
Appendix A: Matrix expressions and numerical cost of the coupled-surface scheme635

A1 Matrix expressions

Combing Eqs. (5), (6), and (10), the Newton scheme of the coupled-surface model proposed in this article can be written under

block matrix formAdiag Aup

Alow As

Tint
Us

=

Bint

Bs

 (A1)

with non-zero terms being640
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(A6)645

As(2,2) = ∆t
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dτTsurf +Lfusdτṁ−dτH −dτL−dτLWout −−dτR

)
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As(2,1) =−∆t
λN
∆zN
2

(A9)

29



Bint(k) = ∆zkcpkT
n−1
k +∆tSWint,k (A10)
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(A11)650
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In the above expressions, Tn−1
k is the temperature of cell k at the previous time step, SWint,k is the quantity of shortwave

radiation absorbed in cell k, and τ i is the value of the fictitious variable τ at the start of the current non-linear iteration. The

terms Ts(τ i), H(τ i), etc, and dτTsurf , dτH , etc, are the values of the surface temperature, sensible heat flux, etc, and their655

derivatives at the current τ i estimation.

Among the different partial derivatives, dτH and dτL can be difficult to analytically derive. For that, we first note that the

chain rule yields dτH = dTs
HdτTs, and dτL= dTs

LdτTs. Then, for the expression of H given in Appendix D we have:

dTs
H = ρacp,au(dTs

CH(Ta −Ts)−CH) (A13)660

Moreover, the chain rule yields dTs
CH = dRibCHdTs

Rib. In our case:

dRibCH =
κ2

ln
(

z
z0

)(
z
z0t

)

0 if Rib < 0

50Rib − 10 if 0≤ Rib < 0.2

0 if 0.2≤ Rib

(A14)

and

dTs
Rib =− gza

Tau2
(A15)

Similarly, for L, we have:665

dTsL= ρaLsu(dTsCE(qa − qs)−CEdTsqs) (A16)

The derivative dTsCE can be computed as the one of CH through the chain rule and its dependence to Rib. The derivative

of qs with respect to Ts can be easily obtained using the derivative of the saturated water vapor pressure, which is given by the

Clausius-Clapeyron relation.
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Appendix C: Finite Element Method scheme710

In this paper, we focus on the FVM for spatial discretization. However, the heat budget equation could also be spatially dis-

cretized with the FEM. Indeed, the FEM naturally includes a node at the surface, and thus possesses a surface temperature,

which helps to tightly couple the SEB to the interior of the snowpack/glacier. This strategy is for instance employed in the

SNOWPACK model (Bartelt and Lehning, 2002; Wever et al., 2020). Specifically, in SNOWPACK, the coupled SEB is intro-

duced as a top Robin boundary condition.715

The goal of this appendix is to briefly present how the techniques presented in the main part of the manuscript (namely the use

of fictitious variable and of a Schur-complement) can be used to implement a tightly-coupled FEM model.

C1 Expression of the heat equation in FEM

We consider the mesh of the domain to be discretized into N 1D elements (the direct equivalent of the cells in FVM) and thus720

of N +1 nodes (the end-points of the elements). As classically done with FEM (Pepper and Heinrich, 2005), we assume the

temperature field to be a linear combination of basis functions φj , i.e. T (z, t) =
∑N

k=1Tj(t)φj(z). Here, we use basic linear

elements. In this framework, Tj(t) corresponds to the nodal value of the temperature field (which evolves over time) and the

basis functions φj(z) are piece-wise linear functions, valued 1 at node j and 0 at all other nodes. The standard Galerkin form

(Pepper and Heinrich, 2005) of the internal heat budget (Eq. (1)) is:725

∀i
∑
j

dtTj

∫
Ω

cpφjφidL+
∑
j

Tj

∫
Ω

λ∇φj · ∇φidL =

∫
Ω

QφidL+Fsφi(s) (C1)

where Ω represents the domain of simulation, Fs is the energy fluxes entering at the top of the domain (i.e. G), and φi(s)

is the basis function φi evaluated at top of the domain. We note that similarly to the FVM case, the temperature at the top of

the domain presents a regime change whether the surface is melting or not. To handle this, we rely on the fictitious variable τ ,

i.e. Ts = Ts(τ). The vector of unknowns, denoted U , is thus composed of the internal temperatures and of the surface fictitious730

variable. Finally, we have not included any bottom energy flux to lighten the notation, but it could be included easily. Once

temporally discretized with a Backward Euler scheme and linearized, the problem can be expressed in matrix form AUn =B,

with A= (M +∆tK +∆tL)JT and B =MTn−1 +∆tQ+∆tF (Tn−1 being the vector of temperature from the previous

time step), and

M(i, j) =

∫
Ω

cpφjφidL (C2)735

K(i, j) =

∫
Ω

λ∇φj · ∇φidL (C3)
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L(N +1,N +1) =−dτSEB+Lfusdτṁ (C4)

JT (i, i) =

1 if i≤N

dτTs else
(C5)

Q(i) =

∫
Ω

QφidL (C6)

and740

F (N +1) = SEB(τ i)− dτSEBτ
i − ṁ+Lfus

(
dτṁτ

i
)

(C7)

where SEB and dτSEB corresponds to the atmospheric fluxes in the SEB and their derivatives with respect to τ at the

current iteration, and ṁ and dτṁ are the melting rate and its derivative at the current iteration. In the equations above, only the

non-zero terms have been given.

745

As in the FVM case, this system is composed of a linear-part (the interior, corresponding to the first N − 1 equations) and

a non-linear part (the surface, corresponding to the last two equations). Its solving can thus be accelerated using a Schur-

complement technique (Section 4.1.1) by breaking the matrix A into four blocks: a constant (N−1)× (N−1) diagonal Adiag

block, a constant (N −1)×2 vertical Aup block, a constant 2× (N −1) horizontal Alow block, and a 2×2 diagonal block As

to be re-computed at each non-linear iteration.750

C2 The rest of the model

After solving the coupled heat budgets with FEM, we obtain a nodal temperature field. Since conserved quantities, such as en-

ergy or mass, are defined element-wise in snowpack/glacier FEM models (Bartelt and Lehning, 2002), the nodal temperature

field needs to be converted into an element-wise energy field. We note that this also defines an element-wise temperature field,755

where the temperature of an element is simply the average of the nodal temperatures at its end. This element-wise energy field

can then be used to simulate melt/refreeze, liquid water percolation, and to remesh the domain using the same routines as in

FVM models.

Once all routines for a given time step have been performed, we are left with an element-wise temperature field that needs760

to be converted back to a nodal temperature field, as required for the FEM. However, this conversion is not straightforward.
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First, as we have N element-wise temperatures to transform into N +1 nodal temperatures, the problem is not properly closed

and an extra (arbitrary) constraint needs to be added. This could, for instance, be setting the surface temperature to the value

computed in the SEB. Furthermore, even after choosing an extra constraint to close the problem, the element-wise to node-

wise transformation can produce spurious oscillations in the nodal field even if the element-wise field is monotonous (in other765

words, the transformation does not respect a form of discrete maximum principle; Ciarlet and Raviart, 1973). It is therefore not

possible to derive an optimal scheme for this transformation that would (i) not modify the element-wise temperature field and

(ii) not create spurious oscillations in the node-wise temperature field.

As spurious oscillations in the temperature field would affect the estimation of the temperature gradients that are used in snow-

pack models to estimate metamorphism (e.g. Bartelt and Lehning, 2002; Vionnet et al., 2012), it seems preferable to rather770

allow the modification of the element-wise temperature field. That being said, such a strategy implies a spatial re-distribution

of energy between elements that is not motivated by any underlying physical mechanism. We note that the SNOWPACK model

handles this element to node transformation during a phase change step after the liquid percolation scheme, and does so without

creating large spurious temperature oscillations.

775

Unfortunately, it is not possible to directly implement the SNOWPACK scheme in our toy-model, as the sequential treatment

is not the same. Moreover, we did not manage to derive a scheme that performs this element to node transformation without

affecting the surface temperature. Thus, in our numerical simulations, the FVM and FEM models yield different results. In the

absence of an analytical solution, a direct comparison of the FEM and FVM implementations remains impossible.
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Appendix E: Stability Analysis

Here, we present the derivation of the criteria for the numerical stability of the different numerical schemes presented in the

paper. We follow the proof classically used to show the (un)conditional stability of the Forward and Backward Euler method810

(Butcher, 2008). Notably, the proof relies on a linearized version of the system of equations. As the system needs to be lin-

earized, we cannot account for the potential melting of the surface. Under this consideration, the atmospheric fluxes in the

SEB (long-wave radiations, turbulent fluxes, etc) are simply expressed as a linear function of the surface temperature Ts, i.e.

as fTs + b, where f and b are constant scalars expressed in J s−1 m−2 K−1 and in J s−1 m−2, respectively.

Also, for simplicity, we consider a system composed of only one cell and its surface. The problem could be generalized to more815

cells, but it would make the computation more cumbersome and is not crucial as we are considering numerical instabilities that

develop in the vicinity of the surface.

E1 Standard skin-layer formulation (Class 2)

To compute the surface temperature Tn+1
s at time step n+1, we use the discretized Surface Energy Balance (SEB):820

fTn+1
s + b+

2λ

∆z

(
Tn+1
s −Tn

i

)
= 0 (E1)

where the first two terms corresponds to the sum of outgoing/incoming atmospheric fluxes, and the last term to the subsurface

heat conduction flux. Here, λ is the thermal conductivity of the internal cell and ∆z its thickness. Note that the internal

temperature Tn
i is taken from the previous time step. To compute the internal temperature at time step n+1, we use the heat825

budget of the internal cell:

∆zcpT
n+1
i +∆t

2λ

∆z

(
Tn
i −Tn+1

s

)
=∆zcpT

n
i (E2)

where the second term of the LHS is the opposite of the subsurface conduction flux appearing in the SEB (for energy

conservation), and cp is the heat capacity of the internal cell. The two above equations can be expressed in matrix form

MUn+1 =NUn +B, with Un the solution vector [Ts,Ti]T at the nth time step and830

M =

 1 0

− 2∆tλ
cp∆z2 1

 (E3)

N =

0 2λ
2λ+∆zf

0 1− 2∆tλ
cp∆z2

 (E4)

and B = [− ∆zb
∆zf+2λ ,0]

T . We thus have, Un+1 =QUn +M−1B, with
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Q=M−1N =

0 2λ
2λ+∆zf

0 1−∆t 2λ
cp∆z2

∆zf
2λ+∆zf

 (E5)

By recursion, it follows that Un =QnU0 +M−nB. The numerical scheme is deemed stable if limn→∞Qn = 0. This is835

achieved if:

|1−∆t
2λ

cp∆z2
∆zf

2λ+∆zf
|< 1 (E6)

which after some computation yields a criterion of the time step ∆t:

∆t <∆tcrit =
cp∆z

λ

2λ+∆zf

f
(E7)

The (linearized) standard skin-layer is thus only conditionally stable. The stability criterion is relaxed with increasing heat840

capacity (cp) and increasing cell size (∆z), and is made more restrictive with increasing thermal conductivity (λ) or if the SEB

is more sensitive to changes in the surface temperature (f term).

E2 Coupled-surface formulation

Similarly, for a one cell system, the coupled-surface equations, after linearization, write:

fTn+1
s + b+

2λ

∆z

(
Tn+1
s −Tn+1

i

)
= 0 (E8)845

for the SEB, and

∆zcpT
n+1
i +∆t

2λ

∆z

(
Tn+1
i −Tn+1

s

)
=∆zcpT

n
i (E9)

for the cell’s heat budget. These two equations can be cast into the matrix formMUn+1 =NUn+B, withB = [− ∆zb
∆zf+2λ ,0]

T ,

M =

 1 −2λ
2λ+∆zf

− 2∆tλ
cp∆z2+2λ∆t 1

 (E10)

and850

N =

0 0

0
cp∆z2

cp∆z2+2λ∆t

 (E11)
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We thus have Un =QnU0 +M−nB, with:

Q=

0 2λ
2λ+∆zf

cp∆z2

cp∆z2+2λ∆t

0
cp∆z2

cp∆z2+2λ∆t

 (E12)

The numerical scheme is deemed stable if limn→∞Qn = 0. This is always achieved, as cp∆z2

cp∆z2+2λ∆t < 1. Thus, the surface-

coupled scheme is unconditionally stable.855

E3 Non-conservative skin-layer formulation

For the non-conservative skin-layer formulation (see Section 6.4), we start with the linearized discrete SEB:

fTn+1
s + b+

2λ

∆z

(
Tn+1
s −Tn

i

)
= 0 (E13)

Using the surface temperature Tn+1
s as a Dirichlet condition for the internal energy budget, we thus have

∆zcpT
n+1
i +∆t

2λ

∆z

(
Tn+1
i −Tn+1

s

)
=∆zcpT

n
i (E14)860

These two equations can be cast into the matrix form MUn+1 =NUn +B, with B = [− ∆zb
∆zf+2λ ,0]

T ,

M =

 1 0

− 2∆tλ
cp∆z2+2λ∆t 1

 (E15)

and

N =

0 2λ
2λ+∆zf

0
cp∆z2

cp∆z2+2λ∆t

 (E16)

We thus have Un =QnU0 +M−nB, with:865

Q=

0 2λ
2λ+∆zf

0 X

 (E17)

where X =
2λ∆t 2λ

2λ+∆zf +cp∆z2

2∆tλ+cp∆z2 . The scheme is deemed stable if |X|< 1.

As 2λ
2λ+∆zf < 1, we always have that 2λ∆t 2λ

2λ+∆zf + cp∆z
2 < 2∆tλ+ cp∆z

2, and thus that the scheme is unconditionally

stable. That being said, we recall that this scheme is not energy conservative and can lead to large errors.870
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E4 No-surface formulation (Class 1)

Finally, we note that the linearized No-surface formulation corresponds to a classic heat equation with a Backward Euler time

integration. As demonstrated elsewhere in the literature (e.g. Butcher, 2008), it is unconditionally stable.
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