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Note that we have corrected some typos in the revised manuscript (shown in the track-
change version) and updated the deposited source code, as we have added some 
optimizations in response to the comment of referee 2 on numerical cost.

Best Regards,
Kévin Fourteau on behalf of all co-authors



We are thankfull Richard Essery for his constructive review. Please find below our point by
point  response to the review. The comment of  the referee are shown in blue and our
response in black below. Proposed modifications of the manuscript are shown in green
with page and line numbering corresponding to the preprint version of the article.

I  greatly  enjoyed reading this  paper.  The method for  efficiently  coupling the nonlinear
surface energy balance to the linear subsurface heat conduction is a clever piece of matrix
algebra,  but  it  is  not  just  that;  it  directly  relates  to  a  point  of  contention  in  the  lively
interactive discussions of Brun et al. (2022) and Potocki et al. (2022) concerning the mass
balance of the Everest South Col Glacier. 

There  are  limitations,  however.  Many processes  are  generally  handled  sequentially  in
snow models (Clark et al. 2015), but this paper only couples two of them. Only idealized
test cases are shown and not full model performance in real applications.
We agree with the reviewer that two of the limitations of this work (which were also pointed
out by other reviewers and the editor) are that: (i) we only tightly-couple two processes
(the SEB and the internal heat equation) and leave others (such phase changes or liquid
water percolation) sequentially treated and (ii) that we only treat idealized test cases. We
were also aware of this potential limitation when doing this study, and wondered if more
realistic cases should be analyzed. We eventually decided to leave them out.
Our motivation behind this choice is to allow to focus on a single topic, namely the efficient
numerical coupling of the SEB to the internal heat budget in a FVM framework. We worry
that  introducing  other  tight-couplings  (such  as  phase  changes  while  solving  the  heat
equation) might make the role of coupling the surface and internal energy budgets less
clear, and thus renders this point less-readily available for current FVM models, such as
Crocus or COSIPY. Likewise, we decided to focus on test cases without comparisons to
direct  observations,  as  it  is  not  be  possible  to  decipher  errors  due  to  the  numerical
implementations (which is the focus of our paper) from errors due to the assumed physics,
parametrizations, and forcings (which we do not and cannot not address in this study).
Therefore, we think that to meaningfully analyze numerical implementations in terms of
cost, accuracy and robustness, the use of simplified test cases is appropriate. We however
agree that  the  test  cases should  not  be too unrealistic  if  we want  their  results  to  be
informative of how a numerical scheme might behave in a realistic settings. That it is why
we have used realistic forcings and initial conditions.

We  now  specify  our  intention  more  clearly  in  the  text,  and  clearly  explain  that  our
simplifying  assumptions  are  meant  to  ease  the  comparison  of  the  numerical
implementations of the surface-internal energy budgets, but that our toy-model should not
be  viewed  as  proper  a  snowpack/glacier  model  as  many  important  components  are
lacking.

P12 - L330
“Two simple examples,  showcasing the differences between numerical  treatments,  are
presented below. We note that these simulations cannot be considered as fully realistic
simulations of a snowpack or glacier surface, as many processes, such as the deposition
of atmospheric precipitation (rain or snow) or mechanical settling, are lacking. The goal is
rather to provide a simplified setting in which the impact of the numerical implementation
of  the  SEB can  be  analyzed.  In  the  same idea,  we  do  not  attempt  to  compare  the
simulation results to field observations. Indeed, it would not be possible to decipher errors
due  to  the  numerical  discretization  (the  focus  of  this  paper)  from  errors  due  to  the
assumed physics, parametrizations and atmospheric forcings. Nonetheless, in order for



the results to still be informative of how a given numerical implementation might behave in
a  more  realistic  setting,  we  use  realistic  atmospheric  forcing,  initial  conditions,  and
physical parametrizations. The first simulation is meant to highlight the behavior of the
numerical  models  when simulating  the  SEB on  a  snow-free  glacier.  The  second  one
focuses on the impact  of  the  model  implementations on the simulation  of  the  energy
budget of a seasonal snowpack, during the melting period.”

From the test case results, I could take contrary conclusions that the added complexity of
coupling is not needed and the standard skin-layer formulation is fine as long the time step
is not made too large, which is well known (“not too large” could still be prohibitively small
for thin layers, though).

Indeed, very reasonable results can be obtained with the standard skin-layer formulation
as long as the time step is kept short enough to avoid instabilities. The same conclusion
could be made for the Class 1 model (no surface), as long as the top cell is kept thin
enough. As all models solve the same equations, they converge to the “true” solution when
the spatial and temporal resolution are refined, and the tightly-coupled approach is not
expected to yield a different solution.
However, we believe the property of the tightly-coupled approach to accept both large time
steps and mesh sizes, while keeping a similar numerical cost, motivates it use over the
standard approaches. A numerical stability analysis is provided at this end of this response
that  shows that  the  coupled-surface  scheme is  unconditionally  stable,  contrary  to  the
standard-skin layer formulation, and thus does not to require the implementation of an
adaptative time step strategy. This is now discussed more clearly in the revised manuscript
and the numerical stability analysis provided in an appendix.

P21 - L503
“The unstable nature of  class 2 models can be shown with a linear stability  analysis,
provided in Appendix E. Such analysis shows that class 2 models are only conditionally
stable, and confirm that instabilities are favored in the case of large time steps and small
mesh sizes. We stress that these oscillations can appear even if the time integration of the
internal energy budget relies on the Backward Euler method, known for its robustness
against instabilities (Fazio, 2001, Butcher, 2008). Our understanding is that the sequential
treatment  of  the standard skin-layer  formulation breaks the implicit  nature of  the time
integration by using "lagged" (in  other  words,  explicit  rather  than implicit)  terms.  This,
combined with the fact that the surface layer does not possess any thermal inertia and that
its temperature can thus vary rapidly in time, permits large temperature swings if the time
step is too large or the mesh size too small. On the other hand, it can be shown that the
two  schemes  with  a  tightly-coupled  SEB  are  unconditionally  stable  (Appendix  E),  in
agreement with the absence of oscillations in their simulations. Notably, the unconditional
stability of the coupled-surface scheme proposed in this article entails that the model does
not need an adaptive time step size strategy depending on the mesh size. This ensures
that it remains robust, regardless of the time step and mesh size.

P26 - L563
“Moreover, a tightly-coupled treatment of the SEB allows unconditional stability, while the
standard skin-layer formulation can be unstable and displays large spurious oscillations
with large time steps and small mesh sizes.”



Specific comments:

Author list
“Brun Fanny” might like to have her name turned around.
We put Fanny’s name in the good order.

Introduction

I don’t recommend writing a comprehensive review of SEB formulations, but only giving
recent examples of applications of a skin layer and no examples using a finite surface
layer in the introduction, rather than original model development papers, gives a distorted
view. An uncoupled skin layer has been in use for snow models at least as far back as
Yamazaki  and Kondo (1990).  There is  a  snow surface layer  temperature in  Anderson
(1968).
We added older model development papers in the revised manuscript. Notably we now
provide references when discussing finite-top-layer models.

P1 - L20
“To reach this goal, the representation and evolution of the thermodynamical state (that is
to  say  temperature  profiles  and  phase  changes)  of  snowpacks  and  glaciers  are
implemented in most numerical snowpack/glacier models (e.g. Anderson, 1976,  Brun et
al. 1989, Jordan, 1991, Bartelt and Lehning 2002, Liston and Elder, 2006, Vionnet et al.
2012, Sauter et al., 2020).”

P2 - L40
“On the other hand,  some FVM implementations do not  define a specific  temperature
associated with the surface, but rather use the temperature of the top-most numerical
layer of the domain (i.e. the top layer of the simulated snowpack/glacier) for solving the
SEB  (Anderson,  1976,  Brun  et  al.,  1989,  Jordan,  1991,  Vionnet  et  al.,  2012,  van
Kampenhout et al., 2017).”

22- There are many “numerical models” that are not snowpack/glacier models.

We reformulated the sentence to clearly state that by “most numerical models”, we want to
refer to snowpack/glacier models.

P1 - L20
“To reach this goal, the representation and evolution of the thermodynamical state (that is
to  say  temperature  profiles  and  phase  changes)  of  snowpacks  and  glaciers  are
implemented in most numerical snowpack/glacier models ”

32- The surface energy balance is described as “profoundly non-linear”. Actually, this is a
pretty benign nonlinearity in the field of nonlinear equations; it does not have multiple or
chaotic solutions.
We removed the word “profoundly” to only state the problem is non-linear,  and hence
might requires some iterations for the proper solution to be computed.

49- The “infinitely small horizontal layer” would be better described as infinitely thin.
We replaced “small” with “thin”.

While Eq. (1) is more generally applicable, it  could already be emphasized that this is
invariably implemented as a 1D model with T a function of z.



Consistently, with the remark of Reviewer 3, we now state that while the equation remains
valid in 3D, we use it  in a 1D set-up only as transitionally done in snowpack/surface-
glaciers models.
P3 - L70
“In this article, we assume that the snowpack/glacier can be represented as 1D column,
and therefore Eq. (1) should be understood as 1D equation.”

I think that there will be very few exceptions to this “usually” of allowing snow temperature
to exceed the fusion point before calculating melt, but there are examples of models with
phase changes over a temperature range in Albert (1983) and Dutra et al. (2010).
As  also  pointed  out  by  the  review  of  Michael  Lehning,  several  strategies  have  been
proposed to handle phase change in snowpack/glaciers models. We modified the revised
manuscript to clearly state that we rely on the method of exceeding the fusion point and
then  restoring  thermodynamic  equilibrium  as  it  employed  in  the  majority  of
snowpack/glacier models, but that alternatives exist. We now also stress that this method
of “overshooting” is a form a sequential treatment, to which better treatments have been
proposed in the recent literature. Building on this idea, we are currently working on the
efficient  tightly-coupled  resolution  of  all  internal  thermodynamic  processes,  and  will
address it in a future work.

P3 - L82
“In this article, we follow this simple scheme as it is commonly employed in snowpack and
glacier models. That being said, other, more complex, strategies have been proposed in
the  literature.  This  notably  includes  the  use  of  a  finite  temperature-range  over  which
melt/freezing occurs (e.g. Albert, 1983, Dutra et al., 2010), including melt/refreeze as an
additional energy source term (e.g. Bartelt and Lehning, 2002, Wever et al., 2020), or the
use of enthalpy as the prognostic variable (e.g. Meyer and Hewitt,  2017, Tubini et al.,
2021).”

We have also estimated the sensitivity  of  our  results  to  the treatment  of  these phase
changes. We found that the conclusions of the article concerning the accuracy and stability
of the different SEB schemes hold with a different treatment of phase changes (graphs
provided in the response to the review of Michael Lehning). We now address this point in
the revised manuscript:

P12 - L329
“Also, as some of the current snowpack and glacier models include the effect of internal
phase-change while solving the internal heat equation (e.g. Bartelt and Lehning, 2002,
Meyer  and  Hewitt,  2017),  we  quantified  the  sensitivity  of  our  results  to  this  specific
treatment of melt/freeze. For that, we have also implemented versions of our three models
that include such internal phase-changes in the heat equation.”

P16 - L441
“Finally, using the versions of the models including phase-changes in the heat equation,
we quantified the sensitivity of these observations to the treatment of the melt/refreeze.
While  the  simulated  temperature  sometimes  differ  from  our  basic  implementations
(especially in the snowpack test case where melt occurs internally), the general behavior
of  the  models,  including the potential  presence of  instabilities  in  the  Class  2  models,
remain unchanged.”



P20 - L493
“Finally, using the versions of the models including phase-changes in the heat equation,
we verified that the conclusions of this convergence analysis remain valid in the case of a
different treatment of the internal phase-changes”

136-  “SNTHERM (Jordan, 1991), Crocus (Vionnet et al., 2012)”
The typo is corrected.

146- Another step is required if the calculated melt exceeds the available snow mass.
It is indeed important that the local calculated melt does not exceed the available snow
mass. In our implementation, if the local melt exceeds the snow mass, layers are locally
merged until the melt falls behind the available snow mass. This is now specified in the
manuscript.

P12 - L323
“This remeshing step is also used to ensure that the melt of a layer cannot exceed its ice
content.  If  such a case is encountered, the layer is merged with one of  its neighbors
before attempting melting. If the total melt exceeds the total mass, the simulations should
be stopped. However, this last case did not arise in the simulations presented here.”

234-  LWout  and H are  given as  examples  of  fluxes that  are  nonlinear  in  the  surface
temperature; L should also be mentioned as intrinsically nonlinear. H as defined by Eq.
(B1) is only nonlinear if C_H is a function of surface temperature. It is, through Ri_b here,
but  models  often  neglect  this  nonlinearity  because  of  the  complexity  of  the  resulting
derivatives; it is not clear if that is done here.   A supplement giving the elements of the
Jacobian might be a useful addition.
We added L in the list of SEB terms that are non-linear with respect to the temperature.

In  our  implementation,  we  take  into  account  the  dependence  of  C_H  to  the  surface
temperature and include its impact on the Jacobian of the system (in order to have a true
Newton method with quadratic convergence). Note that not taking this dependence in the
Jacobian does not modify the solution of the non-linear system, but only the sequence of
iterations and the convergence rate toward this solution.

To make our model readily-available we explicitly wrote the terms of the Jacobian in the
new Appendix A.

P11 - L275
“The expressions  of  the  matrices  forming  the  block  system are  given  in  Appendix  A,
including the derivatives necessary for Newton's method.”

261- I understand the problem, but I don’t understand the benefit of returning the solution
to the vicinity of the discontinuity.
The SEB should have a unique solution, but the Newton method is not guaranteed to find
it.  It  can  get  trapped  in  a  cycle  of  states  around  the  solution.  This  situation  can  be
diagnosed from the SEB, but I think that most models just give up and select the last
iteration. Does the modified Newton method avoid this problem?
Yes, the goal of the truncation method is precisely to avoid the iterations to be stuck in a
loop or to diverge and is quite adapted for the solving of the SEB with a fictitious variable.
We’ve made a Figure as illustration below (the SEB non-linearity has been exaggerated
for the illustration). In the case of the standard Newton method without truncation, the
break in the slope can send the iterations far from the solution (or into loops depending of



the configuration). In the truncation case, the iteration is moved to the orange point after
two truncations. At this point, the Newton scheme can converge normally to the solution.

P9 - L251
“The idea behind truncation is that the Jacobian  (i.e. the derivative of the equations with
respect  to  the  unknowns  to  be  solved  for)  computed  on  one  side  of  a  derivative
discontinuity does not apply on the other side, and can therefore perturb the convergence
towards the solution, typically leading to an endless iteration loop.”

Figure – Solving of a non-linear SEB with and without a truncation in Newton’s method. In
the truncation case, the estimation is brought from the red point to the orange point after
two successive truncations.

Note that Newton’s method can be made even more robust by applying a truncation at the
inflection points. However, this was not done in our case, as the SEB does not displays
such inflection point with respect to the surface temperature.

265- Another solution in use, with its own numerical errors, is to linearize the SEB and
solve it in one step without iteration (e.g. Best et al. 2011). This is essentially the Penman-
Monteith method.
Equation (11) and following
Indeed, some models only solve the linear system with one iteration (for instance Crocus).
However in this case, the obtained solution is not the actual backward Euler solution and
does not have all its properties. We mention this point in the article.

P9 - L236
“We also note that some models made the choice of performing only a single iteration to
solve this linear system of equations (with sometimes an extra iteration to handle specific
cases, such as surface melting). However, we chose here to perform multiple iterations, in
order to obtain the actual Backward Euler solution.”

Be consistent in making diag, up and low superscripts or subscripts.
We corrected the manuscript consistently, with all diag, up, and low being subscripts.

284- “The above equation” is Eq. (13).
We modified the text to state that the “above equation” refers to Eq. (13) and that it allows
one to solve the first temperature, as if they were solved with the complete system of Eq.
(11).



P11 - L284
“The system of Eqs.(13) is a 2x2 non-linear system where only As and Bs need to be re-
assembled at each non-linear iteration and whose solution for Us is the same as the large
system of Eqs. (11).”

286- “invert A_diag”
Following a comment of Reviewer 2 n the numerical efficiency of the method, we have
proposed to partly rewrite the part of the article detailing the Schur-complement technique.
This portion now reads:

P11 - L286
“[…] (ii)  compute the products Adiag

-1 Bint and Adiag
-1 Aup (which is  cheaper  than directly

inverting Adiag, (iii) iteratively [...]”

322- “cells which then become”
We wanted to write: “that merges adjacent cells when *they* become smaller than a given
threshold”. We modified the manuscript accordingly.

379- No refreeze in this test case.
Indeed, in the glacier test case, there is not refreeze as all water is sent to runoff. This will
be mentioned in the text.
We still define the phase change rate in terms of melt and refreeze (general definition) and
precise that in the glacier test case there is no refreezing.

P14 - L381
“Note that in this specific test case, no refreezing was observed (as melt occurs at the
surface and is sent to runoff), meaning that the phase change rate directly corresponds to
the melt rate.”

421- “Concerning the glacier test-case, Fig. 3 shows”
We corrected the typo.

424- “by about 0.50 K”
We corrected the typo.

440- I have, indeed, seen time step oscillations like this in class 2 simulations. They are
not the same as the well-known and catastrophic instability of the explicit Euler method
with too large a timestep. Considering the wide use of class 2  models, a stability analysis
to understand the origin of these oscillations (not necessarily for this paper) might be of
interest. 
To better explain the instabilities in Class 2 models we have performed a stability analysis,
akin  to  the  ones  classically  performed  for  the  Forward/Backward  Euler  scheme.  It  is
provided as the end of this response.
It shows that the standard skin-layer scheme is only conditionally stable, and that there is
exist a maximum time step size. The presence of instabilities is favored in the case of
large thermal conductivities or of a large derivative of the atmospheric fluxes with respect
to the surface temperature in the SEB. On the contrary, these instabilities are hindered in
the case of large cell sizes or large specific thermal capacity.
We believe this instability is of the same nature as the one observed with an explicit time-
stepping, as it arises from the use of the first internal temperature from the previous time
step in the computation of the subsurface heat flux. If the internal temperature from the



current  time  step  is  used  instead  (as  in  the  scheme  we  propose),  this  instability  is
removed.

As mentioned above, the demonstration of the (un)conditional stability of the schemes is
now presented in the new Appendix A and discussed in the text.

P21 - L503
“The unstable nature of  class 2 models can be shown with a linear stability  analysis,
provided in Appendix E. Such analysis shows that class 2 models are only conditionally
stable, and confirm that instabilities are favored in the case of large time steps and small
mesh sizes. We stress that these oscillations can appear even if the time integration of the
internal energy budget relies on the Backward Euler method, known for its robustness
against instabilities (Fazio, 2001, Butcher, 2008). Our understanding is that the sequential
treatment  of  the standard skin-layer  formulation breaks the implicit  nature of  the time
integration by using "lagged" (in  other  words,  explicit  rather  than implicit)  terms.  This,
combined with the fact that the surface layer does not possess any thermal inertia and that
its temperature can thus vary rapidly in time, permits large temperature swings if the time
step is too large or the mesh size too small. On the other hand, it can be shown that the
two  schemes  with  a  tightly-coupled  SEB  are  unconditionally  stable  (Appendix  E),  in
agreement with the absence of oscillations in their simulations. Notably, the unconditional
stability of the coupled-surface scheme proposed in this article entails that the model does
not need an adaptive time step size strategy depending on the mesh size. This ensures
that it remains robust, regardless of the time step and mesh size.

P26 - L563
“Moreover, a tightly-coupled treatment of the SEB allows unconditional stability, while the
standard skin-layer formulation can be unstable and displays large spurious oscillations
with large time steps and small mesh sizes.”

460- “only marginally worse”
What we wanted to say here, is that sometimes the Class 2 model yield smaller error than
the coupled-surface scheme, but when it  do so it  is only be small  margin (which then
justifies  the  use  of  a  coupled-surface  model  in  general).  This  was  visibly  not  clearly
phrased, as Micheal Lehning had the same remark. We rephrased the sentence to:

P17 - L458
“For almost all investigated time steps and in both test cases, the newly proposed scheme
displays the lowest level of errors. Sometimes, the class 2 model yields the smallest error,
but does so only by a small margin.”

We have also re-formulated a similar sentence later in the manuscript.

P20 - L481
“Again,  among the three implementations the tightly-coupled surface model  yields the
smaller errors for almost all investigated mesh refinements (as in the glacier test case, the
class 2 model is however sometimes marginally better).”

490- Divergence of the class 2 model from the reference as the mesh is refined in the
glacier test case (Fig. 10) is an odd result. I guess that this could happen if the time step in
these mesh refinement tests is larger than in the reference. If so, this needs to be stated in
the text.



We  believe  the  increase  of  error  with  smaller  mesh  size  st  a  result  of  numerical
instabilities,  that  develop with small  mesh sizes.  This is now mentioned in the revised
manuscript:

P20 - L490
“Finally, Fig. (10) reveals that in the glacier test case, the phase change rate errors of the
class 2 tend to deteriorate with further mesh refinement past a certain point (here for an
initial cell number above 90). We interpret this deterioration as a result of the appearance
of numerical instabilities that develop with small mesh sizes.”

Having said that, it is not apparent that the 225 cell simulation is worse than the one with
45 cells in Fig. 10c.
There are periods in Fig. 10c where the error in the 225 cells simulation is larger than the
45 cells. This is notably the case from mid-June to late-August.

504-  “the  backward  Backward  Euler  method”  sounds  like  it  goes  forward.  Just  one
“backward” required.
Indeed. This is now corrected.

509- “mesh size too small”
We corrected the typo.

6.4- Having found G from the SEB, the obvious thing to do in a class 2 model is to use it
as a flux boundary condition for the internal temperature calculations. Can any real class 2
model be found that uses the surface temperature as a Dirichlet boundary condition? If
not, section 6.4, Fig. 14 and the last sentence of the conclusion should be deleted. A note
that this would be the wrong thing to do will suffice.
The potentiality of using the surface temperature as a Dirichlet condition rather than the
subsurface conduction flux was made aware to us from reading the publicly  available
COSIPY  code  (cosipy/modules/heatEquation.py  files,  last  accessed  08/11/2023)  and
EBFM codes. However, we stress that these codes use a Forward Euler time stepping,
and in this case the using the sub-surface conduction flux or a Dirichlet  condition are
equivalent.

We think it is important to mention and show that using a Dirichlet condition will lead to
greatly deteriorated simulations, as the use of a Dirichlet condition actually numerically
stabilizes the system (which can be seen with the absence of instabilities in the orange
curve of Fig. 14 and can be demonstrated with a stability analysis, provided at the end of
this  document).  However,  this  stabilization is  at  the detriment  of  accuracy and energy
conservation.

We propose to better justify in the manuscript that the use of a Dirichlet condition might be
tempting to obtain stability, but that it will produce large errors in response. We have also
shorten the first part of the section:

P23 - L511
“As explained in Section 2.2, the heat conduction flux from the surface to the interior of the
domain (i.e. G in Equation 3) needs to have the same value in the computation of the SEB
and in the computation of the energy budget of the first interior cell. Inconsistencies in G
between these two budgets lead to the violation of energy conservation and create an
artificial energy source/sink near the surface. Such inconsistencies could be created when
implementing the standard skin-layer formulation (class 2 models) due to the sequential



treatment of the surface and internal energy budgets. Indeed, after solving the SEB, one
can either  use the surface temperature or  the subsurface heat  flux  G as a boundary
condition  for  the  computation  of  the  internal  temperatures.  We note  that  the  use  the
computed surface temperature as a boundary condition leads to an unconditionally stable
numerical  scheme  (Appendix  E).  However,  using  such  Dirichlet  condition  in  order  to
stabilize the standard-skin layer formulation comes at the expense of energy conservation
and deteriorates of the simulated results.”

Search the text for “, that”. In all but one case, it should be “that” or “, which”.
This has been corrected.

Albert (1983): https://apps.dtic.mil/sti/pdfs/ADA134893.pdf

Anderson (1968): 
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/WR004i001p00019

Best et al. (2011): https://gmd.copernicus.org/articles/4/677/2011/

Clark et al. (2015): https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015WR017200

Dutra et al. (2010): https://doi.org/10.1175/2010JHM1249.1

Yamazaki and Kondo (1990): https://doi.org/10.1175/1520-
0450(1990)029<0375:APMFSS>2.0.CO;2



We are grateful to the referee for their constructive review. Please find below our point by
point  response to the review. The comment of  the referee are shown in blue and our
response in black below. Proposed modifications of the manuscript are shown in green
with page and line numbering corresponding to the preprint version of the article.

Summary: 

This work proposes a methodological improvement to surface energy balance modeling 
over frozen ice surfaces by merging the benefits of two diverging current approaches to 
coupling air temperature and ice temperature.  The coupling approach appears effective 
and insightful and is an important contribution to the field. The paper presents two case 
studies, one over snow and one over a glacier (with highly idealized implementations) as 
demonstrations of the accuracy. There is a well motivated exploration of the 
implementation's dependence on time and spatial resolution, which are not only practically
important for anyone wishing to implement this method, but also provide the opportunity to 
discuss numerical stability.

General comments:

It is exciting to see this paper address both snowpack and glacier surface energy balance. 
It would be good to discuss (briefly) the physical similarities and differences (structure, air 
content) between the two.
We have added to the manuscript that snowpacks and glacier surfaces can be modeled in 
a similar framework as they share (i) the same fundamental governing equation (i.e. the 
energy conservation equation with heat conduction and shortwave absorption as a 
processes), and (ii) a first order phase change transition, where melt/refreeze occurs with 
latent heat. These similarities have already been used in the literature to treat snow and 
glacier ice in a unified framework, for instance in the model COSIPY. However, snowpacks
and glacier surfaces present some differences that might complexify this unified treatment,
for instance the fact that water does not percolate similarly in snow and glacier ice or that 
vapor movement plays a role significant role in snow but not in glacier ice.

We revised the manuscript to:

P3 - L60
“As snowpack and glaciers share many similarities and processes, such as heat 
conduction or the presence of a phase transition when the melt temperature is reached, 
they can be represented by the same type of equations. These similarities enable 
simulations mixing snow and glacier ice within a single framework (e.g. Sauter et al., 
2020). Hence, for the sake of generality, the equations discussed in the following sections 
apply to both snow and glacier ice. That being said, snow and glacier ice present some 
differences, notably concerning liquid water percolation. As addressed later, this might 
require a differential treatment of glacier ice and snow when implementing the liquid water 
percolation scheme.”

There is a consistent overuse of commas in the setup ‘,that’ (many of which should be 
‘which’ with no comma)
This was also pointed out by the review Richard Essery. This is now corrected. 

The manuscript is clearly structured in introducing a new method to approach temperature 
and melt numerical modeling and then applying that method to two test cases. However, 
the test cases are very specific and thus convey limited information about the broader 



application of the method – these limitations should be discussed, especially as a future 
goal would likely be to apply this numerical routine to more complicated cases.
This point was also stressed in the review of Richard Essery. We were also aware of this 
potential limitation when doing this study, and wondered if more realistic cases should be 
analyzed. We however decided to limit this study to simple idealized cases. Our goal 
behind this choice was to provide simple cases from which the impact of the numerical 
implementation can be clearly analyzed.

We also decided not to include comparisons with direct observations. Indeed, it would not 
be possible to decipher errors due to the numerical implementations (which is the focus of 
our paper) from errors due to the assumed physics, parametrizations, and forcings (which 
we do not and cannot not address in this study). Therefore, we think that to meaningfully 
analyze numerical implementations in terms of cost, accuracy and robustness, the use of 
simplified test cases is appropriate. We however agree that the test cases should not be 
too unrealistic if we want their results to be informative of how a numerical scheme might 
behave in a realistic settings. That it is why we have used realistic forcings and initial 
conditions.

We revised the manuscript to specify our intention more clearly. We explain that our simple
test cases are meant to ease the comparison of the numerical implementations of the
surface-internal energy budgets, but that our toy-model should not be viewed as proper a
snowpack/glacier model as many important components are lacking.

P12 - L330
“Two simple examples,  showcasing the differences between numerical  treatments,  are
presented below. We note that these simulations cannot be considered as fully realistic
simulations of a snowpack or glacier surface, as many processes, such as the deposition
of  atmospheric  precipitation  or  mechanical  settling,  are  lacking.  The  goal  is  rather  to
provide a simplified setting in which the impact of the numerical implementation of the
SEB can be analyzed. In the same idea, we do not attempt to compare the simulation
results  to  field  observations.  Indeed,  it  would  not  be  possible  to  decipher  errors  due
numerical discretization (the focus of this paper) from errors due to the assumed physics,
parametrizations and atmospheric forcing. Nonetheless, in order for the results to still be
informative of how a given numerical implementation might behave in a realistic setting,
we use realistic atmospheric forcings, initial conditions, and physical parametrizations. The
first simulation is meant to highlight the behavior of the numerical models when simulating
the surface energy balance on a snow-free glacier. The second one focuses on the impact
of  the  model  implementations  on  the  simulation  of  the  energy  budget  of  a  seasonal
snowpack, during the melting period.”

Lastly, the finding that a coupled surface model can outperform other models at coarser 
grid sizes is implied here to be more computationally efficient due to the change in mesh 
size. However, this is not generally true when you are also changing the numerical 
scheme, so the assertion of computational cost savings which maintaining accuracy (as 
claimed here) should be backed up by either reports of the time taken for the computations
and/or a clear statement that the numerical implementations are computationally identical 
by construction. This, if true, should also be mentioned in the conclusion as it is an 
important outcome! This is somewhat related to the discussion of numerical reduction 
(back to the same order of the original models) that you get from the Schur complement, 
but they are not discussed together and the data are not shown.
To answer this question we have computed the number of basic operations 
(addition/substraction and multiplication/division) required to perform the linear algebra 



problem solvings of the three presented models, including the use of Schur-complements. 
The exact number are now presented in the new Appendix A and discussed in the article. 
We found that in terms of operations the standard skin-layer scheme requires about 40% 
less operations than the coupled-surface and no-surface schemes (which both require 
very similar number of operations). The last two schemes are more computationally 
expensive as they require the extra computation of the Schur-complement that is a bit 
more costly than the standard inversion used in the standard-skin layer formulation.
Therefore, and based on the Figures 5 to 9, the introduction of a coupled degree of 
freedom at the surface (to transform a Class 1 into the coupled-surface scheme) is an 
interesting numerical trade-off, as it only marginally increase the numerical cost of the 
method while allowing coarser meshes. Concerning the standard skin-layer models, the 
trade-off of transforming into a coupled-surface scheme is not as evident as the numerical 
cost is multiplied by a bit less than 1.70.  It allows the use of large time steps, without 
numerical instabilities, but at the expense of an increased number of steps.

We propose to discuss in more details the numerical cost of the methods in Section 4.1.1

P11 - L294
“An analysis of the numerical cost (in terms of number of basic operations) of this 
numerical scheme is given in Appendix A, alongside analyses of the numerical cost of 
Class 1 and 2 models. It shows that the proposed scheme and the Class 1 models have 
similar numerical costs, which a bit less than 1.7 times larger than the standard-skin layer.”

in the conclusion:
P25 - L551
“Furthermore, a reduction technique, based on the computation of a Schur complement, is
presented so that the numerical cost of the proposed framework remains of the same 
order as that of the standard implementations for the same mesh. In particular, for a given 
mesh, the numerical cost is similar to that of models not explicitly having a surface and 
about 1.7 larger than that of the standard-skin layer formulation.”

P26 - L563 
“Moreover, a tightly-coupled treatment of the SEB allows unconditional stability, while the 
standard skin-layer formulation can be unstable and displays large spurious oscillations 
with large time steps and small mesh sizes. Thus, while a bit more numerically costly, the 
formulation presented in this article can be used to overall reduce the numerical cost of a 
snowpack/glacier model through the use of larger time steps.”

As well as in the new Appendix A:
“We see that whole system of Eqs. (A1) is a tri-diagonal system of dimension (N+1)x 
(N+1), with N the number of cells. Without a Schur-complement, the computation of A-1B 
can thus be solved with Thomas algorithm in 10N -1 base operations (addition, 
subtraction, multiplication, and division) per non-linear iteration (neglecting the time spent 
assembling the matrices). We also note that Adiag is a tri-diagonal matrix, and thus Thomas
algorithm also applies. Moreover, we see that Aup and Alow are almost empty matrices, 
which simplifies the number of operations necessary to compute Adiag

-1 Aup  and Alow Adiag
-1 

Aup. Specifically, the Schur-complement technique used in this paper can be employed 
with 7N-9 (Adiag

-1 Aup, once per time step) + 10N-21 (Adiag
-1 Bint, once per time step) +  15 

(assembly and solving of Schur-complement, once per iteration) + 2N (re-injection to 
compute Tint, once per time step) steps, i.e. a total of 17N-6 + 15nit steps, with nit the 
number of non-linear iterations. We see, that the advantage of the Schur-complement 
technique is that the cost of performing non-linear iterations do not increase with the mesh



resolution, yielding a smaller numerically cost than inverting the while system for each 
non-linear iteration.

One may then wonder how the numerical cost of the scheme proposed in the article 
compares to the Class 1 and 2 models discussed in the paper. The Class 1 model (once a
Schur-complement technique has been employed) as a similar numerical cost as the 
proposed coupled-surface scheme approach, namely 17N-23 + 15nit steps. For a given 
mesh, it has one less degree of freedom as the coupled-surface scheme and is thus only 
marginally cheaper. The Class 2 model is the cheapest of all schemes discussed in the 
paper. Indeed, once the SEB and the surface temperature have been solved through 
scalar non-linear iterations, it relies on a single tri-diagonal inversion of dimension NxN, 
which can be done in 10N-11 steps. The ratio of the numerical cost of the scheme 
proposed in the article over that of the standard skin-layer is of about 1.7.”

Finally, we note that we cannot analyze this numerical cost directly in terms of computation
time in our implementations. Indeed, they were implemented using the (interpreted) python
language with only some parts using pre-compiled (and thus much faster) libraries. 
Directly comparing computation time would unfairly favor the schemes using pre-compiled 
librairies.

Specific comments:

L3-4: “This surface energy budget is the sum of the various surface energy fluxes, that 
depend on the input meteorological variables and surface temperature, and to which heat 
conduction towards the interior of the snow/ice and potential melting need to be added.”  
the comma between ‘fluxes’ and ‘that’ is incorrect, as are similarly positioned commas 
throughout, and ‘that’ should be ‘which.’ 
This is now corrected. The same error is also corrected elsewhere in the text.

L2-4: ‘and to which heat conduction towards the interior…” this sentence is unclear to me
We wanted to highlights that the conduction of heat towards the interior of the 
snowpack/glacier is an important factor that affects the SEB and hence the surface 
temperature. We clarified this in the revised manuscript:

P1 - L2
“This surface energy budget is the result of various surface energy fluxes, which depend 
on the input meteorological variables and surface temperature, of heat conduction towards
the interior of the snow/ice, and potentially of surface melting if the melt temperature is 
reached.”

L26: once the SEB acronym is introduced, it should be used consistently in the paper
We now systematically use SEB instead of “surface energy budget” once introduced.

L25-30:  There is a large focus on the nonlinearity of SEB processes, which is important 
but not hugely challenging in the modeling field, as many of the nonlinearities are easily 
solved. It would be good to mention this and discuss sources of nonlinearity in a more 
mechanistic sense. For example, the “regime change” mentioned is due to thermal energy 
being used for processes with different reaction coefficients in warming frozen ice vs. 
phase change. This will help build intuition to support the truncation method discussed 
later. Perhaps mention another example. 



We have reformulated the paragraph to lighten the references to non-linearity and clarified 
that the regime change between a melting and non-melting surface occurs at the fusion 
point (and not above as previously stated).
We have also precised how the SEB of melting and non-melting surface differs.

P2 - L29
“Mathematically, the SEB thus appears as a non-linear top boundary condition for 
snowpacks and glaciers. This non-linearity is even reinforced by the existence of a regime 
change between a melting and non-melting surface, with different thermodynamical 
behaviors below and at the melting point. Indeed, once the melting point is reached at the 
surface, the SEB becomes more akin to a Stefan-problem with a discontinuity in the 
energy fluxes and can no longer be simply described in terms of surface temperature. This
leads to numerical challenges when solving the governing equations.”

L42: which domain? The ice domain?
By domain we mean the physical space over which the equations are solved, that is to say
in our case the snowpack or the glacier. This is now clearer in the text.

P2 - L40
“On the other hand,  some FVM implementations do not  define a specific  temperature
associated with the surface, but rather use the temperature of the top-most numerical
layer of the domain (i.e. the top layer of the simulated snowpack/glacier) for solving the
SEB  (Anderson,  1976,  Brun  et  al.,  1989,  Jordan,  1991,  Vionnet  et  al.,  2012,  van
Kampenhout et al., 2017).”

L63: specify Fourier’s law of heat conduction
This is now specified.

L90-95: specify the sign convention used for fluxes
We now specify the sign convention for the fluxes.

Figure :1: clarify the meaning of the blue/orange colors of dots in the figures. Additional 
labels within the diagram would improve the clarity of the figure. It is also somewhat 
redundant to label Class 1 as a), class 2 as b) etc. since they are all in essentially the 
same panel. Consider just labeling the columns as class 1, class2, this paper.
We now specify that the nodes corresponds to variables to be solved (i.e. the cell 
temperatures and the surface state) and their position in space. This was also added to 
the caption. The color are meant to group the variables that are solved simultaneously and
will be explained in the caption. We also revised the Figure to change the panels labeling 
to “Class1”, “Class2”, and “proposed scheme”.

We propose for the new caption:
P6 - Fig 1
“Classification of FVM models with respect to their treatment of the SEB. Class 1: The 
surface energy and the internal temperatures are solved in a tightly-coupled manner but 
there is no explicit surface. Class 2: An explicit surface temperature (and surface melting) 
exists but it is solved in sequential manner with respect to the internal temperatures. 
Proposed scheme in this article: An explicit surface temperature is considered and is 
solved in a tightly-coupled manner with the internal temperatures. In the schematic, dots 
represent the prognostic variables of the schemes (with or without temperature at the 
surface) while the colors indicate which variables are solved simultaneously.”



L115: “We therefore do not treat the finite elements method, which is for instance used in 
the SNOPACK model.” -> “We therefore exclude implementations of the the finite elements
method, such as in the SNOWPACK model.”
Following the review of Michael Lehning, we now discuss the equivalent of our 
implementation in a FEM setting. We explain that by construction, the FEM posses a 
surface node which naturally allows one to computed a tightly-coupled SEB with the 
interior of the snowpack, but that the mix of node-wise (temperatures) and element-wise 
(energy content, liquid water content) variables in the FEM complexifies its use. The 
implementation of an equivalent FEM scheme is presented in the new Appendix C 
(attached at the end of this response) and discussed in the manuscript:

P4 - L112
“Moreover, we focus on numerical schemes based on FVM, as it is the method employed
by most models (e.g. Anderson, 1976, Sauter et al., 2020, Westermann et al., 2023). We
note  that,  contrary  to  the  FVM,  the use of  the  finite  element  method (FEM) naturally
incorporates the presence of a surface temperature, which can be used for a fully-coupled
treatment of the SEB, as done in SNOWPACK for instance (Bartelt and Lehning, 2002).”

P11 - L292
“Finally, a translation of this numerical strategy (including the fictitious variable and the
Schur-complement technique) in a FEM framework is presented in Appendix C.”

P12 - L329
“Finally, note that we do not include the FEM in this comparison. As detailed in Appendix
C,  a  specificity  of  FEM models  is  to  rely  on a  temperature  field  that  can be defined
element-wise or node-wise. It is thus required to convert back and forth between these two
representations. However, the relation between the two is not bijective. This prevents an
unambiguous transformation from element-wise to node-wise temperatures, affecting the
end-result of our simulations. Because of this problem, the FEM is not further explored in
this article, as a direct comparison to the FVM models is not possible.”

L179: omit the word “let’s” or use “we” instead
We modified the manuscript accordingly.

L275: the introduction of new terminology in representing equations 5 and 9 as a block-
matrix system with decomposed components (Adiag, etc.) requires additional explanatio of
the correspondence between terms in Equations 5 and 9 and their placement in Equation 
11.
We now clearly explain how Eqs (5) and (9) can be cast as the block-system of Equation 
(11). This is done in a new Appendix A, attached at the end of this response.

L350: the bottom boundary no heat flux assumption seems strong to me, or at least 
appropriate in a limited set of conditions. A citation or further discussion of this would help.
We think that in the glacier test case, the assumption of a no-flux boundary condition at the
bottom is appropriate as the temperature is essentially isothermal in this region (as given 
by the initial conditions derived from a COSIPY run). Moreover, as this boundary condition 
is far away from the surface (~189m), it would take much more than a year for it to 
influence the surface where we perform our analysis. To quantify this point we have run a 
simulation of the glacier test case with a 64.7 mW/m2 geothermal heat flux (GHF; Davies, 
2013, Talalay et al., 2020) instead of a no-flux conditions. This difference in surface 
temperature between the simulation with and without GHF is displayed in the Figure 
below. It barely exceeds 4mK over the simulation, with a standard deviation of 0.4mK.



We added this number in the text:

P13 - L352
“For instance, we performed a simulation in which a 64.7 mW m-2 geothermal heat flux is 
applied instead (Davies, 2013). The impact on the surface temperature remains below 0.4 
mK.”

Finally, we also want to note that the goal of our simplified simulation set-up is to provide 
an easy framework for the comparison of numerical methods. While more realistic 
boundary conditions could be used, this will not change our conclusion that are confined to
behavior of the numerical schemes.

L353-355: these constants are also introduced on L 66 and 72-75, use the same symbols 
here to connect them. 
We now re-use the alredy introduced symbol to refer to the physical variables.

L354: thermal conductivity of ice is temperature sensitive! If making this assumption, 
please explain why it is warranted in this case (i.e., the temperature ranges reasonably 
experienced in this case are small enough that there is not meaningful variation?)
Indeed, the thermal conductivity of ice is expected to vary of about 10% over the range of 
temperature considered in this test case (from 2.5 W/K/m at 240K to about 2.22 W/K/m at 
273K1).
We however chose not to introduce the temperature dependence of ice in our computation
as (i) this is the assumption followed by the other models discussed in the paper (i.e. 
COSIPY or Crocus) and (ii) this added complexity would not influence the numerical 
benefit of tight-coupling the surface and internal energy budgets, and the properties we 
want to study (time step and mesh sensitivity, stability, etc). We also want to add that 
including a temperature-dependence for the thermal conductivity would render the system 
of equation globally non-linear (rather than just locally near the surface) and would thus 
obscure the advantage of variable elimination to speed up the resolution of system of 
equation where non-linearities only appears locally. We think this last point is important 
has it is relevant for simplified snowpack/glacier models, which do not necessarily include 
such temperature dependence, and that are part of larger climate and Earth system 
models and where speed up of the snowpack/glacier component would be beneficial.

1 https://www.engineeringtoolbox.com/ice-thermal-properties-d_576.html



Furthermore, we have run a simulation of the glacier test case with the temperature 
dependence on the thermal conductivity. The difference in surface temperature between 
the simulations with and without this temperature-dependence is visible in the Figure 
below. It shows that the difference remains below 0.06K, with a standard-deviation of 
0.01K.

We now in the revised manuscript that considering the thermal conductivity (and specific 
thermal capacity) as temperature-independent is a simplifying assumption that is regularly 
made in models and that allows the internal heat budget equation to be linear (and hence 
more easily solvable). This assumption could be relaxed, but to the detriment of a more 
numerically costly system to be solved.

P3 - L82
“Finally, in this article we consider the thermal conductivity λ and capacity c_p not to 
depend on temperature. The motivation for this is twofold as it (i) corresponds to a 
simplifying assumption regularly made by snowpack and glacier surface models (e.g. van 
Pelt et al., 2012, Vionnet et al., 2012, Sauter et al., 2020, Covi et al., 2023) and (ii) it 
allows keeping the internal heat equation linear”

P11 - L294
“We also note that to apply this technique, the assumption of temperature-independent 
thermal capacity and conductivity is important, as otherwise the internal heat equation 
system would not be linear and thus the matrices Adiag, Aup, and Alow not constant.”

L385: albedo over what wavelength range? In most of the visible spectrum, this would be a
quite low value in clean snow. Further, the longwave emissivity of snow is more density 
dependent due to the presence of air. It seems reasonable to use 1 for this approach, as 
the emissivity is still usually quite high
The albedo used in this work refers to the broadband albedo (i.e. integrated over the while 
solar spectrum). This is now specified in the manuscript.

We chose a simple constant value of 0.6 as the simulation is meant to take place during 
the melting season, when the snow albedo is at its lowest. We agree that this value is on 
the lower-hand of snow albedo. Thus, we have changed this value to 0.7 in the article 
(Section 5.2), increased the duration of the snowpack simulations, re-ran them, and 



updated the numbers in the manuscript (notably Figures 4, 7, 8, 11, 12, and 14). The 
conclusions of the article remain unchanged.

L435: the “lag” of one time step mentioned here is interesting and well explained. The 
impacts of this on interpreting a snow model output may be sensitive to the time step. If 
there is a long time step, this would be problematic as it may prevent modeling melt. A 
short time step may be more resilient to this lag.
We added to the text that this lag become less problematic with short time step.

P16 - L435
“The impact of this lagging problem can be mitigated by the use of small time steps, but 
with the drawback of numerical cost.”

L440: the observation that numerical instability is leading to differences between class 2 
models and other models is interesting and seen clearly in Figure 4. The fact that this is 
not happening in the glacier model is only vaguely referenced. A direct comparison of the 
reasons for this – if there is an inherent numerical instability in class 2 models, why is there
not an instability in the glacier model? Is all of the oscillation occurring in the meltwater 
percolation?
We do not think that the overall difference between models visible in Figure 4 can be 
readily explained by the presence of oscillations in the Class 2 model. For instance, at the 
beginning of the plot the Coupled surface and Class 2 appear quite in agreement on 
average, despite the occasional instabilities of Class 2. The two models then diverges 
(even not considering the presence of instabilities) before re-agreeing later in the graph. It 
is therefore not straight forward to link the overall agreement/disagreement of the two 
models with the presence/absence of instabilities, as there are periods with a good 
agreement despite instabilities, and periods a divergence despite the absence of 
instabilities.

While less visible, instabilities in the glacier test case are still possible, as for instance 
seen in Figure 13. As far as we understand, the presence or absence of oscillations is 
linked to the stiffness of the equations that relates the SEB and the internal temperature, 
and will depend on the specific thermal conductivity, thermal capacity, cell sizes, and on 
the time step at play.

To illustrate this point we performed a simple stability analysis of the standard skin-layer 
scheme (keeping in mind that this kind of stability analysis requires to linearize the system 
of equations, which departs from the actual scheme). The derivation is available at the end
of this response and in the new Appendix E. It shows that the standard skin-layer scheme 
is not unconditionally stable, and that there is exist a maximum time step size. The 
presence of instabilities is favored in the case of large thermal conductivities or of a large 
derivative of the atmospheric fluxes with respect to the surface temperature in the SEB. 
On the contrary, these instabilities are hindered in the case of large cell sizes or large 
specific thermal capacity.

This is now discussed in the manuscript:

P21 - L503
“The unstable nature of  class 2 models can be shown with a linear stability  analysis,
provided in Appendix E. Such analysis shows that class 2 models are only conditionally
stable, and confirm that instabilities are favored in the case of large time steps and small
mesh sizes. We stress that these oscillations can appear even if the time integration of the



internal energy budget relies on the Backward Euler method, known for its robustness
against instabilities (Fazio, 2001, Butcher, 2008). Our understanding is that the sequential
treatment  of  the standard skin-layer  formulation breaks the implicit  nature of  the time
integration by using "lagged" (in  other  words,  explicit  rather  than implicit)  terms.  This,
combined with the fact that the surface layer does not possess any thermal inertia and that
its temperature can thus vary rapidly in time, permits large temperature swings if the time
step is too large or the mesh size too small. On the other hand, it can be shown that the
two  schemes  with  a  tightly-coupled  SEB  are  unconditionally  stable  (Appendix  E),  in
agreement with the absence of oscillations in their simulations. Notably, the unconditional
stability of the coupled-surface scheme proposed in this article entails that the model does
not need an adaptive time step size strategy depending on the mesh size. This ensures
that it remains robust, regardless of the time step and mesh size.

P26 - L563
“Moreover, a tightly-coupled treatment of the SEB allows unconditional stability, while the
standard skin-layer formulation can be unstable and displays large spurious oscillations
with large time steps and small mesh sizes.”

Figure 4: it is impossible to see the coupled surface line in panel b – consider adding 
markers or some other formatting choice which would allow us to see it clearly. Layering 
the coupled surface model on the front may help if markers are not working favorably.
Indeed, for some reason panel b of the Figure was done using a lighter shade of blue for 
the coupled-surface line. This was fixed and the Figure should be more readable now.

Figure 6: right panel y axis would benefit from additional labels
We added additional labels in Figures 6.

L490-495: as worded, the phrase “the class 2 model exhibits the largest phase change 
rate errors for an initial number of cells of 225”  is ambiguous – is 225 the worst number of 
cells for C2 models or is C2 the worst option when working with 225 cells? From the 
graph, it is the second option, which is potentially less important than discussing the fact 
that for the other two model options, a larger number of cells generally confers better 
performance (within the parameter space explored here), but that is not the case for class 
2 when moving from 90 to 225. Why might this be?
This deterioration is due to the development of numerical instabilities with small mesh size 
in the Class 2 model. This is now specified in the text.

P20 - L 490
“Finally, Fig. (10) reveals that in the glacier test case, the phase change rate errors of the
class 2 tend to deteriorate with further mesh refinement past a certain point (here for an
initial cell number above 90). We interpret this deterioration as a result of the appearance
of numerical instabilities that develop with small mesh sizes.”

L504: implicit backward Euler method?
There is one backward too much. It is now corrected.

L506: “explicit” ?
We modified the text to: 

P21 - L506
“’(in other words, explicit rather than implicit)”. 



L509: “too”
We corrected the typo.

519: is the Dirichlet approach actually used? If not, it is not relevant to compare it here
The same comment was brought-up by Richard Essery. The potentiality of using the 
surface temperature as a Dirichlet condition rather than the subsurface conduction flux 
was made aware to us from reading the publicly available COSIPY code 
(cosipy/modules/heatEquation.py files, last accessed 08/11/2023) and EBFM codes. 
However, we stress that these codes use a Forward Euler time stepping, and in this case 
the using the sub-surface conduction flux or a Dirichlet condition are equivalent.

As mentioned in our response to the Richard Essery’s review, we think it is important to 
mention and show that using a Dirichlet condition will lead to greatly deteriorated 
simulations, since the use of a Dirichlet condition actually numerically stabilizes the system
(which can be seen with the absence of instabilities in the orange curve of Fig. 14 and can 
be demonstrated with a stability analysis, provided at the end of this document and in the 
new Appendix E) and might be used in this attempt. However, this stabilization is at the 
detriment of accuracy and energy conservation.

We propose to better justify in the manuscript that the use of a Dirichlet condition might be
tempting  to  obtain  stability,  but  that  it  will  produce large  errors  in  response.  We also
propose to shorten the first part of the Section:

P23 - L511
“As explained in Section 2.2, the heat conduction flux from the surface to the interior of the
domain (i.e. G in Equation 3) needs to have the same value in the computation of the SEB
and in the computation of the energy budget of the first interior cell. Inconsistencies in G
between these two budgets lead to the violation of energy conservation and create an
artificial energy source/sink near the surface. Such inconsistencies could be created when
implementing the standard skin-layer formulation (class 2 models) due to the sequential
treatment of the surface and internal energy budgets. Indeed, after solving the SEB, one
can either  use the surface temperature or  the subsurface heat  flux  G as a boundary
condition  for  the  computation  of  the  internal  temperatures.  We note  that  the  use  the
computed surface temperature as a boundary condition leads to an unconditionally stable
numerical  scheme (Appenddix  E).  However,  using such Dirichlet  condition  in  order  to
stabilize the standard-skin layer formulation comes at the expense of energy conservation
and deteriorates of the simulated results.”

Figure 13: this is a time series of temperature, not a graph of numerical instabilities and 
should be labeled as such. It seems that the goal is to point out the larger variance in the 
higher number of cells-driven runs, so I would recommend either adding the time average 
standard deviation, or converting this plot to a time series of deviation from some sort of 
rolling mean in order to focus more on the instability-driven variance. Or, add a second 
column that contains histograms of that variance for each case.
We modified the caption to refer to the Figure as a temperature time series, and we will 
add the computation of a rolling standard deviation to quantify the instabilities and their 
presence.

P24 - Fig. 13
“Time series of surface temperatures (in blue, left y-axis) and of their 24hr-running 
standard deviations (in orange, right y-axis) highlighting the presence of numerical 
instabilities with the standard skin-layer scheme. The simulations correspond to the glacier



test case with a time step of 2 hr. Each panel corresponds to a level of mesh refinement. 
The lowest mesh refinement is at the top and displays the smallest level of instabilities, 
while the highest mesh refinement is at the bottom and displays numerous large 
instabilities in the first half of the simulation.”

L560: the level of accuracy is similar but not identical
We are not sure to fully understand the comment of the referee. We have have modified 
the manuscript to explain that the tightly-coupled scheme results overall in a better 
accuracy, but not always.

P26 - L559
“Mesh and time step convergence analyses show that combining a coupled treatment of 
the SEB with the explicit introduction of a surface results in an overall better accuracy 
when compared to the classical implementations.”

L613 “This approach is, for instance, used in the Crocus model” add commas
We added the commas.



We thank the referee for their constructive review. Please find below our point by point
response to the review. The comment of the referee are shown in blue and our response in
black below. Proposed modifications of the manuscript are shown in green with page and
line numbering corresponding to the preprint version of the article.

The authors present an approach to numerical modeling of snowpack or glacier interface 
with atmosphere using a finite volume method discretization of thermodynamic relations. 
The novelty of the approach lies in coupled computation of heat transfer through the 
ice/snow and the thermodynamic balance at the surface. The authors provide sufficient 
numerical experiments to support the agreement of their implementation with previously 
published results.
The only critical comment I would like to make is the relatively vague mathematical 
description of their approach, or the problem at hand. The authors discus the Fourier's law 
for the heat transfer in ice (Equation 1) and the balance of energy fluxes at the ice surface 
(Equation 3).  Then, they immediately follow on to numerical discretization, leaving the 
reader curious as to what assumptions and specific method choices they made. I would 
outline below a few of my concerns.

We revised the manuscript trying to be more precise on the mathematical framework and 
on the notations. We hope the following modifications clarified the text.

The authors start with the heat equation:

∂th - div (λ grad(T)) = Q
where
h = cp(T-T0) + ρwLθ

which leads to 

cp∂tT + ρwL∂tθ - div (λ grad(T)) = Q.             (1)

In the subsequent paragraph they discuss issues with representing the effects of phase 
changes on the temperature, but I believe they mean that they neglect the ρwL∂tθ term in 
their model. Please state that clearly.

Yes, we meant that while solving the processes of heat conduction and shortwave 
absorption, we neglect the ρwL∂tθ term, and all accumulated energy is used to modify the 
temperature, even if the fusion point has been crossed. Note that this term is then used in 
a second step to re-establish thermal equilibrium between the ice and liquid water. In case 
of melt/refreeze, the sensible heat  (cp∂tT term) and liquid water latent heat (ρwL∂tθ term) 
are both used to create/remove water while maintaining the energy conservation.

This is now rephrased more clearly in the revised manuscript:

P3 - L75
“Note that in Eq. (1) the time derivative of the internal energy content h cannot in principle 
be replaced by cp dtT, but should also include the term ρw Lfus dtθ. Indeed, once the 
temperature has reached the fusion point, a further increase in energy translates into an 
increase in the liquid water content (dtθ != 0) and of the associated latent heat content, 
rather than a further increase in the temperature. Yet, as discussed below, snowpack and 
glacier models nonetheless usually consider that the temperature can increase past the 
fusion point when integrating Eq. (1) in time (Vionnet et al., 2012, Sauter et al., 2020). This



is equivalent to neglecting the effects of first-order phase changes (melting and refreezing)
on the temperature field, and thus setting ρw Lfus dtθ to zero while solving the heat 
equation.”

Moving on, the authors jump to Equation 5, where they present the discretized version of 
(1) using finite volumes. It would be useful to state the implicit assumptions here, that the 
three dimensional equation (1) is now considered as one-dimensional equation

cp∂tT  - ∂z (λ ∂zT) = Q,

which is then integrated over each "volume", which in this case is segment of length Δzk. 
This integration, along with replacing the point variables with their volume averages (with 
abuse of notation: Tk = 1/Δzk ∫Tdz), and using fundamental theorem of calculus (we are in 
one dimension now, no need for divergence theorem) gives
Δzkcp∂tT  -  (λ ∂zT)k+1/2 + (λ ∂zT)k-1/2 = ΔzkQ, where subscripts k+1/2 and k-1/2 refer to 
the (top and bottom) endpoints of the cell Δzk

We now state directly from Eq. (1) that we are working in a 1D setting.

P3 - L70
“In this article, we assume that the snowpack/glacier can be represented as 1D column,
and therefore Eq. (1) should be understood as 1D equation.”

For the introduction of Equation (5) we specify that the Tk in represent the average 
temperature of the kth cell. Moreover, reading the reviewer comment we realized that a 
subscript k is missing for the temperature in Equation (5). This is now corrected.

At this point the authors introduce the approximation of the (λ ∂zT)k+1/2 term with 
Equation 6. I am curious, however, whether it is not better to leave the term (λ ∂zT)z=surf 
at the top of the first layer as is, and replace it with the term G from the surface energy 
balance equation (3)? I am not sure whether this is the way the authors achieve coupling, 
or whether they still discretize the temperature gradient at the ice surface using the surface
temperature and half of the top layer size?

We were indeed sloppy in the description of the fluxes at the cell boundaries. We believe 
that the issue arises from the fact the top (and bottom) cell is a special case, which was 
not reflected in our article. For the top cell, the top flux is not computed using Eq. (6), but 
rather with the subsurface conduction flux G.
We propose to modify the text to clearly state that Eqs (5) and (6) only applies to interior 
cells, and that cells touching the top and bottom boundaries needs to include the boundary
fluxes (which is G for the top most-cell).

P7 - L183
“where Δzk is the thickness of the kth cell, cpk its volumetric thermal capacity, Qk the 
average volumetric energy source in the cell, and Fk+1/2 and Fk-1/2 are the heat conduction 
fluxes at the top and bottom interfaces of the cell. For internal cells, Fk+1/2 and Fk-1/2 
correspond to the fluxes between the kth and the k+1th cells and the k-1th and kth cells, 
respectively. For the top cell Fk+1/2 corresponds the heat flux leaving towards the surface 
(i.e. -G) and for the bottom cell Fk-1/2 corresponds to the flux from the ground.”



P7 - L189
“The heat conduction fluxes between cells need to be estimated from the temperatures 
and thermal conductivities of adjacent cells. The flux Fk+1/2 between cells k and k+1 is 
computed as:

Eq. (6)

where λharmk+1/2 is the weighted harmonic average of the thermal conductivity of the two 
adjacent cells. The use of an harmonic average provides better results in the case of 
layered media such as snow (Kadioglu et al., 2008) and ensures that no heat conduction 
occurs in case one of the cells is a perfect thermal insulator.
Note that Eq. (6) only applies to fluxes between cells and must be replaced for the two 
boundary cells, at the top and bottom of the domain. For the bottom cell, a flux between 
the domain and the ground below must be used as a bottom boundary condition. For the 
top cell, the heat flux coming from the surface must be used. This flux corresponds to the 
discretized version of the term G in the SEB, provided in Eq. (10) below.”

The authors discuss in lines 103-105 that term G depends on surface temperature and 
temperature within ice, which indicates that this term is indeed discretized. 

This term is discretized using Eq(10), and used instead of F_{k+1/2} for the energy budget 
of the top-most cell. This is now clearly put in the text:

P7 - L195
“This flux corresponds to the discretized version of the term G in the SEB, provided in Eq. 
(10) below.”

I would urge the authors to provide a more detailed and careful mathematical description 
of their work, as it would improve the reproducibility of their result, not only for the finite 
volume method community, but also researchers working with other numerical 
discretizations.  

Following the review of Michael Lehning, we have also added an Appendix describing how
to implement an equivalent model using FEM (attached at the end of this response). 
However, in the FEM framework appears the problem of converting element-wise 
temperatures into node-wise temperatures. This transformation has no straight-forward 
answer and requires some additional assumptions that affects the end-result of the 
simulations. As such, we were not able to integrate a FEM model in comparisons to the 
FVM ones.

This is now is explained in the new Appendix C, as well as in the main part of the revised 
manuscript:

P11 - L292
“Finally, a translation of this numerical strategy (including the fictitious variable and the
Schur-complement technique) in a FEM framework is presented in Appendix C.”

P12 - L329
“Finally, note that we do not include the FEM in this comparison. As detailed in Appendix
C,  a  specificity  of  FEM models  is  to  rely  on a  temperature  field  that  can be defined
element-wise or node-wise. It is thus required to convert back and forth between these two



representations. However, the relation between the two is not bijective. This prevents an
unambiguous transformation from element-wise to node-wise temperatures, affecting the
end-result of the simulations. Because of this problem, the FEM is not further explored in
this article, as a direct comparison to the FVM models is not possible.”



We are thankful the Micheal Lehning for its constructive review. Please find below our
point by point response to the review. The comment of the referee are shown in blue and
our response in black below. Proposed modifications of the manuscript are shown in green
with page and line numbering corresponding to the preprint version of the article.

General:
The paper presents a review on how to numerically implement the surface energy budget
into a certain class of snow and ice models. The paper is very well written and in general
presents the material in a clear manner. It is overall considered to be a useful contribution
to  the  scientific  community  dealing  with  snow  and  ice  modelling  despite  its  rather
theoretical setting, in which conclusions on existing snow and ice models are only possible
in a limited way.

In this context, it is mandatory that existing snow and ice models that have schemes that
come close to the solution presented here are discussed in sufficient detail. In particular,
since for example SNOWPACK uses a finite element method (FEM), for which the nodal
temperature is explicitly  solved at  the surface, it  already achieves both aspects of  the
paper,  an  explicit  surface  and  a  tight  coupling  with  internal  heat  transfer  merely  by
construction of the FEM. This is true for the original version of SNOWPACK, which is now
more than 20 years old. Moreover, the statement in l.81 is not a fair representation of the
current state of snow models, since also efforts have been made to implement a coupled
solver in SNOWPACK that does not generate temperature overshoots. This was crucial for
sea ice simulations, where an additional complexity is created by the fact that the melting
point of the snow and ice is a function of salinity, and that salinity in turn is impacted by the
phase changes. This means that a simple approach of allowing overshoots to occur and
then setting back the temperature to fusion value is not suitable any longer. This has been
presented in Wever et al. (2020) and should be discussed in the current paper. The proper
acknowledgment of the state of art is necessary and as a consequence limits the novelty
of the proposed approach here. It is not acceptable to say “we don’t discuss FEM models”
as the authors do. This neglect is even more surprising since an overlapping group of
authors proposes in another paper to use the FEM method for snow modelling (Brondex et
al., 2023).

It is indeed true that FEM offers the advantage of naturally having a surface node, which
facilitates the tightly-coupled modeling of the SEB, as done in SNOWPACK. This is now
clearly mentioned in the article. We also specified that the choice of our article to focus on
FVM is motivated by the fact that the FVM is broadly employed in snowpack/glacier 1D
modelling. We also now include a short analysis of the FEM case (see Appendix C and
modifications listed below).

P4 - L112
“Moreover,  we  focus  on  numerical  schemes  based  on  the  FVM,  as  it  is  the  method
employed by most models (e.g. Anderson, 1976, Sauter et al., 2020, Westermann et al.,
2023). We note that, contrary to the FVM, the use of the finite element method (FEM)
naturally incorporates the presence of a surface temperature, which can be used for a
fully-coupled treatment  of  the SEB,  as done in  SNOWPACK for  instance (Bartelt  and
Lehning, 2002).”

We also clarified throughout the text that the classification that we propose is applies to
FVM models only, for instance in the caption of Figure 1:



P6 - Fig 1
“Classification of FVM models with respect to their treatment of the SEB. Class 1: The 
surface energy and the internal temperatures are solved in a tightly-coupled manner but 
there is no explicit surface. Class 2: An explicit surface temperature (and surface melting) 
exists but it is solved in sequential manner with respect to the internal temperatures. 
Proposed scheme in this article: An explicit surface temperature is considered and is 
solved in a tightly-coupled manner with the internal temperatures. In the schematic, dots 
represent the prognostic variables of the schemes (with or without temperature at the 
surface) while the colors indicate which variables are solved simultaneously.”

While the article is mainly focus on FVM, we wanted to include in the revised version a
brief comparison with FEM, and explain how some of the points discussed in the paper
(namely  fictitious  variable  and  linear  elimination)  can  be  directly  translated  in  a  FEM
framework.
Doing so we stumble upon the issue of transforming element-wise energy and temperature
(description  required  for  the  bucket-scheme  for  instance)  into  temperature-wise
temperature (required for the FEM solving of the heat equation). This step is non-trivial as
(i) it is non-unique and (ii) it can create oscillating node-wise temperature fields. While a
solution  to  this  problem has  been  proposed  for  SNOWPACK,  it  could  not  be  directly
translated into the sequential treatment adopted in our paper. Our different attempts to
implement this elements to nodes transformation had an impact on the simulated surface
temperature.  Thus,  the  comparison  between  the  FVM  and  FEM  scheme  in  terms  of
accuracy and speed of convergence towards a common solution cannot be pursued in the
article.

We propose to present the implementation of the FEM equivalent to the tightly-coupled
scheme already discussed in the article. This is done in the new Appendix C (attached at
the end of this response) and discussed in the manuscript:

P11 - L292
“Finally, a translation of this numerical strategy (including the fictitious variable and the
Schur-complement technique) in a FEM framework is presented in Appendix C.”

P12 - L329
“Finally, note that we do not include the FEM in this comparison. As detailed in Appendix
C,  a  specificity  of  FEM models  is  to  rely  on a  temperature  field  that  can be defined
element-wise or node-wise. It is thus required to convert back and forth between these two
representations. However, the relation between the two is not bijective. This prevents an
unambiguous transformation from element-wise to node-wise temperatures, which affects
the end-result of our simulations. Because of this problem, the FEM is not further explored
in this article, as a direct comparison to the FVM models is not possible.”

A second major point to address is the inconsistency and incompleteness with respect to
the  phase  change  (fusion)  implementation  as  suggested.  If  I  understand  the  set-up
correctly,  you  explicitly  implement  the  fusion  process  at  the  surface  and  keep  the
temperature  solution  at  the  phase  change  temperature  with  your  variable  switching
formulation supported by the truncation method. But you don’t do so below the surface,
which generates an inconsistency for the sub-surface heat flux. For example, for the case
of shortwave penetration into snow and ice, you would generate temperatures above the
melt temperature below the surface, which would lead to an upwards heat flux towards the
surface, which is at the melt temperature. But heat would flow downwards in reality. This
inconsistency is not even mentioned in section 6.4 and probably has consequences for



energy  conservation.  While  the  tight  coupling  and  explicit  surface  are  sufficiently
investigated with sensitivity cases in the paper, the same needs to be done for this fusion
treatment.  The  effect  needs  to  be  quantified  and  compared  to  the  more  classical
“overshoot” solution.

While doing our study, we hesitated to include phase-change directly into the internal heat
budget. As pointed out by the review, this treatment is closer to the actual physics at play
(with  phenomena  such  as  the  blocking  of  heat  conduction  fluxes  in  an  isothermal
snowpack).  We  nonetheless  decided  not  to  include  this  effect  as  (i)  this  strategy
corresponds  to  a  large  portion  of  current  snowpack  and  glacier  models,  and  (ii)  we
foremost focus on the treatment of the SEB and a proper study/discussion on internal
phase changes would be out the scope we aim for. We note that current models that do
not take into the capping of internal temperatures still  do include some capping of the
surface  temperature,  since  it  has  a  large  influence  on  the  SEB (notably  through  the
outgoing longwave radiation).
While neglecting internal phase change when solving the heat equation might lead to a
deteriorated estimation of the heat conduction fluxes within the snowpack/glacier, this does
not have consequences on the energy conservation of the models. As long as these heat
fluxes are consistently distributed, the models remain strictly energy conservative.
 
To test the influence of including phase-change while solving the internal heat equation,
we have implemented versions of the three FVM models used in the article that includes
phase-changes  directly  in  the  heat  equation,  as  suggested  in  the  referee’s  comment.
Specifically, this was done using the enthalpy method (Meyer and Hewitt, 2017, Tubini et
al., 2021). Comparison with the base versions of the models shows that this inclusion has
no effect on the glacier test case (as melting occurs at the surface and not internally) and
an effect of a couple of degrees on the surface temperature in the snowpack test-case.
Nonetheless,  the  conclusions  of  the  article  on  the  accuracy  and  stability  of  the  SEB
strategies remain unchanged. This can be seen in the Figures below that compare the
results of the convergence study with and without internal phase change. For each figure,
the left panel corresponds to the convergence plot of the manuscript (no internal phase
change in the heat equation), while the right panel corresponds to the convergence plot
taking into account internal phase change in the heat equation.

Fig. 1 – Impact of internal phase-changes on the mesh converge analysis.



Fig. 2 – Impact of internal phase-changes on the mesh converge analysis.

Fig. 3 – Impact of internal phase-changes on the time step converge analysis.

Fig. 4 – Impact of internal phase-changes on the time step converge analysis.

We now mention in the revised manuscript that other strategies have been proposed in the
literature, and we have corrected our mistake on the strategy employed by SNOWPACK.

P3 - L81
“This  results  in  temperature  overshoots  that  are  then  corrected  in  a  second  step  by
creating melt and setting back the temperature to the melt value (e.g. Vionnet et al., 2012,
Sauter  et  al.,  2020).  In  this  article,  we  follow  this  simple  scheme as  it  is  commonly
employed  in  snowpack  and  glacier  models.  That  being  said,  other,  more  complex,



strategies have been proposed in the literature. This notably includes the use of a finite
temperature-range over which melt/freezing occurs (e.g. Albert, 1983, Dutra et al., 2010),
including melt/refreeze as an additional  energy source term (e.g.  Bartelt  and Lehning,
2002, Wever et al., 2020), or the use of enthalpy as the prognostic variable (e.g. Meyer
and Hewitt, 2017, Tubini et al., 2021).”

We  also  now  mention  that  we  have  tested  the  sensitivity  of  our  results  to  the
implementation  of  phase-changes  and  that  the  conclusions  of  the  article  remain
unchanged.

P12 - L329
“Also, as some of the current snowpack and glacier models include the effect of internal
phase-change while solving the internal heat equation (e.g. Bartelt and Lehning, 2002,
Meyer  and  Hewitt,  2017),  we  quantified  the  sensitivity  of  our  results  to  this  specific
treatment of melt/freeze. For that, we have also implemented versions of our three models
that include such internal phase-changes in the heat equation.”

P16 - L441
“Finally, using the versions of the models including phase-changes in the heat equation,
we quantified the sensitivity of these observations to the treatment of the melt/refreeze.
While  the  simulated  temperature  sometimes  differ  from  our  basic  implementations
(especially in the snowpack test case where melt occurs internally), the general behavior
of  the  models,  including the potential  presence of  instabilities  in  the  Class  2  models,
remain unchanged.”

P20 - L493
“Finally, using the versions of the models including phase-changes in the heat equation,
we verified that the conclusions of this convergence analysis remain valid in the case of a
different treatment of the internal phase-changes”

Minor comments:

1) At least I am more used to the terms “melt” temperature and “heat” capacity instead of
“fusion” and “thermal”.
We have  reformulated  “fusion”  and  “thermal  capacity”  into  “melt”  and  “heat  capacity”,
except  for  “enthalpy  of  fusion” as  the formulation  “enthalpy  of  melt(ing)” appears  less
common.
 
2) Eq. (3) does not contain heat advection by precipitation.
We have added a rain precipitation term in the SEB throughout the article.

3) l. 108: Not true, SNOWPACK does not do a separate SEB, see above.
We now specify throughout the manuscript that the proposed classification only applies to
FVM models.

4) l. 126: “result” not results.
We have corrected the typo.

5) l. 284: “equation” not equations.
We have replaced sentence with:



P11 - L284
“The system of Eqs.(13) is a 2x2 non-linear system where only As and Bs need to be re-
assembled at each non-linear iteration and whose solution for Us is the same as the large
system of Eqs. (11).”

6) I don’t understand the argument here: “Note that the method used to downscale the
data does not guarantee physical consistency of the variables. This allows us to take into
account shortwave, longwave and turbulent energy fluxes at the top of our domain”.
We wanted to explain that we directly used the forcing data of Potocki et al. (2022), which
provides all necessary inputs for the model. However, as briefly discussed in Brun et al.
(2023) there are questions about the more appropriate method to downscale ERA5 data to
South Col glacier.

As the goal of our article is solely focused on numerical methods and is not meant to
address the quality of the forcings, we propose to simply rewrite the sentence to:

P13 - L341
“As such, our simulations are forced by the weather data provided by Potocki et al. (2022)
that include all necessary information to take into account the shortwave, longwave and
turbulent energy fluxes at the top of our domain.”

7) Figures 3,4: These uncertainties should be discussed in light of typical snow/ice model
errors.
We now compare the difference between the modeled snow surface temperature with bias
observed during the inter-comparison exercise ESM-SnowMIP.

P15 - L432
“As with the glacier test case, the models exhibit surface temperature differences of about
a couple of degrees. This is of the same order as the biases observed in the snow model
inter-comparison exercise ESM-SnowMIP (Menard et al., 2021).”

Unfortunately, we are not aware of such an inter-comparison model exercise for glacier
temperature surfaces. We therefore propose to include a mention of Sauter et al., (2020)
which includes a comparison of COSIPY with measured glacier surface temperatures.

P15 - L421
“Concerning the glacier test-case, Fig. 3 shows that the class 1 model (no explicit surface)
is systematically different compared to the two other models, with a slower decrease of the
surface temperature at night, resulting in a surface temperature that is usually warmer of a
couple of degrees for the represented period. For comparison, Sauter et al., (2020) report
root  mean  square  errors  around  3K  when  comparing  COSIPY  simulations  with
observations of the Zhadang glacier surface temperature.”

8) l. 438: why “model 2” now, not clear?
There was indeed a typo here, it the Class 1 model that produces less melt and thus that
percolates less. This is now corrected in the text:

P16 - L 438
“This effect is due to the smaller melting predicted by the class 1 model.”



9) l. 450 ff. should the reference not be a hundreds (900) of seconds consistent with
typical time steps used?
The reference  simulation  is  meant  to  replace  the  analytical  solutions,  that  we  cannot
derive. It is meant to provide the reference toward which the numerical schemes should
converge at high spatial and temporal resolutions, and should therefore be obtained with a
quite small time step (30s here).

For the range of other tested time step, we decided to go above 900s as some models use
larger time steps by default (3600s for COSIPY for instance) and we think it is interesting
to analyze the behavior of models at large time step, as such a choice can be motivated to
reduce the numerical cost of snowpack/glacier models in large simulation systems such as
Earth system models.

P17 - L452
“The largest time step of 7200 s corresponds to twice the default value used for instance
in COSIPY (Sauter et al., 2020) and is meant to represent the case of models used at
quite large time steps for numerical cost considerations.”

10) l. 460: should it be “worse” instead of better?
We wanted to state that sometimes the Class 2 yields smaller error than the scheme we
proposed, but that in these cases the Class 2 is only slightly better. This was visibly not
clearly enough stated in the manuscript as Richard Essery had the same comment. We
revised the sentence to:

P17 - L458
“For almost all investigated time steps and in both test cases, the newly proposed scheme
displays the lowest level of errors. Sometimes, the class 2 model yields the smallest error,
but does so only by a small margin.”

We have also re-formulated a similar sentence later in the manuscript.

P20 - L481
“Again,  among the three implementations the tightly-coupled surface model  yields the
smaller errors for almost all investigated mesh refinements (as in the glacier test case, the
class 2 model is however sometimes marginally better).”

11) l. 491: can you explain the deterioration?
This increase of error with smaller mesh size is a result  of  numerical  instabilities, that
develop with small mesh sizes. This is now mentioned in the text:

P20 – L 490
“Finally, Fig. (10) reveals that in the glacier test case, the phase change rate errors of the
class 2 tend to deteriorate with further mesh refinement past a certain point (here for an
initial cell number above 90). We interpret this deterioration as a result of the appearance
of numerical instabilities that develop with small mesh sizes.”

References:
Brondex, J., Fourteau, K., Dumont, M., Hagenmuller, P., Calonne, N., Tuzet, F., and Löwe,
H.: A
finite-element framework to explore the numerical solution of the coupled problem of heat
conduction, water vapor diffusion and settlement in dry snow (IvoriFEM v0.1.0), Geosci.
Model Dev. Discuss., 2023, 1–50, https://doi.org/10.5194/gmd-2023-97, 2023.



Wever, N., Rossmann, L., Maaß, N., Leonard, K. C., Kaleschke, L., Nicolaus, M., and
Lehning, M.: Version 1 of a sea ice module for the physics-based, detailed, multi-layer
SNOWPACK model, Geosci. Model Dev., 13, 99–119, https://doi.org/10.5194/gmd-13-
99-2020, 2020).



Appendix A: Matrix expressions and numerical cost of the coupled-surface scheme635

A1 Matrix expressions

Combing Eqs. (5), (6), and (10), the Newton scheme of the coupled-surface model proposed in this article can be written under

block matrix formAdiag Aup
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SW surf

net +LWin −
λN
∆zN
2

(
Ts(τ

i)−dτTsurfτ
i
)
−Lfus

(
m(τ i)−dτmτ

i
)

+
(
H(τ i)−dτHτ

i
)
+
(
L(τ i)−dτLτ

i
)
+
(
R(τ i)−dτRτ

i
)
+
(
LWout(τ

i)−dτLWoutτ
i
))

(A12)

In the above expressions, Tn−1
k is the temperature of cell k at the previous time step, SWint,k is the quantity of shortwave

radiation absorbed in cell k, and τ i is the value of the fictitious variable τ at the start of the current non-linear iteration. The

terms Ts(τ i), H(τ i), etc, and dτTsurf , dτH , etc, are the values of the surface temperature, sensible heat flux, etc, and their655

derivatives at the current τ i estimation.

Among the different partial derivatives, dτH and dτL can be difficult to analytically derive. For that, we first note that the

chain rule yields dτH = dTs
HdτTs, and dτL= dTs

LdτTs. Then, for the expression of H given in Appendix D we have:

dTs
H = ρacp,au(dTs

CH(Ta −Ts)−CH) (A13)660

Moreover, the chain rule yields dTs
CH = dRibCHdTs

Rib. In our case:

dRibCH =
κ2

ln
(

z
z0

)(
z
z0t

)

0 if Rib < 0

50Rib − 10 if 0≤ Rib < 0.2

0 if 0.2≤ Rib

(A14)

and

dTs
Rib =− gza

Tau2
(A15)

Similarly, for L, we have:665

dTsL= ρaLsu(dTsCE(qa − qs)−CEdTsqs) (A16)

The derivative dTsCE can be computed as the one of CH through the chain rule and its dependence to Rib. The derivative

of qs with respect to Ts can be easily obtained using the derivative of the saturated water vapor pressure, which is given by the

Clausius-Clapeyron relation.
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Appendix C: Finite Element Method scheme710

In this paper, we focus on the FVM for spatial discretization. However, the heat budget equation could also be spatially dis-

cretized with the FEM. Indeed, the FEM naturally includes a node at the surface, and thus possesses a surface temperature,

which helps to tightly couple the SEB to the interior of the snowpack/glacier. This strategy is for instance employed in the

SNOWPACK model (Bartelt and Lehning, 2002; Wever et al., 2020). Specifically, in SNOWPACK, the coupled SEB is intro-

duced as a top Robin boundary condition.715

The goal of this appendix is to briefly present how the techniques presented in the main part of the manuscript (namely the use

of fictitious variable and of a Schur-complement) can be used to implement a tightly-coupled FEM model.

C1 Expression of the heat equation in FEM

We consider the mesh of the domain to be discretized into N 1D elements (the direct equivalent of the cells in FVM) and thus720

of N +1 nodes (the end-points of the elements). As classically done with FEM (Pepper and Heinrich, 2005), we assume the

temperature field to be a linear combination of basis functions φj , i.e. T (z, t) =
∑N

k=1Tj(t)φj(z). Here, we use basic linear

elements. In this framework, Tj(t) corresponds to the nodal value of the temperature field (which evolves over time) and the

basis functions φj(z) are piece-wise linear functions, valued 1 at node j and 0 at all other nodes. The standard Galerkin form

(Pepper and Heinrich, 2005) of the internal heat budget (Eq. (1)) is:725

∀i
∑
j

dtTj

∫
Ω

cpφjφidL+
∑
j

Tj

∫
Ω

λ∇φj · ∇φidL =

∫
Ω

QφidL+Fsφi(s) (C1)

where Ω represents the domain of simulation, Fs is the energy fluxes entering at the top of the domain (i.e. G), and φi(s)

is the basis function φi evaluated at top of the domain. We note that similarly to the FVM case, the temperature at the top of

the domain presents a regime change whether the surface is melting or not. To handle this, we rely on the fictitious variable τ ,

i.e. Ts = Ts(τ). The vector of unknowns, denoted U , is thus composed of the internal temperatures and of the surface fictitious730

variable. Finally, we have not included any bottom energy flux to lighten the notation, but it could be included easily. Once

temporally discretized with a Backward Euler scheme and linearized, the problem can be expressed in matrix form AUn =B,

with A= (M +∆tK +∆tL)JT and B =MTn−1 +∆tQ+∆tF (Tn−1 being the vector of temperature from the previous

time step), and

M(i, j) =

∫
Ω

cpφjφidL (C2)735

K(i, j) =

∫
Ω

λ∇φj · ∇φidL (C3)
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L(N +1,N +1) =−dτSEB+Lfusdτṁ (C4)

JT (i, i) =

1 if i≤N

dτTs else
(C5)

Q(i) =

∫
Ω

QφidL (C6)

and740

F (N +1) = SEB(τ i)− dτSEBτ
i − ṁ+Lfus

(
dτṁτ

i
)

(C7)

where SEB and dτSEB corresponds to the atmospheric fluxes in the SEB and their derivatives with respect to τ at the

current iteration, and ṁ and dτṁ are the melting rate and its derivative at the current iteration. In the equations above, only the

non-zero terms have been given.

745

As in the FVM case, this system is composed of a linear-part (the interior, corresponding to the first N − 1 equations) and

a non-linear part (the surface, corresponding to the last two equations). Its solving can thus be accelerated using a Schur-

complement technique (Section 4.1.1) by breaking the matrix A into four blocks: a constant (N−1)× (N−1) diagonal Adiag

block, a constant (N −1)×2 vertical Aup block, a constant 2× (N −1) horizontal Alow block, and a 2×2 diagonal block As

to be re-computed at each non-linear iteration.750

C2 The rest of the model

After solving the coupled heat budgets with FEM, we obtain a nodal temperature field. Since conserved quantities, such as en-

ergy or mass, are defined element-wise in snowpack/glacier FEM models (Bartelt and Lehning, 2002), the nodal temperature

field needs to be converted into an element-wise energy field. We note that this also defines an element-wise temperature field,755

where the temperature of an element is simply the average of the nodal temperatures at its end. This element-wise energy field

can then be used to simulate melt/refreeze, liquid water percolation, and to remesh the domain using the same routines as in

FVM models.

Once all routines for a given time step have been performed, we are left with an element-wise temperature field that needs760

to be converted back to a nodal temperature field, as required for the FEM. However, this conversion is not straightforward.
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First, as we have N element-wise temperatures to transform into N +1 nodal temperatures, the problem is not properly closed

and an extra (arbitrary) constraint needs to be added. This could, for instance, be setting the surface temperature to the value

computed in the SEB. Furthermore, even after choosing an extra constraint to close the problem, the element-wise to node-

wise transformation can produce spurious oscillations in the nodal field even if the element-wise field is monotonous (in other765

words, the transformation does not respect a form of discrete maximum principle; Ciarlet and Raviart, 1973). It is therefore not

possible to derive an optimal scheme for this transformation that would (i) not modify the element-wise temperature field and

(ii) not create spurious oscillations in the node-wise temperature field.

As spurious oscillations in the temperature field would affect the estimation of the temperature gradients that are used in snow-

pack models to estimate metamorphism (e.g. Bartelt and Lehning, 2002; Vionnet et al., 2012), it seems preferable to rather770

allow the modification of the element-wise temperature field. That being said, such a strategy implies a spatial re-distribution

of energy between elements that is not motivated by any underlying physical mechanism. We note that the SNOWPACK model

handles this element to node transformation during a phase change step after the liquid percolation scheme, and does so without

creating large spurious temperature oscillations.

775

Unfortunately, it is not possible to directly implement the SNOWPACK scheme in our toy-model, as the sequential treatment

is not the same. Moreover, we did not manage to derive a scheme that performs this element to node transformation without

affecting the surface temperature. Thus, in our numerical simulations, the FVM and FEM models yield different results. In the

absence of an analytical solution, a direct comparison of the FEM and FVM implementations remains impossible.
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Appendix E: Stability Analysis

Here, we present the derivation of the criteria for the numerical stability of the different numerical schemes presented in the

paper. We follow the proof classically used to show the (un)conditional stability of the Forward and Backward Euler method810

(Butcher, 2008). Notably, the proof relies on a linearized version of the system of equations. As the system needs to be lin-

earized, we cannot account for the potential melting of the surface. Under this consideration, the atmospheric fluxes in the

SEB (long-wave radiations, turbulent fluxes, etc) are simply expressed as a linear function of the surface temperature Ts, i.e.

as fTs + b, where f and b are constant scalars expressed in J s−1 m−2 K−1 and in J s−1 m−2, respectively.

Also, for simplicity, we consider a system composed of only one cell and its surface. The problem could be generalized to more815

cells, but it would make the computation more cumbersome and is not crucial as we are considering numerical instabilities that

develop in the vicinity of the surface.

E1 Standard skin-layer formulation (Class 2)

To compute the surface temperature Tn+1
s at time step n+1, we use the discretized Surface Energy Balance (SEB):820

fTn+1
s + b+

2λ

∆z

(
Tn+1
s −Tn

i

)
= 0 (E1)

where the first two terms corresponds to the sum of outgoing/incoming atmospheric fluxes, and the last term to the subsurface

heat conduction flux. Here, λ is the thermal conductivity of the internal cell and ∆z its thickness. Note that the internal

temperature Tn
i is taken from the previous time step. To compute the internal temperature at time step n+1, we use the heat825

budget of the internal cell:

∆zcpT
n+1
i +∆t

2λ

∆z

(
Tn
i −Tn+1

s

)
=∆zcpT

n
i (E2)

where the second term of the LHS is the opposite of the subsurface conduction flux appearing in the SEB (for energy

conservation), and cp is the heat capacity of the internal cell. The two above equations can be expressed in matrix form

MUn+1 =NUn +B, with Un the solution vector [Ts,Ti]T at the nth time step and830

M =

 1 0

− 2∆tλ
cp∆z2 1

 (E3)

N =

0 2λ
2λ+∆zf

0 1− 2∆tλ
cp∆z2

 (E4)

and B = [− ∆zb
∆zf+2λ ,0]

T . We thus have, Un+1 =QUn +M−1B, with
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Q=M−1N =

0 2λ
2λ+∆zf

0 1−∆t 2λ
cp∆z2

∆zf
2λ+∆zf

 (E5)

By recursion, it follows that Un =QnU0 +M−nB. The numerical scheme is deemed stable if limn→∞Qn = 0. This is835

achieved if:

|1−∆t
2λ

cp∆z2
∆zf

2λ+∆zf
|< 1 (E6)

which after some computation yields a criterion of the time step ∆t:

∆t <∆tcrit =
cp∆z

λ

2λ+∆zf

f
(E7)

The (linearized) standard skin-layer is thus only conditionally stable. The stability criterion is relaxed with increasing heat840

capacity (cp) and increasing cell size (∆z), and is made more restrictive with increasing thermal conductivity (λ) or if the SEB

is more sensitive to changes in the surface temperature (f term).

E2 Coupled-surface formulation

Similarly, for a one cell system, the coupled-surface equations, after linearization, write:

fTn+1
s + b+

2λ

∆z

(
Tn+1
s −Tn+1

i

)
= 0 (E8)845

for the SEB, and

∆zcpT
n+1
i +∆t

2λ

∆z

(
Tn+1
i −Tn+1

s

)
=∆zcpT

n
i (E9)

for the cell’s heat budget. These two equations can be cast into the matrix formMUn+1 =NUn+B, withB = [− ∆zb
∆zf+2λ ,0]

T ,

M =

 1 −2λ
2λ+∆zf

− 2∆tλ
cp∆z2+2λ∆t 1

 (E10)

and850

N =

0 0

0
cp∆z2

cp∆z2+2λ∆t

 (E11)
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We thus have Un =QnU0 +M−nB, with:

Q=

0 2λ
2λ+∆zf

cp∆z2

cp∆z2+2λ∆t

0
cp∆z2

cp∆z2+2λ∆t

 (E12)

The numerical scheme is deemed stable if limn→∞Qn = 0. This is always achieved, as cp∆z2

cp∆z2+2λ∆t < 1. Thus, the surface-

coupled scheme is unconditionally stable.855

E3 Non-conservative skin-layer formulation

For the non-conservative skin-layer formulation (see Section 6.4), we start with the linearized discrete SEB:

fTn+1
s + b+

2λ

∆z

(
Tn+1
s −Tn

i

)
= 0 (E13)

Using the surface temperature Tn+1
s as a Dirichlet condition for the internal energy budget, we thus have

∆zcpT
n+1
i +∆t

2λ

∆z

(
Tn+1
i −Tn+1

s

)
=∆zcpT

n
i (E14)860

These two equations can be cast into the matrix form MUn+1 =NUn +B, with B = [− ∆zb
∆zf+2λ ,0]

T ,

M =

 1 0

− 2∆tλ
cp∆z2+2λ∆t 1

 (E15)

and

N =

0 2λ
2λ+∆zf

0
cp∆z2

cp∆z2+2λ∆t

 (E16)

We thus have Un =QnU0 +M−nB, with:865

Q=

0 2λ
2λ+∆zf

0 X

 (E17)

where X =
2λ∆t 2λ

2λ+∆zf +cp∆z2

2∆tλ+cp∆z2 . The scheme is deemed stable if |X|< 1.

As 2λ
2λ+∆zf < 1, we always have that 2λ∆t 2λ

2λ+∆zf + cp∆z
2 < 2∆tλ+ cp∆z

2, and thus that the scheme is unconditionally

stable. That being said, we recall that this scheme is not energy conservative and can lead to large errors.870
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E4 No-surface formulation (Class 1)

Finally, we note that the linearized No-surface formulation corresponds to a classic heat equation with a Backward Euler time

integration. As demonstrated elsewhere in the literature (e.g. Butcher, 2008), it is unconditionally stable.
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Abstract. The surface energy budget drives the melt of the snow cover and glacier ice and its computation is thus of crucial

importance in numerical models. This surface energy budget is the sum
::::
result

:
of various surface energy fluxes, that

:::::
which

depend on the input meteorological variables and surface temperature, and to which
::
of heat conduction towards the interior

of the snow/iceand potential melting need to be added,
::::
and

:::::::::
potentially

::
of

:::::::
surface

::::::
melting

::
if
:::
the

::::
melt

::::::::::
temperature

::
is
:::::::

reached.

The surface temperature and melt rate of a snowpack or ice are thus driven by coupled processes. In addition, these energy5

fluxes are non-linear with respect to the surface temperature, making their numerical treatment challenging. To handle this

complexity, some of the current numerical models tend to rely on a sequential treatment of the involved physical processes, in

which surface fluxes, heat conduction, and melting are treated with some degree of decoupling. Similarly, some models do not

explicitly define a surface temperature and rather use the temperature of the internal point closest to the surface instead. While

these kinds of approaches simplify the implementation and increase the modularity of models, it can also introduce several10

problems, such as instabilities and mesh sensitivity. Here, we present a numerical methodology to treat the surface and internal

energy budgets of snowpacks and glaciers in a tightly-coupled manner, including potential surface melting when the fusion

::::
melt temperature is reached. Specific care is provided to ensure that the proposed numerical scheme is as fast and robust as

classical numerical treatment of the surface energy budget. Comparisons based on simple test cases show that the proposed

methodology yields smaller errors for almost all time steps and mesh sizes considered and does not suffer from numerical15

instabilities, contrary to some classical treatments.

1 Introduction

Snowpacks and glaciers are crucial parts of the Earth system that have a profound impact, among others, on the water cycle

(e.g. Barnett et al., 2005) and on the radiative budget of continental surfaces (e.g. Flanner et al., 2011). A key tool to understand

the interaction between snowpacks/glaciers and the other components of the Earth system are numerical models , that aim to20

quantitatively represent the evolution of snowpacks and glaciers under various atmospheric forcings. To reach this goal, the rep-

resentation and evolution of the thermodynamical state (that is to say temperature profiles and phase changes) of snowpacks and

glaciers are implemented in most (if not all) numerical models (e.g. Jordan, 1991; Bartelt and Lehning, 2002; Liston and Elder, 2006; Vionnet et al., 2012; Sauter et al., 2020)

::::::::
numerical

::::::::::::::
snowpack/glacier

::::::
models

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Anderson, 1976; Brun et al., 1989; Jordan, 1991; Bartelt and Lehning, 2002; Liston and Elder, 2006; Vionnet et al., 2012; Sauter et al., 2020)
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.25

Among the various processes driving the thermodynamical state of snowpacks and glaciers, the surface energy budget (SEB)

has received detailed attention in the past, notably because of its central role (e.g. Etchevers et al., 2004; Miller et al., 2017;

Schmidt et al., 2017, among many others). Indeed, the surface energy budget
::::
SEB governs most of the net energy input and

output within the snowpack/glacier and thus has a fundamental role for its warming/cooling and for its melting. This SEB is

the net result of various energy fluxes, including turbulent fluxes and long-wave radiative flux , that directly and non-linearly30

:::
that

:::::::
directly depend on the surface temperature of the snowpack/glacier. Mathematically, the surface energy budget

::::
SEB thus

appears as a highly non-linear top boundary condition for snowpacks and glaciers. This non-linearity is even reinforced by

the existence of a regime change between a melting and non-melting surface, with different thermodynamical behaviors below

and above
:
at

:
the melting point. This profoundly non-linear nature

::::::
Indeed,

::::
once

:::
the

:::::::
melting

::::
point

::
is
:::::::
reached

::
at

:::
the

:::::::
surface,

:::
the

::::
SEB

:::::::
becomes

:::::
more

::::
akin

::
to

:
a
:::::::::::::
Stefan-problem

::::
with

::
a
:::::::::::
discontinuity

::
in

:::
the

::::::
energy

:::::
fluxes

::::
and

:::
can

::
no

::::::
longer

:::
be

::::::
simply

::::::::
described35

::
in

::::
terms

:::
of

::::::
surface

::::::::::
temperature.

:::::
This leads to numerical challenges when solving the governing equations.

As a consequence, there are currently no uniquely employed strategies to treat this problem, and various numerical schemes

have been proposed and implemented for solving the SEB and its link with the thermodynamical state of a snowpack/glacier

(Bartelt and Lehning, 2002; Vionnet et al., 2012; van Pelt et al., 2012; Sauter et al., 2020). Among the different published im-

plementations, one can notably cite the so-called "skin-layer" formulation,
::::::
usually

:::::::::
employed

::
in

:::::::::::
combination

::::
with

::
a
:::::
finite40

::::::
volume

:::::::
method

::::::
(FVM)

:::
for

::::
the

:::::::
internal

::::
heat

::::::::
equation,

:
in which the surface and internal temperatures are solved sequen-

tially over a given time step (Oerlemans et al., 2009; Kuipers Munneke et al., 2012; van Pelt et al., 2012; Covi et al.,

2023). While this approach naturally offers modularity and simplifies the treatment of the SEB (and of the associated sur-

face temperature), a sequential treatment of tightly-coupled processes or variables is also known to display some instability

(e.g. Ubbiali et al., 2021; Brondex et al., 2023) and large time step sensitivity (e.g. Barrett et al., 2019). On the other hand,45

some
::::
FVM

:
implementations do not define a specific temperature associated with the surface, but rather use the tempera-

ture of the top-most numerical layer of the domain
:::
(i.e.

:::
the

:::
top

:::::
layer

::
of
::::

the
::::::::
simulated

::::::::::::::::
snowpack/glacier) for solving the

SEB
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Anderson, 1976; Brun et al., 1989; Jordan, 1991; Vionnet et al., 2012; van Kampenhout et al., 2017). While this enables

to easily solve the SEB and the internal heat budget in a tightly-coupled way, this method requires to refine the numerical grid

near the surface, in order to properly simulate the SEB. Thus, currently-employed
::::
FVM strategies in snowpack/glacier models50

present some limitations , that can be detrimental for the obtained numerical solutions.

Here, we propose a
::::
FVM numerical scheme meant to combine the advantages of the previously published numerical strategies.

Precisely, our goal is to offer a tightly-coupled treatment (as opposed to a sequential treatment) of the internal and surface tem-

peratures of a snowpack or glacier. For this, the proposed implementation explicitly defines a temperature right at the surface

(viewed as an infinitely small
:::
thin horizontal layer), which improves the simulated results in terms of accuracy and stability. As55

the snowpack and glacier models are sometimes used in distributed or long-time spanning simulations, specific care is taken to

ensure that the proposed numerical scheme has a similar numerical cost as the already published ones.

The article is organized as follows: Section 2 presents the physical equations governing the energy budget of snowpacks and

glaciers, Section 3 briefly recalls some of the existing numerical schemes to solve these governing equations, and Section 4

2



presents the proposed numerical scheme overcoming some of the limitations of existing strategies, while keeping their strong60

points. Finally, some simple examples are presented in Section 5, and a discussion comparing the different numerical schemes

is provided in Section 6.

2 Governing equations

The goal of this Section is to briefly recall the general equations governing the thermal regime of snowpacks and glaciers,65

before presenting their numerical discretization in the next Section.
::
As

:::::::::
snowpack

::::
and

:::::::
glaciers

::::
share

::::::
many

:::::::::
similarities

::::
and

::::::::
processes,

::::
such

:::
as

::::
heat

:::::::::
conduction

:::
or

:::
the

:::::::
presence

:::
of

:
a
::::::
phase

::::::::
transition

:::::
when

:::
the

::::
melt

::::::::::
temperature

::
is
::::::::
reached,

::::
they

:::
can

:::
be

:::::::::
represented

:::
by

:::
the

::::
same

:::::
type

::
of

::::::::
equations.

::::::
These

:::::::::
similarities

::::::
enable

::::::::::
simulations

::::::
mixing

:::::
snow

:::
and

::::::
glacier

:::
ice

::::::
within

:
a
::::::
single

:::::::::
framework

:::::::::::::::::::
(e.g. Sauter et al., 2020)

:
.
::::::
Hence,

:::
for

:::
the

::::
sake

::
of

:::::::::
generality,

:::
the

::::::::
equations

::::::::
discussed

:::
in

:::
the

::::::::
following

:::::::
sections

:::::
apply

::
to

::::
both

::::
snow

::::
and

::::::
glacier

:::
ice.

::::
That

:::::
being

:::::
said,

::::
snow

::::
and

::::::
glacier

:::
ice

::::::
present

:::::
some

::::::::::
differences,

::::::
notably

::::::::::
concerning

:::::
liquid

:::::
water70

:::::::::
percolation.

:::
As

::::::::
addressed

:::::
later,

:::
this

:::::
might

::::::
require

::
a

:::::::::
differential

::::::::
treatment

::
of

::::::
glacier

:::
ice

:::
and

::::
snow

:::::
when

::::::::::::
implementing

:::
the

:::::
liquid

::::
water

::::::::::
percolation

:::::::
scheme.

2.1 Internal energy budget

The thermal regime of the inner part of a snowpack or glacier is governed by the principle of energy conservation. Assuming

that Fourier’s law
:
of

::::
heat

::::::::::
conduction applies in snow/ice with a well-defined macroscopic thermal conductivity (e.g. Calonne75

et al., 2011), this energy conservation writes:

∂th−∇ · (λ∇T ) =Q (1)

where h is the internal energy content of snow/ice (expressed in J m−3), λ the thermal conductivity, T the temperature,

and Q volumetric energy sources (such as the distributed absorption of shortwave radiations). Here, h is understood as the

energy content,
:
including latent heat associated with the presence of liquid water (Tubini et al., 2021). The volumetric energy80

sources Q (expressed in W m−3) therefore do not include the absorption or release of latent heat during solid/liquid water

phase changes.
:
In

::::
this

::::::
article,

:::
we

:::::::
assume

:::
that

:::
the

:::::::::::::::
snowpack/glacier

:::
can

:::
be

::::::::::
represented

::
as

:::
1D

:::::::
column,

::::
and

:::::::
therefore

::::
Eq.

:::
(1)

:::::
should

:::
be

:::::::::
understood

::
as

:::
1D

::::::::
equation.

Assuming thermodynamical equilibrium between the ice and liquid water, the temperature T and the energy content h are

related through:85

h= cp(T −T0)+ ρwLfusθ (2)

where cp is the volumetric thermal
:::
heat capacity of snow/ice (expressed in J K−1 m−3), T0 an arbitrary reference temperature

taken as the fusion
::::
melt temperature, ρw the density of liquid water, Lfus the specific enthalpy of fusion of water (expressed in
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J kg−1), and θ the liquid water content (expressed in m3 of liquid water per m3 of snow/ice) (Tubini et al., 2021).

Note that in Eq. (1) the time derivative of the internal energy content h cannot in principle be replaced by cp∂tT:
,
:::
but

::::::
should90

:::
also

:::::::
include

::
the

::::
term

:::::::::
ρwLfus∂tθ. Indeed, once the temperature has reached the fusion

::::::
melting point, a further increase in energy

translates into an increase in the liquid water content
::::::::
(∂tθ ̸= 0) and of the associated latent heat content, rather than a further

increase in the temperature. Yet, as discussed below, snowpack and glacier models nonetheless usually consider that the temper-

ature can increase past the fusion
::::::
melting point when integrating Eq. (1) in time

::::::::::::::::::::::::::::::::
(Vionnet et al., 2012; Sauter et al., 2020). This

is equivalent to neglecting the effects of first-order phase changes (melting and refreezing) on the temperature field,
::::
and

::::
thus95

:::::
setting

:::::::::
ρwLfus∂tθ::

to
::::
zero

:::::
while

::::::
solving

:::
the

::::
heat

:::::::
equation. This results in temperature overshoots that are then corrected in a sec-

ond step by creating melt and setting back the temperature to the fusion value (e.g., Bartelt and Lehning, 2002; Vionnet et al., 2012; Sauter et al., 2020)

::::
melt

:::::
value

:::::::::::::::::::::::::::::::::::::
(e.g., Vionnet et al., 2012; Sauter et al., 2020).

:::
In

::::
this

::::::
article,

:::
we

::::::
follow

::::
this

::::::
simple

:::::::
scheme

::
as

::
it
::

is
::::::::::

commonly

::::::::
employed

::
in

::::::::
snowpack

:::
and

::::::
glacier

:::::::
models.

::::
That

:::::
being

::::
said,

:::::
other,

::::
more

::::::::
complex,

::::::::
strategies

::::
have

::::
been

::::::::
proposed

::
in

:::
the

::::::::
literature.

::::
This

::::::
notably

:::::::
includes

:::
the

:::
use

::
of

:
a
:::::
finite

:::::::::::::::
temperature-range

::::
over

:::::
which

:::::::::::
melt/freezing

:::::
occurs

:::::::::::::::::::::::::::::::
(e.g. Albert, 1983; Dutra et al., 2010)100

:
,
::::::::
including

:::::::::::
melt/refreeze

::
as

::
an

::::::::
additional

::::::
energy

::::::
source

::::
term

::::::::::::::::::::::::::::::::::::::::::
(e.g. Bartelt and Lehning, 2002; Wever et al., 2020),

:::
or

::
the

::::
use

::
of

:::::::
enthalpy

::
as

:::
the

:::::::::
prognostic

:::::::
variable

:::::::::::::::::::::::::::::::::::::::::
(e.g. Meyer and Hewitt, 2017; Tubini et al., 2021).

:::::::
Finally,

::
in

::::
this

:::::
article

:::
we

::::::::
consider

:::
the

::::::
thermal

::::::::::
conductivity

::
λ
:::
and

:::::::
capacity

:::
cp :::

not
::
to

::::::
depend

::
on

:::::::::::
temperature.

:::
The

:::::::::
motivation

:::
for

:::
this

::
is

:::::::
twofold

::
as

:
it
::
(i)

::::::::::
corresponds

::
to
::
a

:::::::::
simplifying

::::::::::
assumption

:::::::
regularly

:::::
made

::
by

:::::::::
snowpack

:::
and

::::::
glacier

::::::
surface

::::::
models

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. van Pelt et al., 2012; Vionnet et al., 2012; Sauter et al., 2020; Covi et al., 2023)

:::
and

:::
(ii)

:
it
::::::
allows

:::::::
keeping

:::
the

::::::
internal

::::
heat

::::::::
equation

:::::
linear.105

2.2 Surface energy balance

To model an actual snowpack/glacier subjected to atmospheric forcings, it is necessary to complement the internal energy

budget with an appropriate boundary condition. At the top of the snowpack/glacier, this boundary condition is given by the

surface energy balance
:::
SEB. This SEB states that the net sum of energy fluxes between the top of the snowpack/glacier and

the atmosphere equals the energy thermally conducted from the surface to the interior of the snowpack plus a potential surface110

melting term if the fusion
::::
melt temperature is reached (Oerlemans et al., 2009; Sauter et al., 2020; Covi et al., 2023). We thus

have:

SW surf
net +LWin +LWout +H +L+R

:::
=G+ ṁLfus (3)

where SW surf
net is the net shortwave radiation absorbed right at the surface (that is thus distinguished from the portion of

shortwave radiation penetrating within the snow/ice), LWin is the incoming longwave radiation flux, LWout is the outgoing115

longwave radiation flux, H is the turbulent sensible heat flux, L is the turbulent latent heat flux,
::
R

:::
the

::::::
surface

::::::
energy

:::::::
brought

::
by

:::::::::::
precipitating

::::
rain,G is the conductive heat flux penetrating within the snowpack/glacier, and ṁ is the rate of surface melting

(expressed in kg m−2 s−1).
:::::
Fluxes

:::
are

:::::::::
orientated

::::::
towards

:::
the

:::::::
bottom,

:::
and

::::
thus

:::::::
towards

:::
the

::::::
surface

:::
for

:::::::
SW surf

net ,
::::::
LWin,

:::::::
LWout,

::
H ,

:::
L,

:::
and

::
R
::::

and
:::::
away

::::
from

:::
the

:::::::
surface

:::
for

::
G.

:
The surface melting rate ṁ vanishes when the surface temperature Ts is be-
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low the fusion
:::
melt

:
temperature, and can take non-zero values when the surface temperature equals the fusion

:::
melt

:
temperature.120

Among the various terms of the surface energy balance
:::
SEB

:
of Eq. (3), LWout, H , L, and G depend non-linearly on the

surface temperature Ts. Notably, the outgoing longwave radiation is given by Stefan-Boltzmann law, i.e. LWout =−σT 4
s (with

σ the Stefan-Boltzmann constant) and the turbulent heat fluxes H and L can be estimated through the use of a bulk approach

(e.g. Foken, 2017). These three terms are therefore non-linear functions of the surface temperature. In addition, the conductive125

heat flux is given by

G=−(λ∂zT ) |z=surf (4)

and is therefore proportional to the temperature gradient within snow/ice right below the surface. This conductive flux de-

pends on both the surface temperature Ts and the temperature within the snow/ice. This flux is responsible for the thermal

coupling between the surface and the interior of the snowpack/glacier.130

3 Numerical strategy of existing models

Since the computation of the heat budget with a SEB as a top boundary condition is at the core of all snow/glacier models,

several numerical implementations have been proposed for solving the resulting system of equations. In order to provide a gen-

eral overview of the numerical frameworks and strategies, we propose to separate them into two broad classes, to which
::::
most135

existing models can somehow be related. While classifying existing strategies into only two groups (and not more) remains arbi-

trary, we believe it is helpful to highlight differences in handling the numerical solving of the energy budget. Moreover, we only

consider
:::::
focus

::
on

:
numerical schemes based on the finite volumes method (FVM)

::::
FVM, as it matches the discretizations

::
is

:::
the

::::::
method employed by most models (e.g. Vionnet et al., 2012; Sauter et al., 2020; Westermann et al., 2023). We therefore do not

treat the finite elements method , which is for instance used in the SNOWPACK model
::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Anderson, 1976; Sauter et al., 2020; Westermann et al., 2023)140

:
.
:::
We

:::
note

::::
that,

:::::::
contrary

::
to
:::
the

::::::
FVM,

::
the

:::
use

:::
of

::
the

:::::
finite

:::::::
element

::::::
method

::::::
(FEM)

::::::::
naturally

::::::::::
incorporates

:::
the

:::::::
presence

::
of

::
a

::::::
surface

::::::::::
temperature,

::::::
which

:::
can

::
be

:::::
used

:::
for

:
a
::::::::::::
fully-coupled

::::::::
treatment

::
of

:::
the

:::::
SEB,

::
as

:::::
done

::
in

:::::::::::
SNOWPACK

:::
for

:::::::
instance

:
(Bartelt and

Lehning, 2002).

3.1 Class 1: Finite volumes without explicit surface

A first class of models relies on FVM for discretization of the internal heat budget, without the inclusion of an extra degree of145

freedom to model the surface temperature (schematically depicted in panel a of
:
as

:::::
Class

::
1

::
in Fig. 1). To this end, the domain

to be modeled (snowpack or glacier) is first decomposed into a finite number of cells with non-zero thicknesses (that are also

sometimes referred to as layers, but should not be confused with the strata forming a snowpack). Then, the equations governing

the temporal evolution of the average heat content of each cell is determined by integrating Eq. (1) over each cell. The energy
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fluxes between cells are finally estimated based on cell-to-cell temperature differences and on the thermal conductivities of150

the cells. As discussed above, the effects of the first-order phase transition during melting/refreezing are usually not taken into

account when solving the internal heat budget. Rather, it is considered that snow/ice temperature can exceed the fusion
::::
melt

temperature without modification of its physical behavior (i.e., of its thermal
:::
heat

:
capacity). When integrating the equations

in time, this can results
:::::
result in temperature overshooting the fusion

:::
melt

:
point. These overshoots are later used to determine

where the fusion
::::::
melting

:
point has been crossed, and the excess energy is then used to estimate melting (e.g. Vionnet et al.,155

2012).

This FVM framework thus amounts to determining the average temperature in each cell, which is usually considered to cor-

respond to the temperature at the center of the cell. Without further modification, the surface temperature, which corresponds

to the temperature on the upper edge of the top cell, is not present in the system of equations. In order to apply the surface

energy balance
:::
SEB

:
as a boundary condition, this first class of models considers the surface temperature to be equal to the160

temperature of the top-most cell. The energy fluxes between the surface and the atmosphere are then directly integrated into

the heat budget of the top cell. The internal heat budget and the integrated surface fluxes can then be solved at the same time,

i.e. in a tightly-coupled fashion. The advantage of this approach is that it naturally allows one to take into account the SEB

within a standard FVM framework, without the necessity to handle extra degrees of freedom. This numerical strategy roughly

corresponds to the one adopted in Crocus SNTHERM (Jordan, 1991),
::::::
Crocus (Vionnet et al., 2012), CLM (van Kampenhout165

et al., 2017), or CryoGrid (Westermann et al., 2023).

3.2 Class 2: Finite volumes with an explicit but decoupled surface

The second class of models also relies on FVM for the spatial discretization of the internal heat budget. Similarly to the mod-

els of class 1, the first-order phase transition of snow/ice is usually neglected for the resolution of the equations, resulting in

temperature overshoots that are later corrected by creating melting.170

However, this class of models explicitly takes into account the presence of a surface temperature , that differs from the temper-

ature of the cell just below (schematically depicted in panel b of
::
as

:::::
Class

:
2
::
in
:
Fig. 1). This surface temperature is computed by

searching for the temperature that equilibrates the surface energy budget
:::
SEB

:
of Eq. (3), assuming no melting. If the equilib-

rium temperature is larger than the fusion
:::::::
melting point, it is then capped to the fusion

::::
melt temperature and the excess surface

energy converted into surface melting.175

Because of the numerical complexity of this task, it is usually performed separately from the computation of the internal heat

budget. Typically, the surface temperature is first resolved, using the internal temperatures of the previous time-step for the heat

conduction term of the surface energy balance
:::
SEB, and then the internal temperatures are solved using the newly computed

surface temperature and surface energy budget
::::
SEB.

This class of models encompasses the models using a so-called skin-layer formulation for the surface energy budget
::::
SEB. Its180

advantage is that it allows to explicitly define a surface temperature without complexifying the solving of the internal heat

budget and keeping a low numerical cost. It roughly corresponds to the models SnowModel (Liston and Elder, 2006), EBFM
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Figure 1. Classification of
::::
FVM

:
models with respect to their treatment of the surface energy budget

:::
SEB. a) Class 1: The surface energy and

the internal temperatures are solved in a tightly-coupled manner
:
, but there is no explicit surface. b) Class 2: An explicit surface temperature

(and surface melting) exists,
:
but it is solved in sequential manner with respect to the internal temperatures. c) Proposed scheme in this article:

An explicit surface temperature is considered and is solved in a tightly-coupled manner with the internal temperatures.
::
In

::
the

::::::::
schematic,

::::
dots

:::::::
represent

::
the

::::::::
prognostic

:::::::
variables

::
of
:::
the

:::::::
schemes

::::
(with

::
or

::::::
without

:::::::::
temperature

::
at

:::
the

::::::
surface)

::::
while

:::
the

:::::
colors

::::::
indicate

:::::
which

:::::::
variables

:::
are

:::::
solved

:::::::::::
simultaneously.

(van Pelt et al., 2012), or COSIPY (Sauter et al., 2020).

Finally, we want to stress that the actual implementations of the aforementioned models (e.g. Crocus, SNTHERM, COSIPY,185

EBFM, etc) cannot be perfectly captured by our simple classification. Particular choices regarding the spatial and temporal

discretizations, the treatment of melting and refreezing, and the coupling between individual processes make each model

unique and more complex than the above presentation. Also, models can in principle display the characteristics of both classes

(i.e. no explicit surface and a surface energy budget
::::
SEB solved with a decoupling from the rest of the domain), although we

did not find any concrete example. This diversity of models offers an actual illustration of how the numerical implementation190

of the same processes (internal heat budget with a complex surface energy balance
:::
SEB) has been handled by different authors.

4 A tightly-coupled solution for the surface and internal heat budget

As seen above, each class of models comes with advantages but also limitations. While class 1 models solve the internal and

surface energy budgets
::::
SEB in a tightly-coupled manner, they do not take into account the fact that the surface temperature is

in general different from the temperature in the cell below. On the contrary, while class 2 models explicitly consider a surface195

temperature, the internal and surface energy budgets
::::
SEB

:
are treated in a sequential, and therefore loosely-coupled fashion,
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which can be detrimental to stability (Ubbiali et al., 2021).

Based on these observations, the goal of this section is to present a
::::
FVM

:
methodology that allows one (i) to explicitly work

with a surface temperature, (ii) to treat the surface and internal heat budgets in a tightly-coupled fashion. As explained above,200

we restrain ourselves to a FVM discretization. Moreover, as the goal of this paper is to focus on the treatment of the surface

energy budget
::::
SEB and its coupling with the internal thermal state, we also follow the standard approach to handle melting

in the interior of the domain. Namely, first-order phase transition effects are neglected while solving for the internal energy

budgets. This means that interior temperatures will overshoot in case of melting, and this excess temperatures will be used to

generate melt afterward.205

4.1 Governing system of discretized equations

In this section, we derive the discretized equations governing the coupled surface and internal heat budgets, based on the

FVM. For this, let’s
::
we

:
consider a domain divided into N cells. The temporal evolution of the average heat content of each

cell is given by integrating Eq. (1) over the cell and making use of the divergence theorem
::::::::::
fundamental

:::::::
theorem

::
of

:::::::
calculus.

Neglecting phase change during the resolution of the internal heat budget, the time derivative of the temperature
::::::::
(average)210

::::::::::
temperature

::
Tk:of the kth cell is given by:

∆zkcpk∂tT k +Fk+ 1
2
−Fk− 1

2
−∆zkQk = 0 (5)

where ∆zk is the thickness of the kth cell, cpk its volumetric thermal
:::
heat

:
capacity,Qk the average volumetric energy source

in the cell, and Fk+ 1
2

and Fk− 1
2

are the heat conduction fluxes
::
at

:::
the

:::
top

:::
and

::::::
bottom

:::::::::
interfaces

::
of

:::
the

::::
cell.

:::
For

:::::::
internal

:::::
cells,

:::::
Fk+ 1

2 :::
and

:::::
Fk− 1

2::::::::::
correspond

::
to

:::
the

:::::
fluxes between the kth and the k+1th cells and the k− 1th and kth cells, respectively.

:::
For215

::
the

:::
top

::::
cell

:::::
Fk+ 1

2 ::::::::::
corresponds

:::
the

::::
heat

::::
flux

::::::
leaving

:::::::
towards

:::
the

::::::
surface

:::
(i.e.

:::::
−G)

:::
and

:::
for

:::
the

::::::
bottom

:::
cell

::::::
Fk− 1

2 ::::::::::
corresponds

::
to

::
the

::::
flux

::::
from

:::
the

:::::::
ground.

:
By convention, we take Fk+ 1

2
as positive if the heat flux is oriented from the kth cell to the k+1th.

Note that in this paper we consider the 0th
::
1st

:
cell to be at the bottom of the snowpack, and the cells to be counted positively

upwards. Other numbering choices could be made and would lead to the same end-result.

220

These
:::
The

:
heat conduction fluxes between cells need to be estimated from the temperatures and thermal conductivities of

adjacent cells. The flux Fk+ 1
2 :::::::

between
::::
cells

::
k

:::
and

:::::
k+1 is computed as:

Fk+ 1
2
= λharmk+ 1

2

Tk −Tk+1

∆zk
2 + ∆zk+1

2

(6)

where λharm
k+ 1

2

is the weighted harmonic average of the thermal conductivity of the two adjacent cells. The use of an
:
a
:
har-

monic average provides better results in the case of layered media such as snow (Kadioglu et al., 2008) and ensures that no225

heat conduction occurs in case one of the cells is a perfect thermal insulator.
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Note that slightly modified version of Eq. (6 ) applies
:
6

::::
only

::::::
applies

::
to

:::::
fluxes

::::::::
between

::::
cells

:::
and

:::::
must

::
be

:::::::
replaced

:
for the two

boundary cells, at the top and bottom of the domain. For the bottom cell, a flux between the domain and the ground below

must be used as a bottom boundary condition. For the top cell, the heat flux coming from the surface must be used. This flux

corresponds to
::
is

::::
given

:::
by

:::
the

:::::::::
discretized

::::::
version

:::
of the term G of the SEB

::
in

:::
the

::::
SEB,

::::::::
provided

::
in Eq. (3)

:::
10)

:::::
below.230

This FVM discretization results in N equations governing the evolution of the N internal temperatures. The surface tem-

perature can be added to this system of equations by introducing an additional degree of freedom, localized at the top of the

domain. This surface temperature can be deduced from the surface energy balance
::::
SEB of Eq. (3) and its coupling to the

interior of the domain through the subsurface heat flux G of Eq. (4). However, the surface energy balance
:::
SEB

:
cannot be fully235

characterized using the surface temperature only. Indeed, in case of melting, the surface temperature is blocked at the fusion

::::
melt temperature T0 and can no longer be used as a prognostic variable to characterize the surface. In this case, it is necessary

to introduce a non-zero melting rate ṁ to close the energy budget. We thus have two regimes for the surface: below the fusion

::::::
melting

:
point the surface is fully characterized by its temperature and the melting rate term vanishes; at the fusion

::::::
melting

point, the surface temperature becomes constant and the melting rate term ṁ becomes the quantity that characterizes the state240

of the surface. At any time
:
, the surface is fully characterized by only one independent variable, but neither the temperature nor

the melt rate can be used in the general case.

To circumvent this problem, we rely on a variable switching technique (Bassetto et al., 2020). Concretely, we introduce a

fictitious variable, denoted τ , whose goal is to behave as Ts below the fusion
::::::
melting

:
point and as ṁ during melting. In other

words, we parametrize the {Ts(τ), ṁ(τ)} graph, such that every possible state of the surface can be appropriately described by245

a well-defined τ value. A possibility is to take τ such as:

Ts =

τ if τ < T0

T0 otherwise
(7)

and

ṁ=

0 if τ < T0

τ−T0

β otherwise
(8)

where β is an arbitrary constant, necessary to ensure dimensional homogeneity (concretely taken as 1 kg m−2 s−1 K−1 in250

our implementation).

Then, the surface energy budget
::::
SEB can be expressed as:

SW surf
net +LWin +LWout(τ)+H(τ)+L(τ)+R(τ)

:::::
−G(τ)− ṁ(τ)Lfus = 0 (9)
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where the dependence of LWout, H , L,
::
R,

:::
and

:
G to τ through Ts has been made explicit. The subsurface conduction heat255

flux can thus be approximated by spatially discretizing Eq
:
. (4):

G= λk
Ts(τ)−Tk
∆zk/2

(10)

where the index k is taken to correspond to the top-most cell. As explained above, this flux must also be taken into account

in the equation governing the heat content of the top-most cell.

260

We thus have a system of N +1 equations (one for each cell plus the surface energy balance
::::
SEB), which governs the

evolution of N +1 prognostic variables (the temperature of each cell plus the surface temperature/melt-rate encapsulated into

τ ). To be numerically solved, this system also requires a temporal discretization. In this article, we choose an implicit backward

Euler’s method for its simplicity and stability (Fazio, 2001; Butcher, 2008). Nonetheless, the method proposed here could also

be applied with other temporal integration schemes (e.g. Crank-Nicolson).265

This system of equations presents several non-linearities, coming from the non-linearity of some terms in the surface energy

budget
::::
SEB with respect to the surface temperature (e.g. LWoutor

:
, H

:
,
:::
and

::
L) and from the regime change of the surface

(between melting and non-melting conditions). In order to deal with these non-linearities, we rely on the use of a specific

Newton’s method, described below.
:::
We

::::
also

::::
note

:::
that

:::::
some

:::::::
models

:::::
made

:::
the

:::::
choice

:::
of

:::::::::
performing

::::
only

::
a
:::::
single

::::::::
iteration

::
to

::::
solve

::::
this

:::::
linear

::::::
system

:::
of

::::::::
equations

:::::
(with

:::::::::
sometimes

:::
an

:::::
extra

:::::::
iteration

::
to

::::::
handle

:::::::
specific

::::::
cases,

::::
such

::
as

:::::::
surface

::::::::
melting).270

::::::::
However,

::
we

::::::
chose

:::
here

:::
to

::::::
perform

::::::::
multiple

::::::::
iterations,

::
in

:::::
order

::
to

:::::
obtain

:::
the

::::::
actual

::::::::
Backward

:::::
Euler

:::::::
solution.

:

4.1.1 A dedicated Newton’s method

One of the main benefits of the skin-layer formulation used by models of class 2 is its low numerical cost. Indeed, all the

non-linearity of the problem only appears in the surface energy budget
::::
SEB, i.e. in a single scalar equation that can be solved

iteratively. While iterations are costly in numerical models, this cost is here tempered by the fact that this only needs to be275

performed on a scalar equation, with a limited number of terms to be re-estimated at each iteration. Once the surface temper-

ature has been determined, the internal temperatures can be solved through a N×N linear system of equations , that does not

require multiple iterations. On the contrary, solving the (N+1)×(N+1) non-linear system of equations derived in Section 4 can

be much more numerically expensive if the whole system is to be re-assembled and re-inverted at each iteration.

280

Keeping this issue of numerical cost in mind, we propose a numerical strategy to solve the system of equations describing

the coupled internal and surface energy budgets. It is based on a modified Newton scheme,
::::
with

::::
two

:::::::::::
modifications

::::::::
proposed

::
to

::::
make

:::
the

:::::::
iteration

:::::::
process

::::
both

:::::
more

:::::
robust

:::
and

:::::
faster.

Truncation method for regime changes:285

A first modification made to this standard Newton’s method is the use of the truncation method when crossing discontinuities

10



Figure 2. Example of the truncation method made to handle derivative discontinuities during Newton’s iterations (schematic inspired by

Fig. 2.3 of Bassetto, 2021). Starting from an estimate τ i, a new estimate τ i+1 is computed based on the Jacobian estimated at τ i. As a

derivative discontinuity is crossed, the fictitious variable τ is set back near the discontinuity τ∗ but in the "melting surface" regime.

during the iteration process (Wang and Tchelepi, 2013; Bassetto et al., 2020). The idea behind truncation is that the Jacobian

(i.e. the derivatives of the discretized
::::::::
derivative

::
of

:::
the

:
equations with respect to the unknowns to be solved for) computed

on one side of a derivative discontinuity does not apply on the other side, and can therefore perturb the convergence towards

the solution
:
,
::::::::
typically

::::::
leading

::
to

:::
an

::::::
endless

:::::::
iteration

::::
loop. In our model, this problem notably arises from the surface energy290

budget
::::
SEB that shows discontinuity with respect to τ when crossing the melting point. A similar problem can also appear

in the turbulence terms of the surface energy budget
::::
SEB. For instance, some formulations of the turbulent fluxes can include

derivative discontinuities for the stability correction of the latent and sensible fluxes with respect to the bulk Richardson num-

ber (as in e.g. Martin and Lejeune, 1998; Sauter et al., 2020). Thus, during the iteration process each time the surface changes

regime (between non-melting/melting or stable/unstable conditions), the value of τ is brought back in the vicinity of the regime295

change by setting τ = τ∗ ± ϵ, where τ∗ is the value for which a derivative discontinuity occurs. This truncation procedure is

schematized in Fig. 2, depicting a switch between a non-melting and melting surface. The numerical parameter ϵ is made to

ensure that the next iteration starts from the good regime and needs to be taken small (typically 10−5).

Variable elimination to reduce the size of the non-linear problem:300

A second improvement can be made by realizing that most of the equations governing the internal heat budgets are actually

linear equations, and thus only need to be assembled and inverted once per time step. Indeed, the (N-1) first equations, cor-
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responding to the time evolution of the temperature of the internal cells not in contact with the surface, express simple linear

relationships between the N internal cell temperatures. This can be used to reduce the size of the non-linear system to be itera-

tively solved.305

For this, we eliminate the N −1 linearly-dependent variables using a Schur complement technique (Zhang, 2006). Concretely,

writing the system of Eqs. (5) and (9) in block-matrix form, one has:

Adiag Aup

Alow As

Tint
Us

=

Bint

Bs

 (11)

where Adiag, Aup, Alow, and As
:::::
Adiag,

:::::
Aup,

:::::
Alow,

::::
and

:::
As are (N − 1)× (N − 1), (N − 1)× 2, 2× (N − 1), and 2× 2

matrices, respectively. Note that we refer to the vector composed of the two last unknowns, thus composed of [TN , τ ], as Us in310

order not to have it mistaken with the surface temperature.
:::
The

::::::::::
expressions

::
of

:::
the

:::::::
matrices

:::::::
forming

:::
the

:::::
block

::::::
system

:::
are

:::::
given

::
in

::::::::
Appendix

::
A,

::::::::
including

:::
the

:::::::::
derivatives

:::::::::
necessary

:::
for

::::::::
Newton’s

:::::::
method.

Under this form, the matrices Adiag, Aup, Alow
:::::
Adiag,

::::
Aup,

:::::
Alow:

and the vector Bint are constant during the non-linear

iterations and do not need to be re-estimated at each non-linear iteration. Thus, the (N-1)
:::::::
(N − 1) internal temperatures can be315

expressed as:

Tint =A−1
diag (Bint −AupUs) (12)

and thus

(As −AlowA
−1
diagAup)Us =Bs −AlowA

−1
diagBint (13)

where As −AlowA
−1
diagAup corresponds to the Schur complement of Adiag in the system of Eqs. (11) (Zhang, 2006).320

The above equation
::::::
system

::
of

::::
Eqs.

:::
(13)

:
is a 2×2 non-linear equations

:::::
system

:
where onlyAs andBs need to be re-assembled

at each non-linear iteration
:::
and

::::::
whose

:::::::
solution

:::
for

::
Us::

is
:::
the

:::::
same

::
as

:::
the

::::
large

::::::
system

:::
of

::::
Eqs.(

::::
11). Therefore, an efficient nu-

merical scheme to solve the
:::::
whole system of Eqs. (11) is to (i) first assemble Alow, Adiag, Aup, and Bint, (ii) inverse

:::::::
compute

::
the

::::::::
products

::::::::
A−1

diagBint::::
and

::::::::
A−1

diagAup::::::
(which

::
is

::::::
cheaper

::::
than

:::::::
directly

:::::::
inverting

:
Adiag:

), (iii) iteratively solve the 2×2 non-linear325

system of Eqs. (13) yielding Us (only reassembling As and Bs at each iteration), and (iv) retrieve the remaining internal tem-

peratures by applying Eq. (12).The numerical cost of this scheme is composed of one (N − 1)× (N − 1) matrix inversion and

of the iterative solving of a non-linear 2× 2 system. This is of the same order as the standard skin-layer formulation, which is

composed of one N ×N matrix inversion and the iterative solving of a non-linear scalar equation.

330
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This technique, namely eliminating linearly-dependent variables using a Schur complement to reduce the size of non-linear

systems to be solved for, can also be applied to speed up the solving of class 1 models. This is presented in Appendix B.
:::
We

:::
also

::::
note

::::
that

::
to

:::::
apply

:::
this

:::::::::
technique,

:::
the

::::::::::
assumption

::
of

::::::::::::::::::::
temperature-independent

::::
heat

:::::::
capacity

::::
and

::::::::::
conductivity

::
is

:::::::::
important,

::
as

::::::::
otherwise

:::
the

:::::::
internal

::::
heat

:::::::
equation

::::::
system

::::::
would

:::
not

:::
be

:::::
linear

:::
and

::::
thus

:::
the

::::::::
matrices

:::::
Adiag,

:::::
Aup,

:::
and

:::::
Alow :::

not
::::::::
constant.

::::::
Finally,

::
a

:::::::::
translation

::
of

::::
this

::::::::
numerical

:::::::
strategy

:::::::::
(including

:::
the

::::::::
fictitious

:::::::
variable

::::
and

:::
the

::::::::::::::::
Schur-complement

:::::::::
technique)

::
in

::
a335

::::
FEM

:::::::::
framework

::
is
::::::::
presented

::
in
:::::::::
Appendix

::
C.

::
An

:::::::
analysis

::
of
:::
the

:::::::::
numerical

::::
cost

::
(in

:::::
terms

::
of

:::::::
number

::
of

::::
basic

::::::::::
operations)

::
of

:::
this

:::::::::
numerical

::::::
scheme

::
is

:::::
given

::
in

::::::::
Appendix

:::
A,

::::::::
alongside

:::::::
analyses

::
of

:::
the

:::::::::
numerical

::::
cost

::
of

:::::
Class

:
1
::::
and

:
2
:::::::
models.

::
It

:::::
shows

::::
that

:::
the

::::::::
proposed

::::::
scheme

::::
and

:::
the

:::::
Class

:
1
:::::::
models

::::
have

::::::
similar

::::::::
numerical

:::::
costs,

::::::
which

:
a
:::
bit

:::
less

::::
than

:::
1.7

:::::
times

:::::
larger

::::
than

:::
the

:::::::::::
standard-skin

:::::
layer.340

5 Simulation setup

The system of equations 11 and its resolution scheme presented in Section 4 enable the computation of the tightly-coupled

evolution of the surface and of the internal energy budget. The goal of this section is to compare this approach to more classical

implementations, falling either in class 1 (all temperatures solved at once but without an explicit surface) or class 2 (presence345

of an explicit surface, but sequential treatment for the computation of the surface and internal temperatures).

For this purpose, we thus implemented a class 1 and a class 2 model alongside the scheme presented in Section 4. For the

implementation of a class 1 model, a specific treatment of the first cell is adopted. Indeed, in order to have results compa-

rable with the other model implementations, the temperature of the first cell is computed taking into account the effect of350

first-order phase transition in order to cap the surface temperature at T0. The resulting non-linear system is solved with the

modified Newton method presented in Section 4.1.1, including the truncation and Schur-complement techniques. Not taking

into account first-order phase transitions in the first cell would result in surface temperature overshoots (not present in the other

implementations), which would be detrimental to the surface energy budget
::::
SEB. We stress that our specific implementation

has differences with already published models (for instance the Crocus model does not perform non-linear iterations and treats355

surface melting differently; Vionnet et al., 2012), and thus that the results obtained with our implementation might deviate

from that of the aforementioned models (Crocus, SNTHERM, Cryogrid, or CLM).

For the implementation of a class 2 model, we adopt the following sequential treatment for each time step: (i) first the sur-

face temperature that equilibrates the SEB is computed using the internal temperatures of the previous time step and ignoring

potential melting, (ii) if the surface temperature exceeds fusion
::::
melt it is capped at T0 and the excess energy used for surface360

melting, (iii) the internal temperatures are then computed using the value of the sub-surface heat flux G computed from the

SEB as the top boundary condition. Again, our specific implementation of a class 2 model might differ from some of the
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already existing "skin-layer" models (COIPY
:::::::
COSIPY, EBFM, or SnowModel).

In order to obtain physically sound results, note that we have included a treatment of water percolation through a simple365

bucket scheme (Bartelt and Lehning, 2002; Vionnet et al., 2012; Sauter et al., 2020) as well as the representation of the motion

of the surface in response to surface melting and vapor sublimation/deposition. In our bucket-scheme, cells whose density is

close to that of ice are considered as impermeable and water cannot percolate through them. Instead, excess water present in

cells above an impermeable horizon is sent to runoff. This choice is meant to avoid liquid water percolation through an entire

glacier. Our models also include a remeshing algorithm that merges adjacent cells when then
::::
they become smaller than a given370

threshold (defined here as half the size
::::
75% of the smallest cell

:::
size

:
at the start of a simulation).

:::
This

:::::::::
remeshing

::::
step

::
is

::::
also

::::
used

::
to

:::::
ensure

::::
that

:::
the

::::
melt

::
of

:
a
:::::
layer

::::::
cannot

::::::
exceed

::
its

:::
ice

:::::::
content.

::
If

::::
such

:
a
::::
case

::
is

:::::::::::
encountered,

:::
the

::::
layer

::
is

::::::
merged

::::
with

::::
one

::
of

::
its

::::::::
neighbors

::::::
before

:::::::::
attempting

:::::::
melting.

::
If

::
the

::::
total

::::
melt

:::::::
exceeds

:::
the

::::
total

:::::
mass,

:::
the

:::::::::
simulations

::::::
should

:::
be

:::::::
stopped.

::::::::
However,

:::
this

:::
last

::::
case

:::
did

:::
not

::::
arise

:::
in

::
the

::::::::::
simulations

::::::::
presented

:::::
here. These processes (melting, percolation, and remeshing) are treated

after the resolution of the heat budget and are handled in a sequential (and thus partially decoupled) fashion, as usually done375

in current snowpack/glacier modeling (e.g. Bartelt and Lehning, 2002; Vionnet et al., 2012; Sauter et al., 2020). To ease

comparison between the various implementations, the melting, percolation, and remeshing routines are common to all of them.

Finally, the
:::
The

:
temporal integration scheme is also the same for all models in order to facilitate the comparison between them,

namely an implicit backward Euler method.
:::::
Also,

::
as

:::::
some

::
of

:::
the

::::::
current

:::::::::
snowpack

:::
and

::::::
glacier

:::::::
models

::::::
include

:::
the

:::::
effect

:::
of

::::::
internal

::::::::::::
phase-change

:::::
while

::::::
solving

:::
the

:::::::
internal

::::
heat

:::::::
equation

:::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Bartelt and Lehning, 2002; Meyer and Hewitt, 2017)

:
,
:::
we380

::::::::
quantified

:::
the

:::::::::
sensitivity

::
of

:::
our

::::::
results

::
to

:::
this

:::::::
specific

::::::::
treatment

::
of

::::::::::
melt/freeze.

:::
For

::::
that,

:::
we

::::
have

::::
also

::::::::::
implemented

::::::::
versions

::
of

:::
our

::::
three

::::::
models

::::
that

::::::
include

::::
such

:::::::
internal

::::::::::::
phase-changes

::
in

:::
the

::::
heat

::::::::
equation.

::::::
Finally,

::::
note

::::
that

:::
we

::
do

:::
not

:::::::
include

:::
the

::::
FEM

:::
in

:::
this

::::::::::
comparison.

:::
As

:::::::
detailed

::
in

:::::::::
Appendix

::
C,

::
a

::::::::
specificity

:::
of

::::
FEM

:::::::
models

:
is
:::
to

:::
rely

:::
on

:
a
:::::::::::
temperature

::::
field

:::
that

::::
can

::
be

:::::::
defined

:::::::::::
element-wise

::
or

::::::::::
node-wise.

:
It
::

is
::::

thus
::::::::
required

::
to

::::::
convert

:::::
back

:::
and

:::::
forth

:::::::
between

:::::
these

:::
two

::::::::::::::
representations.

::::::::
However,

:::
the

:::::::
relation

:::::::
between

::::
the

:::
two

::
is
::::

not
::::::::
bijective.

::::
This

::::::::
prevents

::
an

::::::::::::
unambiguous385

::::::::::::
transformation

::::
from

:::::::::::
element-wise

::
to
:::::::::
node-wise

::::::::::::
temperatures,

:::::
which

::::::
affects

:::
the

::::::::
end-result

::
of
::::

our
::::::::::
simulations.

:::::::
Because

::
of

::::
this

:::::::
problem,

:::
the

:::::
FEM

::
is

:::
not

::::::
further

:::::::
explored

::
in

:::
this

::::::
article,

:::
as

:
a
:::::
direct

::::::::::
comparison

::
to

:::
the

:::::
FVM

::::::
models

::
is

:::
not

:::::::
possible.

Two simple examples, showcasing the differences between numerical treatments, are presented below. While they are not

meant to model the actual evolution
:::
We

::::
note

::::
that

::::
these

::::::::::
simulations

::::::
cannot

:::
be

:::::::::
considered

::
as
:::::

fully
:::::::
realistic

::::::::::
simulations of a390

snowpack or a glacier
:::::
glacier

:::::::
surface, as many processes

:
, such as the deposition of atmospheric precipitation

::::
(rain

::
or

::::::
snow) or

mechanical settlingare lacking, they exemplify how different numerical implementations of the same physical equations yield

different end-results. Two specific examples were set up,
:::
are

:::::::
lacking.

:::
The

::::
goal

::
is

:::::
rather

::
to

:::::::
provide

:
a
:::::::::
simplified

:::::
setting

::
in
::::::
which

::
the

::::::
impact

:::
of

:::
the

::::::::
numerical

:::::::::::::
implementation

:::
of

:::
the

::::
SEB

:::
can

:::
be

::::::::
analyzed.

::
In

:::
the

:::::
same

::::
idea,

:::
we

::
do

::::
not

::::::
attempt

::
to

::::::::
compare

:::
the

::::::::
simulation

::::::
results

::
to

::::
field

:::::::::::
observations.

:::::::
Indeed,

::
it

:::::
would

:::
not

:::
be

:::::::
possible

::
to

:::::::
decipher

:::::
errors

::::
due

::
to

:::
the

::::::::
numerical

::::::::::::
discretization395

:::
(the

:::::
focus

::
of

::::
this

:::::
paper)

:::::
from

:::::
errors

::::
due

::
to

:::
the

:::::::
assumed

:::::::
physics,

::::::::::::::
parametrizations

::::
and

::::::::::
atmospheric

::::::::
forcings.

:::::::::::
Nonetheless,

::
in

::::
order

:::
for

:::
the

::::::
results

::
to

::::
still

::
be

::::::::::
informative

::
of

::::
how

:
a
:::::
given

:::::::::
numerical

:::::::::::::
implementation

:::::
might

::::::
behave

::
in
::
a
::::
more

:::::::
realistic

:::::::
setting,
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::
we

::::
use

:::::::
realistic

::::::::::
atmospheric

:::::::
forcing,

::::::
initial

:::::::::
conditions,

::::
and

:::::::
physical

::::::::::::::
parametrizations. The first one

:::::::::
simulation

:
is meant to

highlight the behavior of the numerical models when simulating the surface energy balance of
:::
SEB

:::
on

:
a snow-free glacier.

The second one focuses on the impact of the model implementations on the simulation of the energy budget of a seasonal400

snowpack,
::::::
during

:::
the

:::::::
melting

:::::
period.

5.1 Test case 1: Snow-free glacier

We start by considering the case of a snow-free and firn-free glacier, neglecting the accumulation of mass through precipitation.

This test case is motivated by the recent studies of Potocki et al. (2022) and Brun et al. (2022), which discuss current models405

capability of modeling the surface mass balance of such a snow and firn-free glacier in a cold environment.

As such, our simulations are forced by the weather data provided by Potocki et al. (2022) for the South Col Glacier. Note

that the method used to downscale the data does not guarantee physical consistency of the variables. This allows us
:::
that

:::::::
include

::
all

::::::::
necessary

::::::::::
information

:
to take into account

:::
the

:
shortwave, longwave and turbulent energy fluxes at the top of our domain.410

To compute the shortwave absorption, we assume that the surface has a constant 0.4 albedo
:::::::::
broadband

:::::
albedo

:::
of

:::
0.4 and that

80% of the flux is absorbed right at the surface (Bintanja and Broeke, 1995; Sauter et al., 2020), without penetrating deeper.

The remaining shortwave radiation penetrates in the ice following an exponential decay profile with a 0.4m e-folding depth

(Bintanja and Broeke, 1995; Sauter et al., 2020). The longwave emissivity of the ice is assumed to be unity. Finally, the tur-

bulent fluxes are computed based on a slightly modified version of Eqs. (17-21) of Sauter et al. (2020) and are described in415

the Appendix D. The roughness length over the ice surface is taken constant and set to z0 = 1.7mm (Sauter et al., 2020). For

the bottom boundary condition, we apply a simple no-heat-flux condition. As the simulated domain is large
:::::
(about

::::::
189m)

:
and

the simulation only run for a single year, this choice of bottom boundary condition has little effect on the simulated surface

temperature and energy budget.
::
For

::::::::
instance,

:::
we

:::::::::
performed

::
a

:::::::::
simulation

::
in

::::::
which

:
a
::::::::::::
64.7mW m−2

::::::::::
geothermal

::::
heat

::::
flux

::
is

::::::
applied

::::::
instead

::::::::::::
(Davies, 2013)

:
.
::::
The

:::::
impact

:::
on

:::
the

::::::
surface

::::::::::
temperature

:::::::
remains

:::::
below

:::::::
0.4mK.420

For the internal material properties, we assumed the ice thermal capacity
:::
heat

:::::::
capacity

:::
cp to equal 2000 J K−1 kg−1 and not

to depend on temperature (Lide, 2006). Similarly, the ice thermal conductivity
:
λ

:
is set to 2.24W K−1 m−1, independently of

temperature (Lide, 2006; Sauter et al., 2020). Finally, we want to stress that in such a case of a snow and firn-free glacier, the

numerical implementation of our bucket-scheme results in the runoff of all melted water, without percolation into the glacier

and thus without warming the ice below it.425

For the initial conditions, we used a spin-up simulation presented in Brun et al. (2022) and generated with the COSIPY

model (Sauter et al., 2020). It corresponds to an initially 189m thick glacier. The output of the spin-up notably includes a non-

uniform mesh for the glacier, from which we build the meshes for our simulations. In order to study the influence of spatial

resolution on the simulation, the original spin-up mesh was refined/downgraded by increasing/decreasing the number of cells.430

This was done by keeping the same relative cell sizes in the domain, such that the smallest cells remained near the surface and
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the largest ones deep in the glacier, as in the original spin-up mesh.

Finally, we want to stress that the aforementioned simplifying assumptions (such as constant albedo, constant surface rough-

ness length, absence of precipitation, simplistic treatment of percolation, etc) imply that the results of our simulations should

not be quantitatively interpreted. Rather, the choice of simplified physics is meant to ease the comparison of the numerical435

treatments of the surface energy budget
:::
SEB.

For each numerical scheme, we perform simulations with initial numbers of cells varying between 22 and 450 and with time

steps ranging from 30 to 7200 s. This range includes the time steps typically used in models (e.g. 900 s in Crocus or 3600 s

in COSIPY). In the absence of an analytical solution, the simulations performed at a high spatial and temporal resolution (i.e.440

30 s and 450 cells) are meant to provide a reference to study the convergence of the other simulations with the gradual increase

of the spatial and temporal resolutions. These high-resolution simulations reveal that the class 1 model implementation (no

explicit surface) remains different from the two other implementations even for this level of time step and mesh refinement.

Therefore, as the reference solution for the glacier test-case, we take the average of the two implementations with an explicit

surface, as they both converged to similar solutions (and similar results will thus be obtained if only the solution of the proposed445

tightly-coupled surface scheme were taken). Specifically, to quantify the difference between a given simulation and the refer-

ence, we focus on the surface temperature and on the phase change rate (understood in this article as the net melt and refreeze

over the entire domain after solving the heat equation). For this purpose, we compute the time series of absolute differences

between the simulations and the reference, as well as the corresponding Root-Mean-Square-Deviation (RMSD).
::::
Note

::::
that

::
in

:::
this

:::::::
specific

:::
test

::::
case,

:::
no

:::::::::
refreezing

:::
was

::::::::
observed

:::
(as

::::
melt

::::::
occurs

::
at

:::
the

::::::
surface

:::
and

::
is
::::
sent

::
to

:::::::
runoff),

:::::::
meaning

::::
that

:::
the

:::::
phase450

::::::
change

:::
rate

:::::::
directly

::::::::::
corresponds

::
to

:::
the

::::
melt

::::
rate.

5.2 Test case 2: Melting snowpack

Our second test case corresponds to the case of a melting snowpack. For simplicity, we assume that the snowpack surface

has a constant albedo of 0.6
::::::::
broadband

::::::
albedo

:::
of

:::
0.7

:
and that all shortwave radiation penetrates in the snow following an455

exponential decay profile with a 0.058m e-folding depth (Bintanja and Broeke, 1995; Sauter et al., 2020). Similarly to that of

ice, the longwave emissivity of snow is assumed to be unity. The turbulent fluxes are computed with the same law as in the

glacier test case but with a constant roughness length of z0 = 0.24mm (Sauter et al., 2020). As in the glacier case, the bottom

boundary condition for the heat equation is taken as no-flux condition. The use of a more realistic boundary condition could be

achieved by coupling the snowpack model to a soil model (e.g. Decharme et al., 2011). It however remains beyond the scope460

of this article, which is focused on the impact of the implementation of the surface energy budget
::::
SEB on simulations.

Regarding internal material properties, we assume snow to have the specific thermal
::::
heat capacity of ice, i.e. 2000 J K−1 kg−1,

independent of temperature (Lide, 2006; Morin et al., 2010). The thermal conductivity of snow is taken as a function of density,

following the Calonne et al. (2011) parametrization. For the percolation scheme, we assume that a snow cell is able to retain

up to 5% of its porosity as liquid water (Vionnet et al., 2012). Liquid water percolating from the last cell of the snowpack is465
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simply sent to runoff. The initial conditions of the simulation are taken from a Crocus simulation of the snowpack at Col de

Porte (Lejeune et al., 2019) during the 2010/2011 season. As we are interested in the case of melting, we start our simulation

from the 14/03/2011, corresponding to the peak of snow height in the Crocus simulation (1.49m), run it for 49
::
63 days, and stop

it before reaching the total disappearance of the snowpack in our simulations. The original Crocus mesh is refined/downgraded

by increasing/decreasing the number of cells in order to study the impact of mesh resolution of the numerical solutions. The470

atmospheric forcings, for both the spin-up and the simulation, are based on the reanalysis of Vernay et al. (2022). Finally, as in

the glacier case, the results of the simulations should not be quantitatively interpreted (for instance in terms of days for snow-

pack disappearance) but are only meant to provide an easy way of comparison between numerical treatments of the internal

and surface energy budgets.

475

The simulations are performed with initial cell numbers varying between 22 and 440 and with time steps ranging from 30

to 7200 s. As in the glacier test case, the high-resolution simulations (30 s time step and 440 cells) are meant to provide a

reference solution. In this case, all three models converge to similar solutions with the considered levels of mesh and time step

refinement. Thus, the reference solution was taken as the average of the three implementations. The comparison between a

given simulation and the reference was done focusing on the surface temperature and the phase change rate, as in the glacier480

test-case.

6 Results and Discussion

6.1 General behavior of the models

An example of simulated surface temperature, phase change rate, and temperature profiles obtained in the glacier test case for

a time step of 3600 s and an initial cell number of 44 (corresponding to a minimum cell size of 10mm at the top) is displayed485

in Fig. 3. Similarly
:
, for the snowpack test case, simulated surface temperatures, phase change rates, and temperature profiles

obtained for a time step of 3600 s and a starting cell number of 44 (corresponding to minimum of cell size of 9.1mm at the

top) are visible in Fig. 4.

While the three models tend to generally agree in terms of simulated surface temperatures and phase change rates, they490

nonetheless present some notable differences. Concerning the glacier test-case, the Fig. 3 shows that the class 1 model (no

explicit surface) is systematically different compared to the two other models, with a slower decrease of the surface temperature

at night, resulting in a surface temperature that is on average warmer
::::::
usually

::::::
warmer

::
of
::
a
::::::
couple

::
of

::::::
degrees

:
for the represented

period.
:::
For

::::::::::
comparison,

:::::::::::::::::
Sauter et al. (2020)

::::
report

::::::::::::::::::::
root-mean-square-errors

::::::
around

::::
3K

::::
when

:::::::::
comparing

::::::::
COSIPY

::::::::::
simulations

::::
with

::::::::::
observations

::
of

:::
the

::::::::
Zhadang

::::::
glacier

::::::
surface

::::::::::
temperature.

:
Besides the surface temperature, the class 1 model also displays495

internal temperatures (starting from about 10 cm below the surface) that are colder (of
::
by

:
about 0.50K) than the two other

implementations. This internal temperature difference is consistent with the fact that the surface temperature in the class 1

model is on average warmer than the two others, favoring the loss of energy through turbulent and radiative fluxes.
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Figure 3. Overview of the simulation of a snow and firn-free glacier using three different numerical schemes. The simulations were performed

with a time step of 3600 s and a
::
an

:
initial number of cells of 44 (minimum cell size of 10mm). a) and b): Surface temperature and total

phase change rate (including surface and subsurface melt/refreeze) around mid-September. c): Upper part of the temperature profiles on the

12/09/2019 at 15:45 local time. The dashed orange line in panels a) and b) corresponds to the selected date of panel c).

As in the glacier test case, models tend to generally agree in the snowpack case, with nonetheless some differences as

displayed in Fig. 4. In particular, all predict that most of the melt occurs internally and without the surface temperature nec-500

essarily reaching the fusion
::::::
melting point. As previously, the class 2 model and the new tightly-coupled approach exhibit the

best agreement (even though the agreement is not as clear as with the glacier case), while the class 1 model displays surface

temperatures that reach higher peaks during the day.
::
As

:::::
with

:::
the

::::::
glacier

:::
test

:::::
case,

:::
the

:::::::
models

::::::
exhibit

::::::
surface

:::::::::::
temperature

:::::::::
differences

::
of

:::::
about

:
a
::::::
couple

::
of

::::::::
degrees.

::::
This

:
is
:::

of
:::
the

::::
same

:::::
order

::
as

:::
the

::::::
biases

:::::::
observed

::
in
:::
the

:::::
snow

::::::
model

::::::::::::::
inter-comparison

::::::
exercise

::::::::::::::
ESM-SnowMIP

:::::::::::::::::
(Menard et al., 2021)

:
.
:
Despite their relative agreement, the class 2 model appears to "lag" by about505

one time step behind the tightly-coupled implementation. This lag can be explained by the fact that, in this case, shortwave

radiations are not directly affected to the surface (as they penetrate). A large variation in shortwave radiations is therefore not

directly visible by the surface, which only reacts to it at the next time step, once the shortwave radiations have impacted the cell

below the surface.
:::
The

::::::
impact

::
of

::::
this

::::::
lagging

::::::::
problem

:::
can

::
be

::::::::
mitigated

:::
by

:::
the

:::
use

::
of

:::::
small

::::
time

:::::
steps,

:::
but

::::
with

:::
the

:::::::::
drawback

::
of

::::::::
numerical

:::::
cost. Beside surface temperature, the class 1 model also shows differences compared to the two other models510

in terms of internal temperatures, being colder in the deepest part of the snowpack. This effect is due to the smaller melting

predicted by the class 2
:
1 model. There is therefore less melt water percolating down the snowpack

:
, which carries latent heat

to warm the snowpack. Finally, we note that the class 2 model exhibits some time step to time step oscillations, characteristic
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Figure 4. Overview of the simulation of a snowpack using three different numerical schemes. The simulations were performed with a time

step of 3600 s and a
::
an initial number of cells of 44 (minimum cell size of 9.1mm). a) and b): Surface temperature and total phase change

rate (including surface and subsurface melt/refreeze) near the end of March. Note that negative phase change rate values imply refreezing

within the snowpack. c): Upper part of the temperature profiles on the 17
::
18/03/2011 at 22

:
19:00 local time. The dashed orange line in panels

a) and b) corresponds to the selected date of panel c).

of numerical instability. Such oscillations are visible both in the surface temperature and the phase change rate , that display

over and undershoots compared to the other models.515

::::::
Finally,

:::::
using

:::
the

::::::::
versions

::
of

:::
the

:::::::
models

::::::::
including

:::::::::::::
phase-changes

::
in

:::
the

::::
heat

::::::::
equation,

:::
we

:::::::::
quantified

:::
the

:::::::::
sensitivity

:::
of

::::
these

:::::::::::
observations

::
to

:::
the

:::::::::
treatment

::
of

:::
the

::::::::::::
melt/refreeze.

::::::
While

:::
the

::::::::
simulated

::::::::::
temperature

::::::::::
sometimes

:::::
differ

:::::
from

:::
our

:::::
basic

:::::::::::::
implementations

::::::::::
(especially

::
in

:::
the

:::::::::
snowpack

::::
test

::::
case

:::::
where

:::::
melt

::::::
occurs

:::::::::
internally),

::::
the

::::::
general

::::::::
behavior

::
of

::::
the

:::::::
models,

::::::::
including

::
the

::::::::
potential

:::::::
presence

:::
of

:::::::::
instabilities

::
in
:::
the

:::::
Class

::
2

::::::
models,

:::::::
remain

:::::::::
unchanged.

:
520

6.2 Convergence with time step and mesh refinement

As they solve the same physical equations, all numerical implementations of the heat budget are expected to converge to the

same results when the time step size and mesh size tend to zero. However, in general different numerical implementations do

not show the same levels of error and convergence rates toward this solution, as the time step and mesh size are progressively

reduced. The goal of this section is to analyze the convergence of the three SEB implementations discussed in this article with525
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time step and mesh size refinement. In other words, we quantify their respective time step and mesh size sensitivities.

We start here by analyzing the sensitivity of the three numerical implementations to the time step. For this purpose, we ana-

lyze the differences between the reference solutions and the three implementations using about 220 cells (i.e. about 5 times the

usual number of cells used in detailed models) and time steps between 112 and 7200 s. Figures 5 to 8 compare the simulations530

performed with various time steps to the reference (time step of 30 s) for the glacier and snowpack test cases, respectively.

:::
The

::::::
largest

::::
time

::::
step

::
of

::::::
7200 s

::::::::::
corresponds

:::
to

::::
twice

::::
the

::::::
default

:::::
value

::::
used

:::
for

:::::::
instance

::
in

::::::::
COSIPY

:::::::::::::::::
(Sauter et al., 2020)

:::
and

:
is
::::::
meant

::
to

::::::::
represent

:::
the

::::
case

::
of

::::::
models

::::
used

::
at
:::::
quite

::::
large

::::
time

:::::
steps

:::
for

::::::::
numerical

::::
cost

:::::::::::::
considerations. Note that for the left

panels showing time series of absolute differences, a 10 days running average was used to remove daily and weekly variability

from the data. Also, while the right panels display RMSDs over the entire simulation, we also computed biases. These were in535

general about an order of magnitude smaller than the RMSD values, except for the surface temperature of the snowpack test

case, where the bias was about half of the RMSD.

As seen in the four Figures, all models show a general decrease in errors with smaller time steps. For almost all investi-

gated time steps and in both test cases, the newly proposed scheme displays the lowest level of errors, with
:
.
::::::::::
Sometimes, the540

class 2 model sometimes only marginally better
:::::
yields

:::
the

:::::::
smallest

:::::
error,

:::
but

::::
does

:::
so

::::
only

::
by

::
a
:::::
small

::::::
margin. Figure 5 reveals

that for the glacier test case and at large time steps (between 30min and 2 h), the decoupled skin-layer formulation (class 2

model) shows the largest errors in terms of surface temperature, with a marked increase of the error with increasing time steps.

However, we do not observe such a sharp increase at large time steps for the phase change rate errors with the class 2 model,

even though Fig. 6 highlights that for such large time steps, the class 2 model wrongly predicts melting early in the season545

(notably during the month of February). Figures 5 and 7 show that for smaller time steps and in both test cases, it is on the

contrary the class 1 model that yields the largest errors in terms of surface temperature, with a limited decrease in the error

level with decreasing time steps compared to the two other implementations. Concerning the phase change rate errors for small

time steps, it depends on the investigated test case: for the glacier it is the class 2 model that shows the largest errors (Fig. 6),

while it is the class 1 model for the snowpack test case (Fig. 8). The results of the glacier test case displayed in Figs. 5 and 6550

thus highlight that depending on the considered metric (surface temperature or phase change rate), the ranking of models might

differ.

Similarly, while the numerical results are expected to converge to the same solution when the grid is refined, they do not

show the same errors and convergence rates with decreasing mesh size. Notably, integrating the top boundary conditions di-555

rectly in the first cell (as in class 1 models) instead of adding an extra independent variable at the surface is known to slow the

convergence of FVM with mesh refinement, as it requires a very small top-cell to properly approximate the surface temperature.

As with time step sensitivity, we quantify the impact of mesh refinement by comparing simulations performed with different

spatial resolutions to reference simulations. We used the same reference simulations as with the time step analysis. The results

are displayed in Figs. 9 to 12 and show the errors in terms of surface temperature and phase change rate for both investigated560
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Figure 5. Impact of time step size on the simulated surface temperature for the glacier test case and for the three numerical schemes. Left

panels a), b), and c): Errors in surface temperature for the different implementations (panels) and for different time step sizes (colors) during

the simulated period. Right panel: RMSD of the surface temperature over the whole simulated period for each implementation (marker) and

time step (color). The same time step color scheme applies to all panels.

test cases. As with the time step convergence, bias values over the simulations were found to be an order of magnitude smaller

than the RMSD values.

As with time step refinement, all models display a general decrease of errors with finer meshes. Again, among the three

implementations the tightly-coupled surface model yields the smaller errors for almost all investigated mesh refinements , with565

::
(as

:::
in

:::
the

::::::
glacier

:::
test

:::::
case, the class 2 model sometimes only marginally better

::
is

:::::::
however

:::::::::
sometimes

:::::::::
marginally

::::::
better). On

the other hand, the class 1 model displays comparatively large errors for almost all mesh refinements and for both test cases.

As seen in Fig. 11, this is particularly marked in the snowpack simulation, where the the class 1 simulation with the finest

mesh refinement (about 220 initial cells) has the same level of surface temperature error as the two other models with a coarser

mesh (44 initial cells). In other words, in this case
:
, the class 1 model needs about five times more cells (and thus five times570

thinner cells) to achieve the same precision as the two other implementations. The addition of an extra degree of freedom

to represent the surface is thus highly beneficial and offers the possibility to use coarser (and thus computationally cheaper)

meshes. Finally, Fig. 10 reveals that in the glacier test case, the phase change rate errors of the class 2 tend to deteriorate with

further mesh refinement past a certain point (here for an initial cell number above 90).
::
We

:::::::
interpret

::::
this

::::::::::
deterioration

::
as
::
a
:::::
result

::
of

:::
the

:::::::::
appearance

:::
of

::::::::
numerical

::::::::::
instabilities

:::
that

:::::::
develop

::::
with

:::::
small

:::::
mesh

:::::
sizes.

:
Due to this effect, the class 2 model exhibits575

the largest phase change rate errors for an initial number of cells of 225.
::::::
Finally,

:::::
using

:::
the

:::::::
versions

::
of

:::
the

:::::::
models

::::::::
including
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Figure 6. Impact of time step size on the simulated phase change rate (here denoted φ to lighten the plot) for the glacier test case and for the

three numerical schemes. Left panels a), b), and c): Errors in phase change rate for the different implementations (panels) and for different

time step sizes (colors) during the simulated period. Right panel: RMSD of the phase change rate over the whole simulated period for each

implementation (marker) and time step (color). The same time step color scheme applies to all panels.

Figure 7. Same as Figure
:::
Fig. 5, but for the snowpack test case.
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Figure 8. Same as Figure
:::
Fig. 6, but for the snowpack test case.

::::::::::::
phase-changes

::
in

:::
the

::::
heat

:::::::
equation,

:::
we

:::::::
verified

:::
that

:::
the

::::::::::
conclusions

:::
of

:::
this

:::::::::::
convergence

:::::::
analysis

::::::
remain

::::
valid

::
in

:::
the

::::
case

::
of

::
a

:::::::
different

::::::::
treatment

::
of

:::
the

:::::::
internal

::::::::::::
phase-changes.

:

6.3 Tight-coupling as a way to reduce instabilities

As discussed above, the decoupled nature of the standard skin-layer formulation (class 2 models) leads to greater errors for580

large time steps compared to the two coupled formulations, with or without an explicit surface. Moreover, the class 2 model can

show some deterioration in the case of highly-refined meshes (Fig. 10). Both these phenomena can be explained by the fact that

the skin-layer formulation displays instabilities. We observe especially large instabilities for time steps of 2 hours, visible as

oscillations in the temperatures of the surface and of the cell below, with peak-to-peak amplitudes sometimes reaching 100K

:::
and

::::
with

::
a

::::
daily

:::::::
running

::::::::
standard

::::::::
deviation

:::::
up-to

:::::
about

::::
50K. Such oscillations then lead to an abnormally cold and warm585

surface and a deteriorated surface energy budget
:::
SEB. As displayed in Fig. 13, these instabilities are even worsened in the case

of mesh refinement. On the contrary, no such instabilities have been observed for the tightly-coupled schemes (with or without

an explicit surface).

:::
The

:::::::
unstable

::::::
nature

::
of

:::::
class

::
2

::::::
models

:::
can

:::
be

::::::
shown

::::
with

:
a
::::::

linear
:::::::
stability

:::::::
analysis,

::::::::
provided

::
in

:::::::::
Appendix

::
E.

:::::
Such

:::::::
analysis

:::::
shows

:::
that

:::::
class

:
2
:::::::
models

::
are

::::
only

:::::::::::
conditionally

::::::
stable,

::::
and

::::::
confirm

::::
that

:::::::::
instabilities

:::
are

:::::::
favored

::
in

:::
the

::::
case

::
of

::::
large

::::
time

:::::
steps590

:::
and

:::::
small

::::
mesh

:::::
sizes.

:
We stress that these oscillations can appear with the skin-layer schemes even if the time integration of the

internal energy budget relies on the backward Backward Euler method, known for its robustness against instabilities (Fazio,

2001; Butcher, 2008). Our understanding is that the sequential treatment of the standard skin-layer formulation breaks the

implicit nature of the time integration by using "lagged" (in other words, "explicited"
::::::
explicit

:::::
rather

::::
than

:::::::
implicit) terms. This,
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Figure 9. Impact of mesh size on the simulated surface temperature for the glacier test case and for the three numerical schemes. Left

panels a), b), and c): Errors in surface temperature for the different implementations (panels) and for different mesh sizes (colors) during

the simulated period. Right panel: RMSD of the surface temperature over the whole simulated period for each implementation (marker) and

mesh size (color). The same mesh size color scheme applies to all panels.

combined with the fact that the surface layer does not possess any thermal inertia and that its temperature can thus vary rapidly595

in time, permits large temperature swings if the time step is too large or the mesh size to small.
:::
too

:::::
small.

:::
On

:::
the

:::::
other

:::::
hand,

:
it
:::
can

:::
be

::::::
shown

:::
that

:::
the

::::
two

:::::::
schemes

::::
with

:
a
:::::::::::::
tightly-coupled

::::
SEB

:::
are

:::::::::::::
unconditionally

::::::
stable

:::::::::
(Appendix

:::
E),

::
in

:::::::::
agreement

::::
with

::
the

:::::::
absence

::
of

::::::::::
oscillations

::
in

::::
their

::::::::::
simulations.

::::::::
Notably,

:::
the

:::::::::::
unconditional

:::::::
stability

::
of

:::
the

:::::::::::::
coupled-surface

:::::::
scheme

::::::::
proposed

::
in

:::
this

:::::
article

::::::
entails

::::
that

:::
the

:::::
model

:::::
does

:::
not

::::
need

:::
an

:::::::
adaptive

::::
time

::::
step

::::
size

::::::
strategy

:::::::::
depending

:::
on

:::
the

:::::
mesh

::::
size.

::::
This

:::::::
ensures

:::
that

::
it

::::::
remains

::::::
robust,

:::::::::
regardless

::
of

:::
the

::::
time

::::
step

:::
and

:::::
mesh

::::
size.

:
600

6.4 Energy conservation in the standard skin-layer formulation

As explained in Section 2.2, the heat conduction flux from the surface to the interior of the domain (i.e. G in Equation 3)

needs to have the same value in the computation of the surface energy budget
:::
SEB

:
and in the computation of the energy bud-

get of the first interior cell. Inconsistencies in G between these two budgets lead to the violation of energy conservation and

create an artificial energy source/sink near the surface. Such inconsistencies can easily
::::
could

:
be created when implementing605

the standard skin-layer formulation (class 2 models) due to the sequential treatment of the surface and internal energy bud-

gets. Indeed, after solving the surface energy budget
:::
SEB, one can either use the surface temperature or the subsurface heat

flux G as a boundary condition for the computation of the internal temperatures. In general, these two strategies will lead to

different results and only the direct injection of G computed from the SEB will ensure the conservation of energy. Indeed, if
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Figure 10. Impact of mesh size on the simulated phase change rate (denoted here φ to lighten the plot) for the glacier test case and for

the three numerical schemes. Left panels a), b), and c): Errors in the phase change rate for the different implementations (panels) and for

different mesh sizes (colors) during the simulated period. Right panel: RMSD of the phase change rate over the whole simulated period for

each implementation (marker) and mesh size (color). The same mesh size color scheme applies to all panels.

Figure 11. Same as Figure
:::
Fig. 9, but for the snowpack test case.
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Figure 12. Same as Figure
:::
Fig. 10, but for the snowpack test case.

the internal temperatures are driven using the
:::
We

::::
note

:::
that

:::
the

:::
use

::
of

:::
the

:::::::::
computed surface temperature as a Dirichlet boundary610

condition , the temperature gradient on which the computation of G during the second step is based would be impacted by

the modification of the internal temperatures and the subsurface flux G would thus not be consistent with the value previously

computed during the SEB. To avoid such an issue, the internal temperatures should be computed directly using the subsurface

flux G given by the SEB. For our implementation of the standard skin-layer formulation, this consistency was concretely

achieved by (i)closing the surface energy budget using
::::::::
boundary

::::::::
condition

:::::
leads

:
to
:::
an

:::::::::::::
unconditionally

:::::
stable

::::::::
numerical

:::::::
scheme615

:::::::::
(Appendix

:::
E).

::::::::
However,

:::::
using

::::
such

::::::::
Dirichlet

::::::::
condition

::
in

:::::
order

::
to

:::::::
stabilize

:::
the

:::::::::::
standard-skin

:::::
layer

::::::::::
formulation

::::::
comes

::
at

:::
the

::::::
expense

:::
of

::::::
energy

:::::::::::
conservation

:::
and

::::::::::
deteriorates

::
of

:
the temperature of the first internal cell from the previous time step, (ii)

saving the value of G necessary to close this surface energy budget, and (iii) using this value of G as a top boundary condition

for the internal energy budget
:::::::
simulated

::::::
results.

620

As an illustration, we have also run skin-layer simulations (class 2) in which the flux G is re-computed using the surface

temperature as the boundary condition(i.e. using the surface temperature as a Dirichlet boundary condition), rather than directly

used as a flux boundary condition. A comparison of the energy-conserving and non-energy-conserving simulations is shown

in Fig. 14. The surface temperatures show RMSDs of 4.00 and 2.97
:::
3.96

::::
and

::::
2.16K and the phase change rates RMSDs of

3.6× 10−1 and 4.2× 10−1
:::::::::
3.0× 10−1 kg m−2 h−1 for the glacier and snowpack test cases, respectively. In general, the non-625

conservative scheme displays smaller daily variations of the surface temperature, with a less pronounced warming during the

day (sometimes impending surface melt) and a less pronounced cooling at night.

For the non-conservative implementation, the inconsistency in G can be expressed as an equivalent, and artificial, surface en-
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Figure 13. Presence
:::
Time

:::::
series

::
of
::::::

surface
::::::::::
temperatures

:::
(in

::::
blue,

:::
left

::::::
y-axis)

:::
and

::
of

::::
their

::::::::::
24hr-running

:::::::
standard

::::::::
deviations

:::
(in

::::::
orange,

:::
right

::::::
y-axis)

:::::::::
highlighting

:::
the

::::::
presence

:
of numerical instabilities with the decoupled surface

::::::
standard

:::::::
skin-layer

:
schemeand

:
.
:::
The

:::::::::
simulations

::::::::
correspond

::
to

::
the

::::::
glacier

:::
test

:::
case

::::
with a time step of 2 hrfor the glacier test case. Each panel corresponds to a level of mesh refinement. The

lowest mesh refinement is at the top and displays the smallest level of instabilities, while the highest mesh refinement is at the bottom and

displays numerous large instabilities in the first half of the simulation.

ergy sink/source. For the glacier test case, this non-conservation of energy is equivalent to an additional energy flux with an

average of −14.5W m−2 (thus cooling the domain) and a standard-deviation of 123.5W m−2. In the snowpack test case, this630

corresponds to an additional energy flux with an average of −2.3
::::
0.34W m−2 (cooling

:::::::
warming

:
the domain) and a standard

deviation of 52
::
39W m−2. In both cases, the large value of the standard deviation compared to the average indicates that this

"artificial" energy term displays large fluctuations, strongly affecting the simulations. Notably, in both cases the ablation of

the glacier and the snowpack is reduced, with a decrease of respectively 40 and 11%
:::
8% compared to the energy-conserving

implementation.635

7 Conclusions

Current implementations of the surface energy balance
:::
SEB

:
in a finite volume framework can present one of the two limitations:

(i) with the standard skin-layer formulation the surface energy balance
::::
SEB is solved sequentially with the internal heat budget,

therefore creating a form of decoupling between the surface and the interior of the domain, or (ii) the surface energy balance640

::::
SEB is integrated in the first cell, and there is no difference between this first cell temperature and the surface temperature. To

circumvent these limitations, we derive a mathematical framework that includes both (i) an explicit surface, with a temperature
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Figure 14. Comparison between the energy conservative and non-energy conservative skin layer numerical schemes. The left column corre-

sponds to the glacier test case and the right column to the snowpack test case. Upper panels display the surface temperatures and the lower

panels display the phase change rates.

different from that of the first cell below, and (ii) the tightly-coupled resolution of the surface and internal heat budgets including

a potential surface melting. Notably, a unified treatment of melting and non-melting surface is proposed via the use of a fictitious

variable playing the role of a switch between melting and non-melting conditions.645

A specific Newton’s method is also presented to robustly and efficiently solve the resulting non-linear system of equations.

The robustness of the standard Newton’s method is increased by using a truncation method, made to handle discontinuities in

the equations. Furthermore, a reduction technique, based on the computation of a Schur complement, is presented so that the

numerical cost of the proposed framework is
::::::
remains of the same order as that of the standard implementations , in particular

:::
for

::
the

:::::
same

:::::
mesh.

::
In

:::::::::
particular,

::
for

::
a
:::::
given

:::::
mesh,

:::
the

::::::::
numerical

::::
cost

:
is
::::::
similar

::
to
::::
that

::
of

::::::
models

:::
not

::::::::
explicitly

::::::
having

:
a
::::::
surface

::::
and650

::::
about

:::
1.7

:::::
larger

::::
than

:
that of the skin-layer

:::::::::::
standard-skin

::::
layer

::::::::::
formulation. It can therefore be implemented in existing snowpack

and glacier models, while preserving their current numerical efficiency. Moreover, the reduction technique presented in this

article can also be employed for other non-linear systems of equations (besides the energy budget treated here), by eliminating

linearly-dependent variables and reducing the size of the non-linear system to be iteratively solved, providing substantial gain

when only a small portion of the discretized equations contains non-linearities.655

Numerical test cases, corresponding to a snow-free glacier and a snowpack, have been performed in order to compare the

results obtained with the different numerical treatments of the surface energy balance
::::
SEB. Mesh and time step convergence

analyses show that combining a coupled treatment of the surface energy balance
::::
SEB with the explicit introduction of a surface

results in a
::
an

::::::
overall

:
better accuracy when compared to the classical implementations. Notably, defining an explicit surface

temperature enables the use of about 5 times coarser meshes, compared to models using the temperature of the first cell as the660
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surface temperature, for the same level of accuracy on temperature and phase change. Moreover, a coupled treatment appears

more stable than
::::::::::::
tightly-coupled

::::::::
treatment

::
of

:::
the

::::
SEB

::::::
allows

:::::::::::
unconditional

:::::::
stability,

:::::
while

:
the standard skin-layer formulation

, which can display
:::
can

:::
be

:::::::
unstable

:::
and

::::::::
displays large spurious oscillations with increasing

::::
large

::::
time

::::
steps

::::
and

:::::
small

:::::
mesh

::::
sizes.

::::::
Thus,

:::::
while

:
a
:::
bit

:::::
more

::::::::::
numerically

::::::
costly,

:::
the

::::::::::
formulation

::::::::
presented

:::
in

:::
this

::::::
article

:::
can

:::
be

::::
used

::
to
:::::::

overall
::::::
reduce

:::
the

::::::::
numerical

::::
cost

::
of

::
a
::::::::::::::
snowpack/glacier

::::::
model

:::::::
through

:::
the

:::
use

:::
of

:::::
larger

:
time steps. Finally, we show that the conservation of665

energy could easily be broken when implementing a standard (loosely-coupled) skin-layer model, leading
:
.
:::::
While

::::
this

:::::
could

::
be

::::
used

::
as

::
a

::::::::
technique

::
to

::::::::::
numerically

:::::::
stabilize

:::
the

::::::
model,

::
it

::::
leads

:
to greatly deteriorated simulations.

Appendix A:
::::::
Matrix

::::::::::
expressions

::::
and

:::::::::
numerical

::::
cost

::
of

:::
the

::::::::::::::
coupled-surface

:::::::
scheme

A1
::::::
Matrix

:::::::::::
expressions

:::::::
Combing

::::
Eqs.

::::
(5),

:::
(6),

:::
and

:::::
(10),

:::
the

::::::
Newton

:::::::
scheme

::
of

:::
the

:::::::::::::
coupled-surface

:::::
model

::::::::
proposed

::
in

::::
this

:::::
article

:::
can

:::
be

::::::
written

:::::
under670

::::
block

::::::
matrix

:::::
formAdiag Aup

Alow As

Tint
Us

=

Bint

Bs


::::::::::::::::::::::::::::::::

(A1)

::::
with

:::::::
non-zero

:::::
terms

:::::
being

:

Adiag(k,k) = ∆zk
:::::::::::::::

cp
:

k +∆t

(
λharm
k+ 1

2

∆zk
2 + ∆zk+1

2

+
λharm
k− 1

2

∆zk
2 + ∆zk−1

2

)
:::::::::::::::::::::::::::::::::

(A2)

Adiag(k,k− 1) =−∆t
λharm
k− 1

2

∆zk
2 + ∆zk−1

2
:::::::::::::::::::::::::::::

(A3)675

Adiag(k,k+1) =−∆t
λharm
k+ 1

2

∆zk
2 + ∆zk+1

2
:::::::::::::::::::::::::::::

(A4)

Aup(N − 1,1) =Alow(1,N − 1) =−∆t
λharm
N− 1

2

∆zN−1

2 + ∆zN
2

::::::::::::::::::::::::::::::::::::::::::::

(A5)

As(1,1) = ∆zN
::::::::::::

cp
:

N +∆t

(
λharm
N− 1

2

∆zN
2 + ∆zN−1

2

+
λN
∆zN
2

)
:::::::::::::::::::::::::::

(A6)
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As(2,2) = ∆t

(
λN
∆zN
2

dτTsurf +Lfusdτṁ−dτH −dτL−dτLWout −−dτR

)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(A7)

As(1,2) =−∆t
λN
∆zN
2

dτTsurf

:::::::::::::::::::::::

(A8)680

As(2,1) =−∆t
λN
∆zN
2

:::::::::::::::::

(A9)

Bint(k) = ∆zk
::::::::::::

cp
:

kT
n−1
k +∆tSWint,k

::::::::::::::::
(A10)

Bs(1) = ∆zN
:::::::::::

cp
:

NT
n−1
N +∆t

(
SWint,N − λN

∆zN
2

(
dτTsurfτ

i −Ts(τ
i)
))

::::::::::::::::::::::::::::::::::::::::::::

(A11)

Bs(2) = ∆t
(
SW surf

net +LWin −
λN
∆zN
2

(
Ts(τ

i)−dτTsurfτ
i
)
−Lfus

(
m(τ i)−dτmτ

i
)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

+
(
H(τ i)−dτHτ

i
)
+
(
L(τ i)−dτLτ

i
)
+
(
R(τ i)−dτRτ

i
)
+
(
LWout(τ

i)−dτLWoutτ
i
))

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(A12)685

::
In

:::
the

:::::
above

::::::::::
expressions,

:::::
Tn−1
k ::

is
:::
the

::::::::::
temperature

:::
of

:::
cell

::
k

::
at

:::
the

:::::::
previous

::::
time

:::::
step,

:::::::
SWint,k ::

is
:::
the

:::::::
quantity

::
of

:::::::::
shortwave

:::::::
radiation

::::::::
absorbed

::
in

::::
cell

::
k,

:::
and

::
τ i

::
is
:::
the

:::::
value

:::
of

:::
the

:::::::
fictitious

:::::::
variable

::
τ

::
at

:::
the

::::
start

::
of

:::
the

::::::
current

:::::::::
non-linear

::::::::
iteration.

::::
The

::::
terms

:::::::
Ts(τ

i),
::::::
H(τ i),

:::
etc,

::::
and

:::::::
dτTsurf ,:::::

dτH ,
::::
etc,

:::
are

:::
the

::::::
values

::
of

:::
the

::::::
surface

:::::::::::
temperature,

:::::::
sensible

::::
heat

::::
flux,

::::
etc,

:::
and

:::::
their

:::::::::
derivatives

::
at

::
the

:::::::
current

::
τ i

:::::::::
estimation.

690

::::::
Among

:::
the

:::::::
different

::::::
partial

::::::::::
derivatives,

::::
dτH::::

and
::::
dτL :::

can
::
be

:::::::
difficult

::
to
::::::::::
analytically

::::::
derive.

::::
For

::::
that,

:::
we

:::
first

::::
note

::::
that

:::
the

::::
chain

::::
rule

:::::
yields

::::::::::::::::
dτH = dTs

HdτTs,::::
and

:::::::::::::::
dτL= dTs

LdτTs. :::::
Then,

:::
for

:::
the

:::::::::
expression

::
of

::
H

:::::
given

::
in

::::::::
Appendix

::
D
:::
we

:::::
have:

dTs
H = ρacp,au(dTs

CH(Ta −Ts)−CH)
:::::::::::::::::::::::::::::::::

(A13)

::::::::
Moreover,

:::
the

:::::
chain

::::
rule

:::::
yields

:::::::::::::::::::::
dTsCH = dRibCHdTsRib.

::
In

:::
our

:::::
case:
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dRibCH =
κ2

ln
(

z
z0

)(
z
z0t

)

0 if Rib < 0

50Rib − 10 if 0≤ Rib < 0.2

0 if 0.2≤ Rib
:::::::::::::::::::::::::::::::::::::::::::::::

(A14)695

:::
and

dTs
Rib =− gza

Tau2
::::::::::::::

(A15)

::::::::
Similarly,

:::
for

::
L,

:::
we

:::::
have:

dTs
L= ρaLsu(dTs

CE(qa − qs)−CEdTs
qs)

:::::::::::::::::::::::::::::::::::
(A16)

:::
The

:::::::::
derivative

:::::
dTs

CE::::
can

::
be

:::::::::
computed

::
as

:::
the

::::
one

::
of

:::
CH:::::::

through
:::
the

:::::
chain

:::
rule

::::
and

::
its

::::::::::
dependence

:::
to

::::
Rib.

:::
The

:::::::::
derivative700

::
of

::
qs ::::

with
::::::
respect

::
to

::
Ts::::

can
::
be

:::::
easily

::::::::
obtained

:::::
using

::
the

:::::::::
derivative

::
of

:::
the

::::::::
saturated

:::::
water

:::::
vapor

:::::::
pressure,

::::::
which

:
is
:::::
given

:::
by

:::
the

::::::::::::::::
Clausius-Clapeyron

:::::::
relation.

A2
:::::::::
Numerical

::::
cost

:::
We

:::
see

:::
that

:::
the

::::::
whole

::::::
system

::
of

::::
Eqs.

:::::
(A1)

::
is

:
a
::::::::::
tri-diagonal

::::::
system

:::
of

:::::::::
dimension

::::::::::::::::
(N +1)× (N +1),

::::
with

:::
N

:::
the

::::::
number

:::
of

::::
cells.

:::::::
Without

:
a
::::::::::::::::
Schur-complement,

:::
the

:::::::::::
computation

::
of

:::::
A−1B

:::
can

::::
thus

::
be

::::::
solved

::::
with

:::::::
Thomas

::::::::
algorithm

::::::::::::::::::::::::::::
(Versteeg and Malalasekera, 2007)705

::
in

:::::::
10N − 1

::::
base

:::::::::
operations

:::::::::
(addition,

::::::::::
subtraction,

::::::::::::
multiplication,

::::
and

:::::::
division)

::::
per

:::::::::
non-linear

:::::::
iteration

:::::::::
(neglecting

::::
the

::::
time

::::
spent

::::::::::
assembling

:::
the

:::::::::
matrices).

:::
We

::::
also

::::
note

::::
that

:::::
Adiag::

is
::

a
::::::::::
tri-diagonal

:::::::
matrix,

:::
and

::::
thus

:::::::
Thomas

:::::::::
algorithm

::::
also

:::::::
applies.

::::::::
Moreover,

:::
we

::::
see

:::
that

:::::
Aup :::

and
:::::
Alow:::

are
::::::
almost

::::::
empty

::::::::
matrices,

::::::
which

::::::::
simplifies

:::
the

:::::::
number

:::
of

:::::::::
operations

::::::::
necessary

:::
to

:::::::
compute

:::::::::
A−1

diagAup :::
and

:::::::::::::
AlowA

−1
diagAup.

:::::::::::
Specifically,

:::
the

::::::::::::::::
Schur-complement

::::::::
technique

:::::
used

::
in

::::
this

:::::
paper

:::
can

:::
be

:::::::::
employed

::::
with

::::::
7N − 9

::::::::::
(A−1

diagAup,
:::::
once

:::
per

::::
time

:::::
step)

::
+

:::::::::
10N − 21

::::::::::
(A−1

diagBint, ::::
once

::::
per

::::
time

:::::
step)

:
+
:::
15

:::::::::
(assembly

::::
and

::::::
solving

:::
of710

::::::::::::::::
Schur-complement,

::::
once

:::
per

:::::::
iteration)

::
+
:::
2N

::::::::::
(re-injection

::
to
::::::::
compute

::::
Tint,::::

once
:::
per

::::
time

::::
step)

:::::
steps,

:::
i.e.

:
a
::::
total

::
of

::::::::::::::
17N − 6+15nit

::::
steps,

:::::
with

:::
nit :::

the
::::::
number

:::
of

::::::::
non-linear

:::::::::
iterations.

:::
We

::::
see,

:::
that

:::
the

:::::::::
advantage

::
of

:::
the

::::::::::::::::
Schur-complement

::::::::
technique

::
is

::::
that

:::
the

:::
cost

:::
of

:::::::::
performing

:::::::::
non-linear

::::::::
iterations

:::
do

:::
not

::::::::
increase

::::
with

:::
the

:::::
mesh

:::::::::
resolution,

:::::::
yielding

::
a
::::::
smaller

:::::::::::
numerically

::::
cost

::::
than

:::::::
inverting

:::
the

:::::
whole

::::::
system

:::
for

::::
each

:::::::::
non-linear

::::::::
iteration.

715

:::
One

::::
may

::::
then

:::::::
wonder

::::
how

:::
the

::::::::
numerical

::::
cost

::
of

:::
the

:::::::
scheme

::::::::
proposed

::
in

:::
the

::::::
article

::::::::
compares

::
to

:::
the

:::::
Class

:
1
::::
and

:
2
:::::::
models

::::::::
discussed

::
in

:::
the

:::::
paper.

:::
The

:::::
Class

::
1

:::::
model

:::::
(once

:
a
::::::::::::::::
Schur-complement

::::::::
technique

:::
has

::::
been

:::::::::
employed)

::
as

::
a

::::::
similar

::::::::
numerical

::::
cost

::
as

:::
the

::::::::
proposed

:::::::::::::
coupled-surface

:::::::
scheme

::::::::
approach,

::::::
namely

::::::::::::::::
17N − 23+15nit :::::

steps.
:::
For

::
a

:::::
given

:::::
mesh,

::
it

:::
has

:::
one

::::
less

::::::
degree

::
of

:::::::
freedom

::
as

:::
the

:::::::::::::
coupled-surface

:::::::
scheme

:::
and

::
is
::::
thus

::::
only

::::::::::
marginally

:::
less

::::::
costly.

:::
The

:::::
Class

::
2
:::::
model

::
is
:::
the

:::::
least

:::::
costly

::
of

:::
all
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:::::::
schemes

::::::::
discussed

::
in

:::
the

:::::
paper.

:::::::
Indeed,

::::
once

:::
the

::::
SEB

::::
and

:::
the

::::::
surface

::::::::::
temperature

::::
have

::::
been

::::::
solved

:::::::
through

:::::
scalar

:::::::::
non-linear720

::::::::
iterations,

::
it

::::
relies

:::
on

:
a
::::::
single

::::::::::
tri-diagonal

:::::::
inversion

:::
of

:::::::::
dimension

::::::
N ×N ,

::::::
which

:::
can

:::
be

::::
done

::
in

:::::::::
10N − 11

:::::
steps.

:::
The

:::::
ratio

::
of

::
the

:::::::::
numerical

::::
cost

::
of

:::
the

::::::
scheme

::::::::
proposed

::
in

:::
the

::::::
article

::::
over

:::
that

::
of

:::
the

:::::::
standard

:::::::::
skin-layer

::
is

::
of

:::::
about

:::
1.7.

:

Appendix B: System size reduction for class 1 models

The size-reduction technique presented in Section 4.1.1 can also be employed for class 1 models, i.e. models where the surface

energy budget
::::
SEB is integrated directly within the first cell and where the temperature of this first cell plays the role of the725

surface temperature. Such an implementation is used for our comparison in Section 5 as a way to speed up our implementation

of a class 1 model.

As explained in Section 5, we made sure that for our resolution of class 1 model, the top-most cell does not overshoot the

fusion
:::
melt

:
temperature, as it would bias the surface energy budget

::::
SEB. This is done by including the effect of first-order730

phase change in the top-most cell. For that, we use the energy content h of the top cell as the prognostic variable, instead of its

temperature. The discrete energy budget of the top cell thus writes:

∆zh
n+1 +∆tFSEB +∆tF =∆tQ+∆zh

n (B1)

where hn+1 and hn are the energy content at the end and start of the time step, FSEB the net energy sum of the surface

energy fluxes (taken positive if oriented towards the domain), F the heat conduction flux exchanged with the cell below, Q the735

volumetric internal heat source, and ∆t the time step size. The conduction flux F is computed as the other conduction fluxes

(Eq. 6
::
(6)), simply noting that the temperature of the top cell is a non-linear function of its energy content h.

Combining all budget equations over the domain leads to a matrix system of the type:

Adiag Aup

Alow As

Tint
Us

=

Bint

Bs

 (B2)

where Us = [TN−1,h], and Adiag, Aup, Alow
:::::
Adiag,

:::::
Aup,

:::::
Alow :

and the vector Bint are constant during the non-linear740

iterations. Therefore, the reduction technique presented in Section 4.1.1 applies and the unknown Us can be solved through the

2× 2 non-linear system:

(As −AlowA
−1
diagAup)Us =Bs −AlowA

−1
diagBint (B3)

with only As and Bs to be re-assembled at each iteration.
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Appendix C:
:::::
Finite

::::::::
Element

:::::::
Method

::::::
scheme745

::
In

:::
this

::::::
paper,

:::
we

:::::
focus

:::
on

:::
the

:::::
FVM

::::
for

::::::
spatial

::::::::::::
discretization.

::::::::
However,

:::
the

::::
heat

:::::::
budget

:::::::
equation

:::::
could

::::
also

:::
be

::::::::
spatially

:::::::::
discretized

::::
with

:::
the

:::::
FEM.

::::::
Indeed,

:::
the

:::::
FEM

:::::::
naturally

::::::::
includes

:
a
::::
node

::
at
:::
the

:::::::
surface,

:::
and

::::
thus

:::::::::
possesses

:
a
::::::
surface

:::::::::::
temperature,

:::::
which

:::::
helps

::
to

::::::
tightly

::::::
couple

::::
the

::::
SEB

:::
to

:::
the

:::::::
interior

::
of

:::
the

:::::::::::::::
snowpack/glacier.

:::::
This

:::::::
strategy

::
is
:::
for

::::::::
instance

::::::::
employed

:::
in

::
the

::::::::::::
SNOWPACK

::::::
model

::::::::::::::::::::::::::::::::::::::
(Bartelt and Lehning, 2002; Wever et al., 2020)

:
.
:::::::::::
Specifically,

::
in

::::::::::::
SNOWPACK,

:::
the

:::::::
coupled

:::::
SEB

::
is

:::::::::
introduced

::
as

:
a
:::
top

::::::
Robin

::::::::
boundary

::::::::
condition.750

:::
The

::::
goal

::
of

::::
this

:::::::
appendix

::
is
::
to

::::::
briefly

::::::
present

::::
how

:::
the

:::::::::
techniques

::::::::
presented

::
in

:::
the

:::::
main

:::
part

::
of

:::
the

::::::::::
manuscript

:::::::
(namely

:::
the

:::
use

::
of

:::::::
fictitious

:::::::
variable

:::
and

:::
of

:
a
::::::::::::::::
Schur-complement)

::::
can

::
be

::::
used

::
to

:::::::::
implement

::
a

::::::::::::
tightly-coupled

:::::
FEM

::::::
model.

C1
::::::::::
Expression

::
of

:::
the

::::
heat

::::::::
equation

::
in

:::::
FEM

:::
We

:::::::
consider

:::
the

:::::
mesh

::
of

:::
the

::::::
domain

::
to

:::
be

:::::::::
discretized

:::
into

:::
N

:::
1D

:::::::
elements

::::
(the

:::::
direct

:::::::::
equivalent

::
of

:::
the

::::
cells

::
in

::::::
FVM)

:::
and

::::
thus755

::
of

:::::
N +1

::::::
nodes

:::
(the

:::::::::
end-points

:::
of

:::
the

::::::::
elements).

:::
As

:::::::::
classically

:::::
done

::::
with

::::
FEM

::::::::::::::::::::::::
(Pepper and Heinrich, 2005),

:::
we

:::::::
assume

:::
the

::::::::::
temperature

::::
field

::
to

::
be

::
a
:::::
linear

::::::::::
combination

:::
of

::::
basis

::::::::
functions

:::
φj ,

:::
i.e.

::::::::::::::::::::::::
T (z, t) =

∑N
k=1Tj(t)φj(z).:::::

Here,
:::
we

:::
use

:::::
basic

:::::
linear

::::::::
elements.

::
In

:::
this

::::::::::
framework,

:::::
Tj(t)::::::::::

corresponds
::
to

:::
the

:::::
nodal

:::::
value

::
of

:::
the

:::::::::::
temperature

::::
field

::::::
(which

::::::
evolves

::::
over

:::::
time)

::::
and

:::
the

::::
basis

::::::::
functions

:::::
φj(z):::

are
:::::::::
piece-wise

:::::
linear

:::::::::
functions,

::::::
valued

:
1
::
at

:::::
node

:
j
:::
and

::
0
::
at

::
all

:::::
other

::::::
nodes.

:::
The

::::::::
standard

:::::::
Galerkin

:::::
form

:::::::::::::::::::::::
(Pepper and Heinrich, 2005)

::
of

:::
the

::::::
internal

::::
heat

::::::
budget

::::
(Eq.

::::
(1))

::
is:

:
760

∀i
∑
j

dtTj

∫
Ω

cpφjφidL+
∑
j

Tj

∫
Ω

λ∇φj · ∇φidL =

∫
Ω

QφidL+Fsφi(s)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(C1)

:::::
where

::
Ω

:::::::::
represents

:::
the

::::::
domain

:::
of

:::::::::
simulation,

:::
Fs ::

is
:::
the

::::::
energy

:::::
fluxes

:::::::
entering

::
at

:::
the

:::
top

:::
of

:::
the

::::::
domain

::::
(i.e.

:::
G),

::::
and

:::::
φi(s)

:
is
:::
the

:::::
basis

:::::::
function

:::
φi ::::::::

evaluated
::
at

:::
top

::
of

:::
the

:::::::
domain.

:::
We

::::
note

::::
that

::::::::
similarly

::
to

:::
the

:::::
FVM

::::
case,

:::
the

::::::::::
temperature

::
at
:::
the

:::
top

:::
of

::
the

:::::::
domain

:::::::
presents

:
a
::::::
regime

:::::::
change

:::::::
whether

:::
the

::::::
surface

::
is

::::::
melting

::
or

::::
not.

:::
To

:::::
handle

::::
this,

:::
we

::::
rely

::
on

:::
the

::::::::
fictitious

:::::::
variable

::
τ ,

::
i.e.

::::::::::
Ts = Ts(τ).::::

The
:::::
vector

::
of
::::::::::
unknowns,

::::::
denoted

:::
U ,

::
is

::::
thus

::::::::
composed

::
of

:::
the

:::::::
internal

:::::::::::
temperatures

:::
and

::
of

:::
the

::::::
surface

::::::::
fictitious765

:::::::
variable.

:::::::
Finally,

:::
we

::::
have

:::
not

::::::::
included

:::
any

::::::
bottom

::::::
energy

::::
flux

::
to

::::::
lighten

::::
the

:::::::
notation,

:::
but

::
it
:::::
could

:::
be

:::::::
included

::::::
easily.

:::::
Once

:::::::::
temporally

:::::::::
discretized

::::
with

:
a
:::::::::
Backward

:::::
Euler

::::::
scheme

:::
and

:::::::::
linearized,

:::
the

:::::::
problem

::::
can

::
be

::::::::
expressed

::
in
::::::
matrix

:::::
form

:::::::::
AUn =B,

::::
with

:::::::::::::::::::::::
A= (M +∆tK +∆tL)JT :::

and
::::::::::::::::::::::::
B =MTn−1 +∆tQ+∆tF

::::::
(Tn−1

:::::
being

:::
the

:::::
vector

:::
of

::::::::::
temperature

::::
from

:::
the

::::::::
previous

::::
time

::::
step),

::::
and

M(i, j) =

∫
Ω

cpφjφidL

:::::::::::::::::::

(C2)770
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K(i, j) =

∫
Ω

λ∇φj · ∇φidL

::::::::::::::::::::::

(C3)

L(N +1,N +1) =−dτSEB+Lfusdτṁ
:::::::::::::::::::::::::::::::::

(C4)

JT (i, i) =

1 if i≤N

dτTs else
::::::::::::::::::::::

(C5)

Q(i) =

∫
Ω

QφidL

::::::::::::::

(C6)

:::
and775

F (N +1) = SEB(τ i)− dτSEBτ
i − ṁ+Lfus

(
dτṁτ

i
)

::::::::::::::::::::::::::::::::::::::::::::::
(C7)

:::::
where

:::::
SEB

::::
and

:::::::
dτSEB::::::::::

corresponds
::
to
:::

the
:::::::::::

atmospheric
:::::
fluxes

:::
in

:::
the

::::
SEB

:::
and

:::::
their

:::::::::
derivatives

::::
with

:::::::
respect

::
to

::
τ

::
at

:::
the

::::::
current

:::::::
iteration,

::::
and

::̇
m

:::
and

::::
dτṁ:::

are
:::
the

:::::::
melting

:::
rate

::::
and

::
its

::::::::
derivative

::
at
:::
the

::::::
current

::::::::
iteration.

::
In

:::
the

::::::::
equations

::::::
above,

::::
only

:::
the

:::::::
non-zero

:::::
terms

::::
have

:::::
been

:::::
given.

780

::
As

:::
in

:::
the

:::::
FVM

::::
case,

::::
this

::::::
system

::
is
:::::::::

composed
:::

of
:
a
:::::::::

linear-part
::::

(the
:::::::

interior,
:::::::::::::

corresponding
::
to

:::
the

::::
first

::::::
N − 1

:::::::::
equations)

:::
and

::
a

:::::::::
non-linear

::::
part

::::
(the

:::::::
surface,

::::::::::::
corresponding

::
to
::::

the
:::
last

::::
two

::::::::::
equations).

:::
Its

::::::
solving

::::
can

::::
thus

:::
be

::::::::::
accelerated

:::::
using

::
a

:::::::::::::::
Schur-complement

::::::::
technique

:::::::
(Section

::::::
4.1.1)

::
by

:::::::
breaking

:::
the

::::::
matrix

::
A

:::
into

::::
four

::::::
blocks:

::
a

:::::::
constant

:::::::::::::::
(N − 1)× (N − 1)

::::::::
diagonal

:::::
Adiag :::::

block,
::
a

:::::::
constant

::::::::::
(N − 1)× 2

:::::::
vertical

::::
Aup:::::

block,
::
a
:::::::
constant

:::::::::::
2× (N − 1)

::::::::
horizontal

:::::
Alow:::::

block,
::::

and
:
a
:::::
2× 2

::::::::
diagonal

::::
block

:::
As::

to
:::
be

::::::::::
re-computed

::
at

::::
each

:::::::::
non-linear

::::::::
iteration.785

C2
::::
The

:::
rest

:::
of

:::
the

::::::
model

::::
After

:::::::
solving

:::
the

:::::::
coupled

::::
heat

:::::::
budgets

::::
with

:::::
FEM,

:::
we

::::::
obtain

:
a
:::::
nodal

:::::::::::
temperature

::::
field.

:::::
Since

:::::::::
conserved

:::::::::
quantities,

::::
such

:::
as

:::::
energy

::
or
:::::
mass,

:::
are

:::::::
defined

:::::::::::
element-wise

::
in

::::::::::::::
snowpack/glacier

:::::
FEM

::::::
models

:::::::::::::::::::::::
(Bartelt and Lehning, 2002),

:::
the

:::::
nodal

::::::::::
temperature

::::
field

:::::
needs

::
to

::
be

::::::::
converted

::::
into

::
an

:::::::::::
element-wise

::::::
energy

:::::
field.

:::
We

::::
note

:::
that

::::
this

:::
also

:::::::
defines

::
an

:::::::::::
element-wise

::::::::::
temperature

:::::
field,790

:::::
where

:::
the

::::::::::
temperature

::
of

::
an

:::::::
element

::
is

::::::
simply

:::
the

:::::::
average

::
of

:::
the

:::::
nodal

::::::::::
temperatures

::
at
:::
its

::::
end.

::::
This

:::::::::::
element-wise

::::::
energy

::::
field
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:::
can

::::
then

::
be

:::::
used

::
to

:::::::
simulate

::::::::::::
melt/refreeze,

:::::
liquid

:::::
water

::::::::::
percolation,

::::
and

::
to

::::::
remesh

:::
the

:::::::
domain

:::::
using

:::
the

::::
same

:::::::
routines

:::
as

::
in

::::
FVM

:::::::
models.

::::
Once

:::
all

:::::::
routines

:::
for

:
a
:::::
given

::::
time

::::
step

::::
have

:::::
been

:::::::::
performed,

:::
we

:::
are

:::
left

::::
with

:::
an

:::::::::::
element-wise

::::::::::
temperature

::::
field

::::
that

:::::
needs795

::
to

::
be

::::::::
converted

:::::
back

::
to

::
a

:::::
nodal

::::::::::
temperature

::::
field,

:::
as

:::::::
required

:::
for

:::
the

:::::
FEM.

::::::::
However,

::::
this

:::::::::
conversion

::
is

:::
not

::::::::::::::
straightforward.

::::
First,

:::
as

:::
we

::::
have

:::
N

:::::::::::
element-wise

:::::::::::
temperatures

:::
to

::::::::
transform

::::
into

::::::
N +1

:::::
nodal

::::::::::::
temperatures,

:::
the

::::::::
problem

::
is

:::
not

::::::::
properly

:::::
closed

::::
and

::
an

:::::
extra

:::::::::
(arbitrary)

::::::::
constraint

::::::
needs

::
to

::
be

::::::
added.

:::::
This

:::::
could,

:::
for

::::::::
instance,

:::
be

::::::
setting

:::
the

::::::
surface

::::::::::
temperature

:::
to

::
the

:::::
value

:::::::::
computed

::
in

:::
the

:::::
SEB.

:::::::::::
Furthermore,

::::
even

::::
after

::::::::
choosing

:::
an

::::
extra

:::::::::
constraint

::
to

:::::
close

:::
the

:::::::
problem,

:::
the

::::::::::::
element-wise

::
to

::::::::
node-wise

:::::::::::::
transformation

:::
can

:::::::
produce

:::::::
spurious

::::::::::
oscillations

::
in

:::
the

:::::
nodal

::::
field

::::
even

::
if
:::
the

:::::::::::
element-wise

::::
field

::
is
:::::::::::
monotonous800

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(in other words, the transformation does not respect a form of discrete maximum principle; Ciarlet and Raviart, 1973)

:
.
:
It
::
is

::::::::
therefore

:::
not

:::::::
possible

::
to

:::::
derive

:::
an

::::::
optimal

:::::::
scheme

:::
for

:::
this

::::::::::::
transformation

::::
that

::::::
would

::
(i)

:::
not

::::::
modify

:::
the

::::::::::::
element-wise

::::::::::
temperature

::::
field

:::
and

:::
(ii)

:::
not

:::::
create

:::::::
spurious

::::::::::
oscillations

::
in

:::
the

:::::::::
node-wise

::::::::::
temperature

::::
field.

::
As

::::::::
spurious

::::::::::
oscillations

::
in

:::
the

::::::::::
temperature

:::::
field

:::::
would

::::::
affect

:::
the

:::::::::
estimation

::
of

::::
the

::::::::::
temperature

::::::::
gradients

::::
that

:::
are

::::
used

:::
in

::::::::
snowpack

::::::
models

::
to

:::::::
estimate

::::::::::::
metamorphism

:::::::::::::::::::::::::::::::::::::::::::
(e.g. Bartelt and Lehning, 2002; Vionnet et al., 2012)

:
,
:
it
::::::
seems

::::::::
preferable

::
to

:::::
rather805

::::
allow

:::
the

:::::::::::
modification

::
of

:::
the

:::::::::::
element-wise

:::::::::::
temperature

::::
field.

::::
That

:::::
being

:::::
said,

::::
such

:
a
:::::::
strategy

:::::::
implies

:
a
::::::
spatial

::::::::::::
re-distribution

::
of

::::::
energy

:::::::
between

:::::::
elements

::::
that

:
is
:::
not

:::::::::
motivated

::
by

:::
any

::::::::::
underlying

:::::::
physical

::::::::::
mechanism.

:::
We

::::
note

:::
that

:::
the

:::::::::::
SNOWPACK

::::::
model

::::::
handles

:::
this

:::::::
element

::
to

::::
node

:::::::::::::
transformation

:::::
during

::
a

:::::
phase

::::::
change

:::
step

::::
after

:::
the

:::::
liquid

::::::::::
percolation

:::::::
scheme,

:::
and

::::
does

::
so

:::::::
without

::::::
creating

:::::
large

:::::::
spurious

::::::::::
temperature

::::::::::
oscillations.

810

::::::::::::
Unfortunately,

:
it
::
is

:::
not

:::::::
possible

::
to

::::::
directly

:::::::::
implement

:::
the

::::::::::::
SNOWPACK

::::::
scheme

::
in

:::
our

:::::::::
toy-model,

::
as

:::
the

:::::::::
sequential

::::::::
treatment

:
is
:::
not

::::
the

:::::
same.

:::::::::
Moreover,

::
we

::::
did

:::
not

:::::::
manage

::
to

:::::
derive

::
a

::::::
scheme

::::
that

::::::::
performs

:::
this

:::::::
element

::
to

:::::
node

::::::::::::
transformation

:::::::
without

:::::::
affecting

:::
the

::::::
surface

:::::::::::
temperature.

:::::
Thus,

::
in

:::
our

::::::::
numerical

:::::::::::
simulations,

:::
the

::::
FVM

::::
and

::::
FEM

:::::::
models

::::
yield

:::::::
different

:::::::
results.

::
In

:::
the

::::::
absence

::
of
:::
an

::::::::
analytical

::::::::
solution,

:
a
:::::
direct

::::::::::
comparison

::
of

:::
the

:::::
FEM

:::
and

:::::
FVM

::::::::::::::
implementations

::::::
remains

::::::::::
impossible.

:

Appendix D: Expression of turbulent fluxes used in this work815

The computations of the turbulent fluxes used in this work are based on those provided by Sauter et al. (2020), with slight

modifications. The sensible and latent heat fluxes, H and L, are taken as:

H = ρacp,aCHu(Ta −Ts) (D1)

and

L= ρaLsCEu(qa − qs) (D2)820
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with ρa the density of air, cp,a the thermal
::::
heat capacity of air at constant pressure, u the wind velocity (at a given height),

Lv the latent heat of sublimation of water, Ta and qa the temperature and specific humidity of the air, Ts and qs the temperature

and specific humidity of the surface, assuming the saturation of vapor, and CH and CE two coefficients given by:

CH =
κ2

ln
(

z
z0

)(
z
z0t

)ψ(Rib) (D3)

and825

CE =
κ2

ln
(

z
z0

)(
z

z0q

)ψ(Rib) (D4)

with κ= 0.41 the von Kármán constant, z0 the aerodynamic roughness length, z0q and z0t taken 1 and 2 orders of magnitude

smaller than z0, respectively (Sauter et al., 2020), and ψ a stability correction factor. Specifically, we take ψ as:

ψ(Rib) =


1 if Rib < 0

(1− 5Rib)
2

if 0≤ Rib < 0.2

0 if 0.2≤ Rib

(D5)

with Rib the bulk Richardson number:830

Rib =
g

Ta

(Ta −Ts)za
u2

(D6)

with za the height at which the air temperature measurement is performed.

There are two main differences compared to the expression of the turbulent fluxes given in (Sauter et al., 2020). First, in

Sauter et al. (2020), the transition between the unstable and stable correction factor ψ is taken for Rib = 0.01, while we take it835

for Rib = 0. This choice is made to ensure the continuity of the stability factor, and thus of the turbulent fluxes, as a function of

Ts. In the presence of a discontinuity, it can indeed happen that the SEB does not have a solution in terms of Ts, and the surface

temperature is no longer defined in this case. Secondly, for the expression of the latent heat flux, we simply keep the latent heat

of sublimation Ls and do not replace it with the latent heat of vaporization Lv . Again, the goal is to avoid discontinuities in the

SEB as a function of Ts so that the problem remains mathematically well-posed. This approach isfor instance ,
:::
for

::::::::
instance,840

used in the Crocus model (personal communication; M. Lafaysse). Another strategy could be to fix the latent heat to either its

sublimation or vaporization value, depending on the initial state of the surface.

Appendix E:
:::::::
Stability

::::::::
Analysis
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::::
Here,

:::
we

:::::::
present

:::
the

:::::::::
derivation

::
of

::::
the

::::::
criteria

:::
for

:::
the

:::::::::
numerical

:::::::
stability

:::
of

:::
the

::::::::
different

::::::::
numerical

::::::::
schemes

::::::::
presented

:::
in

::
the

::::::
paper.

:::
We

::::::
follow

::::
the

:::::
proof

:::::::::
classically

::::
used

:::
to

::::
show

::::
the

:::::::::::::
(un)conditional

:::::::
stability

::
of

::::
the

:::::::
Forward

::::
and

:::::::::
Backward

:::::
Euler845

::::::
method

:::::::::::::
(Butcher, 2008)

:
.
:::::::
Notably,

:::
the

:::::
proof

::::
relies

:::
on

:
a
:::::::::
linearized

::::::
version

::
of

:::
the

::::::
system

::
of

:::::::::
equations.

::
As

:::
the

::::::
system

:::::
needs

::
to
:::
be

::::::::
linearized,

:::
we

::::::
cannot

:::::::
account

:::
for

:::
the

:::::::
potential

:::::::
melting

::
of

:::
the

:::::::
surface.

::::::
Under

:::
this

::::::::::::
consideration,

:::
the

::::::::::
atmospheric

::::::
fluxes

::
in

:::
the

::::
SEB

:::::::::
(long-wave

:::::::::
radiations,

::::::::
turbulent

::::::
fluxes,

:::
etc)

:::
are

::::::
simply

:::::::::
expressed

::
as

::
a

:::::
linear

:::::::
function

::
of

:::
the

:::::::
surface

::::::::::
temperature

:::
Ts, :::

i.e.

::
as

:::::::
fTs + b,

:::::
where

::
f

:::
and

::
b
:::
are

:::::::
constant

::::::
scalars

::::::::
expressed

::
in

:::::::::::::
J s−1 m−2 K−1

:::
and

::
in

:::::::::
J s−1 m−2,

:::::::::::
respectively.

::::
Also,

:::
for

:::::::::
simplicity,

:::
we

:::::::
consider

:
a
::::::
system

:::::::::
composed

::
of

::::
only

:::
one

:::
cell

::::
and

::
its

:::::::
surface.

:::
The

:::::::
problem

:::::
could

:::
be

:::::::::
generalized

::
to

:::::
more850

::::
cells,

:::
but

::
it

:::::
would

:::::
make

:::
the

::::::::::
computation

:::::
more

:::::::::::
cumbersome

:::
and

::
is

:::
not

::::::
crucial

::
as

::
we

:::
are

::::::::::
considering

:::::::::
numerical

:::::::::
instabilities

::::
that

::::::
develop

::
in

:::
the

:::::::
vicinity

::
of

:::
the

:::::::
surface.

E1
::::::::
Standard

:::::::::
skin-layer

:::::::::::
formulation

::::::
(Class

::
2)

::
To

:::::::
compute

:::
the

:::::::
surface

::::::::::
temperature

:::::
Tn+1
s ::

at
::::
time

:::
step

::::::
n+1,

:::
we

:::
use

:::
the

:::::::::
discretized

:::::::
Surface

::::::
Energy

:::::::
Balance

::::::
(SEB):855

fTn+1
s + b+

2λ

∆z

(
Tn+1
s −Tn

i

)
= 0

:::::::::::::::::::::::::::::

(E1)

:::::
where

:::
the

:::
first

::::
two

::::
terms

:::::::::::
corresponds

:
to
:::
the

::::
sum

::
of

::::::::::::::::
outgoing/incoming

::::::::::
atmospheric

::::::
fluxes,

:::
and

:::
the

:::
last

::::
term

::
to

:::
the

:::::::::
subsurface

:::
heat

::::::::::
conduction

::::
flux.

::::::
Here,

:
λ
:::

is
:::
the

:::::::
thermal

::::::::::
conductivity

:::
of

:::
the

:::::::
internal

::::
cell

:::
and

::::
∆z

::
its

:::::::::
thickness.

:::::
Note

::::
that

:::
the

:::::::
internal

::::::::::
temperature

:::
Tn
i ::

is
::::
taken

:::::
from

:::
the

:::::::
previous

::::
time

:::::
step.

::
To

::::::::
compute

:::
the

::::::
internal

::::::::::
temperature

::
at
::::
time

::::
step

::::::
n+1,

:::
we

:::
use

:::
the

::::
heat860

:::::
budget

:::
of

:::
the

::::::
internal

::::
cell:

:

∆zcpT
n+1
i +∆t

2λ

∆z

(
Tn
i −Tn+1

s

)
=∆zcpT

n
i

:::::::::::::::::::::::::::::::::::::

(E2)

:::::
where

:::
the

::::::
second

:::::
term

::
of

:::
the

:::::
LHS

::
is

:::
the

::::::::
opposite

::
of

:::
the

::::::::::
subsurface

:::::::::
conduction

::::
flux

:::::::::
appearing

::
in

:::
the

:::::
SEB

::::
(for

::::::
energy

:::::::::::
conservation),

::::
and

:::
cp ::

is
:::
the

::::
heat

:::::::
capacity

:::
of

:::
the

:::::::
internal

::::
cell.

::::
The

::::
two

:::::
above

:::::::::
equations

:::
can

:::
be

:::::::::
expressed

::
in

::::::
matrix

:::::
form

::::::::::::::::::
MUn+1 =NUn +B,

::::
with

:::
Un :::

the
:::::::
solution

:::::
vector

:::::::
[Ts,Ti]

T
::
at
:::
the

::::
nth

::::
time

:::
step

::::
and865

M =

 1 0

− 2∆tλ
cp∆z2 1


::::::::::::::::

(E3)

N =

0 2λ
2λ+∆zf

0 1− 2∆tλ
cp∆z2


::::::::::::::::::

(E4)

:::
and

:::::::::::::::::
B = [− ∆zb

∆zf+2λ ,0]
T .

:::
We

::::
thus

:::::
have,

::::::::::::::::::::
Un+1 =QUn +M−1B,

::::
with
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Q=M−1N =

0 2λ
2λ+∆zf

0 1−∆t 2λ
cp∆z2

∆zf
2λ+∆zf


:::::::::::::::::::::::::::::::::::

(E5)

::
By

:::::::::
recursion,

::
it

::::::
follows

::::
that

:::::::::::::::::::
Un =QnU0 +M−nB.

::::
The

:::::::::
numerical

:::::::
scheme

::
is

:::::::
deemed

:::::
stable

::
if

::::::::::::::
limn→∞Qn = 0.

:::::
This

::
is870

:::::::
achieved

::
if:

:

|1−∆t
2λ

cp∆z2
∆zf

2λ+∆zf
|< 1

::::::::::::::::::::::::

(E6)

:::::
which

::::
after

:::::
some

::::::::::
computation

::::::
yields

:
a
:::::::
criterion

::
of

:::
the

::::
time

::::
step

::::
∆t:

∆t <∆tcrit =
cp∆z

λ

2λ+∆zf

f
:::::::::::::::::::::::::

(E7)

:::
The

::::::::::
(linearized)

:::::::
standard

:::::::::
skin-layer

::
is

::::
thus

::::
only

:::::::::::
conditionally

::::::
stable.

:::
The

:::::::
stability

::::::::
criterion

:
is
:::::::

relaxed
::::
with

:::::::::
increasing

::::
heat875

:::::::
capacity

:::
(cp)

::::
and

::::::::
increasing

::::
cell

:::
size

:::::
(∆z),

::::
and

:
is
:::::
made

:::::
more

::::::::
restrictive

::::
with

:::::::::
increasing

::::::
thermal

:::::::::::
conductivity

:::
(λ)

::
or

::
if

:::
the

::::
SEB

:
is
:::::
more

:::::::
sensitive

::
to
:::::::
changes

::
in
:::
the

:::::::
surface

::::::::::
temperature

::
(f

:::::
term).

:

E2
::::::::::::::
Coupled-surface

:::::::::::
formulation

::::::::
Similarly,

:::
for

:
a
:::
one

::::
cell

::::::
system,

:::
the

::::::::::::::
coupled-surface

::::::::
equations,

::::
after

:::::::::::
linearization,

::::::
write:

fTn+1
s + b+

2λ

∆z

(
Tn+1
s −Tn+1

i

)
= 0

:::::::::::::::::::::::::::::::

(E8)880

::
for

:::
the

:::::
SEB,

:::
and

:

∆zcpT
n+1
i +∆t

2λ

∆z

(
Tn+1
i −Tn+1

s

)
=∆zcpT

n
i

:::::::::::::::::::::::::::::::::::::::

(E9)

::
for

:::
the

:::::
cell’s

:::
heat

:::::::
budget.

:::::
These

:::
two

::::::::
equations

:::
can

:::
be

:::
cast

::::
into

:::
the

:::::
matrix

::::
form

::::::::::::::::::
MUn+1 =NUn +B,

::::
with

::::::::::::::::::
B = [− ∆zb

∆zf+2λ ,0]
T ,

M =

 1 −2λ
2λ+∆zf

− 2∆tλ
cp∆z2+2λ∆t 1


:::::::::::::::::::::::::::

(E10)885
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:::
and

N =

0 0

0
cp∆z2

cp∆z2+2λ∆t


:::::::::::::::::::

(E11)

:::
We

:::
thus

:::::
have

:::::::::::::::::::
Un =QnU0 +M−nB,

::::
with:

:

Q=

0 2λ
2λ+∆zf

cp∆z2

cp∆z2+2λ∆t

0
cp∆z2

cp∆z2+2λ∆t


::::::::::::::::::::::::::

(E12)

:::
The

::::::::
numerical

:::::::
scheme

::
is

::::::
deemed

:::::
stable

::
if

::::::::::::::
limn→∞Qn = 0.

::::
This

::
is

::::::
always

::::::::
achieved,

::
as

::::::::::::::

cp∆z2

cp∆z2+2λ∆t < 1.
:::::
Thus,

::
the

::::::::::::::
surface-coupled890

::::::
scheme

::
is

:::::::::::::
unconditionally

::::::
stable.

E3
:::::::::::::::
Non-conservative

:::::::::
skin-layer

:::::::::::
formulation

:::
For

:::
the

::::::::::::::
non-conservative

::::::::
skin-layer

::::::::::
formulation

::::
(see

::::::
Section

:::::
6.4),

::
we

::::
start

::::
with

:::
the

:::::::::
linearized

:::::::
discrete

::::
SEB:

:

fTn+1
s + b+

2λ

∆z

(
Tn+1
s −Tn

i

)
= 0

:::::::::::::::::::::::::::::

(E13)

:::::
Using

:::
the

::::::
surface

::::::::::
temperature

:::::
Tn+1
s ::

as
::
a

:::::::
Dirichlet

::::::::
condition

:::
for

:::
the

:::::::
internal

::::::
energy

::::::
budget,

:::
we

::::
thus

::::
have895

∆zcpT
n+1
i +∆t

2λ

∆z

(
Tn+1
i −Tn+1

s

)
=∆zcpT

n
i

:::::::::::::::::::::::::::::::::::::::

(E14)

:::::
These

:::
two

::::::::
equations

::::
can

::
be

::::
cast

:::
into

:::
the

::::::
matrix

::::
form

:::::::::::::::::::
MUn+1 =NUn +B,

::::
with

:::::::::::::::::
B = [− ∆zb

∆zf+2λ ,0]
T ,

M =

 1 0

− 2∆tλ
cp∆z2+2λ∆t 1


:::::::::::::::::::::

(E15)

:::
and

N =

0 2λ
2λ+∆zf

0
cp∆z2

cp∆z2+2λ∆t


:::::::::::::::::::

(E16)900

:::
We

:::
thus

:::::
have

:::::::::::::::::::
Un =QnU0 +M−nB,

::::
with:

:
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Q=

0 2λ
2λ+∆zf

0 X


::::::::::::::::

(E17)

:::::
where

:::::::::::::::::::::
X =

2λ∆t 2λ
2λ+∆zf +cp∆z2

2∆tλ+cp∆z2 .
:::
The

:::::::
scheme

::
is

::::::
deemed

:::::
stable

::
if
::::::::
|X|< 1.

::
As

:::::::::::

2λ
2λ+∆zf < 1,

:::
we

::::::
always

::::
have

::::
that

::::::::::::::::::::::::::::::::::
2λ∆t 2λ

2λ+∆zf + cp∆z
2 < 2∆tλ+ cp∆z

2,
:::
and

::::
thus

:::
that

:::
the

:::::::
scheme

::
is

:::::::::::::
unconditionally905

:::::
stable.

::::
That

:::::
being

::::
said,

:::
we

:::::
recall

::::
that

:::
this

:::::::
scheme

:
is
::::
not

:::::
energy

:::::::::::
conservative

:::
and

::::
can

:::
lead

::
to
:::::
large

::::::
errors.

E4
::::::::::
No-surface

::::::::::
formulation

::::::
(Class

::
1)

::::::
Finally,

:::
we

::::
note

:::
that

:::
the

:::::::::
linearized

:::::::::
No-surface

::::::::::
formulation

::::::::::
corresponds

::
to

::
a

::::::
classic

:::
heat

::::::::
equation

::::
with

:
a
:::::::::
Backward

:::::
Euler

::::
time

:::::::::
integration.

:::
As

:::::::::::
demonstrated

:::::::::
elsewhere

::
in

:::
the

:::::::
literature

:::::::::::::::::
(e.g. Butcher, 2008),

::
it
::
is

:::::::::::::
unconditionally

::::::
stable.
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