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Abstract. The surface energy budget drives the melt of the snow cover and glacier ice and its computation is thus of crucial

importance in numerical models. This surface energy budget is the sum
::::
result

:
of various surface energy fluxes, that

:::::
which

depend on the input meteorological variables and surface temperature, and to which
::
of heat conduction towards the interior

of the snow/iceand potential melting need to be added,
::::
and

:::::::::
potentially

::
of

:::::::
surface

::::::
melting

::
if
:::
the

::::
melt

::::::::::
temperature

::
is
:::::::

reached.

The surface temperature and melt rate of a snowpack or ice are thus driven by coupled processes. In addition, these energy5

fluxes are non-linear with respect to the surface temperature, making their numerical treatment challenging. To handle this

complexity, some of the current numerical models tend to rely on a sequential treatment of the involved physical processes, in

which surface fluxes, heat conduction, and melting are treated with some degree of decoupling. Similarly, some models do not

explicitly define a surface temperature and rather use the temperature of the internal point closest to the surface instead. While

these kinds of approaches simplify the implementation and increase the modularity of models, it can also introduce several10

problems, such as instabilities and mesh sensitivity. Here, we present a numerical methodology to treat the surface and internal

energy budgets of snowpacks and glaciers in a tightly-coupled manner, including potential surface melting when the fusion

::::
melt temperature is reached. Specific care is provided to ensure that the proposed numerical scheme is as fast and robust as

classical numerical treatment of the surface energy budget. Comparisons based on simple test cases show that the proposed

methodology yields smaller errors for almost all time steps and mesh sizes considered and does not suffer from numerical15

instabilities, contrary to some classical treatments.

1 Introduction

Snowpacks and glaciers are crucial parts of the Earth system that have a profound impact, among others, on the water cycle

(e.g. Barnett et al., 2005) and on the radiative budget of continental surfaces (e.g. Flanner et al., 2011). A key tool to understand

the interaction between snowpacks/glaciers and the other components of the Earth system are numerical models , that aim to20

quantitatively represent the evolution of snowpacks and glaciers under various atmospheric forcings. To reach this goal, the rep-

resentation and evolution of the thermodynamical state (that is to say temperature profiles and phase changes) of snowpacks and

glaciers are implemented in most (if not all) numerical models (e.g. Jordan, 1991; Bartelt and Lehning, 2002; Liston and Elder, 2006; Vionnet et al., 2012; Sauter et al., 2020)

::::::::
numerical

::::::::::::::
snowpack/glacier

::::::
models

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Anderson, 1976; Brun et al., 1989; Jordan, 1991; Bartelt and Lehning, 2002; Liston and Elder, 2006; Vionnet et al., 2012; Sauter et al., 2020)

1



.25

Among the various processes driving the thermodynamical state of snowpacks and glaciers, the surface energy budget (SEB)

has received detailed attention in the past, notably because of its central role (e.g. Etchevers et al., 2004; Miller et al., 2017;

Schmidt et al., 2017, among many others). Indeed, the surface energy budget
::::
SEB governs most of the net energy input and

output within the snowpack/glacier and thus has a fundamental role for its warming/cooling and for its melting. This SEB is

the net result of various energy fluxes, including turbulent fluxes and long-wave radiative flux , that directly and non-linearly30

:::
that

:::::::
directly depend on the surface temperature of the snowpack/glacier. Mathematically, the surface energy budget

::::
SEB thus

appears as a highly non-linear top boundary condition for snowpacks and glaciers. This non-linearity is even reinforced by

the existence of a regime change between a melting and non-melting surface, with different thermodynamical behaviors below

and above
:
at

:
the melting point. This profoundly non-linear nature

::::::
Indeed,

::::
once

:::
the

:::::::
melting

::::
point

::
is
:::::::
reached

::
at

:::
the

:::::::
surface,

:::
the

::::
SEB

:::::::
becomes

:::::
more

::::
akin

::
to

:
a
:::::::::::::
Stefan-problem

::::
with

::
a
:::::::::::
discontinuity

::
in

:::
the

::::::
energy

:::::
fluxes

::::
and

:::
can

::
no

::::::
longer

:::
be

::::::
simply

::::::::
described35

::
in

::::
terms

:::
of

::::::
surface

::::::::::
temperature.

:::::
This leads to numerical challenges when solving the governing equations.

As a consequence, there are currently no uniquely employed strategies to treat this problem, and various numerical schemes

have been proposed and implemented for solving the SEB and its link with the thermodynamical state of a snowpack/glacier

(Bartelt and Lehning, 2002; Vionnet et al., 2012; van Pelt et al., 2012; Sauter et al., 2020). Among the different published im-

plementations, one can notably cite the so-called "skin-layer" formulation,
::::::
usually

:::::::::
employed

::
in

:::::::::::
combination

::::
with

::
a
:::::
finite40

::::::
volume

:::::::
method

::::::
(FVM)

:::
for

::::
the

:::::::
internal

::::
heat

::::::::
equation,

:
in which the surface and internal temperatures are solved sequen-

tially over a given time step (Oerlemans et al., 2009; Kuipers Munneke et al., 2012; van Pelt et al., 2012; Covi et al.,

2023). While this approach naturally offers modularity and simplifies the treatment of the SEB (and of the associated sur-

face temperature), a sequential treatment of tightly-coupled processes or variables is also known to display some instability

(e.g. Ubbiali et al., 2021; Brondex et al., 2023) and large time step sensitivity (e.g. Barrett et al., 2019). On the other hand,45

some
::::
FVM

:
implementations do not define a specific temperature associated with the surface, but rather use the tempera-

ture of the top-most numerical layer of the domain
:::
(i.e.

:::
the

:::
top

:::::
layer

::
of
::::

the
::::::::
simulated

::::::::::::::::
snowpack/glacier) for solving the

SEB
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Anderson, 1976; Brun et al., 1989; Jordan, 1991; Vionnet et al., 2012; van Kampenhout et al., 2017). While this enables

to easily solve the SEB and the internal heat budget in a tightly-coupled way, this method requires to refine the numerical grid

near the surface, in order to properly simulate the SEB. Thus, currently-employed
::::
FVM strategies in snowpack/glacier models50

present some limitations , that can be detrimental for the obtained numerical solutions.

Here, we propose a
::::
FVM numerical scheme meant to combine the advantages of the previously published numerical strategies.

Precisely, our goal is to offer a tightly-coupled treatment (as opposed to a sequential treatment) of the internal and surface tem-

peratures of a snowpack or glacier. For this, the proposed implementation explicitly defines a temperature right at the surface

(viewed as an infinitely small
:::
thin horizontal layer), which improves the simulated results in terms of accuracy and stability. As55

the snowpack and glacier models are sometimes used in distributed or long-time spanning simulations, specific care is taken to

ensure that the proposed numerical scheme has a similar numerical cost as the already published ones.

The article is organized as follows: Section 2 presents the physical equations governing the energy budget of snowpacks and

glaciers, Section 3 briefly recalls some of the existing numerical schemes to solve these governing equations, and Section 4
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presents the proposed numerical scheme overcoming some of the limitations of existing strategies, while keeping their strong60

points. Finally, some simple examples are presented in Section 5, and a discussion comparing the different numerical schemes

is provided in Section 6.

2 Governing equations

The goal of this Section is to briefly recall the general equations governing the thermal regime of snowpacks and glaciers,65

before presenting their numerical discretization in the next Section.
::
As

:::::::::
snowpack

::::
and

:::::::
glaciers

::::
share

::::::
many

:::::::::
similarities

::::
and

::::::::
processes,

::::
such

:::
as

::::
heat

:::::::::
conduction

:::
or

:::
the

:::::::
presence

:::
of

:
a
::::::
phase

::::::::
transition

:::::
when

:::
the

::::
melt

::::::::::
temperature

::
is
::::::::
reached,

::::
they

:::
can

:::
be

:::::::::
represented

:::
by

:::
the

::::
same

:::::
type

::
of

::::::::
equations.

::::::
These

:::::::::
similarities

::::::
enable

::::::::::
simulations

::::::
mixing

:::::
snow

:::
and

::::::
glacier

:::
ice

::::::
within

:
a
::::::
single

:::::::::
framework

:::::::::::::::::::
(e.g. Sauter et al., 2020)

:
.
::::::
Hence,

:::
for

:::
the

::::
sake

::
of

:::::::::
generality,

:::
the

::::::::
equations

::::::::
discussed

:::
in

:::
the

::::::::
following

:::::::
sections

:::::
apply

::
to

::::
both

::::
snow

::::
and

::::::
glacier

:::
ice.

::::
That

:::::
being

:::::
said,

::::
snow

::::
and

::::::
glacier

:::
ice

::::::
present

:::::
some

::::::::::
differences,

::::::
notably

::::::::::
concerning

:::::
liquid

:::::
water70

:::::::::
percolation.

:::
As

::::::::
addressed

:::::
later,

:::
this

:::::
might

::::::
require

::
a

:::::::::
differential

::::::::
treatment

::
of

::::::
glacier

:::
ice

:::
and

::::
snow

:::::
when

::::::::::::
implementing

:::
the

:::::
liquid

::::
water

::::::::::
percolation

:::::::
scheme.

2.1 Internal energy budget

The thermal regime of the inner part of a snowpack or glacier is governed by the principle of energy conservation. Assuming

that Fourier’s law
:
of

::::
heat

::::::::::
conduction applies in snow/ice with a well-defined macroscopic thermal conductivity (e.g. Calonne75

et al., 2011), this energy conservation writes:

∂th−∇ · (λ∇T ) =Q (1)

where h is the internal energy content of snow/ice (expressed in J m−3), λ the thermal conductivity, T the temperature,

and Q volumetric energy sources (such as the distributed absorption of shortwave radiations). Here, h is understood as the

energy content,
:
including latent heat associated with the presence of liquid water (Tubini et al., 2021). The volumetric energy80

sources Q (expressed in W m−3) therefore do not include the absorption or release of latent heat during solid/liquid water

phase changes.
:
In

::::
this

::::::
article,

:::
we

:::::::
assume

:::
that

:::
the

:::::::::::::::
snowpack/glacier

:::
can

:::
be

::::::::::
represented

::
as

:::
1D

:::::::
column,

::::
and

:::::::
therefore

::::
Eq.

:::
(1)

:::::
should

:::
be

:::::::::
understood

::
as

:::
1D

::::::::
equation.

Assuming thermodynamical equilibrium between the ice and liquid water, the temperature T and the energy content h are

related through:85

h= cp(T −T0)+ ρwLfusθ (2)

where cp is the volumetric thermal
:::
heat capacity of snow/ice (expressed in J K−1 m−3), T0 an arbitrary reference temperature

taken as the fusion
::::
melt temperature, ρw the density of liquid water, Lfus the specific enthalpy of fusion of water (expressed in

3



J kg−1), and θ the liquid water content (expressed in m3 of liquid water per m3 of snow/ice) (Tubini et al., 2021).

Note that in Eq. (1) the time derivative of the internal energy content h cannot in principle be replaced by cp∂tT:
,
:::
but

::::::
should90

:::
also

:::::::
include

::
the

::::
term

:::::::::
ρwLfus∂tθ. Indeed, once the temperature has reached the fusion

::::::
melting point, a further increase in energy

translates into an increase in the liquid water content
::::::::
(∂tθ ̸= 0) and of the associated latent heat content, rather than a further

increase in the temperature. Yet, as discussed below, snowpack and glacier models nonetheless usually consider that the temper-

ature can increase past the fusion
::::::
melting point when integrating Eq. (1) in time

::::::::::::::::::::::::::::::::
(Vionnet et al., 2012; Sauter et al., 2020). This

is equivalent to neglecting the effects of first-order phase changes (melting and refreezing) on the temperature field,
::::
and

::::
thus95

:::::
setting

:::::::::
ρwLfus∂tθ::

to
::::
zero

:::::
while

::::::
solving

:::
the

::::
heat

:::::::
equation. This results in temperature overshoots that are then corrected in a sec-

ond step by creating melt and setting back the temperature to the fusion value (e.g., Bartelt and Lehning, 2002; Vionnet et al., 2012; Sauter et al., 2020)

::::
melt

:::::
value

:::::::::::::::::::::::::::::::::::::
(e.g., Vionnet et al., 2012; Sauter et al., 2020).

:::
In

::::
this

::::::
article,

:::
we

::::::
follow

::::
this

::::::
simple

:::::::
scheme

::
as

::
it
::

is
::::::::::

commonly

::::::::
employed

::
in

::::::::
snowpack

:::
and

::::::
glacier

:::::::
models.

::::
That

:::::
being

::::
said,

:::::
other,

::::
more

::::::::
complex,

::::::::
strategies

::::
have

::::
been

::::::::
proposed

::
in

:::
the

::::::::
literature.

::::
This

::::::
notably

:::::::
includes

:::
the

:::
use

::
of

:
a
:::::
finite

:::::::::::::::
temperature-range

::::
over

:::::
which

:::::::::::
melt/freezing

:::::
occurs

:::::::::::::::::::::::::::::::
(e.g. Albert, 1983; Dutra et al., 2010)100

:
,
::::::::
including

:::::::::::
melt/refreeze

::
as

::
an

::::::::
additional

::::::
energy

::::::
source

::::
term

::::::::::::::::::::::::::::::::::::::::::
(e.g. Bartelt and Lehning, 2002; Wever et al., 2020),

:::
or

::
the

::::
use

::
of

:::::::
enthalpy

::
as

:::
the

:::::::::
prognostic

:::::::
variable

:::::::::::::::::::::::::::::::::::::::::
(e.g. Meyer and Hewitt, 2017; Tubini et al., 2021).

:::::::
Finally,

::
in

::::
this

:::::
article

:::
we

::::::::
consider

:::
the

::::::
thermal

::::::::::
conductivity

::
λ
:::
and

:::::::
capacity

:::
cp :::

not
::
to

::::::
depend

::
on

:::::::::::
temperature.

:::
The

:::::::::
motivation

:::
for

:::
this

::
is

:::::::
twofold

::
as

:
it
::
(i)

::::::::::
corresponds

::
to
::
a

:::::::::
simplifying

::::::::::
assumption

:::::::
regularly

:::::
made

::
by

:::::::::
snowpack

:::
and

::::::
glacier

::::::
surface

::::::
models

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. van Pelt et al., 2012; Vionnet et al., 2012; Sauter et al., 2020; Covi et al., 2023)

:::
and

:::
(ii)

:
it
::::::
allows

:::::::
keeping

:::
the

::::::
internal

::::
heat

::::::::
equation

:::::
linear.105

2.2 Surface energy balance

To model an actual snowpack/glacier subjected to atmospheric forcings, it is necessary to complement the internal energy

budget with an appropriate boundary condition. At the top of the snowpack/glacier, this boundary condition is given by the

surface energy balance
:::
SEB. This SEB states that the net sum of energy fluxes between the top of the snowpack/glacier and

the atmosphere equals the energy thermally conducted from the surface to the interior of the snowpack plus a potential surface110

melting term if the fusion
::::
melt temperature is reached (Oerlemans et al., 2009; Sauter et al., 2020; Covi et al., 2023). We thus

have:

SW surf
net +LWin +LWout +H +L+R

:::
=G+ ṁLfus (3)

where SW surf
net is the net shortwave radiation absorbed right at the surface (that is thus distinguished from the portion of

shortwave radiation penetrating within the snow/ice), LWin is the incoming longwave radiation flux, LWout is the outgoing115

longwave radiation flux, H is the turbulent sensible heat flux, L is the turbulent latent heat flux,
::
R

:::
the

::::::
surface

::::::
energy

:::::::
brought

::
by

:::::::::::
precipitating

::::
rain,G is the conductive heat flux penetrating within the snowpack/glacier, and ṁ is the rate of surface melting

(expressed in kg m−2 s−1).
:::::
Fluxes

:::
are

:::::::::
orientated

::::::
towards

:::
the

:::::::
bottom,

:::
and

::::
thus

:::::::
towards

:::
the

::::::
surface

:::
for

:::::::
SW surf

net ,
::::::
LWin,

:::::::
LWout,

::
H ,

:::
L,

:::
and

::
R
::::

and
:::::
away

::::
from

:::
the

:::::::
surface

:::
for

::
G.

:
The surface melting rate ṁ vanishes when the surface temperature Ts is be-
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low the fusion
:::
melt

:
temperature, and can take non-zero values when the surface temperature equals the fusion

:::
melt

:
temperature.120

Among the various terms of the surface energy balance
:::
SEB

:
of Eq. (3), LWout, H , L, and G depend non-linearly on the

surface temperature Ts. Notably, the outgoing longwave radiation is given by Stefan-Boltzmann law, i.e. LWout =−σT 4
s (with

σ the Stefan-Boltzmann constant) and the turbulent heat fluxes H and L can be estimated through the use of a bulk approach

(e.g. Foken, 2017). These three terms are therefore non-linear functions of the surface temperature. In addition, the conductive125

heat flux is given by

G=−(λ∂zT ) |z=surf (4)

and is therefore proportional to the temperature gradient within snow/ice right below the surface. This conductive flux de-

pends on both the surface temperature Ts and the temperature within the snow/ice. This flux is responsible for the thermal

coupling between the surface and the interior of the snowpack/glacier.130

3 Numerical strategy of existing models

Since the computation of the heat budget with a SEB as a top boundary condition is at the core of all snow/glacier models,

several numerical implementations have been proposed for solving the resulting system of equations. In order to provide a gen-

eral overview of the numerical frameworks and strategies, we propose to separate them into two broad classes, to which
::::
most135

existing models can somehow be related. While classifying existing strategies into only two groups (and not more) remains arbi-

trary, we believe it is helpful to highlight differences in handling the numerical solving of the energy budget. Moreover, we only

consider
:::::
focus

::
on

:
numerical schemes based on the finite volumes method (FVM)

::::
FVM, as it matches the discretizations

::
is

:::
the

::::::
method employed by most models (e.g. Vionnet et al., 2012; Sauter et al., 2020; Westermann et al., 2023). We therefore do not

treat the finite elements method , which is for instance used in the SNOWPACK model
::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Anderson, 1976; Sauter et al., 2020; Westermann et al., 2023)140

:
.
:::
We

:::
note

::::
that,

:::::::
contrary

::
to
:::
the

::::::
FVM,

::
the

:::
use

:::
of

::
the

:::::
finite

:::::::
element

::::::
method

::::::
(FEM)

::::::::
naturally

::::::::::
incorporates

:::
the

:::::::
presence

::
of

::
a

::::::
surface

::::::::::
temperature,

::::::
which

:::
can

::
be

:::::
used

:::
for

:
a
::::::::::::
fully-coupled

::::::::
treatment

::
of

:::
the

:::::
SEB,

::
as

:::::
done

::
in

:::::::::::
SNOWPACK

:::
for

:::::::
instance

:
(Bartelt and

Lehning, 2002).

3.1 Class 1: Finite volumes without explicit surface

A first class of models relies on FVM for discretization of the internal heat budget, without the inclusion of an extra degree of145

freedom to model the surface temperature (schematically depicted in panel a of
:
as

:::::
Class

::
1

::
in Fig. 1). To this end, the domain

to be modeled (snowpack or glacier) is first decomposed into a finite number of cells with non-zero thicknesses (that are also

sometimes referred to as layers, but should not be confused with the strata forming a snowpack). Then, the equations governing

the temporal evolution of the average heat content of each cell is determined by integrating Eq. (1) over each cell. The energy

5



fluxes between cells are finally estimated based on cell-to-cell temperature differences and on the thermal conductivities of150

the cells. As discussed above, the effects of the first-order phase transition during melting/refreezing are usually not taken into

account when solving the internal heat budget. Rather, it is considered that snow/ice temperature can exceed the fusion
::::
melt

temperature without modification of its physical behavior (i.e., of its thermal
:::
heat

:
capacity). When integrating the equations

in time, this can results
:::::
result in temperature overshooting the fusion

:::
melt

:
point. These overshoots are later used to determine

where the fusion
::::::
melting

:
point has been crossed, and the excess energy is then used to estimate melting (e.g. Vionnet et al.,155

2012).

This FVM framework thus amounts to determining the average temperature in each cell, which is usually considered to cor-

respond to the temperature at the center of the cell. Without further modification, the surface temperature, which corresponds

to the temperature on the upper edge of the top cell, is not present in the system of equations. In order to apply the surface

energy balance
:::
SEB

:
as a boundary condition, this first class of models considers the surface temperature to be equal to the160

temperature of the top-most cell. The energy fluxes between the surface and the atmosphere are then directly integrated into

the heat budget of the top cell. The internal heat budget and the integrated surface fluxes can then be solved at the same time,

i.e. in a tightly-coupled fashion. The advantage of this approach is that it naturally allows one to take into account the SEB

within a standard FVM framework, without the necessity to handle extra degrees of freedom. This numerical strategy roughly

corresponds to the one adopted in Crocus SNTHERM (Jordan, 1991),
::::::
Crocus (Vionnet et al., 2012), CLM (van Kampenhout165

et al., 2017), or CryoGrid (Westermann et al., 2023).

3.2 Class 2: Finite volumes with an explicit but decoupled surface

The second class of models also relies on FVM for the spatial discretization of the internal heat budget. Similarly to the mod-

els of class 1, the first-order phase transition of snow/ice is usually neglected for the resolution of the equations, resulting in

temperature overshoots that are later corrected by creating melting.170

However, this class of models explicitly takes into account the presence of a surface temperature , that differs from the temper-

ature of the cell just below (schematically depicted in panel b of
::
as

:::::
Class

:
2
::
in
:
Fig. 1). This surface temperature is computed by

searching for the temperature that equilibrates the surface energy budget
:::
SEB

:
of Eq. (3), assuming no melting. If the equilib-

rium temperature is larger than the fusion
:::::::
melting point, it is then capped to the fusion

::::
melt temperature and the excess surface

energy converted into surface melting.175

Because of the numerical complexity of this task, it is usually performed separately from the computation of the internal heat

budget. Typically, the surface temperature is first resolved, using the internal temperatures of the previous time-step for the heat

conduction term of the surface energy balance
:::
SEB, and then the internal temperatures are solved using the newly computed

surface temperature and surface energy budget
::::
SEB.

This class of models encompasses the models using a so-called skin-layer formulation for the surface energy budget
::::
SEB. Its180

advantage is that it allows to explicitly define a surface temperature without complexifying the solving of the internal heat

budget and keeping a low numerical cost. It roughly corresponds to the models SnowModel (Liston and Elder, 2006), EBFM

6



Figure 1. Classification of
::::
FVM

:
models with respect to their treatment of the surface energy budget

:::
SEB. a) Class 1: The surface energy and

the internal temperatures are solved in a tightly-coupled manner
:
, but there is no explicit surface. b) Class 2: An explicit surface temperature

(and surface melting) exists,
:
but it is solved in sequential manner with respect to the internal temperatures. c) Proposed scheme in this article:

An explicit surface temperature is considered and is solved in a tightly-coupled manner with the internal temperatures.
::
In

::
the

::::::::
schematic,

::::
dots

:::::::
represent

::
the

::::::::
prognostic

:::::::
variables

::
of
:::
the

:::::::
schemes

::::
(with

::
or

::::::
without

:::::::::
temperature

::
at

:::
the

::::::
surface)

::::
while

:::
the

:::::
colors

::::::
indicate

:::::
which

:::::::
variables

:::
are

:::::
solved

:::::::::::
simultaneously.

(van Pelt et al., 2012), or COSIPY (Sauter et al., 2020).

Finally, we want to stress that the actual implementations of the aforementioned models (e.g. Crocus, SNTHERM, COSIPY,185

EBFM, etc) cannot be perfectly captured by our simple classification. Particular choices regarding the spatial and temporal

discretizations, the treatment of melting and refreezing, and the coupling between individual processes make each model

unique and more complex than the above presentation. Also, models can in principle display the characteristics of both classes

(i.e. no explicit surface and a surface energy budget
::::
SEB solved with a decoupling from the rest of the domain), although we

did not find any concrete example. This diversity of models offers an actual illustration of how the numerical implementation190

of the same processes (internal heat budget with a complex surface energy balance
:::
SEB) has been handled by different authors.

4 A tightly-coupled solution for the surface and internal heat budget

As seen above, each class of models comes with advantages but also limitations. While class 1 models solve the internal and

surface energy budgets
::::
SEB in a tightly-coupled manner, they do not take into account the fact that the surface temperature is

in general different from the temperature in the cell below. On the contrary, while class 2 models explicitly consider a surface195

temperature, the internal and surface energy budgets
::::
SEB

:
are treated in a sequential, and therefore loosely-coupled fashion,
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which can be detrimental to stability (Ubbiali et al., 2021).

Based on these observations, the goal of this section is to present a
::::
FVM

:
methodology that allows one (i) to explicitly work

with a surface temperature, (ii) to treat the surface and internal heat budgets in a tightly-coupled fashion. As explained above,200

we restrain ourselves to a FVM discretization. Moreover, as the goal of this paper is to focus on the treatment of the surface

energy budget
::::
SEB and its coupling with the internal thermal state, we also follow the standard approach to handle melting

in the interior of the domain. Namely, first-order phase transition effects are neglected while solving for the internal energy

budgets. This means that interior temperatures will overshoot in case of melting, and this excess temperatures will be used to

generate melt afterward.205

4.1 Governing system of discretized equations

In this section, we derive the discretized equations governing the coupled surface and internal heat budgets, based on the

FVM. For this, let’s
::
we

:
consider a domain divided into N cells. The temporal evolution of the average heat content of each

cell is given by integrating Eq. (1) over the cell and making use of the divergence theorem
::::::::::
fundamental

:::::::
theorem

::
of

:::::::
calculus.

Neglecting phase change during the resolution of the internal heat budget, the time derivative of the temperature
::::::::
(average)210

::::::::::
temperature

::
Tk:of the kth cell is given by:

∆zkcpk∂tT k +Fk+ 1
2
−Fk− 1

2
−∆zkQk = 0 (5)

where ∆zk is the thickness of the kth cell, cpk its volumetric thermal
:::
heat

:
capacity,Qk the average volumetric energy source

in the cell, and Fk+ 1
2

and Fk− 1
2

are the heat conduction fluxes
::
at

:::
the

:::
top

:::
and

::::::
bottom

:::::::::
interfaces

::
of

:::
the

::::
cell.

:::
For

:::::::
internal

:::::
cells,

:::::
Fk+ 1

2 :::
and

:::::
Fk− 1

2::::::::::
correspond

::
to

:::
the

:::::
fluxes between the kth and the k+1th cells and the k− 1th and kth cells, respectively.

:::
For215

::
the

:::
top

::::
cell

:::::
Fk+ 1

2 ::::::::::
corresponds

:::
the

::::
heat

::::
flux

::::::
leaving

:::::::
towards

:::
the

::::::
surface

:::
(i.e.

:::::
−G)

:::
and

:::
for

:::
the

::::::
bottom

:::
cell

::::::
Fk− 1

2 ::::::::::
corresponds

::
to

::
the

::::
flux

::::
from

:::
the

:::::::
ground.

:
By convention, we take Fk+ 1

2
as positive if the heat flux is oriented from the kth cell to the k+1th.

Note that in this paper we consider the 0th
::
1st

:
cell to be at the bottom of the snowpack, and the cells to be counted positively

upwards. Other numbering choices could be made and would lead to the same end-result.

220

These
:::
The

:
heat conduction fluxes between cells need to be estimated from the temperatures and thermal conductivities of

adjacent cells. The flux Fk+ 1
2 :::::::

between
::::
cells

::
k

:::
and

:::::
k+1 is computed as:

Fk+ 1
2
= λharmk+ 1

2

Tk −Tk+1

∆zk
2 + ∆zk+1

2

(6)

where λharm
k+ 1

2

is the weighted harmonic average of the thermal conductivity of the two adjacent cells. The use of an
:
a
:
har-

monic average provides better results in the case of layered media such as snow (Kadioglu et al., 2008) and ensures that no225

heat conduction occurs in case one of the cells is a perfect thermal insulator.
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Note that slightly modified version of Eq. (6 ) applies
:
6

::::
only

::::::
applies

::
to

:::::
fluxes

::::::::
between

::::
cells

:::
and

:::::
must

::
be

:::::::
replaced

:
for the two

boundary cells, at the top and bottom of the domain. For the bottom cell, a flux between the domain and the ground below

must be used as a bottom boundary condition. For the top cell, the heat flux coming from the surface must be used. This flux

corresponds to
::
is

::::
given

:::
by

:::
the

:::::::::
discretized

::::::
version

:::
of the term G of the SEB

::
in

:::
the

::::
SEB,

::::::::
provided

::
in Eq. (3)

:::
10)

:::::
below.230

This FVM discretization results in N equations governing the evolution of the N internal temperatures. The surface tem-

perature can be added to this system of equations by introducing an additional degree of freedom, localized at the top of the

domain. This surface temperature can be deduced from the surface energy balance
::::
SEB of Eq. (3) and its coupling to the

interior of the domain through the subsurface heat flux G of Eq. (4). However, the surface energy balance
:::
SEB

:
cannot be fully235

characterized using the surface temperature only. Indeed, in case of melting, the surface temperature is blocked at the fusion

::::
melt temperature T0 and can no longer be used as a prognostic variable to characterize the surface. In this case, it is necessary

to introduce a non-zero melting rate ṁ to close the energy budget. We thus have two regimes for the surface: below the fusion

::::::
melting

:
point the surface is fully characterized by its temperature and the melting rate term vanishes; at the fusion

::::::
melting

point, the surface temperature becomes constant and the melting rate term ṁ becomes the quantity that characterizes the state240

of the surface. At any time
:
, the surface is fully characterized by only one independent variable, but neither the temperature nor

the melt rate can be used in the general case.

To circumvent this problem, we rely on a variable switching technique (Bassetto et al., 2020). Concretely, we introduce a

fictitious variable, denoted τ , whose goal is to behave as Ts below the fusion
::::::
melting

:
point and as ṁ during melting. In other

words, we parametrize the {Ts(τ), ṁ(τ)} graph, such that every possible state of the surface can be appropriately described by245

a well-defined τ value. A possibility is to take τ such as:

Ts =

τ if τ < T0

T0 otherwise
(7)

and

ṁ=

0 if τ < T0

τ−T0

β otherwise
(8)

where β is an arbitrary constant, necessary to ensure dimensional homogeneity (concretely taken as 1 kg m−2 s−1 K−1 in250

our implementation).

Then, the surface energy budget
::::
SEB can be expressed as:

SW surf
net +LWin +LWout(τ)+H(τ)+L(τ)+R(τ)

:::::
−G(τ)− ṁ(τ)Lfus = 0 (9)

9



where the dependence of LWout, H , L,
::
R,

:::
and

:
G to τ through Ts has been made explicit. The subsurface conduction heat255

flux can thus be approximated by spatially discretizing Eq
:
. (4):

G= λk
Ts(τ)−Tk
∆zk/2

(10)

where the index k is taken to correspond to the top-most cell. As explained above, this flux must also be taken into account

in the equation governing the heat content of the top-most cell.

260

We thus have a system of N +1 equations (one for each cell plus the surface energy balance
::::
SEB), which governs the

evolution of N +1 prognostic variables (the temperature of each cell plus the surface temperature/melt-rate encapsulated into

τ ). To be numerically solved, this system also requires a temporal discretization. In this article, we choose an implicit backward

Euler’s method for its simplicity and stability (Fazio, 2001; Butcher, 2008). Nonetheless, the method proposed here could also

be applied with other temporal integration schemes (e.g. Crank-Nicolson).265

This system of equations presents several non-linearities, coming from the non-linearity of some terms in the surface energy

budget
::::
SEB with respect to the surface temperature (e.g. LWoutor

:
, H

:
,
:::
and

::
L) and from the regime change of the surface

(between melting and non-melting conditions). In order to deal with these non-linearities, we rely on the use of a specific

Newton’s method, described below.
:::
We

::::
also

::::
note

:::
that

:::::
some

:::::::
models

:::::
made

:::
the

:::::
choice

:::
of

:::::::::
performing

::::
only

::
a
:::::
single

::::::::
iteration

::
to

::::
solve

::::
this

:::::
linear

::::::
system

:::
of

::::::::
equations

:::::
(with

:::::::::
sometimes

:::
an

:::::
extra

:::::::
iteration

::
to

::::::
handle

:::::::
specific

::::::
cases,

::::
such

::
as

:::::::
surface

::::::::
melting).270

::::::::
However,

::
we

::::::
chose

:::
here

:::
to

::::::
perform

::::::::
multiple

::::::::
iterations,

::
in

:::::
order

::
to

:::::
obtain

:::
the

::::::
actual

::::::::
Backward

:::::
Euler

:::::::
solution.

:

4.1.1 A dedicated Newton’s method

One of the main benefits of the skin-layer formulation used by models of class 2 is its low numerical cost. Indeed, all the

non-linearity of the problem only appears in the surface energy budget
::::
SEB, i.e. in a single scalar equation that can be solved

iteratively. While iterations are costly in numerical models, this cost is here tempered by the fact that this only needs to be275

performed on a scalar equation, with a limited number of terms to be re-estimated at each iteration. Once the surface temper-

ature has been determined, the internal temperatures can be solved through a N×N linear system of equations , that does not

require multiple iterations. On the contrary, solving the (N+1)×(N+1) non-linear system of equations derived in Section 4 can

be much more numerically expensive if the whole system is to be re-assembled and re-inverted at each iteration.

280

Keeping this issue of numerical cost in mind, we propose a numerical strategy to solve the system of equations describing

the coupled internal and surface energy budgets. It is based on a modified Newton scheme,
::::
with

::::
two

:::::::::::
modifications

::::::::
proposed

::
to

::::
make

:::
the

:::::::
iteration

:::::::
process

::::
both

:::::
more

:::::
robust

:::
and

:::::
faster.

Truncation method for regime changes:285

A first modification made to this standard Newton’s method is the use of the truncation method when crossing discontinuities

10



Figure 2. Example of the truncation method made to handle derivative discontinuities during Newton’s iterations (schematic inspired by

Fig. 2.3 of Bassetto, 2021). Starting from an estimate τ i, a new estimate τ i+1 is computed based on the Jacobian estimated at τ i. As a

derivative discontinuity is crossed, the fictitious variable τ is set back near the discontinuity τ∗ but in the "melting surface" regime.

during the iteration process (Wang and Tchelepi, 2013; Bassetto et al., 2020). The idea behind truncation is that the Jacobian

(i.e. the derivatives of the discretized
::::::::
derivative

::
of

:::
the

:
equations with respect to the unknowns to be solved for) computed

on one side of a derivative discontinuity does not apply on the other side, and can therefore perturb the convergence towards

the solution
:
,
::::::::
typically

::::::
leading

::
to

:::
an

::::::
endless

:::::::
iteration

::::
loop. In our model, this problem notably arises from the surface energy290

budget
::::
SEB that shows discontinuity with respect to τ when crossing the melting point. A similar problem can also appear

in the turbulence terms of the surface energy budget
::::
SEB. For instance, some formulations of the turbulent fluxes can include

derivative discontinuities for the stability correction of the latent and sensible fluxes with respect to the bulk Richardson num-

ber (as in e.g. Martin and Lejeune, 1998; Sauter et al., 2020). Thus, during the iteration process each time the surface changes

regime (between non-melting/melting or stable/unstable conditions), the value of τ is brought back in the vicinity of the regime295

change by setting τ = τ∗ ± ϵ, where τ∗ is the value for which a derivative discontinuity occurs. This truncation procedure is

schematized in Fig. 2, depicting a switch between a non-melting and melting surface. The numerical parameter ϵ is made to

ensure that the next iteration starts from the good regime and needs to be taken small (typically 10−5).

Variable elimination to reduce the size of the non-linear problem:300

A second improvement can be made by realizing that most of the equations governing the internal heat budgets are actually

linear equations, and thus only need to be assembled and inverted once per time step. Indeed, the (N-1) first equations, cor-
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responding to the time evolution of the temperature of the internal cells not in contact with the surface, express simple linear

relationships between the N internal cell temperatures. This can be used to reduce the size of the non-linear system to be itera-

tively solved.305

For this, we eliminate the N −1 linearly-dependent variables using a Schur complement technique (Zhang, 2006). Concretely,

writing the system of Eqs. (5) and (9) in block-matrix form, one has:

Adiag Aup

Alow As

Tint
Us

=

Bint

Bs

 (11)

where Adiag, Aup, Alow, and As
:::::
Adiag,

:::::
Aup,

:::::
Alow,

::::
and

:::
As are (N − 1)× (N − 1), (N − 1)× 2, 2× (N − 1), and 2× 2

matrices, respectively. Note that we refer to the vector composed of the two last unknowns, thus composed of [TN , τ ], as Us in310

order not to have it mistaken with the surface temperature.
:::
The

::::::::::
expressions

::
of

:::
the

:::::::
matrices

:::::::
forming

:::
the

:::::
block

::::::
system

:::
are

:::::
given

::
in

::::::::
Appendix

::
A,

::::::::
including

:::
the

:::::::::
derivatives

:::::::::
necessary

:::
for

::::::::
Newton’s

:::::::
method.

Under this form, the matrices Adiag, Aup, Alow
:::::
Adiag,

::::
Aup,

:::::
Alow:

and the vector Bint are constant during the non-linear

iterations and do not need to be re-estimated at each non-linear iteration. Thus, the (N-1)
:::::::
(N − 1) internal temperatures can be315

expressed as:

Tint =A−1
diag (Bint −AupUs) (12)

and thus

(As −AlowA
−1
diagAup)Us =Bs −AlowA

−1
diagBint (13)

where As −AlowA
−1
diagAup corresponds to the Schur complement of Adiag in the system of Eqs. (11) (Zhang, 2006).320

The above equation
::::::
system

::
of

::::
Eqs.

:::
(13)

:
is a 2×2 non-linear equations

:::::
system

:
where onlyAs andBs need to be re-assembled

at each non-linear iteration
:::
and

::::::
whose

:::::::
solution

:::
for

::
Us::

is
:::
the

:::::
same

::
as

:::
the

::::
large

::::::
system

:::
of

::::
Eqs.(

::::
11). Therefore, an efficient nu-

merical scheme to solve the
:::::
whole system of Eqs. (11) is to (i) first assemble Alow, Adiag, Aup, and Bint, (ii) inverse

:::::::
compute

::
the

::::::::
products

::::::::
A−1

diagBint::::
and

::::::::
A−1

diagAup::::::
(which

::
is

::::::
cheaper

::::
than

:::::::
directly

:::::::
inverting

:
Adiag:

), (iii) iteratively solve the 2×2 non-linear325

system of Eqs. (13) yielding Us (only reassembling As and Bs at each iteration), and (iv) retrieve the remaining internal tem-

peratures by applying Eq. (12).The numerical cost of this scheme is composed of one (N − 1)× (N − 1) matrix inversion and

of the iterative solving of a non-linear 2× 2 system. This is of the same order as the standard skin-layer formulation, which is

composed of one N ×N matrix inversion and the iterative solving of a non-linear scalar equation.

330
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This technique, namely eliminating linearly-dependent variables using a Schur complement to reduce the size of non-linear

systems to be solved for, can also be applied to speed up the solving of class 1 models. This is presented in Appendix B.
:::
We

:::
also

::::
note

::::
that

::
to

:::::
apply

:::
this

:::::::::
technique,

:::
the

::::::::::
assumption

::
of

::::::::::::::::::::
temperature-independent

::::
heat

:::::::
capacity

::::
and

::::::::::
conductivity

::
is

:::::::::
important,

::
as

::::::::
otherwise

:::
the

:::::::
internal

::::
heat

:::::::
equation

::::::
system

::::::
would

:::
not

:::
be

:::::
linear

:::
and

::::
thus

:::
the

::::::::
matrices

:::::
Adiag,

:::::
Aup,

:::
and

:::::
Alow :::

not
::::::::
constant.

::::::
Finally,

::
a

:::::::::
translation

::
of

::::
this

::::::::
numerical

:::::::
strategy

:::::::::
(including

:::
the

::::::::
fictitious

:::::::
variable

::::
and

:::
the

::::::::::::::::
Schur-complement

:::::::::
technique)

::
in

::
a335

::::
FEM

:::::::::
framework

::
is
::::::::
presented

::
in
:::::::::
Appendix

::
C.

::
An

:::::::
analysis

::
of
:::
the

:::::::::
numerical

::::
cost

::
(in

:::::
terms

::
of

:::::::
number

::
of

::::
basic

::::::::::
operations)

::
of

:::
this

:::::::::
numerical

::::::
scheme

::
is

:::::
given

::
in

::::::::
Appendix

:::
A,

::::::::
alongside

:::::::
analyses

::
of

:::
the

:::::::::
numerical

::::
cost

::
of

:::::
Class

:
1
::::
and

:
2
:::::::
models.

::
It

:::::
shows

::::
that

:::
the

::::::::
proposed

::::::
scheme

::::
and

:::
the

:::::
Class

:
1
:::::::
models

::::
have

::::::
similar

::::::::
numerical

:::::
costs,

::::::
which

:
a
:::
bit

:::
less

::::
than

:::
1.7

:::::
times

:::::
larger

::::
than

:::
the

:::::::::::
standard-skin

:::::
layer.340

5 Simulation setup

The system of equations 11 and its resolution scheme presented in Section 4 enable the computation of the tightly-coupled

evolution of the surface and of the internal energy budget. The goal of this section is to compare this approach to more classical

implementations, falling either in class 1 (all temperatures solved at once but without an explicit surface) or class 2 (presence345

of an explicit surface, but sequential treatment for the computation of the surface and internal temperatures).

For this purpose, we thus implemented a class 1 and a class 2 model alongside the scheme presented in Section 4. For the

implementation of a class 1 model, a specific treatment of the first cell is adopted. Indeed, in order to have results compa-

rable with the other model implementations, the temperature of the first cell is computed taking into account the effect of350

first-order phase transition in order to cap the surface temperature at T0. The resulting non-linear system is solved with the

modified Newton method presented in Section 4.1.1, including the truncation and Schur-complement techniques. Not taking

into account first-order phase transitions in the first cell would result in surface temperature overshoots (not present in the other

implementations), which would be detrimental to the surface energy budget
::::
SEB. We stress that our specific implementation

has differences with already published models (for instance the Crocus model does not perform non-linear iterations and treats355

surface melting differently; Vionnet et al., 2012), and thus that the results obtained with our implementation might deviate

from that of the aforementioned models (Crocus, SNTHERM, Cryogrid, or CLM).

For the implementation of a class 2 model, we adopt the following sequential treatment for each time step: (i) first the sur-

face temperature that equilibrates the SEB is computed using the internal temperatures of the previous time step and ignoring

potential melting, (ii) if the surface temperature exceeds fusion
::::
melt it is capped at T0 and the excess energy used for surface360

melting, (iii) the internal temperatures are then computed using the value of the sub-surface heat flux G computed from the

SEB as the top boundary condition. Again, our specific implementation of a class 2 model might differ from some of the
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already existing "skin-layer" models (COIPY
:::::::
COSIPY, EBFM, or SnowModel).

In order to obtain physically sound results, note that we have included a treatment of water percolation through a simple365

bucket scheme (Bartelt and Lehning, 2002; Vionnet et al., 2012; Sauter et al., 2020) as well as the representation of the motion

of the surface in response to surface melting and vapor sublimation/deposition. In our bucket-scheme, cells whose density is

close to that of ice are considered as impermeable and water cannot percolate through them. Instead, excess water present in

cells above an impermeable horizon is sent to runoff. This choice is meant to avoid liquid water percolation through an entire

glacier. Our models also include a remeshing algorithm that merges adjacent cells when then
::::
they become smaller than a given370

threshold (defined here as half the size
::::
75% of the smallest cell

:::
size

:
at the start of a simulation).

:::
This

:::::::::
remeshing

::::
step

::
is

::::
also

::::
used

::
to

:::::
ensure

::::
that

:::
the

::::
melt

::
of

:
a
:::::
layer

::::::
cannot

::::::
exceed

::
its

:::
ice

:::::::
content.

::
If

::::
such

:
a
::::
case

::
is

:::::::::::
encountered,

:::
the

::::
layer

::
is

::::::
merged

::::
with

::::
one

::
of

::
its

::::::::
neighbors

::::::
before

:::::::::
attempting

:::::::
melting.

::
If

::
the

::::
total

::::
melt

:::::::
exceeds

:::
the

::::
total

:::::
mass,

:::
the

:::::::::
simulations

::::::
should

:::
be

:::::::
stopped.

::::::::
However,

:::
this

:::
last

::::
case

:::
did

:::
not

::::
arise

:::
in

::
the

::::::::::
simulations

::::::::
presented

:::::
here. These processes (melting, percolation, and remeshing) are treated

after the resolution of the heat budget and are handled in a sequential (and thus partially decoupled) fashion, as usually done375

in current snowpack/glacier modeling (e.g. Bartelt and Lehning, 2002; Vionnet et al., 2012; Sauter et al., 2020). To ease

comparison between the various implementations, the melting, percolation, and remeshing routines are common to all of them.

Finally, the
:::
The

:
temporal integration scheme is also the same for all models in order to facilitate the comparison between them,

namely an implicit backward Euler method.
:::::
Also,

::
as

:::::
some

::
of

:::
the

::::::
current

:::::::::
snowpack

:::
and

::::::
glacier

:::::::
models

::::::
include

:::
the

:::::
effect

:::
of

::::::
internal

::::::::::::
phase-change

:::::
while

::::::
solving

:::
the

:::::::
internal

::::
heat

:::::::
equation

:::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Bartelt and Lehning, 2002; Meyer and Hewitt, 2017)

:
,
:::
we380

::::::::
quantified

:::
the

:::::::::
sensitivity

::
of

:::
our

::::::
results

::
to

:::
this

:::::::
specific

::::::::
treatment

::
of

::::::::::
melt/freeze.

:::
For

::::
that,

:::
we

::::
have

::::
also

::::::::::
implemented

::::::::
versions

::
of

:::
our

::::
three

::::::
models

::::
that

::::::
include

::::
such

:::::::
internal

::::::::::::
phase-changes

::
in

:::
the

::::
heat

::::::::
equation.

::::::
Finally,

::::
note

::::
that

:::
we

::
do

:::
not

:::::::
include

:::
the

::::
FEM

:::
in

:::
this

::::::::::
comparison.

:::
As

:::::::
detailed

::
in

:::::::::
Appendix

::
C,

::
a

::::::::
specificity

:::
of

::::
FEM

:::::::
models

:
is
:::
to

:::
rely

:::
on

:
a
:::::::::::
temperature

::::
field

:::
that

::::
can

::
be

:::::::
defined

:::::::::::
element-wise

::
or

::::::::::
node-wise.

:
It
::

is
::::

thus
::::::::
required

::
to

::::::
convert

:::::
back

:::
and

:::::
forth

:::::::
between

:::::
these

:::
two

::::::::::::::
representations.

::::::::
However,

:::
the

:::::::
relation

:::::::
between

::::
the

:::
two

::
is
::::

not
::::::::
bijective.

::::
This

::::::::
prevents

::
an

::::::::::::
unambiguous385

::::::::::::
transformation

::::
from

:::::::::::
element-wise

::
to
:::::::::
node-wise

::::::::::::
temperatures,

:::::
which

::::::
affects

:::
the

::::::::
end-result

::
of
::::

our
::::::::::
simulations.

:::::::
Because

::
of

::::
this

:::::::
problem,

:::
the

:::::
FEM

::
is

:::
not

::::::
further

:::::::
explored

::
in

:::
this

::::::
article,

:::
as

:
a
:::::
direct

::::::::::
comparison

::
to

:::
the

:::::
FVM

::::::
models

::
is

:::
not

:::::::
possible.

Two simple examples, showcasing the differences between numerical treatments, are presented below. While they are not

meant to model the actual evolution
:::
We

::::
note

::::
that

::::
these

::::::::::
simulations

::::::
cannot

:::
be

:::::::::
considered

::
as
:::::

fully
:::::::
realistic

::::::::::
simulations of a390

snowpack or a glacier
:::::
glacier

:::::::
surface, as many processes

:
, such as the deposition of atmospheric precipitation

::::
(rain

::
or

::::::
snow) or

mechanical settlingare lacking, they exemplify how different numerical implementations of the same physical equations yield

different end-results. Two specific examples were set up,
:::
are

:::::::
lacking.

:::
The

::::
goal

::
is

:::::
rather

::
to

:::::::
provide

:
a
:::::::::
simplified

:::::
setting

::
in
::::::
which

::
the

::::::
impact

:::
of

:::
the

::::::::
numerical

:::::::::::::
implementation

:::
of

:::
the

::::
SEB

:::
can

:::
be

::::::::
analyzed.

::
In

:::
the

:::::
same

::::
idea,

:::
we

::
do

::::
not

::::::
attempt

::
to

::::::::
compare

:::
the

::::::::
simulation

::::::
results

::
to

::::
field

:::::::::::
observations.

:::::::
Indeed,

::
it

:::::
would

:::
not

:::
be

:::::::
possible

::
to

:::::::
decipher

:::::
errors

::::
due

::
to

:::
the

::::::::
numerical

::::::::::::
discretization395

:::
(the

:::::
focus

::
of

::::
this

:::::
paper)

:::::
from

:::::
errors

::::
due

::
to

:::
the

:::::::
assumed

:::::::
physics,

::::::::::::::
parametrizations

::::
and

::::::::::
atmospheric

::::::::
forcings.

:::::::::::
Nonetheless,

::
in

::::
order

:::
for

:::
the

::::::
results

::
to

::::
still

::
be

::::::::::
informative

::
of

::::
how

:
a
:::::
given

:::::::::
numerical

:::::::::::::
implementation

:::::
might

::::::
behave

::
in
::
a
::::
more

:::::::
realistic

:::::::
setting,
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::
we

::::
use

:::::::
realistic

::::::::::
atmospheric

:::::::
forcing,

::::::
initial

:::::::::
conditions,

::::
and

:::::::
physical

::::::::::::::
parametrizations. The first one

:::::::::
simulation

:
is meant to

highlight the behavior of the numerical models when simulating the surface energy balance of
:::
SEB

:::
on

:
a snow-free glacier.

The second one focuses on the impact of the model implementations on the simulation of the energy budget of a seasonal400

snowpack,
::::::
during

:::
the

:::::::
melting

:::::
period.

5.1 Test case 1: Snow-free glacier

We start by considering the case of a snow-free and firn-free glacier, neglecting the accumulation of mass through precipitation.

This test case is motivated by the recent studies of Potocki et al. (2022) and Brun et al. (2022), which discuss current models405

capability of modeling the surface mass balance of such a snow and firn-free glacier in a cold environment.

As such, our simulations are forced by the weather data provided by Potocki et al. (2022) for the South Col Glacier. Note

that the method used to downscale the data does not guarantee physical consistency of the variables. This allows us
:::
that

:::::::
include

::
all

::::::::
necessary

::::::::::
information

:
to take into account

:::
the

:
shortwave, longwave and turbulent energy fluxes at the top of our domain.410

To compute the shortwave absorption, we assume that the surface has a constant 0.4 albedo
:::::::::
broadband

:::::
albedo

:::
of

:::
0.4 and that

80% of the flux is absorbed right at the surface (Bintanja and Broeke, 1995; Sauter et al., 2020), without penetrating deeper.

The remaining shortwave radiation penetrates in the ice following an exponential decay profile with a 0.4m e-folding depth

(Bintanja and Broeke, 1995; Sauter et al., 2020). The longwave emissivity of the ice is assumed to be unity. Finally, the tur-

bulent fluxes are computed based on a slightly modified version of Eqs. (17-21) of Sauter et al. (2020) and are described in415

the Appendix D. The roughness length over the ice surface is taken constant and set to z0 = 1.7mm (Sauter et al., 2020). For

the bottom boundary condition, we apply a simple no-heat-flux condition. As the simulated domain is large
:::::
(about

::::::
189m)

:
and

the simulation only run for a single year, this choice of bottom boundary condition has little effect on the simulated surface

temperature and energy budget.
::
For

::::::::
instance,

:::
we

:::::::::
performed

::
a

:::::::::
simulation

::
in

::::::
which

:
a
::::::::::::
64.7mW m−2

::::::::::
geothermal

::::
heat

::::
flux

::
is

::::::
applied

::::::
instead

::::::::::::
(Davies, 2013)

:
.
::::
The

:::::
impact

:::
on

:::
the

::::::
surface

::::::::::
temperature

:::::::
remains

:::::
below

:::::::
0.4mK.420

For the internal material properties, we assumed the ice thermal capacity
:::
heat

:::::::
capacity

:::
cp to equal 2000 J K−1 kg−1 and not

to depend on temperature (Lide, 2006). Similarly, the ice thermal conductivity
:
λ

:
is set to 2.24W K−1 m−1, independently of

temperature (Lide, 2006; Sauter et al., 2020). Finally, we want to stress that in such a case of a snow and firn-free glacier, the

numerical implementation of our bucket-scheme results in the runoff of all melted water, without percolation into the glacier

and thus without warming the ice below it.425

For the initial conditions, we used a spin-up simulation presented in Brun et al. (2022) and generated with the COSIPY

model (Sauter et al., 2020). It corresponds to an initially 189m thick glacier. The output of the spin-up notably includes a non-

uniform mesh for the glacier, from which we build the meshes for our simulations. In order to study the influence of spatial

resolution on the simulation, the original spin-up mesh was refined/downgraded by increasing/decreasing the number of cells.430

This was done by keeping the same relative cell sizes in the domain, such that the smallest cells remained near the surface and
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the largest ones deep in the glacier, as in the original spin-up mesh.

Finally, we want to stress that the aforementioned simplifying assumptions (such as constant albedo, constant surface rough-

ness length, absence of precipitation, simplistic treatment of percolation, etc) imply that the results of our simulations should

not be quantitatively interpreted. Rather, the choice of simplified physics is meant to ease the comparison of the numerical435

treatments of the surface energy budget
:::
SEB.

For each numerical scheme, we perform simulations with initial numbers of cells varying between 22 and 450 and with time

steps ranging from 30 to 7200 s. This range includes the time steps typically used in models (e.g. 900 s in Crocus or 3600 s

in COSIPY). In the absence of an analytical solution, the simulations performed at a high spatial and temporal resolution (i.e.440

30 s and 450 cells) are meant to provide a reference to study the convergence of the other simulations with the gradual increase

of the spatial and temporal resolutions. These high-resolution simulations reveal that the class 1 model implementation (no

explicit surface) remains different from the two other implementations even for this level of time step and mesh refinement.

Therefore, as the reference solution for the glacier test-case, we take the average of the two implementations with an explicit

surface, as they both converged to similar solutions (and similar results will thus be obtained if only the solution of the proposed445

tightly-coupled surface scheme were taken). Specifically, to quantify the difference between a given simulation and the refer-

ence, we focus on the surface temperature and on the phase change rate (understood in this article as the net melt and refreeze

over the entire domain after solving the heat equation). For this purpose, we compute the time series of absolute differences

between the simulations and the reference, as well as the corresponding Root-Mean-Square-Deviation (RMSD).
::::
Note

::::
that

::
in

:::
this

:::::::
specific

:::
test

::::
case,

:::
no

:::::::::
refreezing

:::
was

::::::::
observed

:::
(as

::::
melt

::::::
occurs

::
at

:::
the

::::::
surface

:::
and

::
is
::::
sent

::
to

:::::::
runoff),

:::::::
meaning

::::
that

:::
the

:::::
phase450

::::::
change

:::
rate

:::::::
directly

::::::::::
corresponds

::
to

:::
the

::::
melt

::::
rate.

5.2 Test case 2: Melting snowpack

Our second test case corresponds to the case of a melting snowpack. For simplicity, we assume that the snowpack surface

has a constant albedo of 0.6
::::::::
broadband

::::::
albedo

:::
of

:::
0.7

:
and that all shortwave radiation penetrates in the snow following an455

exponential decay profile with a 0.058m e-folding depth (Bintanja and Broeke, 1995; Sauter et al., 2020). Similarly to that of

ice, the longwave emissivity of snow is assumed to be unity. The turbulent fluxes are computed with the same law as in the

glacier test case but with a constant roughness length of z0 = 0.24mm (Sauter et al., 2020). As in the glacier case, the bottom

boundary condition for the heat equation is taken as no-flux condition. The use of a more realistic boundary condition could be

achieved by coupling the snowpack model to a soil model (e.g. Decharme et al., 2011). It however remains beyond the scope460

of this article, which is focused on the impact of the implementation of the surface energy budget
::::
SEB on simulations.

Regarding internal material properties, we assume snow to have the specific thermal
::::
heat capacity of ice, i.e. 2000 J K−1 kg−1,

independent of temperature (Lide, 2006; Morin et al., 2010). The thermal conductivity of snow is taken as a function of density,

following the Calonne et al. (2011) parametrization. For the percolation scheme, we assume that a snow cell is able to retain

up to 5% of its porosity as liquid water (Vionnet et al., 2012). Liquid water percolating from the last cell of the snowpack is465
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simply sent to runoff. The initial conditions of the simulation are taken from a Crocus simulation of the snowpack at Col de

Porte (Lejeune et al., 2019) during the 2010/2011 season. As we are interested in the case of melting, we start our simulation

from the 14/03/2011, corresponding to the peak of snow height in the Crocus simulation (1.49m), run it for 49
::
63 days, and stop

it before reaching the total disappearance of the snowpack in our simulations. The original Crocus mesh is refined/downgraded

by increasing/decreasing the number of cells in order to study the impact of mesh resolution of the numerical solutions. The470

atmospheric forcings, for both the spin-up and the simulation, are based on the reanalysis of Vernay et al. (2022). Finally, as in

the glacier case, the results of the simulations should not be quantitatively interpreted (for instance in terms of days for snow-

pack disappearance) but are only meant to provide an easy way of comparison between numerical treatments of the internal

and surface energy budgets.

475

The simulations are performed with initial cell numbers varying between 22 and 440 and with time steps ranging from 30

to 7200 s. As in the glacier test case, the high-resolution simulations (30 s time step and 440 cells) are meant to provide a

reference solution. In this case, all three models converge to similar solutions with the considered levels of mesh and time step

refinement. Thus, the reference solution was taken as the average of the three implementations. The comparison between a

given simulation and the reference was done focusing on the surface temperature and the phase change rate, as in the glacier480

test-case.

6 Results and Discussion

6.1 General behavior of the models

An example of simulated surface temperature, phase change rate, and temperature profiles obtained in the glacier test case for

a time step of 3600 s and an initial cell number of 44 (corresponding to a minimum cell size of 10mm at the top) is displayed485

in Fig. 3. Similarly
:
, for the snowpack test case, simulated surface temperatures, phase change rates, and temperature profiles

obtained for a time step of 3600 s and a starting cell number of 44 (corresponding to minimum of cell size of 9.1mm at the

top) are visible in Fig. 4.

While the three models tend to generally agree in terms of simulated surface temperatures and phase change rates, they490

nonetheless present some notable differences. Concerning the glacier test-case, the Fig. 3 shows that the class 1 model (no

explicit surface) is systematically different compared to the two other models, with a slower decrease of the surface temperature

at night, resulting in a surface temperature that is on average warmer
::::::
usually

::::::
warmer

::
of
::
a
::::::
couple

::
of

::::::
degrees

:
for the represented

period.
:::
For

::::::::::
comparison,

:::::::::::::::::
Sauter et al. (2020)

::::
report

::::::::::::::::::::
root-mean-square-errors

::::::
around

::::
3K

::::
when

:::::::::
comparing

::::::::
COSIPY

::::::::::
simulations

::::
with

::::::::::
observations

::
of

:::
the

::::::::
Zhadang

::::::
glacier

::::::
surface

::::::::::
temperature.

:
Besides the surface temperature, the class 1 model also displays495

internal temperatures (starting from about 10 cm below the surface) that are colder (of
::
by

:
about 0.50K) than the two other

implementations. This internal temperature difference is consistent with the fact that the surface temperature in the class 1

model is on average warmer than the two others, favoring the loss of energy through turbulent and radiative fluxes.
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Figure 3. Overview of the simulation of a snow and firn-free glacier using three different numerical schemes. The simulations were performed

with a time step of 3600 s and a
::
an

:
initial number of cells of 44 (minimum cell size of 10mm). a) and b): Surface temperature and total

phase change rate (including surface and subsurface melt/refreeze) around mid-September. c): Upper part of the temperature profiles on the

12/09/2019 at 15:45 local time. The dashed orange line in panels a) and b) corresponds to the selected date of panel c).

As in the glacier test case, models tend to generally agree in the snowpack case, with nonetheless some differences as

displayed in Fig. 4. In particular, all predict that most of the melt occurs internally and without the surface temperature nec-500

essarily reaching the fusion
::::::
melting point. As previously, the class 2 model and the new tightly-coupled approach exhibit the

best agreement (even though the agreement is not as clear as with the glacier case), while the class 1 model displays surface

temperatures that reach higher peaks during the day.
::
As

:::::
with

:::
the

::::::
glacier

:::
test

:::::
case,

:::
the

:::::::
models

::::::
exhibit

::::::
surface

:::::::::::
temperature

:::::::::
differences

::
of

:::::
about

:
a
::::::
couple

::
of

::::::::
degrees.

::::
This

:
is
:::

of
:::
the

::::
same

:::::
order

::
as

:::
the

::::::
biases

:::::::
observed

::
in
:::
the

:::::
snow

::::::
model

::::::::::::::
inter-comparison

::::::
exercise

::::::::::::::
ESM-SnowMIP

:::::::::::::::::
(Menard et al., 2021)

:
.
:
Despite their relative agreement, the class 2 model appears to "lag" by about505

one time step behind the tightly-coupled implementation. This lag can be explained by the fact that, in this case, shortwave

radiations are not directly affected to the surface (as they penetrate). A large variation in shortwave radiations is therefore not

directly visible by the surface, which only reacts to it at the next time step, once the shortwave radiations have impacted the cell

below the surface.
:::
The

::::::
impact

::
of

::::
this

::::::
lagging

::::::::
problem

:::
can

::
be

::::::::
mitigated

:::
by

:::
the

:::
use

::
of

:::::
small

::::
time

:::::
steps,

:::
but

::::
with

:::
the

:::::::::
drawback

::
of

::::::::
numerical

:::::
cost. Beside surface temperature, the class 1 model also shows differences compared to the two other models510

in terms of internal temperatures, being colder in the deepest part of the snowpack. This effect is due to the smaller melting

predicted by the class 2
:
1 model. There is therefore less melt water percolating down the snowpack

:
, which carries latent heat

to warm the snowpack. Finally, we note that the class 2 model exhibits some time step to time step oscillations, characteristic
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Figure 4. Overview of the simulation of a snowpack using three different numerical schemes. The simulations were performed with a time

step of 3600 s and a
::
an initial number of cells of 44 (minimum cell size of 9.1mm). a) and b): Surface temperature and total phase change

rate (including surface and subsurface melt/refreeze) near the end of March. Note that negative phase change rate values imply refreezing

within the snowpack. c): Upper part of the temperature profiles on the 17
::
18/03/2011 at 22

:
19:00 local time. The dashed orange line in panels

a) and b) corresponds to the selected date of panel c).

of numerical instability. Such oscillations are visible both in the surface temperature and the phase change rate , that display

over and undershoots compared to the other models.515

::::::
Finally,

:::::
using

:::
the

::::::::
versions

::
of

:::
the

:::::::
models

::::::::
including

:::::::::::::
phase-changes

::
in

:::
the

::::
heat

::::::::
equation,

:::
we

:::::::::
quantified

:::
the

:::::::::
sensitivity

:::
of

::::
these

:::::::::::
observations

::
to

:::
the

:::::::::
treatment

::
of

:::
the

::::::::::::
melt/refreeze.

::::::
While

:::
the

::::::::
simulated

::::::::::
temperature

::::::::::
sometimes

:::::
differ

:::::
from

:::
our

:::::
basic

:::::::::::::
implementations

::::::::::
(especially

::
in

:::
the

:::::::::
snowpack

::::
test

::::
case

:::::
where

:::::
melt

::::::
occurs

:::::::::
internally),

::::
the

::::::
general

::::::::
behavior

::
of

::::
the

:::::::
models,

::::::::
including

::
the

::::::::
potential

:::::::
presence

:::
of

:::::::::
instabilities

::
in
:::
the

:::::
Class

::
2

::::::
models,

:::::::
remain

:::::::::
unchanged.

:
520

6.2 Convergence with time step and mesh refinement

As they solve the same physical equations, all numerical implementations of the heat budget are expected to converge to the

same results when the time step size and mesh size tend to zero. However, in general different numerical implementations do

not show the same levels of error and convergence rates toward this solution, as the time step and mesh size are progressively

reduced. The goal of this section is to analyze the convergence of the three SEB implementations discussed in this article with525
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time step and mesh size refinement. In other words, we quantify their respective time step and mesh size sensitivities.

We start here by analyzing the sensitivity of the three numerical implementations to the time step. For this purpose, we ana-

lyze the differences between the reference solutions and the three implementations using about 220 cells (i.e. about 5 times the

usual number of cells used in detailed models) and time steps between 112 and 7200 s. Figures 5 to 8 compare the simulations530

performed with various time steps to the reference (time step of 30 s) for the glacier and snowpack test cases, respectively.

:::
The

::::::
largest

::::
time

::::
step

::
of

::::::
7200 s

::::::::::
corresponds

:::
to

::::
twice

::::
the

::::::
default

:::::
value

::::
used

:::
for

:::::::
instance

::
in

::::::::
COSIPY

:::::::::::::::::
(Sauter et al., 2020)

:::
and

:
is
::::::
meant

::
to

::::::::
represent

:::
the

::::
case

::
of

::::::
models

::::
used

::
at
:::::
quite

::::
large

::::
time

:::::
steps

:::
for

::::::::
numerical

::::
cost

:::::::::::::
considerations. Note that for the left

panels showing time series of absolute differences, a 10 days running average was used to remove daily and weekly variability

from the data. Also, while the right panels display RMSDs over the entire simulation, we also computed biases. These were in535

general about an order of magnitude smaller than the RMSD values, except for the surface temperature of the snowpack test

case, where the bias was about half of the RMSD.

As seen in the four Figures, all models show a general decrease in errors with smaller time steps. For almost all investi-

gated time steps and in both test cases, the newly proposed scheme displays the lowest level of errors, with
:
.
::::::::::
Sometimes, the540

class 2 model sometimes only marginally better
:::::
yields

:::
the

:::::::
smallest

:::::
error,

:::
but

::::
does

:::
so

::::
only

::
by

::
a
:::::
small

::::::
margin. Figure 5 reveals

that for the glacier test case and at large time steps (between 30min and 2 h), the decoupled skin-layer formulation (class 2

model) shows the largest errors in terms of surface temperature, with a marked increase of the error with increasing time steps.

However, we do not observe such a sharp increase at large time steps for the phase change rate errors with the class 2 model,

even though Fig. 6 highlights that for such large time steps, the class 2 model wrongly predicts melting early in the season545

(notably during the month of February). Figures 5 and 7 show that for smaller time steps and in both test cases, it is on the

contrary the class 1 model that yields the largest errors in terms of surface temperature, with a limited decrease in the error

level with decreasing time steps compared to the two other implementations. Concerning the phase change rate errors for small

time steps, it depends on the investigated test case: for the glacier it is the class 2 model that shows the largest errors (Fig. 6),

while it is the class 1 model for the snowpack test case (Fig. 8). The results of the glacier test case displayed in Figs. 5 and 6550

thus highlight that depending on the considered metric (surface temperature or phase change rate), the ranking of models might

differ.

Similarly, while the numerical results are expected to converge to the same solution when the grid is refined, they do not

show the same errors and convergence rates with decreasing mesh size. Notably, integrating the top boundary conditions di-555

rectly in the first cell (as in class 1 models) instead of adding an extra independent variable at the surface is known to slow the

convergence of FVM with mesh refinement, as it requires a very small top-cell to properly approximate the surface temperature.

As with time step sensitivity, we quantify the impact of mesh refinement by comparing simulations performed with different

spatial resolutions to reference simulations. We used the same reference simulations as with the time step analysis. The results

are displayed in Figs. 9 to 12 and show the errors in terms of surface temperature and phase change rate for both investigated560
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Figure 5. Impact of time step size on the simulated surface temperature for the glacier test case and for the three numerical schemes. Left

panels a), b), and c): Errors in surface temperature for the different implementations (panels) and for different time step sizes (colors) during

the simulated period. Right panel: RMSD of the surface temperature over the whole simulated period for each implementation (marker) and

time step (color). The same time step color scheme applies to all panels.

test cases. As with the time step convergence, bias values over the simulations were found to be an order of magnitude smaller

than the RMSD values.

As with time step refinement, all models display a general decrease of errors with finer meshes. Again, among the three

implementations the tightly-coupled surface model yields the smaller errors for almost all investigated mesh refinements , with565

::
(as

:::
in

:::
the

::::::
glacier

:::
test

:::::
case, the class 2 model sometimes only marginally better

::
is

:::::::
however

:::::::::
sometimes

:::::::::
marginally

::::::
better). On

the other hand, the class 1 model displays comparatively large errors for almost all mesh refinements and for both test cases.

As seen in Fig. 11, this is particularly marked in the snowpack simulation, where the the class 1 simulation with the finest

mesh refinement (about 220 initial cells) has the same level of surface temperature error as the two other models with a coarser

mesh (44 initial cells). In other words, in this case
:
, the class 1 model needs about five times more cells (and thus five times570

thinner cells) to achieve the same precision as the two other implementations. The addition of an extra degree of freedom

to represent the surface is thus highly beneficial and offers the possibility to use coarser (and thus computationally cheaper)

meshes. Finally, Fig. 10 reveals that in the glacier test case, the phase change rate errors of the class 2 tend to deteriorate with

further mesh refinement past a certain point (here for an initial cell number above 90).
::
We

:::::::
interpret

::::
this

::::::::::
deterioration

::
as
::
a
:::::
result

::
of

:::
the

:::::::::
appearance

:::
of

::::::::
numerical

::::::::::
instabilities

:::
that

:::::::
develop

::::
with

:::::
small

:::::
mesh

:::::
sizes.

:
Due to this effect, the class 2 model exhibits575

the largest phase change rate errors for an initial number of cells of 225.
::::::
Finally,

:::::
using

:::
the

:::::::
versions

::
of

:::
the

:::::::
models

::::::::
including
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Figure 6. Impact of time step size on the simulated phase change rate (here denoted φ to lighten the plot) for the glacier test case and for the

three numerical schemes. Left panels a), b), and c): Errors in phase change rate for the different implementations (panels) and for different

time step sizes (colors) during the simulated period. Right panel: RMSD of the phase change rate over the whole simulated period for each

implementation (marker) and time step (color). The same time step color scheme applies to all panels.

Figure 7. Same as Figure
:::
Fig. 5, but for the snowpack test case.
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Figure 8. Same as Figure
:::
Fig. 6, but for the snowpack test case.

::::::::::::
phase-changes

::
in

:::
the

::::
heat

:::::::
equation,

:::
we

:::::::
verified

:::
that

:::
the

::::::::::
conclusions

:::
of

:::
this

:::::::::::
convergence

:::::::
analysis

::::::
remain

::::
valid

::
in

:::
the

::::
case

::
of

::
a

:::::::
different

::::::::
treatment

::
of

:::
the

:::::::
internal

::::::::::::
phase-changes.

:

6.3 Tight-coupling as a way to reduce instabilities

As discussed above, the decoupled nature of the standard skin-layer formulation (class 2 models) leads to greater errors for580

large time steps compared to the two coupled formulations, with or without an explicit surface. Moreover, the class 2 model can

show some deterioration in the case of highly-refined meshes (Fig. 10). Both these phenomena can be explained by the fact that

the skin-layer formulation displays instabilities. We observe especially large instabilities for time steps of 2 hours, visible as

oscillations in the temperatures of the surface and of the cell below, with peak-to-peak amplitudes sometimes reaching 100K

:::
and

::::
with

::
a

::::
daily

:::::::
running

::::::::
standard

::::::::
deviation

:::::
up-to

:::::
about

::::
50K. Such oscillations then lead to an abnormally cold and warm585

surface and a deteriorated surface energy budget
:::
SEB. As displayed in Fig. 13, these instabilities are even worsened in the case

of mesh refinement. On the contrary, no such instabilities have been observed for the tightly-coupled schemes (with or without

an explicit surface).

:::
The

:::::::
unstable

::::::
nature

::
of

:::::
class

::
2

::::::
models

:::
can

:::
be

::::::
shown

::::
with

:
a
::::::

linear
:::::::
stability

:::::::
analysis,

::::::::
provided

::
in

:::::::::
Appendix

::
E.

:::::
Such

:::::::
analysis

:::::
shows

:::
that

:::::
class

:
2
:::::::
models

::
are

::::
only

:::::::::::
conditionally

::::::
stable,

::::
and

::::::
confirm

::::
that

:::::::::
instabilities

:::
are

:::::::
favored

::
in

:::
the

::::
case

::
of

::::
large

::::
time

:::::
steps590

:::
and

:::::
small

::::
mesh

:::::
sizes.

:
We stress that these oscillations can appear with the skin-layer schemes even if the time integration of the

internal energy budget relies on the backward Backward Euler method, known for its robustness against instabilities (Fazio,

2001; Butcher, 2008). Our understanding is that the sequential treatment of the standard skin-layer formulation breaks the

implicit nature of the time integration by using "lagged" (in other words, "explicited"
::::::
explicit

:::::
rather

::::
than

:::::::
implicit) terms. This,

23



Figure 9. Impact of mesh size on the simulated surface temperature for the glacier test case and for the three numerical schemes. Left

panels a), b), and c): Errors in surface temperature for the different implementations (panels) and for different mesh sizes (colors) during

the simulated period. Right panel: RMSD of the surface temperature over the whole simulated period for each implementation (marker) and

mesh size (color). The same mesh size color scheme applies to all panels.

combined with the fact that the surface layer does not possess any thermal inertia and that its temperature can thus vary rapidly595

in time, permits large temperature swings if the time step is too large or the mesh size to small.
:::
too

:::::
small.

:::
On

:::
the

:::::
other

:::::
hand,

:
it
:::
can

:::
be

::::::
shown

:::
that

:::
the

::::
two

:::::::
schemes

::::
with

:
a
:::::::::::::
tightly-coupled

::::
SEB

:::
are

:::::::::::::
unconditionally

::::::
stable

:::::::::
(Appendix

:::
E),

::
in

:::::::::
agreement

::::
with

::
the

:::::::
absence

::
of

::::::::::
oscillations

::
in

::::
their

::::::::::
simulations.

::::::::
Notably,

:::
the

:::::::::::
unconditional

:::::::
stability

::
of

:::
the

:::::::::::::
coupled-surface

:::::::
scheme

::::::::
proposed

::
in

:::
this

:::::
article

::::::
entails

::::
that

:::
the

:::::
model

:::::
does

:::
not

::::
need

:::
an

:::::::
adaptive

::::
time

::::
step

::::
size

::::::
strategy

:::::::::
depending

:::
on

:::
the

:::::
mesh

::::
size.

::::
This

:::::::
ensures

:::
that

::
it

::::::
remains

::::::
robust,

:::::::::
regardless

::
of

:::
the

::::
time

::::
step

:::
and

:::::
mesh

::::
size.

:
600

6.4 Energy conservation in the standard skin-layer formulation

As explained in Section 2.2, the heat conduction flux from the surface to the interior of the domain (i.e. G in Equation 3)

needs to have the same value in the computation of the surface energy budget
:::
SEB

:
and in the computation of the energy bud-

get of the first interior cell. Inconsistencies in G between these two budgets lead to the violation of energy conservation and

create an artificial energy source/sink near the surface. Such inconsistencies can easily
::::
could

:
be created when implementing605

the standard skin-layer formulation (class 2 models) due to the sequential treatment of the surface and internal energy bud-

gets. Indeed, after solving the surface energy budget
:::
SEB, one can either use the surface temperature or the subsurface heat

flux G as a boundary condition for the computation of the internal temperatures. In general, these two strategies will lead to

different results and only the direct injection of G computed from the SEB will ensure the conservation of energy. Indeed, if
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Figure 10. Impact of mesh size on the simulated phase change rate (denoted here φ to lighten the plot) for the glacier test case and for

the three numerical schemes. Left panels a), b), and c): Errors in the phase change rate for the different implementations (panels) and for

different mesh sizes (colors) during the simulated period. Right panel: RMSD of the phase change rate over the whole simulated period for

each implementation (marker) and mesh size (color). The same mesh size color scheme applies to all panels.

Figure 11. Same as Figure
:::
Fig. 9, but for the snowpack test case.
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Figure 12. Same as Figure
:::
Fig. 10, but for the snowpack test case.

the internal temperatures are driven using the
:::
We

::::
note

:::
that

:::
the

:::
use

::
of

:::
the

:::::::::
computed surface temperature as a Dirichlet boundary610

condition , the temperature gradient on which the computation of G during the second step is based would be impacted by

the modification of the internal temperatures and the subsurface flux G would thus not be consistent with the value previously

computed during the SEB. To avoid such an issue, the internal temperatures should be computed directly using the subsurface

flux G given by the SEB. For our implementation of the standard skin-layer formulation, this consistency was concretely

achieved by (i)closing the surface energy budget using
::::::::
boundary

::::::::
condition

:::::
leads

:
to
:::
an

:::::::::::::
unconditionally

:::::
stable

::::::::
numerical

:::::::
scheme615

:::::::::
(Appendix

:::
E).

::::::::
However,

:::::
using

::::
such

::::::::
Dirichlet

::::::::
condition

::
in

:::::
order

::
to

:::::::
stabilize

:::
the

:::::::::::
standard-skin

:::::
layer

::::::::::
formulation

::::::
comes

::
at

:::
the

::::::
expense

:::
of

::::::
energy

:::::::::::
conservation

:::
and

::::::::::
deteriorates

::
of

:
the temperature of the first internal cell from the previous time step, (ii)

saving the value of G necessary to close this surface energy budget, and (iii) using this value of G as a top boundary condition

for the internal energy budget
:::::::
simulated

::::::
results.

620

As an illustration, we have also run skin-layer simulations (class 2) in which the flux G is re-computed using the surface

temperature as the boundary condition(i.e. using the surface temperature as a Dirichlet boundary condition), rather than directly

used as a flux boundary condition. A comparison of the energy-conserving and non-energy-conserving simulations is shown

in Fig. 14. The surface temperatures show RMSDs of 4.00 and 2.97
:::
3.96

::::
and

::::
2.16K and the phase change rates RMSDs of

3.6× 10−1 and 4.2× 10−1
:::::::::
3.0× 10−1 kg m−2 h−1 for the glacier and snowpack test cases, respectively. In general, the non-625

conservative scheme displays smaller daily variations of the surface temperature, with a less pronounced warming during the

day (sometimes impending surface melt) and a less pronounced cooling at night.

For the non-conservative implementation, the inconsistency in G can be expressed as an equivalent, and artificial, surface en-
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Figure 13. Presence
:::
Time

:::::
series

::
of
::::::

surface
::::::::::
temperatures

:::
(in

::::
blue,

:::
left

::::::
y-axis)

:::
and

::
of

::::
their

::::::::::
24hr-running

:::::::
standard

::::::::
deviations

:::
(in

::::::
orange,

:::
right

::::::
y-axis)

:::::::::
highlighting

:::
the

::::::
presence

:
of numerical instabilities with the decoupled surface

::::::
standard

:::::::
skin-layer

:
schemeand

:
.
:::
The

:::::::::
simulations

::::::::
correspond

::
to

::
the

::::::
glacier

:::
test

:::
case

::::
with a time step of 2 hrfor the glacier test case. Each panel corresponds to a level of mesh refinement. The

lowest mesh refinement is at the top and displays the smallest level of instabilities, while the highest mesh refinement is at the bottom and

displays numerous large instabilities in the first half of the simulation.

ergy sink/source. For the glacier test case, this non-conservation of energy is equivalent to an additional energy flux with an

average of −14.5W m−2 (thus cooling the domain) and a standard-deviation of 123.5W m−2. In the snowpack test case, this630

corresponds to an additional energy flux with an average of −2.3
::::
0.34W m−2 (cooling

:::::::
warming

:
the domain) and a standard

deviation of 52
::
39W m−2. In both cases, the large value of the standard deviation compared to the average indicates that this

"artificial" energy term displays large fluctuations, strongly affecting the simulations. Notably, in both cases the ablation of

the glacier and the snowpack is reduced, with a decrease of respectively 40 and 11%
:::
8% compared to the energy-conserving

implementation.635

7 Conclusions

Current implementations of the surface energy balance
:::
SEB

:
in a finite volume framework can present one of the two limitations:

(i) with the standard skin-layer formulation the surface energy balance
::::
SEB is solved sequentially with the internal heat budget,

therefore creating a form of decoupling between the surface and the interior of the domain, or (ii) the surface energy balance640

::::
SEB is integrated in the first cell, and there is no difference between this first cell temperature and the surface temperature. To

circumvent these limitations, we derive a mathematical framework that includes both (i) an explicit surface, with a temperature
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Figure 14. Comparison between the energy conservative and non-energy conservative skin layer numerical schemes. The left column corre-

sponds to the glacier test case and the right column to the snowpack test case. Upper panels display the surface temperatures and the lower

panels display the phase change rates.

different from that of the first cell below, and (ii) the tightly-coupled resolution of the surface and internal heat budgets including

a potential surface melting. Notably, a unified treatment of melting and non-melting surface is proposed via the use of a fictitious

variable playing the role of a switch between melting and non-melting conditions.645

A specific Newton’s method is also presented to robustly and efficiently solve the resulting non-linear system of equations.

The robustness of the standard Newton’s method is increased by using a truncation method, made to handle discontinuities in

the equations. Furthermore, a reduction technique, based on the computation of a Schur complement, is presented so that the

numerical cost of the proposed framework is
::::::
remains of the same order as that of the standard implementations , in particular

:::
for

::
the

:::::
same

:::::
mesh.

::
In

:::::::::
particular,

::
for

::
a
:::::
given

:::::
mesh,

:::
the

::::::::
numerical

::::
cost

:
is
::::::
similar

::
to
::::
that

::
of

::::::
models

:::
not

::::::::
explicitly

::::::
having

:
a
::::::
surface

::::
and650

::::
about

:::
1.7

:::::
larger

::::
than

:
that of the skin-layer

:::::::::::
standard-skin

::::
layer

::::::::::
formulation. It can therefore be implemented in existing snowpack

and glacier models, while preserving their current numerical efficiency. Moreover, the reduction technique presented in this

article can also be employed for other non-linear systems of equations (besides the energy budget treated here), by eliminating

linearly-dependent variables and reducing the size of the non-linear system to be iteratively solved, providing substantial gain

when only a small portion of the discretized equations contains non-linearities.655

Numerical test cases, corresponding to a snow-free glacier and a snowpack, have been performed in order to compare the

results obtained with the different numerical treatments of the surface energy balance
::::
SEB. Mesh and time step convergence

analyses show that combining a coupled treatment of the surface energy balance
::::
SEB with the explicit introduction of a surface

results in a
::
an

::::::
overall

:
better accuracy when compared to the classical implementations. Notably, defining an explicit surface

temperature enables the use of about 5 times coarser meshes, compared to models using the temperature of the first cell as the660
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surface temperature, for the same level of accuracy on temperature and phase change. Moreover, a coupled treatment appears

more stable than
::::::::::::
tightly-coupled

::::::::
treatment

::
of

:::
the

::::
SEB

::::::
allows

:::::::::::
unconditional

:::::::
stability,

:::::
while

:
the standard skin-layer formulation

, which can display
:::
can

:::
be

:::::::
unstable

:::
and

::::::::
displays large spurious oscillations with increasing

::::
large

::::
time

::::
steps

::::
and

:::::
small

:::::
mesh

::::
sizes.

::::::
Thus,

:::::
while

:
a
:::
bit

:::::
more

::::::::::
numerically

::::::
costly,

:::
the

::::::::::
formulation

::::::::
presented

:::
in

:::
this

::::::
article

:::
can

:::
be

::::
used

::
to
:::::::

overall
::::::
reduce

:::
the

::::::::
numerical

::::
cost

::
of

::
a
::::::::::::::
snowpack/glacier

::::::
model

:::::::
through

:::
the

:::
use

:::
of

:::::
larger

:
time steps. Finally, we show that the conservation of665

energy could easily be broken when implementing a standard (loosely-coupled) skin-layer model, leading
:
.
:::::
While

::::
this

:::::
could

::
be

::::
used

::
as

::
a

::::::::
technique

::
to

::::::::::
numerically

:::::::
stabilize

:::
the

::::::
model,

::
it

::::
leads

:
to greatly deteriorated simulations.

Appendix A:
::::::
Matrix

::::::::::
expressions

::::
and

:::::::::
numerical

::::
cost

::
of

:::
the

::::::::::::::
coupled-surface

:::::::
scheme

A1
::::::
Matrix

:::::::::::
expressions

:::::::
Combing

::::
Eqs.

::::
(5),

:::
(6),

:::
and

:::::
(10),

:::
the

::::::
Newton

:::::::
scheme

::
of

:::
the

:::::::::::::
coupled-surface

:::::
model

::::::::
proposed

::
in

::::
this

:::::
article

:::
can

:::
be

::::::
written

:::::
under670

::::
block

::::::
matrix

:::::
formAdiag Aup

Alow As

Tint
Us

=

Bint

Bs


::::::::::::::::::::::::::::::::

(A1)

::::
with

:::::::
non-zero

:::::
terms

:::::
being

:

Adiag(k,k) = ∆zk
:::::::::::::::

cp
:

k +∆t

(
λharm
k+ 1

2

∆zk
2 + ∆zk+1

2

+
λharm
k− 1

2

∆zk
2 + ∆zk−1

2

)
:::::::::::::::::::::::::::::::::

(A2)

Adiag(k,k− 1) =−∆t
λharm
k− 1

2

∆zk
2 + ∆zk−1

2
:::::::::::::::::::::::::::::

(A3)675

Adiag(k,k+1) =−∆t
λharm
k+ 1

2

∆zk
2 + ∆zk+1

2
:::::::::::::::::::::::::::::

(A4)

Aup(N − 1,1) =Alow(1,N − 1) =−∆t
λharm
N− 1

2

∆zN−1

2 + ∆zN
2

::::::::::::::::::::::::::::::::::::::::::::

(A5)

As(1,1) = ∆zN
::::::::::::

cp
:

N +∆t

(
λharm
N− 1

2

∆zN
2 + ∆zN−1

2

+
λN
∆zN
2

)
:::::::::::::::::::::::::::

(A6)

29



As(2,2) = ∆t

(
λN
∆zN
2

dτTsurf +Lfusdτṁ−dτH −dτL−dτLWout −−dτR

)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(A7)

As(1,2) =−∆t
λN
∆zN
2

dτTsurf

:::::::::::::::::::::::

(A8)680

As(2,1) =−∆t
λN
∆zN
2

:::::::::::::::::

(A9)

Bint(k) = ∆zk
::::::::::::

cp
:

kT
n−1
k +∆tSWint,k

::::::::::::::::
(A10)

Bs(1) = ∆zN
:::::::::::

cp
:

NT
n−1
N +∆t

(
SWint,N − λN

∆zN
2

(
dτTsurfτ

i −Ts(τ
i)
))

::::::::::::::::::::::::::::::::::::::::::::

(A11)

Bs(2) = ∆t
(
SW surf

net +LWin −
λN
∆zN
2

(
Ts(τ

i)−dτTsurfτ
i
)
−Lfus

(
m(τ i)−dτmτ

i
)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

+
(
H(τ i)−dτHτ

i
)
+
(
L(τ i)−dτLτ

i
)
+
(
R(τ i)−dτRτ

i
)
+
(
LWout(τ

i)−dτLWoutτ
i
))

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(A12)685

::
In

:::
the

:::::
above

::::::::::
expressions,

:::::
Tn−1
k ::

is
:::
the

::::::::::
temperature

:::
of

:::
cell

::
k

::
at

:::
the

:::::::
previous

::::
time

:::::
step,

:::::::
SWint,k ::

is
:::
the

:::::::
quantity

::
of

:::::::::
shortwave

:::::::
radiation

::::::::
absorbed

::
in

::::
cell

::
k,

:::
and

::
τ i

::
is
:::
the

:::::
value

:::
of

:::
the

:::::::
fictitious

:::::::
variable

::
τ

::
at

:::
the

::::
start

::
of

:::
the

::::::
current

:::::::::
non-linear

::::::::
iteration.

::::
The

::::
terms

:::::::
Ts(τ

i),
::::::
H(τ i),

:::
etc,

::::
and

:::::::
dτTsurf ,:::::

dτH ,
::::
etc,

:::
are

:::
the

::::::
values

::
of

:::
the

::::::
surface

:::::::::::
temperature,

:::::::
sensible

::::
heat

::::
flux,

::::
etc,

:::
and

:::::
their

:::::::::
derivatives

::
at

::
the

:::::::
current

::
τ i

:::::::::
estimation.

690

::::::
Among

:::
the

:::::::
different

::::::
partial

::::::::::
derivatives,

::::
dτH::::

and
::::
dτL :::

can
::
be

:::::::
difficult

::
to
::::::::::
analytically

::::::
derive.

::::
For

::::
that,

:::
we

:::
first

::::
note

::::
that

:::
the

::::
chain

::::
rule

:::::
yields

::::::::::::::::
dτH = dTs

HdτTs,::::
and

:::::::::::::::
dτL= dTs

LdτTs. :::::
Then,

:::
for

:::
the

:::::::::
expression

::
of

::
H

:::::
given

::
in

::::::::
Appendix

::
D
:::
we

:::::
have:

dTs
H = ρacp,au(dTs

CH(Ta −Ts)−CH)
:::::::::::::::::::::::::::::::::

(A13)

::::::::
Moreover,

:::
the

:::::
chain

::::
rule

:::::
yields

:::::::::::::::::::::
dTsCH = dRibCHdTsRib.

::
In

:::
our

:::::
case:
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dRibCH =
κ2

ln
(

z
z0

)(
z
z0t

)

0 if Rib < 0

50Rib − 10 if 0≤ Rib < 0.2

0 if 0.2≤ Rib
:::::::::::::::::::::::::::::::::::::::::::::::

(A14)695

:::
and

dTs
Rib =− gza

Tau2
::::::::::::::

(A15)

::::::::
Similarly,

:::
for

::
L,

:::
we

:::::
have:

dTs
L= ρaLsu(dTs

CE(qa − qs)−CEdTs
qs)

:::::::::::::::::::::::::::::::::::
(A16)

:::
The

:::::::::
derivative

:::::
dTs

CE::::
can

::
be

:::::::::
computed

::
as

:::
the

::::
one

::
of

:::
CH:::::::

through
:::
the

:::::
chain

:::
rule

::::
and

::
its

::::::::::
dependence

:::
to

::::
Rib.

:::
The

:::::::::
derivative700

::
of

::
qs ::::

with
::::::
respect

::
to

::
Ts::::

can
::
be

:::::
easily

::::::::
obtained

:::::
using

::
the

:::::::::
derivative

::
of

:::
the

::::::::
saturated

:::::
water

:::::
vapor

:::::::
pressure,

::::::
which

:
is
:::::
given

:::
by

:::
the

::::::::::::::::
Clausius-Clapeyron

:::::::
relation.

A2
:::::::::
Numerical

::::
cost

:::
We

:::
see

:::
that

:::
the

::::::
whole

::::::
system

::
of

::::
Eqs.

:::::
(A1)

::
is

:
a
::::::::::
tri-diagonal

::::::
system

:::
of

:::::::::
dimension

::::::::::::::::
(N +1)× (N +1),

::::
with

:::
N

:::
the

::::::
number

:::
of

::::
cells.

:::::::
Without

:
a
::::::::::::::::
Schur-complement,

:::
the

:::::::::::
computation

::
of

:::::
A−1B

:::
can

::::
thus

::
be

::::::
solved

::::
with

:::::::
Thomas

::::::::
algorithm

::::::::::::::::::::::::::::
(Versteeg and Malalasekera, 2007)705

::
in

:::::::
10N − 1

::::
base

:::::::::
operations

:::::::::
(addition,

::::::::::
subtraction,

::::::::::::
multiplication,

::::
and

:::::::
division)

::::
per

:::::::::
non-linear

:::::::
iteration

:::::::::
(neglecting

::::
the

::::
time

::::
spent

::::::::::
assembling

:::
the

:::::::::
matrices).

:::
We

::::
also

::::
note

::::
that

:::::
Adiag::

is
::

a
::::::::::
tri-diagonal

:::::::
matrix,

:::
and

::::
thus

:::::::
Thomas

:::::::::
algorithm

::::
also

:::::::
applies.

::::::::
Moreover,

:::
we

::::
see

:::
that

:::::
Aup :::

and
:::::
Alow:::

are
::::::
almost

::::::
empty

::::::::
matrices,

::::::
which

::::::::
simplifies

:::
the

:::::::
number

:::
of

:::::::::
operations

::::::::
necessary

:::
to

:::::::
compute

:::::::::
A−1

diagAup :::
and

:::::::::::::
AlowA

−1
diagAup.

:::::::::::
Specifically,

:::
the

::::::::::::::::
Schur-complement

::::::::
technique

:::::
used

::
in

::::
this

:::::
paper

:::
can

:::
be

:::::::::
employed

::::
with

::::::
7N − 9

::::::::::
(A−1

diagAup,
:::::
once

:::
per

::::
time

:::::
step)

::
+

:::::::::
10N − 21

::::::::::
(A−1

diagBint, ::::
once

::::
per

::::
time

:::::
step)

:
+
:::
15

:::::::::
(assembly

::::
and

::::::
solving

:::
of710

::::::::::::::::
Schur-complement,

::::
once

:::
per

:::::::
iteration)

::
+
:::
2N

::::::::::
(re-injection

::
to
::::::::
compute

::::
Tint,::::

once
:::
per

::::
time

::::
step)

:::::
steps,

:::
i.e.

:
a
::::
total

::
of

::::::::::::::
17N − 6+15nit

::::
steps,

:::::
with

:::
nit :::

the
::::::
number

:::
of

::::::::
non-linear

:::::::::
iterations.

:::
We

::::
see,

:::
that

:::
the

:::::::::
advantage

::
of

:::
the

::::::::::::::::
Schur-complement

::::::::
technique

::
is

::::
that

:::
the

:::
cost

:::
of

:::::::::
performing

:::::::::
non-linear

::::::::
iterations

:::
do

:::
not

::::::::
increase

::::
with

:::
the

:::::
mesh

:::::::::
resolution,

:::::::
yielding

::
a
::::::
smaller

:::::::::::
numerically

::::
cost

::::
than

:::::::
inverting

:::
the

:::::
whole

::::::
system

:::
for

::::
each

:::::::::
non-linear

::::::::
iteration.

715

:::
One

::::
may

::::
then

:::::::
wonder

::::
how

:::
the

::::::::
numerical

::::
cost

::
of

:::
the

:::::::
scheme

::::::::
proposed

::
in

:::
the

::::::
article

::::::::
compares

::
to

:::
the

:::::
Class

:
1
::::
and

:
2
:::::::
models

::::::::
discussed

::
in

:::
the

:::::
paper.

:::
The

:::::
Class

::
1

:::::
model

:::::
(once

:
a
::::::::::::::::
Schur-complement

::::::::
technique

:::
has

::::
been

:::::::::
employed)

::
as

::
a

::::::
similar

::::::::
numerical

::::
cost

::
as

:::
the

::::::::
proposed

:::::::::::::
coupled-surface

:::::::
scheme

::::::::
approach,

::::::
namely

::::::::::::::::
17N − 23+15nit :::::

steps.
:::
For

::
a

:::::
given

:::::
mesh,

::
it

:::
has

:::
one

::::
less

::::::
degree

::
of

:::::::
freedom

::
as

:::
the

:::::::::::::
coupled-surface

:::::::
scheme

:::
and

::
is
::::
thus

::::
only

::::::::::
marginally

:::
less

::::::
costly.

:::
The

:::::
Class

::
2
:::::
model

::
is
:::
the

:::::
least

:::::
costly

::
of

:::
all
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:::::::
schemes

::::::::
discussed

::
in

:::
the

:::::
paper.

:::::::
Indeed,

::::
once

:::
the

::::
SEB

::::
and

:::
the

::::::
surface

::::::::::
temperature

::::
have

::::
been

::::::
solved

:::::::
through

:::::
scalar

:::::::::
non-linear720

::::::::
iterations,

::
it

::::
relies

:::
on

:
a
::::::
single

::::::::::
tri-diagonal

:::::::
inversion

:::
of

:::::::::
dimension

::::::
N ×N ,

::::::
which

:::
can

:::
be

::::
done

::
in

:::::::::
10N − 11

:::::
steps.

:::
The

:::::
ratio

::
of

::
the

:::::::::
numerical

::::
cost

::
of

:::
the

::::::
scheme

::::::::
proposed

::
in

:::
the

::::::
article

::::
over

:::
that

::
of

:::
the

:::::::
standard

:::::::::
skin-layer

::
is

::
of

:::::
about

:::
1.7.

:

Appendix B: System size reduction for class 1 models

The size-reduction technique presented in Section 4.1.1 can also be employed for class 1 models, i.e. models where the surface

energy budget
::::
SEB is integrated directly within the first cell and where the temperature of this first cell plays the role of the725

surface temperature. Such an implementation is used for our comparison in Section 5 as a way to speed up our implementation

of a class 1 model.

As explained in Section 5, we made sure that for our resolution of class 1 model, the top-most cell does not overshoot the

fusion
:::
melt

:
temperature, as it would bias the surface energy budget

::::
SEB. This is done by including the effect of first-order730

phase change in the top-most cell. For that, we use the energy content h of the top cell as the prognostic variable, instead of its

temperature. The discrete energy budget of the top cell thus writes:

∆zh
n+1 +∆tFSEB +∆tF =∆tQ+∆zh

n (B1)

where hn+1 and hn are the energy content at the end and start of the time step, FSEB the net energy sum of the surface

energy fluxes (taken positive if oriented towards the domain), F the heat conduction flux exchanged with the cell below, Q the735

volumetric internal heat source, and ∆t the time step size. The conduction flux F is computed as the other conduction fluxes

(Eq. 6
::
(6)), simply noting that the temperature of the top cell is a non-linear function of its energy content h.

Combining all budget equations over the domain leads to a matrix system of the type:

Adiag Aup

Alow As

Tint
Us

=

Bint

Bs

 (B2)

where Us = [TN−1,h], and Adiag, Aup, Alow
:::::
Adiag,

:::::
Aup,

:::::
Alow :

and the vector Bint are constant during the non-linear740

iterations. Therefore, the reduction technique presented in Section 4.1.1 applies and the unknown Us can be solved through the

2× 2 non-linear system:

(As −AlowA
−1
diagAup)Us =Bs −AlowA

−1
diagBint (B3)

with only As and Bs to be re-assembled at each iteration.
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Appendix C:
:::::
Finite

::::::::
Element

:::::::
Method

::::::
scheme745

::
In

:::
this

::::::
paper,

:::
we

:::::
focus

:::
on

:::
the

:::::
FVM

::::
for

::::::
spatial

::::::::::::
discretization.

::::::::
However,

:::
the

::::
heat

:::::::
budget

:::::::
equation

:::::
could

::::
also

:::
be

::::::::
spatially

:::::::::
discretized

::::
with

:::
the

:::::
FEM.

::::::
Indeed,

:::
the

:::::
FEM

:::::::
naturally

::::::::
includes

:
a
::::
node

::
at
:::
the

:::::::
surface,

:::
and

::::
thus

:::::::::
possesses

:
a
::::::
surface

:::::::::::
temperature,

:::::
which

:::::
helps

::
to

::::::
tightly

::::::
couple

::::
the

::::
SEB

:::
to

:::
the

:::::::
interior

::
of

:::
the

:::::::::::::::
snowpack/glacier.

:::::
This

:::::::
strategy

::
is
:::
for

::::::::
instance

::::::::
employed

:::
in

::
the

::::::::::::
SNOWPACK

::::::
model

::::::::::::::::::::::::::::::::::::::
(Bartelt and Lehning, 2002; Wever et al., 2020)

:
.
:::::::::::
Specifically,

::
in

::::::::::::
SNOWPACK,

:::
the

:::::::
coupled

:::::
SEB

::
is

:::::::::
introduced

::
as

:
a
:::
top

::::::
Robin

::::::::
boundary

::::::::
condition.750

:::
The

::::
goal

::
of

::::
this

:::::::
appendix

::
is
::
to

::::::
briefly

::::::
present

::::
how

:::
the

:::::::::
techniques

::::::::
presented

::
in

:::
the

:::::
main

:::
part

::
of

:::
the

::::::::::
manuscript

:::::::
(namely

:::
the

:::
use

::
of

:::::::
fictitious

:::::::
variable

:::
and

:::
of

:
a
::::::::::::::::
Schur-complement)

::::
can

::
be

::::
used

::
to

:::::::::
implement

::
a

::::::::::::
tightly-coupled

:::::
FEM

::::::
model.

C1
::::::::::
Expression

::
of

:::
the

::::
heat

::::::::
equation

::
in

:::::
FEM

:::
We

:::::::
consider

:::
the

:::::
mesh

::
of

:::
the

::::::
domain

::
to

:::
be

:::::::::
discretized

:::
into

:::
N

:::
1D

:::::::
elements

::::
(the

:::::
direct

:::::::::
equivalent

::
of

:::
the

::::
cells

::
in

::::::
FVM)

:::
and

::::
thus755

::
of

:::::
N +1

::::::
nodes

:::
(the

:::::::::
end-points

:::
of

:::
the

::::::::
elements).

:::
As

:::::::::
classically

:::::
done

::::
with

::::
FEM

::::::::::::::::::::::::
(Pepper and Heinrich, 2005),

:::
we

:::::::
assume

:::
the

::::::::::
temperature

::::
field

::
to

::
be

::
a
:::::
linear

::::::::::
combination

:::
of

::::
basis

::::::::
functions

:::
φj ,

:::
i.e.

::::::::::::::::::::::::
T (z, t) =

∑N
k=1Tj(t)φj(z).:::::

Here,
:::
we

:::
use

:::::
basic

:::::
linear

::::::::
elements.

::
In

:::
this

::::::::::
framework,

:::::
Tj(t)::::::::::

corresponds
::
to

:::
the

:::::
nodal

:::::
value

::
of

:::
the

:::::::::::
temperature

::::
field

::::::
(which

::::::
evolves

::::
over

:::::
time)

::::
and

:::
the

::::
basis

::::::::
functions

:::::
φj(z):::

are
:::::::::
piece-wise

:::::
linear

:::::::::
functions,

::::::
valued

:
1
::
at

:::::
node

:
j
:::
and

::
0
::
at

::
all

:::::
other

::::::
nodes.

:::
The

::::::::
standard

:::::::
Galerkin

:::::
form

:::::::::::::::::::::::
(Pepper and Heinrich, 2005)

::
of

:::
the

::::::
internal

::::
heat

::::::
budget

::::
(Eq.

::::
(1))

::
is:

:
760

∀i
∑
j

dtTj

∫
Ω

cpφjφidL+
∑
j

Tj

∫
Ω

λ∇φj · ∇φidL =

∫
Ω

QφidL+Fsφi(s)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(C1)

:::::
where

::
Ω

:::::::::
represents

:::
the

::::::
domain

:::
of

:::::::::
simulation,

:::
Fs ::

is
:::
the

::::::
energy

:::::
fluxes

:::::::
entering

::
at

:::
the

:::
top

:::
of

:::
the

::::::
domain

::::
(i.e.

:::
G),

::::
and

:::::
φi(s)

:
is
:::
the

:::::
basis

:::::::
function

:::
φi ::::::::

evaluated
::
at

:::
top

::
of

:::
the

:::::::
domain.

:::
We

::::
note

::::
that

::::::::
similarly

::
to

:::
the

:::::
FVM

::::
case,

:::
the

::::::::::
temperature

::
at
:::
the

:::
top

:::
of

::
the

:::::::
domain

:::::::
presents

:
a
::::::
regime

:::::::
change

:::::::
whether

:::
the

::::::
surface

::
is

::::::
melting

::
or

::::
not.

:::
To

:::::
handle

::::
this,

:::
we

::::
rely

::
on

:::
the

::::::::
fictitious

:::::::
variable

::
τ ,

::
i.e.

::::::::::
Ts = Ts(τ).::::

The
:::::
vector

::
of
::::::::::
unknowns,

::::::
denoted

:::
U ,

::
is

::::
thus

::::::::
composed

::
of

:::
the

:::::::
internal

:::::::::::
temperatures

:::
and

::
of

:::
the

::::::
surface

::::::::
fictitious765

:::::::
variable.

:::::::
Finally,

:::
we

::::
have

:::
not

::::::::
included

:::
any

::::::
bottom

::::::
energy

::::
flux

::
to

::::::
lighten

::::
the

:::::::
notation,

:::
but

::
it
:::::
could

:::
be

:::::::
included

::::::
easily.

:::::
Once

:::::::::
temporally

:::::::::
discretized

::::
with

:
a
:::::::::
Backward

:::::
Euler

::::::
scheme

:::
and

:::::::::
linearized,

:::
the

:::::::
problem

::::
can

::
be

::::::::
expressed

::
in
::::::
matrix

:::::
form

:::::::::
AUn =B,

::::
with

:::::::::::::::::::::::
A= (M +∆tK +∆tL)JT :::

and
::::::::::::::::::::::::
B =MTn−1 +∆tQ+∆tF

::::::
(Tn−1

:::::
being

:::
the

:::::
vector

:::
of

::::::::::
temperature

::::
from

:::
the

::::::::
previous

::::
time

::::
step),

::::
and

M(i, j) =

∫
Ω

cpφjφidL

:::::::::::::::::::

(C2)770
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K(i, j) =

∫
Ω

λ∇φj · ∇φidL

::::::::::::::::::::::

(C3)

L(N +1,N +1) =−dτSEB+Lfusdτṁ
:::::::::::::::::::::::::::::::::

(C4)

JT (i, i) =

1 if i≤N

dτTs else
::::::::::::::::::::::

(C5)

Q(i) =

∫
Ω

QφidL

::::::::::::::

(C6)

:::
and775

F (N +1) = SEB(τ i)− dτSEBτ
i − ṁ+Lfus

(
dτṁτ

i
)

::::::::::::::::::::::::::::::::::::::::::::::
(C7)

:::::
where

:::::
SEB

::::
and

:::::::
dτSEB::::::::::

corresponds
::
to
:::

the
:::::::::::

atmospheric
:::::
fluxes

:::
in

:::
the

::::
SEB

:::
and

:::::
their

:::::::::
derivatives

::::
with

:::::::
respect

::
to

::
τ

::
at

:::
the

::::::
current

:::::::
iteration,

::::
and

::̇
m

:::
and

::::
dτṁ:::

are
:::
the

:::::::
melting

:::
rate

::::
and

::
its

::::::::
derivative

::
at
:::
the

::::::
current

::::::::
iteration.

::
In

:::
the

::::::::
equations

::::::
above,

::::
only

:::
the

:::::::
non-zero

:::::
terms

::::
have

:::::
been

:::::
given.

780

::
As

:::
in

:::
the

:::::
FVM

::::
case,

::::
this

::::::
system

::
is
:::::::::

composed
:::

of
:
a
:::::::::

linear-part
::::

(the
:::::::

interior,
:::::::::::::

corresponding
::
to

:::
the

::::
first

::::::
N − 1

:::::::::
equations)

:::
and

::
a

:::::::::
non-linear

::::
part

::::
(the

:::::::
surface,

::::::::::::
corresponding

::
to
::::

the
:::
last

::::
two

::::::::::
equations).

:::
Its

::::::
solving

::::
can

::::
thus

:::
be

::::::::::
accelerated

:::::
using

::
a

:::::::::::::::
Schur-complement

::::::::
technique

:::::::
(Section

::::::
4.1.1)

::
by

:::::::
breaking

:::
the

::::::
matrix

::
A

:::
into

::::
four

::::::
blocks:

::
a

:::::::
constant

:::::::::::::::
(N − 1)× (N − 1)

::::::::
diagonal

:::::
Adiag :::::

block,
::
a

:::::::
constant

::::::::::
(N − 1)× 2

:::::::
vertical

::::
Aup:::::

block,
::
a
:::::::
constant

:::::::::::
2× (N − 1)

::::::::
horizontal

:::::
Alow:::::

block,
::::

and
:
a
:::::
2× 2

::::::::
diagonal

::::
block

:::
As::

to
:::
be

::::::::::
re-computed

::
at

::::
each

:::::::::
non-linear

::::::::
iteration.785

C2
::::
The

:::
rest

:::
of

:::
the

::::::
model

::::
After

:::::::
solving

:::
the

:::::::
coupled

::::
heat

:::::::
budgets

::::
with

:::::
FEM,

:::
we

::::::
obtain

:
a
:::::
nodal

:::::::::::
temperature

::::
field.

:::::
Since

:::::::::
conserved

:::::::::
quantities,

::::
such

:::
as

:::::
energy

::
or
:::::
mass,

:::
are

:::::::
defined

:::::::::::
element-wise

::
in

::::::::::::::
snowpack/glacier

:::::
FEM

::::::
models

:::::::::::::::::::::::
(Bartelt and Lehning, 2002),

:::
the

:::::
nodal

::::::::::
temperature

::::
field

:::::
needs

::
to

::
be

::::::::
converted

::::
into

::
an

:::::::::::
element-wise

::::::
energy

:::::
field.

:::
We

::::
note

:::
that

::::
this

:::
also

:::::::
defines

::
an

:::::::::::
element-wise

::::::::::
temperature

:::::
field,790

:::::
where

:::
the

::::::::::
temperature

::
of

::
an

:::::::
element

::
is

::::::
simply

:::
the

:::::::
average

::
of

:::
the

:::::
nodal

::::::::::
temperatures

::
at
:::
its

::::
end.

::::
This

:::::::::::
element-wise

::::::
energy

::::
field
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:::
can

::::
then

::
be

:::::
used

::
to

:::::::
simulate

::::::::::::
melt/refreeze,

:::::
liquid

:::::
water

::::::::::
percolation,

::::
and

::
to

::::::
remesh

:::
the

:::::::
domain

:::::
using

:::
the

::::
same

:::::::
routines

:::
as

::
in

::::
FVM

:::::::
models.

::::
Once

:::
all

:::::::
routines

:::
for

:
a
:::::
given

::::
time

::::
step

::::
have

:::::
been

:::::::::
performed,

:::
we

:::
are

:::
left

::::
with

:::
an

:::::::::::
element-wise

::::::::::
temperature

::::
field

::::
that

:::::
needs795

::
to

::
be

::::::::
converted

:::::
back

::
to

::
a

:::::
nodal

::::::::::
temperature

::::
field,

:::
as

:::::::
required

:::
for

:::
the

:::::
FEM.

::::::::
However,

::::
this

:::::::::
conversion

::
is

:::
not

::::::::::::::
straightforward.

::::
First,

:::
as

:::
we

::::
have

:::
N

:::::::::::
element-wise

:::::::::::
temperatures

:::
to

::::::::
transform

::::
into

::::::
N +1

:::::
nodal

::::::::::::
temperatures,

:::
the

::::::::
problem

::
is

:::
not

::::::::
properly

:::::
closed

::::
and

::
an

:::::
extra

:::::::::
(arbitrary)

::::::::
constraint

::::::
needs

::
to

::
be

::::::
added.

:::::
This

:::::
could,

:::
for

::::::::
instance,

:::
be

::::::
setting

:::
the

::::::
surface

::::::::::
temperature

:::
to

::
the

:::::
value

:::::::::
computed

::
in

:::
the

:::::
SEB.

:::::::::::
Furthermore,

::::
even

::::
after

::::::::
choosing

:::
an

::::
extra

:::::::::
constraint

::
to

:::::
close

:::
the

:::::::
problem,

:::
the

::::::::::::
element-wise

::
to

::::::::
node-wise

:::::::::::::
transformation

:::
can

:::::::
produce

:::::::
spurious

::::::::::
oscillations

::
in

:::
the

:::::
nodal

::::
field

::::
even

::
if
:::
the

:::::::::::
element-wise

::::
field

::
is
:::::::::::
monotonous800

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(in other words, the transformation does not respect a form of discrete maximum principle; Ciarlet and Raviart, 1973)

:
.
:
It
::
is

::::::::
therefore

:::
not

:::::::
possible

::
to

:::::
derive

:::
an

::::::
optimal

:::::::
scheme

:::
for

:::
this

::::::::::::
transformation

::::
that

::::::
would

::
(i)

:::
not

::::::
modify

:::
the

::::::::::::
element-wise

::::::::::
temperature

::::
field

:::
and

:::
(ii)

:::
not

:::::
create

:::::::
spurious

::::::::::
oscillations

::
in

:::
the

:::::::::
node-wise

::::::::::
temperature

::::
field.

::
As

::::::::
spurious

::::::::::
oscillations

::
in

:::
the

::::::::::
temperature

:::::
field

:::::
would

::::::
affect

:::
the

:::::::::
estimation

::
of

::::
the

::::::::::
temperature

::::::::
gradients

::::
that

:::
are

::::
used

:::
in

::::::::
snowpack

::::::
models

::
to

:::::::
estimate

::::::::::::
metamorphism

:::::::::::::::::::::::::::::::::::::::::::
(e.g. Bartelt and Lehning, 2002; Vionnet et al., 2012)

:
,
:
it
::::::
seems

::::::::
preferable

::
to

:::::
rather805

::::
allow

:::
the

:::::::::::
modification

::
of

:::
the

:::::::::::
element-wise

:::::::::::
temperature

::::
field.

::::
That

:::::
being

:::::
said,

::::
such

:
a
:::::::
strategy

:::::::
implies

:
a
::::::
spatial

::::::::::::
re-distribution

::
of

::::::
energy

:::::::
between

:::::::
elements

::::
that

:
is
:::
not

:::::::::
motivated

::
by

:::
any

::::::::::
underlying

:::::::
physical

::::::::::
mechanism.

:::
We

::::
note

:::
that

:::
the

:::::::::::
SNOWPACK

::::::
model

::::::
handles

:::
this

:::::::
element

::
to

::::
node

:::::::::::::
transformation

:::::
during

::
a

:::::
phase

::::::
change

:::
step

::::
after

:::
the

:::::
liquid

::::::::::
percolation

:::::::
scheme,

:::
and

::::
does

::
so

:::::::
without

::::::
creating

:::::
large

:::::::
spurious

::::::::::
temperature

::::::::::
oscillations.

810

::::::::::::
Unfortunately,

:
it
::
is

:::
not

:::::::
possible

::
to

::::::
directly

:::::::::
implement

:::
the

::::::::::::
SNOWPACK

::::::
scheme

::
in

:::
our

:::::::::
toy-model,

::
as

:::
the

:::::::::
sequential

::::::::
treatment

:
is
:::
not

::::
the

:::::
same.

:::::::::
Moreover,

::
we

::::
did

:::
not

:::::::
manage

::
to

:::::
derive

::
a

::::::
scheme

::::
that

::::::::
performs

:::
this

:::::::
element

::
to

:::::
node

::::::::::::
transformation

:::::::
without

:::::::
affecting

:::
the

::::::
surface

:::::::::::
temperature.

:::::
Thus,

::
in

:::
our

::::::::
numerical

:::::::::::
simulations,

:::
the

::::
FVM

::::
and

::::
FEM

:::::::
models

::::
yield

:::::::
different

:::::::
results.

::
In

:::
the

::::::
absence

::
of
:::
an

::::::::
analytical

::::::::
solution,

:
a
:::::
direct

::::::::::
comparison

::
of

:::
the

:::::
FEM

:::
and

:::::
FVM

::::::::::::::
implementations

::::::
remains

::::::::::
impossible.

:

Appendix D: Expression of turbulent fluxes used in this work815

The computations of the turbulent fluxes used in this work are based on those provided by Sauter et al. (2020), with slight

modifications. The sensible and latent heat fluxes, H and L, are taken as:

H = ρacp,aCHu(Ta −Ts) (D1)

and

L= ρaLsCEu(qa − qs) (D2)820
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with ρa the density of air, cp,a the thermal
::::
heat capacity of air at constant pressure, u the wind velocity (at a given height),

Lv the latent heat of sublimation of water, Ta and qa the temperature and specific humidity of the air, Ts and qs the temperature

and specific humidity of the surface, assuming the saturation of vapor, and CH and CE two coefficients given by:

CH =
κ2

ln
(

z
z0

)(
z
z0t

)ψ(Rib) (D3)

and825

CE =
κ2

ln
(

z
z0

)(
z

z0q

)ψ(Rib) (D4)

with κ= 0.41 the von Kármán constant, z0 the aerodynamic roughness length, z0q and z0t taken 1 and 2 orders of magnitude

smaller than z0, respectively (Sauter et al., 2020), and ψ a stability correction factor. Specifically, we take ψ as:

ψ(Rib) =


1 if Rib < 0

(1− 5Rib)
2

if 0≤ Rib < 0.2

0 if 0.2≤ Rib

(D5)

with Rib the bulk Richardson number:830

Rib =
g

Ta

(Ta −Ts)za
u2

(D6)

with za the height at which the air temperature measurement is performed.

There are two main differences compared to the expression of the turbulent fluxes given in (Sauter et al., 2020). First, in

Sauter et al. (2020), the transition between the unstable and stable correction factor ψ is taken for Rib = 0.01, while we take it835

for Rib = 0. This choice is made to ensure the continuity of the stability factor, and thus of the turbulent fluxes, as a function of

Ts. In the presence of a discontinuity, it can indeed happen that the SEB does not have a solution in terms of Ts, and the surface

temperature is no longer defined in this case. Secondly, for the expression of the latent heat flux, we simply keep the latent heat

of sublimation Ls and do not replace it with the latent heat of vaporization Lv . Again, the goal is to avoid discontinuities in the

SEB as a function of Ts so that the problem remains mathematically well-posed. This approach isfor instance ,
:::
for

::::::::
instance,840

used in the Crocus model (personal communication; M. Lafaysse). Another strategy could be to fix the latent heat to either its

sublimation or vaporization value, depending on the initial state of the surface.

Appendix E:
:::::::
Stability

::::::::
Analysis
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::::
Here,

:::
we

:::::::
present

:::
the

:::::::::
derivation

::
of

::::
the

::::::
criteria

:::
for

:::
the

:::::::::
numerical

:::::::
stability

:::
of

:::
the

::::::::
different

::::::::
numerical

::::::::
schemes

::::::::
presented

:::
in

::
the

::::::
paper.

:::
We

::::::
follow

::::
the

:::::
proof

:::::::::
classically

::::
used

:::
to

::::
show

::::
the

:::::::::::::
(un)conditional

:::::::
stability

::
of

::::
the

:::::::
Forward

::::
and

:::::::::
Backward

:::::
Euler845

::::::
method

:::::::::::::
(Butcher, 2008)

:
.
:::::::
Notably,

:::
the

:::::
proof

::::
relies

:::
on

:
a
:::::::::
linearized

::::::
version

::
of

:::
the

::::::
system

::
of

:::::::::
equations.

::
As

:::
the

::::::
system

:::::
needs

::
to
:::
be

::::::::
linearized,

:::
we

::::::
cannot

:::::::
account

:::
for

:::
the

:::::::
potential

:::::::
melting

::
of

:::
the

:::::::
surface.

::::::
Under

:::
this

::::::::::::
consideration,

:::
the

::::::::::
atmospheric

::::::
fluxes

::
in

:::
the

::::
SEB

:::::::::
(long-wave

:::::::::
radiations,

::::::::
turbulent

::::::
fluxes,

:::
etc)

:::
are

::::::
simply

:::::::::
expressed

::
as

::
a

:::::
linear

:::::::
function

::
of

:::
the

:::::::
surface

::::::::::
temperature

:::
Ts, :::

i.e.

::
as

:::::::
fTs + b,

:::::
where

::
f

:::
and

::
b
:::
are

:::::::
constant

::::::
scalars

::::::::
expressed

::
in

:::::::::::::
J s−1 m−2 K−1

:::
and

::
in

:::::::::
J s−1 m−2,

:::::::::::
respectively.

::::
Also,

:::
for

:::::::::
simplicity,

:::
we

:::::::
consider

:
a
::::::
system

:::::::::
composed

::
of

::::
only

:::
one

:::
cell

::::
and

::
its

:::::::
surface.

:::
The

:::::::
problem

:::::
could

:::
be

:::::::::
generalized

::
to

:::::
more850

::::
cells,

:::
but

::
it

:::::
would

:::::
make

:::
the

::::::::::
computation

:::::
more

:::::::::::
cumbersome

:::
and

::
is

:::
not

::::::
crucial

::
as

::
we

:::
are

::::::::::
considering

:::::::::
numerical

:::::::::
instabilities

::::
that

::::::
develop

::
in

:::
the

:::::::
vicinity

::
of

:::
the

:::::::
surface.

E1
::::::::
Standard

:::::::::
skin-layer

:::::::::::
formulation

::::::
(Class

::
2)

::
To

:::::::
compute

:::
the

:::::::
surface

::::::::::
temperature

:::::
Tn+1
s ::

at
::::
time

:::
step

::::::
n+1,

:::
we

:::
use

:::
the

:::::::::
discretized

:::::::
Surface

::::::
Energy

:::::::
Balance

::::::
(SEB):855

fTn+1
s + b+

2λ

∆z

(
Tn+1
s −Tn

i

)
= 0

:::::::::::::::::::::::::::::

(E1)

:::::
where

:::
the

:::
first

::::
two

::::
terms

:::::::::::
corresponds

:
to
:::
the

::::
sum

::
of

::::::::::::::::
outgoing/incoming

::::::::::
atmospheric

::::::
fluxes,

:::
and

:::
the

:::
last

::::
term

::
to

:::
the

:::::::::
subsurface

:::
heat

::::::::::
conduction

::::
flux.

::::::
Here,

:
λ
:::

is
:::
the

:::::::
thermal

::::::::::
conductivity

:::
of

:::
the

:::::::
internal

::::
cell

:::
and

::::
∆z

::
its

:::::::::
thickness.

:::::
Note

::::
that

:::
the

:::::::
internal

::::::::::
temperature

:::
Tn
i ::

is
::::
taken

:::::
from

:::
the

:::::::
previous

::::
time

:::::
step.

::
To

::::::::
compute

:::
the

::::::
internal

::::::::::
temperature

::
at
::::
time

::::
step

::::::
n+1,

:::
we

:::
use

:::
the

::::
heat860

:::::
budget

:::
of

:::
the

::::::
internal

::::
cell:

:

∆zcpT
n+1
i +∆t

2λ

∆z

(
Tn
i −Tn+1

s

)
=∆zcpT

n
i

:::::::::::::::::::::::::::::::::::::

(E2)

:::::
where

:::
the

::::::
second

:::::
term

::
of

:::
the

:::::
LHS

::
is

:::
the

::::::::
opposite

::
of

:::
the

::::::::::
subsurface

:::::::::
conduction

::::
flux

:::::::::
appearing

::
in

:::
the

:::::
SEB

::::
(for

::::::
energy

:::::::::::
conservation),

::::
and

:::
cp ::

is
:::
the

::::
heat

:::::::
capacity

:::
of

:::
the

:::::::
internal

::::
cell.

::::
The

::::
two

:::::
above

:::::::::
equations

:::
can

:::
be

:::::::::
expressed

::
in

::::::
matrix

:::::
form

::::::::::::::::::
MUn+1 =NUn +B,

::::
with

:::
Un :::

the
:::::::
solution

:::::
vector

:::::::
[Ts,Ti]

T
::
at
:::
the

::::
nth

::::
time

:::
step

::::
and865

M =

 1 0

− 2∆tλ
cp∆z2 1


::::::::::::::::

(E3)

N =

0 2λ
2λ+∆zf

0 1− 2∆tλ
cp∆z2


::::::::::::::::::

(E4)

:::
and

:::::::::::::::::
B = [− ∆zb

∆zf+2λ ,0]
T .

:::
We

::::
thus

:::::
have,

::::::::::::::::::::
Un+1 =QUn +M−1B,

::::
with
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Q=M−1N =

0 2λ
2λ+∆zf

0 1−∆t 2λ
cp∆z2

∆zf
2λ+∆zf


:::::::::::::::::::::::::::::::::::

(E5)

::
By

:::::::::
recursion,

::
it

::::::
follows

::::
that

:::::::::::::::::::
Un =QnU0 +M−nB.

::::
The

:::::::::
numerical

:::::::
scheme

::
is

:::::::
deemed

:::::
stable

::
if

::::::::::::::
limn→∞Qn = 0.

:::::
This

::
is870

:::::::
achieved

::
if:

:

|1−∆t
2λ

cp∆z2
∆zf

2λ+∆zf
|< 1

::::::::::::::::::::::::

(E6)

:::::
which

::::
after

:::::
some

::::::::::
computation

::::::
yields

:
a
:::::::
criterion

::
of

:::
the

::::
time

::::
step

::::
∆t:

∆t <∆tcrit =
cp∆z

λ

2λ+∆zf

f
:::::::::::::::::::::::::

(E7)

:::
The

::::::::::
(linearized)

:::::::
standard

:::::::::
skin-layer

::
is

::::
thus

::::
only

:::::::::::
conditionally

::::::
stable.

:::
The

:::::::
stability

::::::::
criterion

:
is
:::::::

relaxed
::::
with

:::::::::
increasing

::::
heat875

:::::::
capacity

:::
(cp)

::::
and

::::::::
increasing

::::
cell

:::
size

:::::
(∆z),

::::
and

:
is
:::::
made

:::::
more

::::::::
restrictive

::::
with

:::::::::
increasing

::::::
thermal

:::::::::::
conductivity

:::
(λ)

::
or

::
if

:::
the

::::
SEB

:
is
:::::
more

:::::::
sensitive

::
to
:::::::
changes

::
in
:::
the

:::::::
surface

::::::::::
temperature

::
(f

:::::
term).

:

E2
::::::::::::::
Coupled-surface

:::::::::::
formulation

::::::::
Similarly,

:::
for

:
a
:::
one

::::
cell

::::::
system,

:::
the

::::::::::::::
coupled-surface

::::::::
equations,

::::
after

:::::::::::
linearization,

::::::
write:

fTn+1
s + b+

2λ

∆z

(
Tn+1
s −Tn+1

i

)
= 0

:::::::::::::::::::::::::::::::

(E8)880

::
for

:::
the

:::::
SEB,

:::
and

:

∆zcpT
n+1
i +∆t

2λ

∆z

(
Tn+1
i −Tn+1

s

)
=∆zcpT

n
i

:::::::::::::::::::::::::::::::::::::::

(E9)

::
for

:::
the

:::::
cell’s

:::
heat

:::::::
budget.

:::::
These

:::
two

::::::::
equations

:::
can

:::
be

:::
cast

::::
into

:::
the

:::::
matrix

::::
form

::::::::::::::::::
MUn+1 =NUn +B,

::::
with

::::::::::::::::::
B = [− ∆zb

∆zf+2λ ,0]
T ,

M =

 1 −2λ
2λ+∆zf

− 2∆tλ
cp∆z2+2λ∆t 1


:::::::::::::::::::::::::::

(E10)885
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:::
and

N =

0 0

0
cp∆z2

cp∆z2+2λ∆t


:::::::::::::::::::

(E11)

:::
We

:::
thus

:::::
have

:::::::::::::::::::
Un =QnU0 +M−nB,

::::
with:

:

Q=

0 2λ
2λ+∆zf

cp∆z2

cp∆z2+2λ∆t

0
cp∆z2

cp∆z2+2λ∆t


::::::::::::::::::::::::::

(E12)

:::
The

::::::::
numerical

:::::::
scheme

::
is

::::::
deemed

:::::
stable

::
if

::::::::::::::
limn→∞Qn = 0.

::::
This

::
is

::::::
always

::::::::
achieved,

::
as

::::::::::::::

cp∆z2

cp∆z2+2λ∆t < 1.
:::::
Thus,

::
the

::::::::::::::
surface-coupled890

::::::
scheme

::
is

:::::::::::::
unconditionally

::::::
stable.

E3
:::::::::::::::
Non-conservative

:::::::::
skin-layer

:::::::::::
formulation

:::
For

:::
the

::::::::::::::
non-conservative

::::::::
skin-layer

::::::::::
formulation

::::
(see

::::::
Section

:::::
6.4),

::
we

::::
start

::::
with

:::
the

:::::::::
linearized

:::::::
discrete

::::
SEB:

:

fTn+1
s + b+

2λ

∆z

(
Tn+1
s −Tn

i

)
= 0

:::::::::::::::::::::::::::::

(E13)

:::::
Using

:::
the

::::::
surface

::::::::::
temperature

:::::
Tn+1
s ::

as
::
a

:::::::
Dirichlet

::::::::
condition

:::
for

:::
the

:::::::
internal

::::::
energy

::::::
budget,

:::
we

::::
thus

::::
have895

∆zcpT
n+1
i +∆t

2λ

∆z

(
Tn+1
i −Tn+1

s

)
=∆zcpT

n
i

:::::::::::::::::::::::::::::::::::::::

(E14)

:::::
These

:::
two

::::::::
equations

::::
can

::
be

::::
cast

:::
into

:::
the

::::::
matrix

::::
form

:::::::::::::::::::
MUn+1 =NUn +B,

::::
with

:::::::::::::::::
B = [− ∆zb

∆zf+2λ ,0]
T ,

M =

 1 0

− 2∆tλ
cp∆z2+2λ∆t 1


:::::::::::::::::::::

(E15)

:::
and

N =

0 2λ
2λ+∆zf

0
cp∆z2

cp∆z2+2λ∆t


:::::::::::::::::::

(E16)900

:::
We

:::
thus

:::::
have

:::::::::::::::::::
Un =QnU0 +M−nB,

::::
with:

:
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Q=

0 2λ
2λ+∆zf

0 X


::::::::::::::::

(E17)

:::::
where

:::::::::::::::::::::
X =

2λ∆t 2λ
2λ+∆zf +cp∆z2

2∆tλ+cp∆z2 .
:::
The

:::::::
scheme

::
is

::::::
deemed

:::::
stable

::
if
::::::::
|X|< 1.

::
As

:::::::::::

2λ
2λ+∆zf < 1,

:::
we

::::::
always

::::
have

::::
that

::::::::::::::::::::::::::::::::::
2λ∆t 2λ

2λ+∆zf + cp∆z
2 < 2∆tλ+ cp∆z

2,
:::
and

::::
thus

:::
that

:::
the

:::::::
scheme

::
is

:::::::::::::
unconditionally905

:::::
stable.

::::
That

:::::
being

::::
said,

:::
we

:::::
recall

::::
that

:::
this

:::::::
scheme

:
is
::::
not

:::::
energy

:::::::::::
conservative

:::
and

::::
can

:::
lead

::
to
:::::
large

::::::
errors.

E4
::::::::::
No-surface

::::::::::
formulation

::::::
(Class

::
1)

::::::
Finally,

:::
we

::::
note

:::
that

:::
the

:::::::::
linearized

:::::::::
No-surface

::::::::::
formulation

::::::::::
corresponds

::
to

::
a

::::::
classic

:::
heat

::::::::
equation

::::
with

:
a
:::::::::
Backward

:::::
Euler

::::
time

:::::::::
integration.

:::
As

:::::::::::
demonstrated

:::::::::
elsewhere

::
in

:::
the

:::::::
literature

:::::::::::::::::
(e.g. Butcher, 2008),

::
it
::
is

:::::::::::::
unconditionally

::::::
stable.
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