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Responses to Referee 1 
 

The authors would like to thank the editor and Referee 1 for the time and effort that have gone toward 

providing feedback on this manuscript. Please find below, in blue, our responses to referee comments, 

questions, and concerns. All page numbers refer to the revised manuscript.  

 

General Comments 
Bounded and categorized: targeting data assimilation for sea ice fractional coverage and non-negative 

quantities in a single column multi-category sea ice model” tests two data assimilation approaches on 

single column sea ice model (Icepack, the column physics of CICE) in a perfect-model framework. 

Assimilating per-category quantities (ice area and volume) is found to substantially improve the skill of 

the modeling system to be on par with assimilating sea ice thickness and superior to assimilating 

concentration: which, in the standard, unbounded approach actually performs worse than conducting no 

assimilation. Bounded data assimilation only shows benefits compared to unbounded when assimilating 

concentration, and even then, the results are no better than conducting no assimilation. For other 

parameters bounded assimilation does not yield a net improvement, because the ‘unbounded’ cases are 

effectively bounded in post-processing. The results, especially the per-category ice area findings, are of 

broad interest to the sea ice community and merit publication in The Cryosphere.  

 

However, there are scientific, technical, and communication issues that need to be addressed before 

publication. 

1. Scientific: the primary scientific issue that needs to be addressed is that the “observational 

uncertainties” applied to ice concentration, thickness, and category variables need to be 

scientifically justified for the findings to be meaningful. It would maximize the impacts of the 

work if the justification were based on our real or anticipated observational capabilities (e.g., 

what are the uncertainties in satellite-derived sea ice concentration). However, if this is not 

feasible, the rationale for the prescribed uncertainties needs to be clearly explained in the text. 

2. Scientific: a minor point, the Discussion suggests that the findings are valid in a seasonal (first-

year) ice regime, but no simulations from a first-year ice regime are presented. I recommend 

limiting the Discussion to what is clearly supported by the presented results (i.e., not making 



claims about FYI). Alternatively, if the authors choose to increase the scope of the work to 

include FYI simulations (which will require a different atmospheric and oceanic forcing) that 

would also be acceptable. 

3. Technical: the authors do not cite which version of the Icepack code they used, but the plots 

suggest that the code contains a known error in the mechanical forcing that substantially 

changes the simulated ice concentration (https://github.com/CICE-

Consortium/Icepack/pull/433). If so, the simulations need to be repeated using a version of the 

model that doesn’t contain this error. 

4. Communication: it would enhance the impact of this work if the description of the methods were 

accessible to a general reader of The Cryosphere who is not an expert in data assimilation. As 

written, I struggled to follow the critical details of the data assimilation procedure. I have tried to 

provide guidance here in the detailed comments below, but I recommend having a colleague who 

is not an expert at DA take a close read of the manuscript before resubmitting. 

Author response: We thank Referee 1 for the summary of their concerns presented at the outset of 

their comments and for their conclusion that the results presented in our manuscript merit publication. 

Our point-by-point responses are included below. 

 
Detailed comments: 

Line 25: please provide a reference for the climate model application of DA. 

Author response: Reference to Brennan & Hakim (2022), who assimilated surface temperature proxy 

observations into an ensemble of CMIP5 Last Millennium model simulations to reconstruct annual sea 

ice concentration in the Common Era, has been added to Line 25.  

Lines 29-34: The explanation of the steps of DA is hard to follow for someone who does not regularly 

use DA. For example, it’s not clear how the second step “updating the model’s estimates of the observed 

quantity” relates to the first “generate an ensemble of forecasts”. Does “update” refer to changing the 

state variables in each of the ensemble members, selecting the ensemble member that most closely 

matches the observations, or something else? Because there are numerous Kalman-related data 

assimilation techniques, it would be helpful if the explanation here could be geared towards a reader 

without a background in DA and include a representative example of applying the steps in this work (e.g., 

updating per-category ice concentration, or similar). 



Author response: We thank the referee for highlighting the need for more effective communication 

regarding the data assimilation methods. To address the specific question regarding the use of the term 

“update”, in this context “updating the model’s estimate of the observed quantity” refers to changing the 

model’s diagnostic estimate of the observation (e.g. SIC calculated from the model’s categorized area 

fraction state variable, Aice,n). The update to the model’s estimate of the observation (SIC) is then used to 

determine how much the state variable (Aice,n) needs to be updated, but these are separate steps in the 

process (observation-space incrementing versus state-space regression). We have added a schematic 

figure (Figure 1 in the revised manuscript) that outlines a data assimilation cycle that is agnostic to the 

specific Kalman filter type and attempts to frame the cycle in terms of sea ice quantities. We have also 

updated the initial explanation of the data assimilation cycle in Lines 29-37 to be consistent with the 

new figure. Additional detail is also available in the Figure 1 caption.  

Line 44: Is the term “analysis inaccuracy” specific jargon in DA? Define if so. Otherwise, I think the term 

“bias” is more readily understood (by the modeling community at least) to mean a systematic error in an 

ensemble mean. 

Author response: “Analysis inaccuracy” is not a common term in DA though “analysis” is a specific term 

that refers to the result produced by the DA filter. “Bias” is involved in many different aspects of the DA 

process (observation bias, forward operator bias, model bias…). However, we agree that “bias” is a more 

readily understood term than “analysis inaccuracy.” As such, we have replaced “analysis inaccuracies” 

with “a bias in the assimilation analysis” in Line 47.  

Line 47: The use of “Secondly…” confused me because I don’t see a “firstly”. I’d recommend a different 

transition. 

Author response: Thanks for pointing this out! The use of “First” in Line 38 of the original manuscript 

has been updated to “Firstly” in Line 41 of the revised manuscript. 

Line 50: Mechanical properties as well as thermodynamic. 

Author response: Thanks for catching this oversight! As suggested, we have included reference to 

“thermodynamic and mechanical processes that are strongly dependent on ice thickness” in Line 53 of 

the revised manuscript.  

Lines 57-61: Related to the comment on Lines 29-34, a flow-chart or some other figure displaying the 

steps of DA as used in this work, and how aggregation and boundedness play a role in those steps would 



make this clearer for readers. This flow-chart could also highlight the innovation of this work compared 

to prior research. 

Author response: As suggested by the referee, and in response to the related comments, we have added 

such a schematic figure to the manuscript (Figure 1). The figure is more explicit about the conversion of 

model state variables to observed quantities (“aggregation”) and about how sea ice bounds might lead 

to non-physical updates during the filtering processes.  

Line 81: Using the term “observed” for a quantity produced entirely synthetically seems likely to cause 

confusion with readers. Is there another term in the DA literature that can be used? If not, it seems 

worth defining one. 

Author response: Within the DA literature, both synthetic and real observations are described as such, 

as the intent of studies using synthetic observations is often to gain some understanding of the impact 

of assimilating measurements from current or potential future observing systems. To avoid introducing 

jargon unfamiliar to either data assimilation or sea ice research communities, we opt to proceed with our 

use of “observed” and “observation” when referring to the synthetic observations used in this study. 

However, we clarify in both the Abstract and in Section 2.3 that the DA experiments being performed 

are Observing System Simulation Experiments (Line 6 and Lines 143-147) and stress the nature of the 

observations as synthetic in Section 2.3 (Lines 150-170). 

Lines 84-86: The description of the different grid cells is slightly misleading unless this is using a non-

standard version of Icepack. The “open ocean”, “slab ice”, and “categorized ITD” cells all represent the ice 

cover using an ITD. The difference is purely in the initial conditions (e.g., for slab all, of the ice starts in a 

single thickness category). The different grid cells are irrelevant to this work so I would just remove the 

description. 

Author response: Per the referee suggestion, we have removed the description of Icepack’s additional 

grid cells, as they are indeed irrelevant to this study.   

Lines 88-89: What does “tuned to the atmospheric forcing” mean? I generally think of tuning as bringing 

the model state in line with observations, but that is not apparent in this description. 

Author response: Please see the response to the next referee comment, which is of a related nature.    



Line 90: The phrase “discontinuous behavior in ice concentration related to ice-albedo feedback during 

the melt season” needs to be explained. How large of a change in ice concentration in a time step is 

required to be “discontinuous”? If this is a bug in the model it needs to be fixed, as it may introduce 

other more subtle errors that are not remedied by setting R_snw = -2. If it is expected behavior for the 

model, why exclude it? Note that Figure 1 shows what appears to be discontinuous behavior during 

freeze-up. 

Author response: By ‘discontinuous behavior,’ we refer to a tendency in our Icepack configuration 

toward a rapid refreezing event after ice concentration has begun to decline in early June, based on the 

prescribed value of R_snw. Following the rapid refreezing, and unlike the expected rapid refreezing in 

September, ice concentrations stay fixed at 100% ice coverage for approximately two weeks before 
dropping equally rapidly to the value prior to the original refreezing. We have included a figure that 

illustrates this behavior for a range of prescribed R_snw values with a single atmospheric forcing. We 

found that for values of R_snw > -0.5 (blue members), simulations experienced this behavior, but for 

values of R_snw < -0.5 (red members), simulations experienced no such rapid refreezing.  

The role of R_snw in the sea ice model is to adjust the size of snow grains—more negative 

values of R_snw result in larger snow grains and a lower snow albedo, while more positive R_snw leads 

to smaller grains and more reflective snow. When R_snw is set to -2 (a fairly large snow grain size and 

low snow albedo) and each simulation is forced with different atmospheric forcing, we produced an 

ensemble that does not exhibit this undesirable behavior, and which has members nicely distributed 

across a wide range of summertime sea ice concentrations. (Figure 2 in the revised manuscript). We 

believe that the undesirable behavior may a kind of shock ice-albedo effect that arises during the melt 

season due to a handoff between the albedo of melting snow and the underlying sea ice. It is also 

possible that our chosen combination of atmospheric forcing, prescribed ocean initial conditions, and 



dynamics forcing set the stage for such an effect, hence our use of the phrase “tuned to the atmospheric 

forcing”. For the purposes of this work (and because we’ve selected an R_snw value that has been used 

in configurations of CICE5 coupled to an atmospheric model), the choice of R_snw is not particularly 

relevant to the results, beyond its role in producing a reasonable sea ice ensemble. To avoid unnecessary 

confusion, we have recast discussion of the R_snw parameter in the revised manuscript. The text  

“The sea ice model is tuned to the atmospheric forcing by setting the snow grain radius 
parameter (R_snw) to a value of −2. This choice prevents discontinuous behavior in ice 
concentration related to ice-albedo feedback during the melt season and thus allows for a wider 
summertime ensemble spread. The number of categories used in the ITD is set to 5.”  

has been replaced with 

“The number of categories used in the ITD is set to 5. The snow grain radius parameter (R_snw) 
is set to a value of −2. This choice, which is among the default values of R_snw used when CICE 
is coupled to an atmospheric model, avoids rapid refreezing events during the melt season that 
lead to unreasonably high summertime sea ice concentrations given the atmospheric forcing 
conditions.” 

in Lines 97-101.  

Line 92: The default values in Icepack and the code itself change over time. Please cite the specific tag or 

release of the code used. Also, it would help the casual reader to specify a few more details about the 

Icepack setup: at minimum which schemes are being used for thermodynamics, shortwave, and melt 

ponds. Is a dynamics forcing being used? If so, it should be cited. Relatedly, I suspect the version of 

Icepack that was used in this work contained an error related to how the dynamics forcing was 

implemented (https://github.com/CICE-Consortium/Icepack/pull/433). Note how in the summertime 

in the Fig. 2 TRUTH simulation (a single ensemble member) the ice concentration and thickness change 

monotonically and there is no evidence of synoptic scale variations due to ice divergence and 

convergence (which are present in the SHEBA ice dynamics forcing data that are often used to test 

Icepack). This error substantially changes the simulated ice concentration. If so, the results need to be 

recomputed without the error. 

Author response: Thank you for the comment regarding the specifics of the model version! We have 

included a reference to the version number (1.3.1) and appropriate citation in Line 81. Additional details 

regarding the model configuration have been added per the referee’s requests to the first paragraph of 

Section 2.1, Lines 92-98, which now read, 



“Icepack is maintained as the column physics module of CICE, with consistent thermodynamics, 
mechanical redistribution, and tracer support. For use in the CICE-SCM-DART framework, 30 
instances of Icepack are forced by unique atmospheric conditions extracted from randomly 
selected members of a recent large-ensemble reanalysis product (Raeder et al., 2021). Each 
instance of Icepack uses the mushy thermodynamics scheme (kitd = 1) and linear ITD remapping 
options (ktherm = 2), as well a Delta-Eddington shortwave radiative transfer scheme and the 
empirical CESM melt pond scheme. Dynamical forcing to the column is provided by sea ice 
deformation rates obtained from the SHEBA field campaign (Lindsay , 2002). The number of 
categories used in the ITD is set to 5.” 

To address the portion of the comment noting a potential bug related to the implementation of the 

dynamics forcing, we integrated the code changes within the highlighted pull request 

(https://github.com/CICE-Consortium/Icepack/pull/433) into our Icepack setup (version 1.3.1) and 

produced two alternative ensembles. The first fluxes in ice of identical distribution when ice converges 

and leads to a drop in grid cell ice concentration (fluxice); the second fluxes in open water in the same 

scenario (fluxwat).  

First, we note that neither exhibits substantially more synoptic scale variability than our original 

ensemble. We hypothesize that this is because we are running Icepack in a somewhat atypical manner, 

with our own calculated ocean initial conditions for temperature, salinity, and heat flux as well as a 

prescribed dynamics forcing from the SHEBA campaign. The model is typically run with one or the other. 

However, we don’t expect that more synoptic scale variations in our ensemble members would 

significantly alter our assimilation results. 

Secondly, we find that including the suggested code changes did alter the mean state into 
which we assimilated observations but did not qualitatively change our results. The fluxice ensemble 

runs away to dramatic ice thicknesses (~60m) during the 10-year spinup period and was deemed 

ineligible for assimilation. The fluxwat ensemble is more stable and better captures the nature of the 

location as a seasonal ice zone (ice concentrations in several members fall all the way to zero in the 

summer months). As such, we reran our full suite of assimilation experiments in the fluxwat ensemble 

and have updated all the figures in the revised manuscript with the results. Our conclusions regarding 

the relative impact of each assimilated observation kind, as well as of the efficacy of bounded versus 

unbounded assimilation algorithms, remain the same.  

Lines 92-93: How is mixed layer salinity being prescribed? The mushy layer physics can be sensitive to 

this. 

https://github.com/CICE-Consortium/Icepack/pull/433


Author response: If by ‘mixed layer salinity’ the referee refers to the salinity of the ocean below the sea 

ice as it pertains the formation of new ice or ice freezing/melt processes, (sea surface salinity, ‘sss’), then 

salinity is prescribed in the ocean initial conditions, which were calculated from the ocean component 

output of a fully-coupled CESM2 historical simulation. If the referee refers to something else, we will 

need additional clarification to address this question.  

Figure 1: the right middle and bottom plots appear to be incorrect. If the y-axes are the same as on the 

left plots, then the thickness (ice or snow) in each category is less than the mean, which cannot be. It 

looks like what is plotted is actually per-category volume. I recommend plotting the per-category 

thickness as that is more intuitive for readers who are not CICE experts and more directly comparable 

with observations. Also, the ice thickness (and maybe snow depth?) appear to be ice-area weighted 

quantities (I’m guessing from the sudden drop during freeze-up). If so, this needs be stated explicitly. 

Author response: We thank the referee for noting the inconsistency. The right middle and lower plots in 

Figure 2 of the revised manuscript show per-category ice and snow volume, respectively. The choice to 

present per-category volumes, instead of thicknesses, is intentional, because per-category ice area, ice 

volume, and snow volume are the state variables in the model that are updated during Step 4 of the DA 

cycle (state-space regression). Relatedly, we plot area-weighted grid-cell mean ice and snow thicknesses 

in the left middle and bottom plots because these are the diagnostic model estimates of the 

observations that will be assimilated (quantities that might be updated in Step 3 of the cycle, 

observation-space incrementing). Y-axis labels for the left column of plots have been added, to clarify 

that they are category volumes, not thicknesses. The figure title now reads “The FREE ensemble’s three 
aggregate variables and the state variables from which they are derived” and the figure caption includes 

an explicit mention of the area-weighted nature of the aggregate variables (Figure 2).  

Line 95: Why this particular location? If the sea ice is supposed to seasonally advance and retreat from 

this location, then why doesn’t Figure 1 show ice thickness and area fraction declining to zero (or at least 

very close) in the summer? 

Author response: The use of a seasonal location for this case study allows use to examine how well the 

bounded DA methods perform near both the upper and lower bounds of sea ice concentration (0 and 1), 

as well as the lower bound sea ice thickness (0). The referee’s suggestion to ensure that the dynamics 

forcing is implemented correctly in our model setup results in an ensemble that better reflects the 

seasonal nature of the selected location (Figures 2 and 3 in the revised manuscript).  

Line 97: Why conduct a 10 year spin up? Is it needed for the DA? 



Author response: The spin-up period allows the sea ice conditions across the ensemble to diverge due 

to the difference in atmospheric forcings. Ensemble spread, which can be interpreted in this case as a 

sampling of natural variability in sea ice conditions due to atmospheric variability, is crucial for the data 

assimilation algorithms—if there is too little spread in the ensemble, then the algorithm will produce an 

analysis that leans too heavily on the model estimate of the state and insufficiently accounts for the 

observations. If there is no spread in the ensemble, the DA filter cannot adjust the model using 

observational information at all. We have added a phrase (“… allowing the sea ice simulations to diverge 

in response to atmospheric variability”) to this sentence in Lines 107-108 of the revised manuscript.  

Line 105: See comments above related to making the steps of DA more understandable for the non-

expert. 

Author response: Per this comment, and the earlier comments related to explanation of the DA, Section 

2.2 has been updated to reference and be consistent with the newly included Figure 1 (a schematic 

outline of the data assimilation cycling process) (Lines 116-117).  

Line 109: Increases relative to what? 

Author response: The EAKF (Anderson 2001) enables stable and efficient assimilation with smaller 

ensembles sizes when compared to the traditional Ensemble Kalman Filter (Evensen, 2003). To clarify, 

“… increases the stability and efficiency of assimilating with smaller ensemble sizes” has been replaced 

with “…increases the stability and efficiency of assimilating with smaller ensemble sizes compared to a 
traditional EnKF” in Lines 120-121 to clarify. 

Lines 137-142: What is the basis for these observational uncertainties? Please cite studies showing this 

much uncertainty is present in the observations for a grid cell of this size (added question, what size grid 

cell?) and, for quantities that lack uncertainty estimates explain the reasoning behind the error 

distributions that were chosen. 

Author response: We would like to stress that for the purposes of this study, our goal is not to 

accurately represent any particular existing sea ice observational product. Instead, we seek to 

characterize the general expected errors associated with each kind of observation that we assimilate, 

such that we can gain some understanding of their relative impact for constraining the sea ice state.  

For SIC observations, we base our estimates on Zhang et al. (2018), who prescribed 15% of the 

true SIC value in their pan-Arctic OSSE experiments. Their use of 15% of SIC comes from Meier (2005), 

who performed a comparison of passive microwave SIC products from SSM/I and AVHRR imagery to 



determine uncertainty in Arctic peripheral seas. Other sea ice products, such as those from EUMETSAT 

OSI SAF, have grid-cell level uncertainty estimates. The OSI-450 CDR, for example, has 2-3% 

uncertainty in open water and in 100% SIC cover, with some higher uncertainty in regions of mid-

concentration, particularly at the ice-edge (Lavergne et al., 2019). Another common sea ice 

concentration record, the NSIDC Nasa Team estimate from NIMBUS-7 and SSM/I-SSMIS passive 

microwave measurements is found to have uncertainty of ~5 % of SIC in winter, and ~15% during 

summer (when melt ponds are present); uncertainty is lower within the ice pack, when SIC is generally 

high and ice is generally thicker (DiGirolamo et al., 2022). An additional study notes that “passive 

microwave SIC estimates in regions of consolidated ice have typically smaller uncertainties (2% to 8% 

SIC) than estimates from low to intermediate SIC areas with uncertainties in the order of 20% SIC…” 

(Wernecke et al., 2022). In response to these findings, we chose to prescribe SIC uncertainty as a 

parabolic function of the true SIC, which captures most of the noted dependencies on sea ice cover. The 

scaling factor of -0.5 was chosen such that the annual average SIC observational uncertainty in our study 

is 10-15%. We also note in the manuscript that the assimilation of SIC observations with 1/10th of this 

standard prescribed error do constrain modeled SIC closer to TRUTH, but do little to constrain modeled 

SIT or SND  (Line 238). 

 For SIT observations, there is substantially less research to provide guidance. Early estimates of 

SIT from Envisat and ICESat do not come with specific uncertainty estimates at all. Later estimates from 

Cyrosat-2 are better constrained, as are products developed using those estimates (e.g. CS2-SMOS). The 

uncertainties associated with these measurements tend to be larger than those that we’ve prescribed 

(Xie et al., 2018), but SIT retrieval from remote sensing is a rapidly advancing field, and we are operating 

under the assumption that more accurate products (including extant ones such as those from ICESat-2 

retrievals, Petty et al., 2023) are on the horizon (e.g. CRISTAL, Kern et al., 2020). Zhang et al. (2018) 

prescribed 0.1m everywhere as SIT uncertainty. We note from ICESat-2 thickness and freeboard 

measurements, there seems to be a consistent and relatively linear relationship between SIT and SIT 

uncertainty, with a slope that typically falls between 0.05 and 0.75 thickness estimates in pack ice. We 

chose 0.1 in anticipation of more accurate SIT products in the future; we also note that our annual 

average SIT uncertainty estimates are 4x greater than those prescribed by Zhang et al. (2018), and that 

expressing uncertainty as a function of thickness is a meaningful step forward from earlier work.  

Finally, assimilating categorized observations is a very new idea, based for this work in the 

density of estimates from ICESat-2. Williams et al. (2022) attempted assimilations of categorized 

observations derived from real thickness measurements from Cyrosat-2 and calculated categorized 

uncertainties via an error analysis of concentration and thickness estimates. Under the assumption that 

the categorized observations could be derived by aggregating the density of observations from ICESat-2 



within a model grid cell into an ice thickness distribution, we calculate categorized observation errors as 

standard error of the mean (SEM) of all the measurements in a grid cell. In this idealized application, we 

used the SEM formula for a uniform distribution (Table 3), where the bounds of the distribution are the 

left and right edges of the category, and we assume all points would be uniformly distributed. Our 

calculated uncertainties are likely underestimates of true categorized area observations, but a reasonable 

first step in approximating such errors.  

 

Lines 157-158: If this is a known issue with atmospheric perturbations then why not perturb other 

forcings? A perturbation in the ice dynamics forcing, for example could produce a very dispersive 

ensemble. Please discuss the choices about perturbations and their impacts on the findings in the 

discussion. 

Author response: We have experimented in other work with perturbing sea ice parameters to generate 

ensemble spread but find that they often lead to increases in spread that may strain realistic natural 

variability. By sampling the atmosphere from an ensemble reanalysis product, we ensure that the spread 

(and the sampling of natural variability) in the sea ice model due to variability in the forcings has some 

physical justification. Perturbation of the ice dynamics forcing is an idea worth considering and testing, 

but given the success of our present methods, we classify such experiments as outside the scope of this 

study. Perturbing the dynamics forcing is also an approach that would be particular to CICE-SCM-DART, 

and not generalizable to assimilation in the full CICE5 sea ice model. We recommend that future work 

examine the efficacy of including perturbations to the dynamic forcing in CICE-SCM-DART.  

Line 205: If this is a standard statistical technique for this application please cite. Otherwise include a 

brief justification of why this statistical approach was taken. 

Author response: Metrics such as MAE and RMSE are commonly used in OSSEs to evaluate how much 

assimilating observations reduces error in the model’s estimate of a quantity relative to the true state. 

We choose to add the Welch’s t-test to understand whether the reductions in error relative to TRUTH 

correspond to significant differences in the unassimilated, assimilated, and true timeseries. A successful 

experiment could then be thought of as one that is significantly different from the FREE ensemble mean 

and not significantly different from the TRUTH. This application also provides metric for whether one 

assimilation approach is meaningfully more effective than another. To clarify, the text  

“Statistically significant differences between assimilation experiments, FREE, and TRUTH are 
diagnosed using a Welch’s t-test.” 



has been replaced with 

“In order to understand whether a) assimilating with different methods and different variables 
leads to meaningful adjustments toward TRUTH and b) any combinations of observations and 
filters significantly outperform the others over the course of the year, statistically significant 
differences between the ensemble mean timeseries of each EXP, FREE, and TRUTH are 
diagnosed using a Welch's t-test.” 

in Lines 222-225. 

Line 210: To assess the impacts of these results, it is critical that the prescribed observational 

uncertainties match our actual observational uncertainties. It is not surprising that assimilating 

thickness is more informative than concentration for a case with thick (2m average) ice and very high ice 

concentration. However, our ability to measure thickness is much, much worse than concentration. Just 

by eye, it looks to me like the observational uncertainties prescribed in Figure 2 are overestimated for 

concentration and underestimated for thickness. At least for the winter, I would expect observational 

error in sea ice concentration in the pack ice on a 100 km grid cell to be around 0.03. In Figure 2 it looks 

closer to 0.1. For thickness, the summertime uncertainty should be dramatically more than the 

wintertime whether one is using laser or radar altimeters. 

Author response: We agree that for the purposes of understanding the impact of a particular set of 

extant observations, accurately capturing the associated uncertainties is key. However, the primary goals 

of this study are not to evaluate the impact of any real observing system, but to 1) understanding the 

relative impact of assimilating different kinds of observations (to which the question of the nature of the 

uncertainties is indeed very important); and 2) to evaluate a series of data assimilation algorithms (to 

which observational uncertainties are important but perhaps less pressing). For a further discussion of 

the choices involved in our definitions of observational uncertainties, we refer to our response to the 

referee’s previous comment about observational uncertainties (associated with Lines 137-142 of the 

original manuscript). 

Line 217: The statement reads like this is a success, but shouldn’t the results lie closer to the “TRUTH”? 

If the results were the same as FREE isn’t that just an indication that the assimilation does not increase 

skill? Please clarify. 

Author response: The referee is correct both that this sentence is framed as a kind of success and that 

the assimilation of SIC observations does not improve the analysis relative to FREE. To clarify, we found 



that when SIC observations are assimilated using unbounded algorithms, they can degrade the analysis 

relative to FREE, because their observation error distributions are not unbounded. Because we took care 

to use bounded OEDs that reflect the real-world likelihood of encountering observations near sea ice 

bounds (i.e. that do not allow non-physical values), the unbounded filtering algorithm sees a likelihood 

that is biased away from the TRUTH. The use of bounded filtering algorithms accounts for this and 

prevents the introduction of bias into the analysis related to the OED. In that sense, the use of bounded 

algorithms is successful; however, the efficacy of SIC observations to adjust the analysis closer to the 

TRUTH is still limited. We have added a sentence, “From this we conclude that while a bounded filter 
does not overcome the limited efficacy of assimilating SIC observations, respecting boundedness in the 
assimilation does prevent the introduction of additional bias related to assumptions about the OED” to 

Lines 236-238.  

Figure 4: Should the caption read “assimilating with bounded algorithms”? 

Author response: Thank you for catching this! The figure title (Figure 5 in the revised manuscript) has 

been updated to read “Assimilating with bounded algorithms.” 

Line 223: I assume that by “implicitly” you are referring to the aicen assimilation, but please spell that 

out if so. 

Author response: As requested by the referee, we have added a clarification to this sentence, “…that 
either explicitly or implicitly (through categorization in the ice thickness distribution) contains 
information…” in Line 244. 

Lines 224-229: If they are not statistically significantly different, then the preceding discussion of 

insignificant differences is not needed. 

Author response: We agree with the referee that discussing the differences between assimilating SIT 

and category observations given their insignificant difference does not add to the manuscript. We have 

removed the sentences, 

“Assimilating categorized observations tends to outperform assimilating SIT in terms of pMAE 
but falls slightly short according to iCE. This discrepancy across metrics implies that assimilating 
categorized observations may not capture as much of the observed variance in SIT as 
assimilating SIT observations, a conclusion supported by the relative pRMSE achieved in each 
case (Fig. A1).” 



from the revised manuscript.   

Lines 231: Cite the other studies that have found this. 

Author response: References to Blockley & Peterson (2018), Kimmeritz et al. (2018), Mu et al. (2018), 

Zhang et al. (2018), Fiedler et al. (2022), and Williams et al. (2022) have been added to Lines 249-250 

in the revised manuscript. 

Line 280: restriction on ridging should be described in the methods. 

Author response: The ridging restriction is performed by removing a call to the dynamics forcing during 

the model integration. Without this call, Icepack attempts to calculate its own opening and closing rates 

from the ocean initial conditions for ocean u and v, which have been set to zero. Thus, any dynamically 

forced ridging is negligible in those simulations. The overall effect is to prevent much very thick ice from 

forming in the thickest categories of the ITD. For simplicity, and because much of the ridging discussion 

is localized to this section, we have replaced the lines, 

“By comparison, Fig. 9 (bottom row) presents a comparison case in which we have restricted 
CICE-SCM’s ability to mechanically ridge ice, thereby preventing the buildup of ice in the thickest 
two ice categories.”  

with  

“By comparison, Fig. 10 (bottom row) presents a case in which the dynamics forcing is withheld 
from the model integration, thereby preventing the buildup of ice in the thickest two ice 
categories via mechanical processes (i.e. ridging). In all other respects, the model configuration is 
identical to previous experiments.” 

in Lines 301-303. 

Lines 280-286: The ridging turned off results took me by surprise and it’s unclear to me what we are 

learning from them. If they are critical to the overall findings, please expand the methods (how was 

ridging turned off), results (what other changes did it cause in the ice state, I assume they are large), and 

discussion. In its current form I would recommend removing the ridging turned off section entirely. 

Author response: The restricted ridging results emphasize the ability of categorized observations to 

constrain the ice state even when there is very little ice in some categories of the ITD. This is important 



for two reasons, which we have attempted to draw out in Section 3.2. First, SIT observations begin to fail 

to constrain the low-ice categories, which leads to small errors in the ITD that can compound and lead to 

more substantial errors in the model’s estimate of aggregate SIC (in this case, an underestimation of SIC 

compared to the TRUTH that was not noted in the thicker ice state). Assimilating categorized 

observations avoids this. Second, these results imply a more parsimonious solution for constraining edge 

cases such as: 

a) very thin ice or the ice edge, where the ITD is generally skewed toward thinner categories and 

SIT observations have been shown to be less effective (Riedel & Anderson, 2023) 

b) very thick ice, where the ITD is skewed toward thicker categories and SIC observations do a poor 

job adjusting SIT estimates.  

This may also be relevant for reconstruction and forecasting efforts, as outlined in the manuscript. First, 

until very recently, SIT observations have generally been unavailable in the summertime, so a 

reconstructed product constrained by observations would only be able to rely on SIT observation 

between October and May, roughly. In that scenario, small errors in adjustments to the ITD because of 

SIT assimilation prior to the summer may propagate during the summer months, when only SIC 

observations are available to constrain the state. If those errors were minimized by assimilating 

categorized observations prior to the summertime observation gap, some amount of forecast error 

might be avoided. 

We have revised phrasing throughout Section 3.2 to move away from a process-based interpretation of 

our results toward one that focuses on the outcomes as a function of the “balance” of the ITD.  

Lines 293-294: Where were the simulations done in first-year ice regimes? Simulations with no dynamics 

forcing (I presume that’s how ridging is turned off?) are not the same as first-year ice regimes, even if 

the annual mean thickness is similar. 

Author response: Related to our resonse immediately prior, our intention has been to demonstrate that 

some combinations of observations and DA methods can constrain the sea ice state regardless of 

whether or not the entire ITD is represented. In doing so, we assumed that a real-world corollary for our 

thin ice case could be a regime that is primarily first-year ice. We thank the referee for challenging this 

assumption and acknowledge it’s limitations. For accuracy and clarity, we have revised Section 3.2 to 

establish that we are not trying to simulate first-year ice regimes explicitly, but rather extrapolate how 

our data assimilation results might apply under different conditions. A section of planned future work 

will attempt to model first-year and multi-year conditions more explicitly.  



Line 296: This is an overly broad statement to make from a single grid cell of multi-year ice, with a single 

ice dynamics and ocean forcing. Please qualify. 

Author response: We have altered the opening sentence of Section 4 from, 

“This study confirms that assimilating SIT observations improves sea ice analyses over 
assimilating SIC observations at the grid cell level.” 

to 

“This work reinforces the results of previous studies that assimilating SIT observations generally 
improves sea ice analyses over assimilating SIC observations alone.” 

in Lines 319-320. We also note the subsequent sentence, which qualifies our results to “this ensemble 
and mean state” (Lines 320-322).  

Line 305: I do not see the thin ice simulations that this is referring to. If this is a critical finding from this 

work, it needs to be supported by simulations of seasonal ice. This should be straightforward to 

accomplish with the existing code infrastructure (i.e., pick a more southerly point for the atmospheric 

and oceanic forcing), but would entail significant additional work. Alternatively, the findings could be 

rewritten to describe just the presented work and simulations in seasonal ice conditions could be 

recommended as future work. 

Author response: The inclusion of the referee’s suggested bug fix related to the dynamics forcing 

implementation in Icepack (comment referring to Line 92 of the original manuscript) produces 

ensembles that better reflect the seasonal nature of the location from which our forcings are drawn. The 

ensemble is thinner overall and more seasonal, with several members that drop to zero SIC in the 

summer months. We have rerun all our assimilation experiments with this bug fix implemented and 

updated all the figures in the paper with the results. The inclusion of the bug fix and the thinner ice state 

result in small quantitative changes, but do not alter the qualitative conclusions of the study (which 

should be expected, given that both ensemble spread and observation uncertainty tend to decline under 

a thinner mean state). Previously mentioned future work will attempt to simulate a wider range of the 

Arctic’s sea ice states, including coastal ice, Central Arctic pack ice, and very seasonal ice in the Barents 

Sea.  



Line 332: Is this really needed? The aicen lines on the figure seem to overlap with the “TRUTH” almost 

entirely. At what point is a DA system good enough? 

Author response: We thank the referee for this question—it is an observant one, particularly as it 

pertains to how good a DA system needs to be. The latter is an open question that we believe is 

somewhat dependent upon the application for that DA system. An approach to constraining the 

categories of the ITD and aggregate SIC simultaneously is, in our view, still necessary. First, as illustrated 

in Figure 11, even the DA algorithms that respect bounds and are used to assimilate categorized 

observations occasionally require SIC postprocessing. This is because within the current framework the 

assimilation can respect the categorized area bounds (which are necessarily 0 and 1 for every category), 

but not the aggregate of the area categories. A solution that can remove the need to such manual 

postprocessing entirely would be ideal. Second, as previously noted in our discussion of observational 

uncertainties, it is likely that we have underestimated the uncertainty associated with each categorized 

observation. As such, it is possible that categorized assimilation may be less accurate than presented 

here (though still effective, due to the linearity between category observations and the model state 

variables). 

Line 334: It would be helpful to the field to expand the description of what kind of targeted covariance 

study is needed. Based on your findings, what should field scientists, remote sensing researchers, and 

modelers do next? 

Author response: We are actively engaged in research that explores the covariance relationship in 

observations between sea ice concentration and sea ice thickness. For sea ice DA, we list a few key 

points that we believe would helpful foci: 

a) For the purposes of understanding variability that the ensemble seeks to sample: what is the 

natural variability of SIC and SIT on a local/grid-cell scale? How does this variability change 

across the Arctic?  

b) For the purposes of understanding how observable variables relate to one another and to state 

space variables: What are typical covariance values on the local/grid-cell level between SIC and 

SIT? How do aggregate observable covary with each category of the ITD? What are the length 

scales of those covariance relationships? How well do models capture those covariance 

relationships compared to observations? 



We have added two sentences to Section 5 that suggest a covariance study for local SIC and SIT (Lines 

357-359). 
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