635 Appendix A: Matrix expressions and numerical cost of the coupled-surface scheme
Al Matrix expressions

Combing Egs. (5), (6), and (10), the Newton scheme of the coupled-surface model proposed in this article can be written under

block matrix form
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640 with non-zero terms being
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Bing(k) = Azicep, T 4+ AtSWing i (A10)

A . .
650 BS(].) = AZNCPNTIGL_l + At (Swint,N — qu (dTTSuI‘le - TS(TI))> (A11)
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B5(2) = At (SWI?:trf + LWy, — % (Ts (Ti) - dTTsurfTi) — Lgys (m(Ti) - dTmTi)

2
+ (H(r) = d; H7') + (L(7") = d,L7") + (R(7") = d+ R7") 4+ (LWout(7') — dr LWoue ) ) (A12)

In the above expressions, Tlffl is the temperature of cell k at the previous time step, SWiys i is the quantity of shortwave
radiation absorbed in cell &, and 7' is the value of the fictitious variable 7 at the start of the current non-linear iteration. The
655 terms Ty(7!), H(r!), etc, and d, Tyus, d, H, etc, are the values of the surface temperature, sensible heat flux, etc, and their

derivatives at the current 7' estimation.

Among the different partial derivatives, d,.H and d, L can be difficult to analytically derive. For that, we first note that the
chain rule yields d. H = dp, Hd. T}, and d L = d7, Ld.T5. Then, for the expression of H given in Appendix D we have:

660 dp,H = pacpatt(dr,Cu(Ts —Ts) — Ch) (A13)

Moreover, the chain rule yields dr, Ciy = dgi, Cudr, Rip. In our case:

0 if Rip, <0
2

K

dgi, Cu = W 50Ri, — 10 if 0 <Riy < 0.2 (A14)
NEANES
SR ) if 0.2 < Rip,
and
. gZza
dr.Rip, = — T (A15)
665 Similarly, for L, we have:

dr, L = paLsu(d7,Cr(ga — ¢s) — Crdr,gs) (A16)

The derivative d7, Cr can be computed as the one of Cy through the chain rule and its dependence to Riy,. The derivative
of gs with respect to T can be easily obtained using the derivative of the saturated water vapor pressure, which is given by the

Clausius-Clapeyron relation.
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Appendix C: Finite Element Method scheme

In this paper, we focus on the FVM for spatial discretization. However, the heat budget equation could also be spatially dis-
cretized with the FEM. Indeed, the FEM naturally includes a node at the surface, and thus possesses a surface temperature,
which helps to tightly couple the SEB to the interior of the snowpack/glacier. This strategy is for instance employed in the
SNOWPACK model (Bartelt and Lehning, 2002; Wever et al., 2020). Specifically, in SNOWPACK, the coupled SEB is intro-
duced as a top Robin boundary condition.

The goal of this appendix is to briefly present how the techniques presented in the main part of the manuscript (namely the use

of fictitious variable and of a Schur-complement) can be used to implement a tightly-coupled FEM model.

C1 Expression of the heat equation in FEM

We consider the mesh of the domain to be discretized into /N 1D elements (the direct equivalent of the cells in FVM) and thus
of N 4 1 nodes (the end-points of the elements). As classically done with FEM (Pepper and Heinrich, 2005), we assume the
temperature field to be a linear combination of basis functions ¢;, i.e. T'(z,t) = Z,]jzl T;(t)p;(z). Here, we use basic linear
elements. In this framework, T’ (¢) corresponds to the nodal value of the temperature field (which evolves over time) and the
basis functions ¢;(z) are piece-wise linear functions, valued 1 at node j and O at all other nodes. The standard Galerkin form
(Pepper and Heinrich, 2005) of the internal heat budget (Eq. (1)) is:

vi Y T / copjpidL+ Y T / AVip; - VipdL = / QL+ Fypi(s) (¢}
J Q J Q Q

where (Q represents the domain of simulation, Fy is the energy fluxes entering at the top of the domain (i.e. ), and (;(s)
is the basis function ¢; evaluated at top of the domain. We note that similarly to the FVM case, the temperature at the top of
the domain presents a regime change whether the surface is melting or not. To handle this, we rely on the fictitious variable 7,
i.e. Ty = T5(7). The vector of unknowns, denoted U, is thus composed of the internal temperatures and of the surface fictitious
variable. Finally, we have not included any bottom energy flux to lighten the notation, but it could be included easily. Once
temporally discretized with a Backward Euler scheme and linearized, the problem can be expressed in matrix form AU™ = B,
with A= (M + AtK + AtL)Jr and B = MT" "'+ AtQ + AtF (T"~! being the vector of temperature from the previous

time step), and

M(iaj)Z/Cp%‘%dL (C2)
Q

K(i,j) = / AV; - VipidL (C3)
Q
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L(N+1,N+1)=—d,SEB + Lgysd.mh (C4)

1 ifi <N
Jr(i,i) = (C5)
d. Ty else
Q) = [ Qe (C6)
Q
and
F(N+1)=SEB(t") — d.SEBT" — 1 + Lgys (d-17") (&)

where SEB and d,.SEB corresponds to the atmospheric fluxes in the SEB and their derivatives with respect to 7 at the
current iteration, and 71 and d-r are the melting rate and its derivative at the current iteration. In the equations above, only the

non-zero terms have been given.

As in the FVM case, this system is composed of a linear-part (the interior, corresponding to the first N — 1 equations) and
a non-linear part (the surface, corresponding to the last two equations). Its solving can thus be accelerated using a Schur-
complement technique (Section 4.1.1) by breaking the matrix A into four blocks: a constant (N —1) x (N — 1) diagonal Agjag
block, a constant (/N — 1) x 2 vertical Ay, block, a constant 2 x (N — 1) horizontal A, block, and a 2 x 2 diagonal block A

to be re-computed at each non-linear iteration.

C2 The rest of the model

After solving the coupled heat budgets with FEM, we obtain a nodal temperature field. Since conserved quantities, such as en-
ergy or mass, are defined element-wise in snowpack/glacier FEM models (Bartelt and Lehning, 2002), the nodal temperature
field needs to be converted into an element-wise energy field. We note that this also defines an element-wise temperature field,
where the temperature of an element is simply the average of the nodal temperatures at its end. This element-wise energy field
can then be used to simulate melt/refreeze, liquid water percolation, and to remesh the domain using the same routines as in

FVM models.

Once all routines for a given time step have been performed, we are left with an element-wise temperature field that needs

to be converted back to a nodal temperature field, as required for the FEM. However, this conversion is not straightforward.
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First, as we have N element-wise temperatures to transform into [V + 1 nodal temperatures, the problem is not properly closed
and an extra (arbitrary) constraint needs to be added. This could, for instance, be setting the surface temperature to the value
computed in the SEB. Furthermore, even after choosing an extra constraint to close the problem, the element-wise to node-
wise transformation can produce spurious oscillations in the nodal field even if the element-wise field is monotonous (in other
words, the transformation does not respect a form of discrete maximum principle; Ciarlet and Raviart, 1973). It is therefore not
possible to derive an optimal scheme for this transformation that would (i) not modify the element-wise temperature field and
(ii) not create spurious oscillations in the node-wise temperature field.

As spurious oscillations in the temperature field would affect the estimation of the temperature gradients that are used in snow-
pack models to estimate metamorphism (e.g. Bartelt and Lehning, 2002; Vionnet et al., 2012), it seems preferable to rather
allow the modification of the element-wise temperature field. That being said, such a strategy implies a spatial re-distribution
of energy between elements that is not motivated by any underlying physical mechanism. We note that the SNOWPACK model
handles this element to node transformation during a phase change step after the liquid percolation scheme, and does so without

creating large spurious temperature oscillations.

Unfortunately, it is not possible to directly implement the SNOWPACK scheme in our toy-model, as the sequential treatment
is not the same. Moreover, we did not manage to derive a scheme that performs this element to node transformation without
affecting the surface temperature. Thus, in our numerical simulations, the FVM and FEM models yield different results. In the

absence of an analytical solution, a direct comparison of the FEM and FVM implementations remains impossible.
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Appendix E: Stability Analysis

Here, we present the derivation of the criteria for the numerical stability of the different numerical schemes presented in the
paper. We follow the proof classically used to show the (un)conditional stability of the Forward and Backward Euler method
(Butcher, 2008). Notably, the proof relies on a linearized version of the system of equations. As the system needs to be lin-
earized, we cannot account for the potential melting of the surface. Under this consideration, the atmospheric fluxes in the
SEB (long-wave radiations, turbulent fluxes, etc) are simply expressed as a linear function of the surface temperature 7T, i.e.
as fT, + b, where f and b are constant scalars expressed in Js ! m~2 K~! and in J s~ m~2, respectively.

Also, for simplicity, we consider a system composed of only one cell and its surface. The problem could be generalized to more
cells, but it would make the computation more cumbersome and is not crucial as we are considering numerical instabilities that

develop in the vicinity of the surface.

E1 Standard skin-layer formulation (Class 2)

To compute the surface temperature 7" at time step n + 1, we use the discretized Surface Energy Balance (SEB):

2)

T +b
FIT 40+

(TP —T) =0 (ET)

where the first two terms corresponds to the sum of outgoing/incoming atmospheric fluxes, and the last term to the subsurface
heat conduction flux. Here, A is the thermal conductivity of the internal cell and Az its thickness. Note that the internal
temperature ;" is taken from the previous time step. To compute the internal temperature at time step n + 1, we use the heat
budget of the internal cell:

2)
Aze, T + At (T — TP = Aze, T (E2)
z

where the second term of the LHS is the opposite of the subsurface conduction flux appearing in the SEB (for energy
conservation), and ¢, is the heat capacity of the internal cell. The two above equations can be expressed in matrix form

MU, 1 = NU,, + B, with U, the solution vector [T}, T}]T at the n*® time step and

1 0
M= _2Atx 4 (E3)
cpAz?
0 sxixeg
N= 2801 €D
0 1- cpAz?
and B = [~ x5%55,0]". We thus have, Uy, 1 = QU,, + M ™' B, with
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0 2\
Q:Mle: 2A+Azf

2\ Azf
0 1-At cpAz? 2)\+ZAzf

(E5)

By recursion, it follows that U,, = Q"Uy + M ~™B. The numerical scheme is deemed stable if lim, ., @™ = 0. This is

achieved if:

2\ Azf

1-At———
| tcpA22 X+ Azf

| <1

which after some computation yields a criterion of the time step At:

cpAz 2N+ Az f
A f

At < Atcrit -

(E6)

(ET)

The (linearized) standard skin-layer is thus only conditionally stable. The stability criterion is relaxed with increasing heat

capacity (c,) and increasing cell size (Az), and is made more restrictive with increasing thermal conductivity (A) or if the SEB

is more sensitive to changes in the surface temperature (f term).
E2 Coupled-surface formulation

Similarly, for a one cell system, the coupled-surface equations, after linearization, write:

2
ST b+ A—A (T =1 ) =0
z

for the SEB, and

2X
Aze, T + AtE (T7 T = TP = Aze, TV

for the cell’s heat budget. These two equations can be cast into the matrix form MU, 1 = NU,+ B, with B = |

1 —2)
M= INFAZT
_ 2ALN 1
cpAZ2+2AAL

and
N 0 0

- 0 cpA22

cpAZZ+2NAL
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We thus have U,, = Q"Uy + M ~" B, with:

0 2\ cpAz2
_ 2A+Azf cp Az24+2XAL
Q= 0 A2 (E12)
cpAZZ+2XAL

2
The numerical scheme is deemed stable if lim,, ., @™ = 0. This is always achieved, as % < 1. Thus, the surface-

855 coupled scheme is unconditionally stable.
E3 Non-conservative skin-layer formulation

For the non-conservative skin-layer formulation (see Section 6.4), we start with the linearized discrete SEB:

2

T+ g
IT; O+ A

(T3 =1") =0 (E13)

Using the surface temperature 77" ! as a Dirichlet condition for the internal energy budget, we thus have

2
860 Azc, T/ + At (TP — 1Y) = Aze, T (E14)
z
These two equations can be cast into the matrix form MU, 41 = NU,, + B, with B = [—%ﬁ]?
M 1 0
T 2awx 1 (E15)
cpAZ2+2AAL
and
0 2\ _
N = o (E16)
(‘p 4
cpAZZ+2NAL

865 We thus have U,, = Q"Uy + M ~" B, with:

0 2
Q= IA+AZf (E17)
0 X

QAAtﬁ +cpA22
2AtA+cp Az?

where X = . The scheme is deemed stable if | X| < 1.

As ﬁ < 1, we always have that QAAtﬁzzf +cpA 22 < 2AtN+ cp 22, and thus that the scheme is unconditionally

870 stable. That being said, we recall that this scheme is not energy conservative and can lead to large errors.
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E4 No-surface formulation (Class 1)

Finally, we note that the linearized No-surface formulation corresponds to a classic heat equation with a Backward Euler time

integration. As demonstrated elsewhere in the literature (e.g. Butcher, 2008), it is unconditionally stable.

41



