads to comparable but slightly degraded modeled quantities when compared to just assimilating SIC, which implies

that for this ensemble and mean state, there is very little benefit to assimilating SIC observations, especially outside the boreal

summer season. This finding, which applies to SIC analyses as well as SIT, may be due in part to the fact that we have generated

spread in our ensemble using only variable atmospheric forcing and that the ensemble is under-dispersive with respect to SIC345

for much of the year. It is worth noting, however, that in this under-dispersive SIC scenario, assimilating SIT still improves

modeled SIC.
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Figure 11. Percent of DA cycles requiring SIC postprocessing. For each type of observation assimilated with the four filters (f1_NORM,

f1_BNRH, f101_NORM, or f101_BNRH), the percent of total DA cycles over the course of each experiment that resulted in non-physical

values of aggregate SIC are shown. Note that the percent of postprocessing when assimilating SIC is artifically small, as those observations

do not lead to substantial adjustments from the FREE mean except in the summertime, when grid cell aggregate SIC is decidedly lower than

the upper bound (no postprocessing occurs during this time).

An emergent finding of this work is the positive impact of assimilating the categorized state (the ITD). Assimilating cate-

gorized area and volume estimates reduces MAE and increases CE on par with assimilating SIT observations, improving the

model’s estimates of SIC and SIT at the category level even when the mean ice state is thin and some categories contain very350

little ice. Assimilating categorized observation also reduces the forecast error beyond that of assimilating aggregate observa-

tions (Figs. 4, 8), though this is likely related at least to the fact that the categorized observation errors can be quite small (see

Methods).

The application of a series of bounded filtering algorithms is novel to sea ice data assimilation and has highlighted the com-

plexities of assimilating observations into a categorized distribution model such as CICE-SCM. The sometimes negligible
::
or355

::::
even

:::::::::
detrimental

:
impact of bounded algorithms on modeled sea ice quantities indicates a need to further tailor the CICE-SCM-

DART interface such that the filters constrain categorized variables and SIC simultaneously. Bounded algorithms eliminate any

need for postprocessing of Vice,n, SIT, or Vsno,n (not shown). However, for modeled SIC we find that bounded algorithms result

in a small fraction of the adjustments made requiring SIC postprocessing (Fig. 11). Note that assimilating categorized obser-

vations reduces postprocessing requirements compared to assimilating aggregate observations, likely because the categorized360

observations are closer in nature to the model’s state variables.
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While the broad strokes of these results are expected to carry over to assimilating real-world observations, the details are

likely to vary under replication in larger models, where dynamic exchange between grid cells imbues additional information

into the observation-state relationships and introduces the need for localization in the data assimilation framework. We also

acknowledge that the bounded filtering algorithms employed in this work depend on piece-wise distributions that are a function365

of the model ensemble and are relatively uninformed otherwise. DART provides the opportunity to use alternative distributions

that may qualitatively shift the results. Finally, the work presented here avoids the role of various forms of model error that

are present in operational data assimilation, where the observations and evolution between them are unlikely to be correctly

captured by forward operators and model physics. Therefore, at the very least, the magnitude of error reductions in sea ice

analyses presented may overestimate what will be achievable in more practical applications.370

5 Conclusions

We have interrogated in detail the grid-cell level response of a complex sea ice model to the assimilation of various kinds of

sea ice observations, including SIT, SIC, and categorized area and volume, and found that SIT and categorized observations

most accurately constrain the ensemble mean forecast in both category ITD state variables and diagnostic grid-cell mean

SIT and SIC; categorized observations are the only observations that perform consistently well across two different grid cell375

mean thickness states. Two key issues in the application of bounded data assimilation algorithms to the sea ice problem are

identified. First, an approach to appropriately constrain categorized area and total SIC simultaneously is still needed. Secondly,

a true understanding of where and why assimilation improves (or degrades) model estimates of the sea ice state depends on how

well the model ensemble captures natural covariance relationships between observables and state variables , a targeted study of

::
on

:
a
::::::::
grid-cell

:::::
scale.

::::::::::::
Quantification

::
of

:::::
these

::::::::::
relationships

:::::::
requires

::
a

:::::::
targeted

::::
study

:
which is absent from previous literaturedue380

to a lack of necessary observations.
:
.
:::::::
Though

:::::::::::
observational

:::::::
records

:::
are

:::::
short,

:::
we

::::::
believe

:::::::::
significant

:::::::
progress

:::::
could

:::
be

:::::
made

::
in

::::::::::::
understanding

:::
the

::::
local

::::::::::
covariance

::::::::::
relationships

::::::::
between

::::
SIC

:::
and

::::
SIT

::::
with

::::::
current

:::
in

:::
situ

:::
and

::::::
remote

:::::::
sensing

::::::::
products.

Future work will attempt to address the first issue and diagnose the second. Assuming that the ensemble is reasonably realistic

in terms of relationship between variables, the findings presented here are expected to be qualitatively consistent in larger grid

models and more practical assimilation experiments.385

Code and data availability. All code used in the study can be found on Github. The CICE5 single column model is available from the CICE

Consortium at https://github.com/CICE-Consortium/CICE. The Data Assmilation Research Testbed is maintained by DAReS and hosted at

https://github.com/NCAR/DART. The version of DART used for this study was forked to https://github.com/mollymwieringa/DART. The

python scripts and Jupyter notebooks used to configure, run, and evaluate the experiments in this study have been collected in a separate

Github repository (https://github.com/mollymwieringa/cice-scm-da); the postprocessed experiment data used to produce the figures is avail-390

able upon request.
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Table 1. QCEFF filter components. Includes the distributions used to represent the model ensemble in observation-space incrementing and

state-space regression; the observation error distribution associated with each filter; any DART filter equivalents; and relevant references.

Filter Name Obs. Space Dist. State Space Dist. Obs. Error Dist. DART Filter Equivalent References

f1_NORM normal normal bounded normal EAKF Anderson (2001)

f1_BNRH normal BNRH bounded normal none none

f101_NORM BNRH normal bounded normal BRHF Riedel et al. (2023)

f101_BNRH BNRH BNRH bounded normal none Anderson (2023)
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Table 2. Assimilation experiments. Filter refers to the filter type used (see Table 1); Obs. Kind to the type of observation assimilated; and

Obs. Error to the formula used to determine an individual
:::::::::
Observation error estimate for

:::::::
estimates

::::::::
associated

::::
with each observation at each

timestep. an and vn refer to the area and volume in the nth ITD category; hn refers to the midpoint thickness in the same category. hR and

hL :::
kind are the upper- and lower-most thickness bounds used to define the nth ITD category.

:::::
shown

::
in

::::
Table

::
3.

Case Name Filter Obs. Kind Obs. Error

SIT_f1_NORM f1_NORM SIT σSIT = 0.1SIT

SIC_f1_NORM f1_NORM
SIC

σSIC =−0.5(SIC2 −SIC)

AGR_f1_NORM f1_NORM SIT, SIC σSIT , σSIC

AIC_f1_NORM f1_NORM aicen σan = ( an

hn
)2 (hR−hL)2

12

VIC_f1_NORM f1_NORM vicen σvn = (an)
2 (hR−hL)2

12

CAT_f1_NORM f1_NORM aicen, vicen σan ,σvn

SIT_f1_BNRH f1_BNRH SIT σSIT = 0.1SIT

SIC_f1_BRNH f1_BNRH
SIC

σSIC =−0.5(SIC2 −SIC)

AGR_f1_BNRH f1_BNRH SIT, SIC σSIT , σSIC

AIC_f1_BNRH f1_BNRH aicen σan = ( an

hn
)2 (hR−hL)2

12

VIC_f1_BNRH f1_BNRH vicen σvn = (an)
2 (hR−hL)2

12

CAT_f1_BNRH f1_BNRH aicen, vicen σan ,σvn

SIT_f101_NORM f101_NORM SIT σSIT = 0.1SIT

SIC_f101_NORM f101_NORM
SIC

σSIC =−0.5(SIC2 −SIC)

AGR_f101_NORM f101_NORM SIT, SIC σSIT , σSIC

AIC_f101_NORM f101_NORM aicen σan = ( an

hn
)2 (hR−hL)2

12

VIC_f101_NORM f101_NORM vicen σvn = (an)
2 (hR−hL)2

12

CAT_f101_NORM f101_NORM aicen, vicen σan ,σvn

SIT_f101_BNRH f101_BNRH SIT σSIT = 0.1SIT

SIC_f101_BNRH f101_BNRH
SIC

σSIC =−0.5(SIC2 −SIC)

AGR_f101_BNRH f101_BNRH SIT, SIC σSIT , σSIC

AIC_f101_BRNH f101_BNRH aicen σan = ( an

hn
)2 (hR−hL)2

12

VIC_f101_BNRH f101_BNRH vicen σvn = (an)
2 (hR−hL)2

12

CAT_f101_BNRH f101_BNRH aicen, vicen
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Table 3.
:::::::::
Observation

:::::
error

::::::::
estimates

::
as

:
a
:::::::
function

::
of

::::::::::
observation

::::
kind.

:::
Obs.

::::
Kind

:::::
refers

::
to

:::
the

::::
type

::
of

:::::::::
observation

:::::::::
assimilated.

::::
Obs.

::::
Error

::::
refers

::
to
:::
the

::::::
formula

::::
used

::
to

::::::::
determine

::
an

:::::::
individual

::::
error

:::::::
estimate

:::
for

:::
each

:::::::::
observation

::
at

::::
each

:::::::
timestep.

::
an:::

and
:::
vn ::::

refer
::
to

::
the

::::
area

:::
and

::::::
volume

:
in
:::

the
:::
nth

::::
ITD

:::::::
category;

:::
hn::::

refers
::

to
:::

the
:::::::
midpoint

:::::::
thickness

::
in
:::

the
::::
same

:::::::
category.

:::
hR:::

and
:::
hL:::

are
:::
the

:::::
upper-

:::
and

:::::::::
lower-most

:::::::
thickness

:::::
bounds

::::
used

::
to

:::::
define

::
the

::::
nth

:::
ITD

:::::::
category.

:::
Obs.

::::
Kind

:::
Obs.

:::::
Error

:::
SIT

::::::::::::
σSIT = 0.1SIT

:

:::
SIC

::::::::::::::::::::::
σSIC =−0.5(SIC2 −SIC)

:::
SIT,

:::
SIC

: ::::
σSIT ,

:::::
σSIC

::::
aicen

:::::::::::::::::
σan = ( an

hn
)2 (hR−hL)2

12 :

::::
vicen

:::::::::::::::::
σvn = (an)

2 (hR−hL)2

12

::::
aicen,

:::::
vicen σan ,σvn
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Appendix A

Figure A1. RMSE reduction as a function of filter type and observation kind. Same as Fig. 6 but for percent RMSE reduction (pRMSE).
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