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Abstract. A rigorous exploration of the sea ice data assimilation (DA) problem using a framework specifically developed for
rapid, interpretable hypothesis testing is presented. In many applications, DA is implemented to constrain a modeled estimate
of a state with observations. The sea ice DA application is complicated by the wide range of spatio-temporal scales over which
key sea ice variables evolve, a variety of physical bounds on those variables, and the particular construction of modern complex
sea ice models. By coupling a single-column sea ice model (Icepack) to the Data Assimilation Research Testbed (DART) in
a series of observing system simulation experiments (OSSEs), the grid-cell response of a complex sea ice model is-explored
with-to a range of ensemble Kalman DA methods designed to address the aforementioned complications is explored. The
impact on the modeled ice-thickness distribution and the bounded nature of both state and prognostic variables in the sea ice
model are of particular interest, as these problems are under-examined. Explicitly respecting boundedness has little effect in
the winter months, but correctly accounts for the bounded nature of the observations, particularly in the summer months when
prescribed SIC error is large. Assimilating observations representing each of the individual modeled sea ice thickness categories
consistently improves the analyses across multiple diagnostic variables and sea ice mean states. These results elucidate many
of the positive and negative results of previous sea ice data assimilation studies, highlight the many counter-intuitive aspects of

this particular data assimilation application, and motivate better future sea ice analysis products.

1 Introduction

Recent rapid Arctic change has emphasized the influence of sea ice on the global climate system, our incomplete under-
standing of its recent history, and many shortcomings of current sea ice models. The tide of interest in addressing these
issues is well-reflected in the accelerating application of data assimilation techniques in both sea ice reconstruction projects
(Schweiger et al., 2011; Sakov et al., 2012; Mu et al., 2018; Williams et al., 2022) and modelling studies (Zhang-et-al52021)
(Zhang et al., 2021; Korosov et al., 2023). Data assimilation, or DA, is a set of objective methods through which observations
of a system are blended with a modeled estimate of that system. Through this blending, DA injects the real-werld-information
gained via the observations, which are typically limited in space and can be intermittent in time, into a model capable of in-

tegrating that information forward in a spatio-temporally continuous, physically realistic manner. DA is most commonly used
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to obtain accurate initial conditions for numerical weather prediction models, but can also be deployed in climate studies to
reconstruct unobserved variables by synchronizing observable components of a system with nature (Brennan & Hakim, 2022)
or to infer the correct parameterization values that should be used in earth system models (Zhang et al., 2021). To date, most
sea ice DA applications have employed ensemble Kalman filtering (EnKF) methods, a family of DA algorithms based on the
Kalman filter (Kalman, 1960; Evensen, 2003; Houtekamer & Zhang, 2016). EnKF methods approximate the application of a
true Kalman filter by sampling the system of interest using model ensembles. In practical applications, the adjustments made

by these filters can be considered in four steps—, which are outlined in Fig. 1 (adapted from Anderson, 2022) for a hypothetical
adjustment of sea ice concentration (SIC). Firstly, the model is used to generate an ensemble of forecasts. Secondly, estimates

of the observed guantities (e.g. SIC) are calculated from the model’s state variables (e.g. categorized sea ice area fraction,
Ajce ). Thirdly, a version of the Kalman filter is applied to update the model’s estimates of the observed quantity. Here, this
will be referred to as observation-space incrementing. FhirdbyFinally, the adjustments made in observation space are used to
determine the corresponding updates applied to the variables comprising the model state. This step is hereafter referred to as
state-space regression. Together, observation-space incrementing and state-space regression are collectively known as filtering.
LastlyOnce filtering is complete, the updated model state is then used to initialize the next forecast step. All together, this
process is termed-referred to as a DA cycle.

Substantial nuance can arise in the cycling process depending on the characteristics of the system in question. This makes
DA in any earth system component model an intricate undertaking, and one often specifically tailored to the problem at hand.
For sea ice this is particularly true, as sea ice models and observables unite many distinct challenges for DA in one system.
FirstFirstly, similar to atmospheric variables such as cloud fraction, sea ice variables tend to be bounded. For example, ice
cannot be negatively thick; sea ice concentration (the fraction of a model grid cell covered by ice(sea-ice-coneentration) cannot
fall below zero or exceed one. The Kalman methods applied to sea ice problems are based on assumptions that the model
ensemble and the observation error distribution are normal distributions, which thereby-linearizes the filtering process. For
system variables that are bounded, however, the use of normal distributions in the filtering algorithm can produce adjustments
during observation-space incrementing that violate physical bounds —(as illustrated in step 3 of Fig. 1). When these violations
are corrected (typically through a postprocessing step), the model ensemble mean is artificially shifted away from the bound,
leading to analysis-inaceuraciesa bias in the assimilation analysis. While non-Gaussian ensemble DA methods that avoid the
use of normal distributions have been proposed, their application in high-dimensional systems has been limited (Riedel &

Anderson, 2023; Anderson, 2010).
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Figure 1. Schematic example of a data assimilation cycle in a sea ice application. A univariate example of a single data assimilation

cycle is presented in four steps. In step 1, an ensemble of sea ice initial conditions (light blue circles) is forecasted forward from time .

In step 2 (dotted light blue arrows), the ensemble of sea ice states is translated into an ensemble of observational estimates (blue triangles

= h(x). A continuous distribution shown by the light dashed blue line is fit to the observation estimates, and is

using a forward operator,

compared to an observation, shown as a dark pink hash on the y-axis. The observational error distribution associated with that observation is

shown in the dark pink curve, and regions of the error distribution that imply non-physical values are shaded with pink dots. In step 3, the

model’s observational estimates are adjusted by the data assimilation filter, based on the observation value and error distribution. The updated

ensemble of observational estimates is shown in the green triangles. The amount that each ensemble member is adjusted is referred to as an
that the model state variables need to be adjusted to be consistent with the observation increment; this step (represented here in the dotted
increment into model state space. Once the model state has been adjusted, the model is reinitialized to produce the next forecast from 1

light green circles to dark green circles). This figure has been reproduced with alterations from Anderson (2022).
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Secondly, the relationship between variables observed in the real world and modeled in the sea ice state is not straightforward.
Sea ice observing systems measure variables such as sea-ice-concentration(SIC)-SIC or sea ice thickness (SIT). However, SIC
and SIT are diagnostic in modern sea ice models, which typically evolve through an ice-thickness distribution (ITD). The ITD
parameterizes sub-grid scale thermodynamic and mechanical processes that are strongly dependent on ice thickness (Bitz &
Roe, 2004; Chevallier & Salas y Melia, 2012) by expressing the distribution of ice variables in a grid cell as functions of the ice
thickness. In practice, the ITD describes a range of thicknesses within each grid cell and discretizes that range into an arbitrary
number of thickness categories. Sea ice area and volume (and the snow volume atop the sea ice) are then similarly distributed
across the thickness categories (Thorndike et al., 1975) and the evolutionary equations of the sea ice model are applied to each
category individually. Observed SIC, SIT, and snow depth (SND) are aggregates of the “categorized” model variables of ice
area (Ajce,n), ice volume (Vice,n), and snow volume (Vgno »), respectively; the latter three sets of variables represent the sea
ice state. Thus, while estimates of SIC and SIT calculated in step 2 of the DA cycle are updated during observation-space
incrementing when SIC or SIT observations are assimilated (step 3), the updates to the aggregate values are regressed out
to each of the categorized variables during the state-space regression (step 4). The diagnostic SIC and SIT output at the end
of the process are then re-aggregated -—updating-from the updated categorized state variables; their accuracy relies not only
on the direct filter updates on the aggregate quantities, but also on the model ensemble’s relationship between the aggregated
quantities and each of the categorized variables in the model state. Few studies have presented the impact of assimilating SIC or
SIT on each of the model’s categories individually, which raises the question of how well the process and impact of assimilating
any observation into distribution-based sea ice models is understood. Recent work by Williams et al. (2022) documents the
first attempt to assimilate an “observed” ice thickness distribution rather than just an aggregate observation into the sea ice
component of a global climate model, with mixed results.

Both the non-Gaussian, bounded nature of sea ice and the relationship between aggregate observables and categorized state
variables likely have important ramifications for sea ice DA but remain under-explored. This study presents a single-column sea
ice data assimilation framework that allows for rapid hypothesis testing while retaining the thermodynamic physics and ITD of
a complex sea ice model. Within this idealized framework, the impact of using DA algorithms that respect the boundedness of
sea ice model variables and observations is explored, as is the ITD response of the model when assimilating aggregate versus
categorized area and thickness observations. Section 2 provides an overview of the data assimilation framework and experimen-
tal methodology; Section 3 presents a discussion of the results generated by a suite of DA experiments targeting boundedness
and categorized observations; Section 4 contextualizes this work with respect to more practical sea ice DA applications; Section

5 concludes.

2 Model and Methods

The data assimilation framework used in this study couples the Data Assimilation Research Testbed (DART, Anderson et

al., 2009) to Icepack eepack;2020)—a—single-eolumn—version—(version 1.3.1, Icepack, 2020), the column-physics package
of the CICE sea ice model;-the-tatter—, which is widely used as the sea ice component of several Earth system modelsand
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i, Icepack can be run in a stand-alone sea-iee-studies—configuration as a sort of single-column model and is reviewed
in Section 2.1. DART is discussed in more depth in Section 2.2. In keeping with naming conventions developed in coin-
cident work (Riedel et al., 2023), thisframework-the collective assimilation system is referred to as CICE-SCM-DART. A
sea-ieeAll experiments performed for this study are observing system simulation experiments (OSSEs), which assimilate
synthetic observations derived from a randomly-selected (and subsequently withheld) member of the sea ice ensemble. In
each experiment, the randomly selected member represents a known “true” state against which the efficacy of assimilating
observations of various types and with various uncertainties can be evaluated. For simplicity, a sea ice quantity produced by &

CICE-SCM-DART experimentis hereafter differentiated from the eorresponding synthetic-observations-assimilated-assimilated
synthetic observations using the terms "modeled" and "observed", respectively.

2.1 Icepack

Icepack is maintained as the column physics module of CICE, with consistent thermodynamics, mechanical redistribution,

and tracer support.

For use in the CICE-SCM-DART framework, 30 instances of Icepack are forced by unique atmospheric conditions extracted

from randomly selected members of the-CAM6—+DART-a recent large-ensemble reanalysis product (Raeder et al., 2021). The

sea-ice-modelis-tuned-to-the-atmospherie foreing by setting-the-Each instance of Icepack uses the mushy thermodynamics
scheme (kitd = 1) and linear ITD remapping options (ktherm = 2), as well a Delta-Eddington shortwave radiative transfer
scheme and the empirical CESM melt pond scheme. Dynamical forcing to the column is provided by sea ice deformation rates
obtained from the SHEBA field campaign (Lindsay , 2002). The number of categories used in the ITD is set to 5. The snow
grain radius parameter (R_. snw) is set to a value of —2. This ch01cepfeveﬁts—d1%eeﬁ%mueﬁs—behaweﬁmeefeﬁeeﬁfm&eiﬁe¥afed
N\@géggguimfwwwggy\%durlng the melt season asn

eategories-used-in-the ITD-issetto-5-that lead to unreasonably high summertime sea ice concentrations given the atmospheric
forcing conditions. All other sea ice model parameters are held at their default values. Each instance of Icepack is also coupled

to a slab ocean; the ocean initial conditions and heat flux convergence forcing are eonsistent-across-the-identical for all 30
members and are derived from the ocean component output of a fully-coupled historical simulation from the Community Earth
System Model (CESM2). Both the ocean and atmosphere data sets represent grid cells nearest 75.54°N, 174.45°E, a point
that straddles the East Siberian and Chuckchi Seas and experiences seasonal sea-ice advance and retreat. The use of a seasonal
location for this case study allowing us to evaluate the performance of data assimilation near the upper and lower bounds of

The ensemble is spun up over a 10-year period during which the atmospheric conditions cycle continuously over the year

20H-2011, allowing the sea ice simulations to diverge in response to atmospheric variability. No assimilation occurs during

this period. Once spin-up is complete, a final year-long ensemble simulation is produced as a control case for the assimilation
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Figure 2. The FREE ensemble’s three aggregate variables and the state variables from which they are derived. The aggregate variables
shown on the left (SIC, SIT, and SND) are the area-weighted sums of the categorized state variables (category ice area, ice volume, and snow
volume on the right. There are five thickness categories, where category 1 refers to the thinnest ice (0-0.64m) and category 5, the thickest ice

(4.57m and thicker). Dark lines indicate the ensemble mean of each variable and lighter shading represents the ensemble standard deviation

around the mean.

experiments. This simulation, which is also absent any assimilation, is hereafter referred to as the FREE case and is outlined

in Fig. 2. Both categorized state variables (right) and their diagnosed aggregates (left) are shown, as both can be observed and

adjusted by assimilation.
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2.2 DART

DART is a modular data assimilation framework developed by the Data Assimilation Research Section at the NSF National
Center for Atmospheric Research. DART interfaces with many models that range in complexity from the Lorenz 3-variable
chaotic model to the Community Atmosphere Model (CAM6), the atmosphere component of the CESM2 climate model. DART
implements the four-step cycling approach outlined in the introduction: forecast, conversion to observation space, observation-
space incrementing, and state-space regression s-and-re-initialization—(Fig. 1). DART currently includes 10 filtering algorithms,
including variants on the ensemble Kalman filter (EnKF; Evensen 2003) and several kernel and particle filter options. The
default filter, the Ensemble Kalman Adjustment Filter (EAKF; Anderson 2001), implements a square-root filtering approach
that increases the stability and efficiency of assimilating with smaller ensemble sizes compared to a traditional EnKF. Like most
traditional ensemble filtering approaches, the EAKF makes Gaussian assumptions for the model ensemble and the observation
error distributions.

Recently, Anderson (2022) developed a novel filtering approach known as the quantile-conserving ensemble filtering frame-
work (QCEFF). QCEFF alters the process by which the updated ensemble is sampled from the analytical blend of the model
ensemble distribution and the observation error distribution. As a result, DART users can prescribe non-Gaussian distributions
that may better represent the model ensemble or observation of interest. For example, in the sea ice problem, QCEFF allows the
user to prescribe distributions that respect sea ice bounds, a level of detail that cannot be attained by EAKF or other Gaussian
filters. In this framework the user can prescribe a distribution for each observable or state variable, as well as differentiate the
distribution used for observation-space incrementing versus state-space regression; this kind of choice allows the user to tailor
the DA framework to the problem at hand in every step of the filtering process. When the user prescribes normal distributions
in the QCEFF framework, the solution collapses to the EAKF.

We employ QCEFF to examine whether explicitly accounting for sea ice boundedness can improve sea ice assimilation
analyses. To do so, we compare four different filtering approaches, outlined in Table 1. These filtering approaches use vary-
ing combinations of normal and piece-wise rank histogram distributions in the observation-space incrementing and state-
space regression steps of the filter. Piece-wise rank histogram distributions prescribe no more information about the distri-
bution of the sea ice system than can be gained from the discrete ensemble members themselves and can capture physi-
cal bounds; their use in PARTs-step 3 of the DART filtering algorithms and for sea ice applications is discussed in more
detail in (Anderson;2020)(Riedel-&-Anderson;2023)-and-(Riedelet-al-20623)Anderson (2022), Riedel & Anderson (2023)
and Riedel et al. (2023). The use of bounded normal rank histogram (BNRH) distributions in state-space regression (step 4) of
the QCEFF enforces appropriate bounds by way of a series of transforms in probit and probability integral space. This aspect
addressed in (Anderson;2023)depth for idealized cases in Anderson (2023).
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2.3 Experimental Setup

All experiments performed for this study follow a perfect-model Observing System Simulation Experiment (OSSE) protocol
{(Zhang et al., 2018; Riedel & Anderson, 2023; Riedel et al., 2023)), a methodology typically used to identify the impact of
assimilating a set of proposed or synthetic observations. The use of synthetic observations allows for a close inspection of DA
filter performance given a set of observations derived from a known state. Here, several different kinds of synthetic sea ice
observations are assimilated using each of the filter types listed in Table 1. Each experiment was branched from the end of
the ensemble spin-up period, assimilated observations for a year, and was then compared to the FREE case. The assimilation
experiments presented in the results are listed in Table 2.

The synthetic observations assimilated (a subset of which are presented in Fig. 3) are identical across experiments and are
derived from a randomly selected ensemble member of the FREE case, which is hereafter referred to as TRUTH. To capture
the basic influence of observation instrument and algorithmic errors on sea ice DA, observation error magnitudes are estimated
based on previous work (Zhang et al., 2018; Riedel et al., 2023) and expressed as a function of the daily TRUTH value (listed
in Table 23). The error magnitude, which can be thought of as the second moment of a probability distribution, is then used
to determine a prescribed observation error distribution (OED) centered on the TRUTH estimate of the observation. Each
daily observation is then randomly sampled from the OED. The resulting observation timeseries thus captures reasonable
noise around the known TRUTH. In ensemble Kalman DA studies preceding QCEFF, the OED was assumed to be a normal
distribution around TRUTH values. Here, the OED is set as a bounded normal distribution, thereby accounting for the physical
realities of sea ice observations.

Aggregate observation values extracted are SIT and SIC. The variance of the observation error distribution for each synthetic
SIT observation is a linear function of the true SIT value on the order of tens of centimeters. Observation error variance for
synthetic SIC observations is a parabolic function of the true value on the order of ten percent of grid cell area. As a result,
observation error magnitudes when SIC declines in the summer months can be quite large, implying a plausible range of
observations that may exceed the SIC upper bound of 1. When used to determine a bounded OED that does not exceed 1,
these large errors lead to summer SIC observations that are biased low relative to TRUTH. The ramifications of this bias are
discussed in Sections 3 and 3.1.

Categorized-Synthetic categorized observations are also drawn from each of the model’s area and volume ITD categories
(Ajice,n and Vice ») and are always assimilated together (i.e., assimilating A, indicates that each of five area categories
are assimilated simultaneously). Categorized area and volume observation error variances are assumed to follow a uniform
distribution in each category, weighted by the total area (and midpoint thickness, in the case of volume observations) of that
category. These errors are therefore generally less than 10% of the true category value (Fig. 3).

Because sea ice ensembles perturbed only by differing atmospheric conditions (and not by varying model parameters) are
generally under-dispersive with respect to SIC (Zhang et al., 2018; Williams et al., 2022; Riedel & Anderson, 2023), we apply
enhanced spatially-varying state-space prior inflation (El Gharamti et al., 2019) in each experiment. While the benefits of the

spatial variation are lost on our application, the algorithm used implements an inverse gamma function that enables an increase
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Figure 3. Synthetic observations extracted from a randomly selected member of the FREE ensemble. The observation assimilated are
shown in grey lines for SIC (top left), SIT (top right) and category ice area (Ajce,01-Aice,05) on the bottom row. The TRUTH from which the
observations are generated in shown in the solid red line, while the FREE ensemble mean is shown in the dashed black line. The observation

error standard deviation (10) is shown as red shading around TRUTH.

or decrease in ensemble spread and outperforms alternative inflation algorithms in some cases (El Gharamti et al., 2019). The
applied inflation uses a damping factor of 0.9, a lower standard deviation bound of 0.6, and a maximum per-timestep standard
deviation change of 5%.

Spatial localization is practically uninformative in a single-column application, but we explore the effect of "category local-
ization" in the experiments assimilating Ajcc , or Vice . Category localization weights the covariance values between variables
in different ITD categories by zero. As a result, an observation from any of the individual ITD categories is prevented from
updating any state-space variable that is not also in that-the same ITD category. In theory, this type of localization should
limit the effects of potentially spurious relationships between categories and allow us to more reasonably treat category error
variances as uncorrelated.

Finally, since DA is not guaranteed to respect the physical bounds of a system, it is common to use some postprocessing
method to correct any non-physical adjustments made by the filter. DART includes three postprocessing options for sea ice:
two mass-aware re-scaling approaches and one rebalancing method that has been adapted from a CICE internal function

(Riedel & Anderson (2023); the current default in CICE-SCM-DART). All experiments in Table 2 make use of the-CICE

rebalaneing-optionthis default rebalancing option, which redistributes the ice fractional coverage in each category to ensure

that the thickness bounds are respected and then calculates consistent ice and snow volumes, salinities, and enthalpies once
the updates have occurred. Each experiment was rerun using the other two postprocessing methods, but since no significant

differences resulted, those additional experiments are not discussed here.
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2.4 Evaluative Metrics

To evaluate results, the ensemble means of the FREE case and each experiment (EXP) in Table 2 are compared to TRUTH
using three metrics: mean absolute error (MAE), root mean square error (RMSE), and the coefficient of efficiency (CE). The
presented definitions are generalized such that EXP and TRUTH may represent the experiment ensemble mean and reference
"true" value, respectively, of any of CICE-SCM’s state or diagnostic variables. In this study, these metrics are applied only to
to SIC, SIT, and SND.

MAE measures the average discrepancy between the forecast (FREE or EXP) and TRUTH over the course of the forecast

period and is defined as

"\ |EXP,—~TRUTH,|
MAE = 1
2; - : (1
where n indicates the number of timesteps in the forecast period. RMSE, defined as
" (EXP; — TRUTH,)?
RMSE= | ( F (©)

- n
7

also evaluates how the forecast deviates from TRUTH but additionally provides a sense of whether the average discrepancy
tends to include large outliers. RMSE is therefore always greater than MAE, but in a desirable forecast the difference between
the two will be close to zero.

CE (Nash & Sutcliffe, 1970) measures forecast skill compared to TRUTH by evaluating how efficient the forecast is as a

model of the observed system’s mean and variance,

S (EX P, — TRUTH,)?

CE=1- K
ag
TRUTH

; 3)

and lies between —oo and 1. CE equal to 1 indicates a perfect match between the forecast and the TRUTH (the numerator in
the second term of Eq. 3 is zero), while CE of 0 reflects a forecast that performs only as well as climatological prediction (the
deviations of the experiment from TRUTH are equal to the variance of the TRUTH around its mean). A negative CE indicates
that the forecast is not skillful. In general, the more positive the CE value, the better the forecast.

To couch results in a generalized framework, differences in MAE and RMSE between the EXP forecasts and the FREE
forecast are evaluated using a percent reduction approach, thereby diagnosing the impact of assimilating observations relative
to forecast with no assimilation. For example, percent RMSE reduction (pRMSE) due to assimilating observations is calculated
as

RMSEprpp — RMSEpxp

pRMSE =100 x 4

10



230

235

240

245

250

255

260

Many of the experiments performed for this work have
a high CE, due to the idealized nature of single-column OSSE experiments. In order to highlight the impact of assimilationin
this-metrie-is-therefore-quantified-, we choose to quantify this metric as a CE increase (iCE),

iCE=CEpxp — CEFREE. )

Statistieally-In order to understand whether a) assimilating with different methods and different variables leads to meaningful
adjustments toward TRUTH and b) any combinations of observations and filters significantly outperform the others over the

course of the year, statistically significant differences between assimilationexpertmentsthe ensemble mean timeseries of each
EXP, FREE, and TRUTH are diagnosed using a Welch’s t-test.

3 Results

The results of assimilating observations of SIT, SIC, and categorized area Aj. , With an unbounded DA filter (f1_NORM) are
presented in Fig. 4. This case illustrates that CICE-SCM-DART replicates the results of larger modeling studies discussed in the
Introduction. Assimilating SIT observations results in better sea ice analyses year-round than assimilating SIC observations,
which have an impact only during the summer months when the model ensemble is capable of capturing variations in sea
ice cover. In fact, assimilating SIC observations appears to have a negative impact on modeled SIC in Fig. 4, though this is
because our method for producing synthetic SIC observations—which are derived using a bounded normal OED—generates
SIC observations that are biased low relative to the TRUTH (Fig. 3). This is particularly true in the summer months when
modeled SIC in TRUTH is comparatively low and the prescribed observation error variance is large (Table 23).

Unlike in-the unbounded case (Fig. 4), when observations are assimilated with a fully bounded filter (f101_BNRH) the
bounded ebservation-error-distribution-OED is appropriately accounted for and the results lie close to the FREE mean (Fig.

5). From this we conclude that while a bounded filter does not overcome the limited efficacy of assimilating SIC observations

respecting boundedness in the assimilation does prevent the introduction of additional bias related to assumptions about the
OED. We also note that assimilating SIC observations with 1/10*" of the error prescribed in Table 2-3 does shift the resulting

modeled SIC closer to TRUTH (not shown), though whether such small magnitude errors are reasonable is a separate discussion
left for other work. In contrast, assimilating Ajce , observations performs at least as well as assimilating SIT observations in
the unbounded case, and will be discussed in more depth later.

A more succinct comparison of the experiments listed in Table 2 is presented in Fig. 6. In terms of modeled SIT, we
find that the assimilation of any observation that either explicitly or implicitly (through categorization in the ice thickness
distribution) contains information about ice thickness reduces MAE by between 86-and-9570 and 90% and improves the CE

score by ~0:30.1, regardless of the filter used. Assimilating-categorized-observations-tends-to-outperform-assimilati

by-the-relative pRMSE-achieved-in-eachease(Fig—Ab—Experiments assimilating SIT and categorized observations are not

11
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Figure 4. Assimilating with unbounded algorithms. The results of using an unbounded filter (f1_NORM) to assimilate SIC (solid pink
line), SIT (solid teal) or category area observations (solid green) are shown for modeled SIC (top panel), SIT (middle panel) and SND
(bottom panel). The black line represents the FREE case (without assimilation) and the thin red lines are the randomly selected TRUTH. For
the results shown, thick lines are ensemble means and shading represents the ensemble standard deviation around the mean. Observations

are assimilated at daily intervals throughout atmospheric forcing year 2011.

significantly different from ene-anetherer TRUTH, though they are all significantly different from the FREE ensemble mean
(Fig. 7).
Adjustments to modeled SIC are more variable. The relative lack of improvement as a result of assimilating SIC compared to
265 SIT is not anovel result (Blockley & Peterson, 2018; Kimmeritz et al., 2018; Mu et al., 2018; Zhang et al., 2018; Fiedler et al., 2022; Willi

, but a good confirmation that the grid-cell level responses investigated here are reminiscent of sea ice DA studies that use more

traditional ensemble filtering methods and assimilate on larger grids. For modeled SIT and SND, there is very little varia-

tion in the results as a function of the filter used (Fig. 6). For modeled SIC, larger pMAE tends to stem from cases using
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Figure 5. Assimilating-with-unbounded-algerithms: Assimilating with bounded algorithms. Same as Fig. 4 but for case in which
observations are assimilated using the f101_BNRH (fully bounded) filter.

totally unbounded or
totally bounded filtering (f1)_ NORM or f101_BNRH) algorithms, or when assimilating categorized observations.

Finally, modeled SND is degraded by the assimilation of sea ice observations in all cases, except those which assimilated
categorized observations with a totally bounded filter. Assimilating snow depth observations has been shown to improve snow
estimates in large models when compared to cases in which snow was updated only via postprocessing (Riedel & Anderson,
2023), as well as in a single-column model when assimilated alongside sea ice observations (Riedel et al., 2023). In the
experiments performed here, categorized snow (vsnon) is a state variable that is updated via regression with the model’s
observed quantities but no snow observations are assimilated. The general inefficacy of sea ice observations to reduce snow
bias likely derives from an ensemble relationship between sea ice variables and categorized snow that produces too much late

winter/early spring snow on thicker ice and too little on thinner ice (Fig. 8).
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Figure 6. Bias reduction and model efficiency as a function of filter type and observation kind. Percent MAE reduction (pMAE) (left
column) and CE increase (iCE) (right column) relative to the FREE forecast as a result of assimilating various observation kinds (x-axis,
see Table 2 for definitions) with each filtering method (y-axis). Results are shown for modeled SIC (top row), SIT (middle row), and SND
(bottom row). In general, lighter-toned colors indicate a more beneficial impact due to assimilation than darker-toned colors. The number

values indicate the specific pMAE or iCE associated with each experiment.
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Figure 7. Significant differences between experiments. The significance of deviations between each assimilation experiment, TRUTH,
and the unassimilated FREE ensemble mean are shown. The color gradient represents p-values for the statistical difference between each
experiment shown on the x-axis with each experiment shown on the y-axis. The rightmost columns show the p-values for differences from
TRUTH and the FREE case. Purple shades indicate insignificant difference at a p-value of 0.05, while greens indicate that the two cases in
question differ significantly at a p-value of 0.05.

3.1 Boundedness

In general, we find the metrics in Figs. 6 and 7 have a rather weak dependence on whether or not the filter respects bounds for
modeled SIT and SND, especially when compared to the obvious dependence on the kind of observation assimilated. There is
essentially no dependency highlighted by iCE, and only minimal variation in pMAE. In terms of modeled SIC, however, the
impact of using a bounded filter is more apparent (Fig. 9). The use of bounded rank histogram distributions in observation-
space allows the filter to correctly infer the bounded nature of the observation error distribution (which respects the physical
upper bound of 1 for SIC) and its relationship to TRUTH. The adjustments thus avoid degrading modeled SIC and lead to a
positive annual pMAE (Fig. 6) and reduced bias relative to TRUTH, particularly in the melt season, when SIC observation

errors are particularly large (Figs. 9, 5). The poor performance of the intermediary filters (f1_BNRH and f101_NORM) to

constrain modeled SIC (Fi

shown).

. 6) can be attributed to their inability to adjust SIC to total ice cover in the winter months (not
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Figure 8. Category-level impact of assimilating with unbounded algorithms. Same as Fig. 4 but for each of the model’s area (top row),
volume (middle row) and snow volume categories (bottom row). TRUTH (the thin red line) may be difficult to identify in some panels, as

the cases assimilating SIT and Aj;ce,» (solid teal and green lines) lie very close to TRUTH.

The under-performance of beunded-filters-awayfrom-the-upper-boeund-ef-the bounded filters with respect to SIC is likely

due to the nature of the model state variables (categorized ice area, ice volume, and snow volume). Recall that the values being
diagnosed (SIC, SIT, and SND) are calculated from categorized quantities using forward operators, but are not themselves
state variables. This formulation leads to an issue with properly constraining modeled SIC. In the first step of the assimilation,
bounds are placed on the observed quantity, SIC, which is calculated by applying a forward operator (a simple summation) to
the model’s forecast of the category area fractions in the ITD. Observation space incrementing respects the bounds prescribed
on the observable. However, in the second step of the assimilation, the increment calculated between the observation and
the model’s estimate of the observed quantity is mapped back onto the category-based state variables using regression. This
step also respects boundedness, but must rely on bounds prescribed by the user for each of the state variables. The only
objective bounds that can be placed on each individual category area fraction are [0, 1], meaning that the regression of the
observation-space increment can update each of the individual category area fractions to a value anywhere in that range.
However, diagnostic SIC used to evaluate the forecast is calculated anew from the adjusted category area fractions, and is
therefore no longer constrained on [0, 1], but rather on [0, 5]. As such, while the bounded filters respect the imposed bounds
on both observed and state variables as intended (not shown), the dependency of the sea ice model on the prescribed ITD

categories confounds an attempt to truly respect upper bounds on SIC.
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Figure 9. Seasonal impact of using bounded filters when assimilating SIC observations. The normalized probability density functions of
the differences between the EXP mean and TRUTH in each assimilation cycle are shown for modeled SIC (top row), SIT (middle row) and
SND (bottom row), along with their respective sample medians (dashed vertical lines). The dark grey distribution in each panel represents
the difference between the FREE ensemble mean and TRUTH as a reference. The differences are divided into the melt season (left column,
July 1st - September 15th) and the rest of the year (right column) and highlight the positive seasonal impact of using bounded algorithms—in
the melt season, the distributions are shifted closer to a EXP-TRUTH difference of zero when a bounded filter is used (yellow lines) than
when an unbounded one is used (pink lines). This effect is most prominent in the melt season months because the uncertainties associated

with the assimilated SIC observations are largest in these months, and thus the bounded synthetic observations are more biased relative to

SNDgxp — SNDrruTH (CM)

TRUTH. The bounded algorithms correct for this appropriately.
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In sum, while the use of bounded assimilation filters does not produce significantly better or worse results in terms of
the impact on modeled SIT or SND, some improvements are carried through for modeled SIC. While the full impact of
boundedness in filtering is limited in this study, these filters could still provide a path to eliminating postprocessing if further

infrastructure designed to simultaneously constrain SIC and categorized area in CICE-SCM-DART were developed.
3.2 Category Assimilation

More so than constraining the data assimilation with bounded filters, assimilating the model’s categorized ice thickness dis-
tribution directly improves the results. First, assimilating categorized area or volume (or both) tends to lead to higher MAE
reductions in modeled SIT and SIC, particularly in the cases that-used-unbounded-regression-in-the-multivariate-adjustments
use either fully bounded or fully unbounded filters (Fig. 6a,c). Additionally, while modeled SND is found to be degraded in
nearly all cases presented here, categorized observations significantly-reduce-the-degree-to-which-assimilating-ice-observations

There also appears to be evidence that assimilating categorized observations may consistently constrain the sea ice state
regardless-of-the-across various mean state grid cell thieknessthicknesses. In Fig. 8, assimilating SIT observations and cat-

egorized area observations perform comparably to constrain a categorized sea ice state that is relatively thick and thus has

a non-negligible amount of ice in each category, including the thickest. By comparison, Fig. 10 (bottom row) presents a
comparison-case in which we-haverestrieted-CICE-SEM s-ability-to-mechanieally-ridgeieethe dynamics forcing is withheld
from the model integration, thereby preventing the buildup of ice in the thickest two ice categories —via mechanical processes
_In all other respects, the model configuration is identical to previous experiments. This leads to an overall thin-

i.e. ridgin

ner mean state

observations fail to constrain the thick ice categoriest4-and-5). While the erroneous adjustments made in the thickest two ice
categories during assimilation are relatively minimal compared to the total grid-cell mean SIT ;-we-do-find-(note the y-axes
in Fig. 10), we observe that they lead to noticeable low biases in modeled SIC (not shown). Assimilating categorized area
observations appears to avoid this issue entirely (Fig. 10, top-bottom row)—the modeled quantities produced by doing so are
consistent with TRUTH in all categories and total SIC.

There exist at least two potential applications of this findingferresult in more realistic experiments. First, in more practical
applications, the assimilation of categorized variables may avoid introducing small errors in low-concentration ITD categories
that occur when assimilating SITand-thus-. This has the potential to mitigate the overall error propagation of the model during
intervals in which real-world SIT observations are historically unavailable to constrain the state (i.e. during summer months).
Second, it has been noted in previous work that assimilating SIT can lead to biases in the sea ice edge (Riedel & Anderson,
2023), which introduces an incentive to assimilate SIC as well as SIT, despite the negative impact SIC can have on modeled
quantities away from the ice edge. The consistency resulting from assimilating categorized observations in multiple ice states,

including thin;first-year-typeregimesregimes in which the ice state is skewed to one end of the ITD,suggests a better solution
for constraining the sea ice state everywhere in the Arctic.
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Figure 10. Category-level impact of assimilating in a thin vs thick ice state. The model’s two thickest area categories for the standard
case (top row, THICK) are repeated from Fig. 8. A corresponding experiment in which mechanical ridging is restricted (bottom row, THIN),
leading to very low concentrations of ice in the thickest ITD categories is also shown. These results demonstrate that the strength of the
relationship between SIT observations and modeled Ajce,» breaks down when some categories have very little ice and that this can bias the

modeled SIC result.

4 Discussion

This study-eonfirms-work reinforces the results of previous studies that assimilating SIT observations generally improves sea
ice analyses over assimilating SIC observations at-the-grid-eel-Hevelalone. In these experiments, assimilating SIT followed

by SIC leads to comparable but slightly degraded modeled quantities when compared to just assimilating SIC, which implies
that for this ensemble and mean state, there is very little benefit to assimilating SIC observations, especially outside the boreal
summer season. This finding, which applies to SIC analyses as well as SIT, may be due in part to the fact that we have generated
spread in our ensemble using only variable atmospheric forcing and that the ensemble is under-dispersive with respect to SIC
for much of the year. It is worth noting, however, that in this under-dispersive SIC scenario, assimilating SIT still improves
modeled SIC.
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Figure 11. Percent of DA cycles requiring SIC postprocessing. For each type of observation assimilated with the four filters (f1_NORM,
f1_BNRH, f101_NORM, or f101_BNRH), the percent of total DA cycles over the course of each experiment that resulted in non-physical
values of aggregate SIC are shown. Note that the percent of postprocessing when assimilating SIC is artifically small, as those observations
do not lead to substantial adjustments from the FREE mean except in the summertime, when grid cell aggregate SIC is decidedly lower than

the upper bound (no postprocessing occurs during this time).

An emergent finding of this work is the positive impact of assimilating the categorized state (the ITD). Assimilating cate-
gorized area and volume estimates reduces MAE and increases CE on par with assimilating SIT observations, improving the
model’s estimates of SIC and SIT at the category level even when the-mean-iee-state-is-thin-and-some categories contain very
little ice. Assimilating categorized observation also reduces the forecast error beyond that of assimilating aggregate observa-
tions (Figs. 4, 8), though this is likely related at least to the fact that the categorized observation errors can be quite small (see
Methods).

The application of a series of bounded filtering algorithms is novel to sea ice data assimilation and has highlighted the com-
plexities of assimilating observations into a categorized distribution model such as CICE-SCM. The sometimes negligible or
even detrimental impact of bounded algorithms on modeled sea ice quantities indicates a need to further tailor the CICE-SCM-
DART interface such that the filters constrain categorized variables and SIC simultaneously. Bounded algorithms eliminate any
need for postprocessing of Vige p, SIT, or Vi, », (not shown). However, for modeled SIC we find that bounded algorithms result
in a small fraction of the adjustments made requiring SIC postprocessing (Fig. 11). Note that assimilating categorized obser-
vations reduces postprocessing requirements compared to assimilating aggregate observations, likely because the categorized

observations are closer in nature to the model’s state variables.
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While the broad strokes of these results are expected to carry over to assimilating real-world observations, the details are
likely to vary under replication in larger models, where dynamic exchange between grid cells imbues additional information
into the observation-state relationships and introduces the need for localization in the data assimilation framework. We also
acknowledge that the bounded filtering algorithms employed in this work depend on piece-wise distributions that are a function
of the model ensemble and are relatively uninformed otherwise. DART provides the opportunity to use alternative distributions
that may qualitatively shift the results. Finally, the work presented here avoids the role of various forms of model error that
are present in operational data assimilation, where the observations and evolution between them are unlikely to be correctly
captured by forward operators and model physics. Therefore, at the very least, the magnitude of error reductions in sea ice

analyses presented may overestimate what will be achievable in more practical applications.

5 Conclusions

We have interrogated in detail the grid-cell level response of a complex sea ice model to the assimilation of various kinds of
sea ice observations, including SIT, SIC, and categorized area and volume, and found that SIT and categorized observations
most accurately constrain the ensemble mean forecast in both category ITD state variables and diagnostic grid-cell mean
SIT and SIC; categorized observations are the only observations that perform consistently well across two different grid cell
mean thickness states. Two key issues in the application of bounded data assimilation algorithms to the sea ice problem are
identified. First, an approach to appropriately constrain categorized area and total SIC simultaneously is still needed. Secondly,
a true understanding of where and why assimilation improves (or degrades) model estimates of the sea ice state depends on how

well the model ensemble captures natural covariance relationships between observables and state variables ;a-targeted-study-of

on a grid-cell scale. Quantification of these relationships requires a targeted study which is absent from previous literaturedue
to-a-lack-of neeessary-observations—, Though observational records are short, we believe significant progress could be made
in understanding the local covariance relationships between SIC and SIT with current in situ and remote sensing products.

Future work will attempt to address the first issue and diagnose the second. Assuming that the ensemble is reasonably realistic
in terms of relationship between variables, the findings presented here are expected to be qualitatively consistent in larger grid

models and more practical assimilation experiments.

Code and data availability. All code used in the study can be found on Github. The CICES single column model is available from the CICE
Consortium at https://github.com/CICE-Consortium/CICE. The Data Assmilation Research Testbed is maintained by DAReS and hosted at
https://github.com/NCAR/DART. The version of DART used for this study was forked to https://github.com/mollymwieringa/DART. The
python scripts and Jupyter notebooks used to configure, run, and evaluate the experiments in this study have been collected in a separate
Github repository (https://github.com/mollymwieringa/cice-scm-da); the postprocessed experiment data used to produce the figures is avail-

able upon request.
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Table 1. QCEEFF filter components. Includes the distributions used to represent the model ensemble in observation-space incrementing and

state-space regression; the observation error distribution associated with each filter; any DART filter equivalents; and relevant references.

Filter Name Obs. Space Dist. | State Space Dist. | Obs. Error Dist. | DART Filter Equivalent | References
f1_NORM normal normal bounded normal EAKF Anderson (2001)
f1_BNRH normal BNRH bounded normal none none

f101_NORM BNRH normal bounded normal BRHF Riedel et al. (2023)
f101_BNRH BNRH BNRH bounded normal none Anderson (2023)
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Table 2. Assimilation experiments. Filter refers to the filter type used (see Table 1); Obs. Kind to the type of observation assimilated;-and
Obs. Error-to-the formula-used-to-determine-an-individual-Observation error estimate-for-estimates associated with each observation at-each

Case Name Filter Obs. Kind Obs—Error
SIT_fI_NORM f1_NORM SIT gsrr="0-3+541-

SIC
SIC_f1_NORM f1_NORM ) ,
AGR_fI_NORM f1_NORM SIT, SIC &s77+s70-
AIC_fI_NORM f1_NORM aicen org—=—{2ny2 (tA_LL )
VIC_f1_NORM fI_NORM vicen e——femy LT hL)
CAT_f1_NORM f1_NORM aicen, vicen oo —~6v.—
SIT_fI_BNRH f1_BNRH SIT es77="0-+SFF-

SIC
SIC_f1_BRNH f1_BNRH
AGR_f1_BNRH f1_BNRH
AIC_fI_BNRH f1_BNRH
VIC_fI_BNRH f1_BNRH
CAT_f1_BNRH f1_BNRH aicen, vicen oo ~6v—
SIT_f101_NORM f101_NORM SIT o511 = 0.1SIT

SIC
SIC_f101_NORM f101_NORM U
AGR_f101_NORM f101_NORM SIT, SIC &-s7r+s10-
AIC_f101_NORM £101_NORM aicen oq—={2uy2n ;;W
VIC_f101_NORM £101_NORM vicen o—={ermy L)
CAT_f101_NORM f101_NORM aicen, vicen ¢q v~
SIT_f101_BNRH f101_BNRH SIT gsrr="0-45S+F

SIC
SIC_f101_BNRH f101_BNRH ) ,
AGR_f101_BNRH f101_BNRH SIT, SIC o577+ 570
AIC_f101_BRNH f101_BNRH aicen oo —={42y? (rp—hp)®
VIC_f101_BNRH f101_BNRH vicen e—={amy>ln—h1)"
CAT_f101_BNRH f101_BNRH aicen, vicen
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Table 3. Observation error estimates as a function of observation kind. Obs. Kind refers to the type of observation assimilated. Obs.

Error refers to the formula used to determine an individual error estimate for each observation at each timestep. a,, and v,, refer to the area
and volume in the n*" ITD categor : h,, refers to the midpoint thickness in the same category. hr and hy, are the upper- and lower-most
thickness bounds used to define the n'" ITD category.

ML Tsrn = 01SIT

SE as10 = 205(S1C% - SIC),
SIT. SIC. TUL TG

vicen Op, = (ay )2 PEIL)
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Figure A1l. RMSE reduction as a function of filter type and observation kind. Same as Fig. 6 but for percent RMSE reduction (pRMSE).



