
We are thankful the Micheal Lehning for its constructive review. Please find below our
point by point response to the review. The comment of the referee are shown in blue and
our response in black below. Proposed modifications of the manuscript are shown in green
with page and line numbering corresponding to the preprint version of the article.

General:
The paper presents a review on how to numerically implement the surface energy budget
into a certain class of snow and ice models. The paper is very well written and in general
presents the material in a clear manner. It is overall considered to be a useful contribution
to  the  scientific  community  dealing  with  snow  and  ice  modelling  despite  its  rather
theoretical setting, in which conclusions on existing snow and ice models are only possible
in a limited way.

In this context, it is mandatory that existing snow and ice models that have schemes that
come close to the solution presented here are discussed in sufficient detail. In particular,
since for example SNOWPACK uses a finite element method (FEM), for which the nodal
temperature is explicitly  solved at  the surface, it  already achieves both aspects of  the
paper,  an  explicit  surface  and  a  tight  coupling  with  internal  heat  transfer  merely  by
construction of the FEM. This is true for the original version of SNOWPACK, which is now
more than 20 years old. Moreover, the statement in l.81 is not a fair representation of the
current state of snow models, since also efforts have been made to implement a coupled
solver in SNOWPACK that does not generate temperature overshoots. This was crucial for
sea ice simulations, where an additional complexity is created by the fact that the melting
point of the snow and ice is a function of salinity, and that salinity in turn is impacted by the
phase changes. This means that a simple approach of allowing overshoots to occur and
then setting back the temperature to fusion value is not suitable any longer. This has been
presented in Wever et al. (2020) and should be discussed in the current paper. The proper
acknowledgment of the state of art is necessary and as a consequence limits the novelty
of the proposed approach here. It is not acceptable to say “we don’t discuss FEM models”
as the authors do. This neglect is even more surprising since an overlapping group of
authors proposes in another paper to use the FEM method for snow modelling (Brondex et
al., 2023).

It is indeed true that FEM offers the advantage of naturally having a surface node, which
facilitates the tightly-coupled modeling of the SEB, as done in SNOWPACK. This is now
clearly mentioned in the article. We also specified that the choice of our article to focus on
FVM is motivated by the fact that the FVM is broadly employed in snowpack/glacier 1D
modelling. We also now include a short analysis of the FEM case (see Appendix C and
modifications listed below).

P4 - L112
“Moreover,  we  focus  on  numerical  schemes  based  on  the  FVM,  as  it  is  the  method
employed by most models (e.g. Anderson, 1976, Sauter et al., 2020, Westermann et al.,
2023). We note that, contrary to the FVM, the use of the finite element method (FEM)
naturally incorporates the presence of a surface temperature, which can be used for a
fully-coupled treatment  of  the SEB,  as done in  SNOWPACK for  instance (Bartelt  and
Lehning, 2002).”

We also clarified throughout the text that the classification that we propose is applies to
FVM models only, for instance in the caption of Figure 1:



P6 - Fig 1
“Classification of FVM models with respect to their treatment of the SEB. Class 1: The 
surface energy and the internal temperatures are solved in a tightly-coupled manner but 
there is no explicit surface. Class 2: An explicit surface temperature (and surface melting) 
exists but it is solved in sequential manner with respect to the internal temperatures. 
Proposed scheme in this article: An explicit surface temperature is considered and is 
solved in a tightly-coupled manner with the internal temperatures. In the schematic, dots 
represent the prognostic variables of the schemes (with or without temperature at the 
surface) while the colors indicate which variables are solved simultaneously.”

While the article is mainly focus on FVM, we wanted to include in the revised version a
brief comparison with FEM, and explain how some of the points discussed in the paper
(namely  fictitious  variable  and  linear  elimination)  can  be  directly  translated  in  a  FEM
framework.
Doing so we stumble upon the issue of transforming element-wise energy and temperature
(description  required  for  the  bucket-scheme  for  instance)  into  temperature-wise
temperature (required for the FEM solving of the heat equation). This step is non-trivial as
(i) it is non-unique and (ii) it can create oscillating node-wise temperature fields. While a
solution  to  this  problem has  been  proposed  for  SNOWPACK,  it  could  not  be  directly
translated into the sequential treatment adopted in our paper. Our different attempts to
implement this elements to nodes transformation had an impact on the simulated surface
temperature.  Thus,  the  comparison  between  the  FVM  and  FEM  scheme  in  terms  of
accuracy and speed of convergence towards a common solution cannot be pursued in the
article.

We propose to present the implementation of the FEM equivalent to the tightly-coupled
scheme already discussed in the article. This is done in the new Appendix C (attached at
the end of this response) and discussed in the manuscript:

P11 - L292
“Finally, a translation of this numerical strategy (including the fictitious variable and the
Schur-complement technique) in a FEM framework is presented in Appendix C.”

P12 - L329
“Finally, note that we do not include the FEM in this comparison. As detailed in Appendix
C,  a  specificity  of  FEM models  is  to  rely  on a  temperature  field  that  can be defined
element-wise or node-wise. It is thus required to convert back and forth between these two
representations. However, the relation between the two is not bijective. This prevents an
unambiguous transformation from element-wise to node-wise temperatures, which affects
the end-result of our simulations. Because of this problem, the FEM is not further explored
in this article, as a direct comparison to the FVM models is not possible.”

A second major point to address is the inconsistency and incompleteness with respect to
the  phase  change  (fusion)  implementation  as  suggested.  If  I  understand  the  set-up
correctly,  you  explicitly  implement  the  fusion  process  at  the  surface  and  keep  the
temperature  solution  at  the  phase  change  temperature  with  your  variable  switching
formulation supported by the truncation method. But you don’t do so below the surface,
which generates an inconsistency for the sub-surface heat flux. For example, for the case
of shortwave penetration into snow and ice, you would generate temperatures above the
melt temperature below the surface, which would lead to an upwards heat flux towards the
surface, which is at the melt temperature. But heat would flow downwards in reality. This
inconsistency is not even mentioned in section 6.4 and probably has consequences for



energy  conservation.  While  the  tight  coupling  and  explicit  surface  are  sufficiently
investigated with sensitivity cases in the paper, the same needs to be done for this fusion
treatment.  The  effect  needs  to  be  quantified  and  compared  to  the  more  classical
“overshoot” solution.

While doing our study, we hesitated to include phase-change directly into the internal heat
budget. As pointed out by the review, this treatment is closer to the actual physics at play
(with  phenomena  such  as  the  blocking  of  heat  conduction  fluxes  in  an  isothermal
snowpack).  We  nonetheless  decided  not  to  include  this  effect  as  (i)  this  strategy
corresponds  to  a  large  portion  of  current  snowpack  and  glacier  models,  and  (ii)  we
foremost focus on the treatment of the SEB and a proper study/discussion on internal
phase changes would be out the scope we aim for. We note that current models that do
not take into the capping of internal temperatures still  do include some capping of the
surface  temperature,  since  it  has  a  large  influence  on  the  SEB (notably  through  the
outgoing longwave radiation).
While neglecting internal phase change when solving the heat equation might lead to a
deteriorated estimation of the heat conduction fluxes within the snowpack/glacier, this does
not have consequences on the energy conservation of the models. As long as these heat
fluxes are consistently distributed, the models remain strictly energy conservative.
 
To test the influence of including phase-change while solving the internal heat equation,
we have implemented versions of the three FVM models used in the article that includes
phase-changes  directly  in  the  heat  equation,  as  suggested  in  the  referee’s  comment.
Specifically, this was done using the enthalpy method (Meyer and Hewitt, 2017, Tubini et
al., 2021). Comparison with the base versions of the models shows that this inclusion has
no effect on the glacier test case (as melting occurs at the surface and not internally) and
an effect of a couple of degrees on the surface temperature in the snowpack test-case.
Nonetheless,  the  conclusions  of  the  article  on  the  accuracy  and  stability  of  the  SEB
strategies remain unchanged. This can be seen in the Figures below that compare the
results of the convergence study with and without internal phase change. For each figure,
the left panel corresponds to the convergence plot of the manuscript (no internal phase
change in the heat equation), while the right panel corresponds to the convergence plot
taking into account internal phase change in the heat equation.

Fig. 1 – Impact of internal phase-changes on the mesh converge analysis.



Fig. 2 – Impact of internal phase-changes on the mesh converge analysis.

Fig. 3 – Impact of internal phase-changes on the time step converge analysis.

Fig. 4 – Impact of internal phase-changes on the time step converge analysis.

We now mention in the revised manuscript that other strategies have been proposed in the
literature, and we have corrected our mistake on the strategy employed by SNOWPACK.

P3 - L81
“This  results  in  temperature  overshoots  that  are  then  corrected  in  a  second  step  by
creating melt and setting back the temperature to the melt value (e.g. Vionnet et al., 2012,
Sauter  et  al.,  2020).  In  this  article,  we  follow  this  simple  scheme as  it  is  commonly
employed  in  snowpack  and  glacier  models.  That  being  said,  other,  more  complex,



strategies have been proposed in the literature. This notably includes the use of a finite
temperature-range over which melt/freezing occurs (e.g. Albert, 1983, Dutra et al., 2010),
including melt/refreeze as an additional  energy source term (e.g.  Bartelt  and Lehning,
2002, Wever et al., 2020), or the use of enthalpy as the prognostic variable (e.g. Meyer
and Hewitt, 2017, Tubini et al., 2021).”

We  also  now  mention  that  we  have  tested  the  sensitivity  of  our  results  to  the
implementation  of  phase-changes  and  that  the  conclusions  of  the  article  remain
unchanged.

P12 - L329
“Also, as some of the current snowpack and glacier models include the effect of internal
phase-change while solving the internal heat equation (e.g. Bartelt and Lehning, 2002,
Meyer  and  Hewitt,  2017),  we  quantified  the  sensitivity  of  our  results  to  this  specific
treatment of melt/freeze. For that, we have also implemented versions of our three models
that include such internal phase-changes in the heat equation.”

P16 - L441
“Finally, using the versions of the models including phase-changes in the heat equation,
we quantified the sensitivity of these observations to the treatment of the melt/refreeze.
While  the  simulated  temperature  sometimes  differ  from  our  basic  implementations
(especially in the snowpack test case where melt occurs internally), the general behavior
of  the  models,  including the potential  presence of  instabilities  in  the  Class  2  models,
remain unchanged.”

P20 - L493
“Finally, using the versions of the models including phase-changes in the heat equation,
we verified that the conclusions of this convergence analysis remain valid in the case of a
different treatment of the internal phase-changes”

Minor comments:

1) At least I am more used to the terms “melt” temperature and “heat” capacity instead of
“fusion” and “thermal”.
We have  reformulated  “fusion”  and  “thermal  capacity”  into  “melt”  and  “heat  capacity”,
except  for  “enthalpy  of  fusion” as  the formulation  “enthalpy  of  melt(ing)” appears  less
common.
 
2) Eq. (3) does not contain heat advection by precipitation.
We have added a rain precipitation term in the SEB throughout the article.

3) l. 108: Not true, SNOWPACK does not do a separate SEB, see above.
We now specify throughout the manuscript that the proposed classification only applies to
FVM models.

4) l. 126: “result” not results.
We have corrected the typo.

5) l. 284: “equation” not equations.
We have replaced sentence with:



P11 - L284
“The system of Eqs.(13) is a 2x2 non-linear system where only As and Bs need to be re-
assembled at each non-linear iteration and whose solution for Us is the same as the large
system of Eqs. (11).”

6) I don’t understand the argument here: “Note that the method used to downscale the
data does not guarantee physical consistency of the variables. This allows us to take into
account shortwave, longwave and turbulent energy fluxes at the top of our domain”.
We wanted to explain that we directly used the forcing data of Potocki et al. (2022), which
provides all necessary inputs for the model. However, as briefly discussed in Brun et al.
(2023) there are questions about the more appropriate method to downscale ERA5 data to
South Col glacier.

As the goal of our article is solely focused on numerical methods and is not meant to
address the quality of the forcings, we propose to simply rewrite the sentence to:

P13 - L341
“As such, our simulations are forced by the weather data provided by Potocki et al. (2022)
that include all necessary information to take into account the shortwave, longwave and
turbulent energy fluxes at the top of our domain.”

7) Figures 3,4: These uncertainties should be discussed in light of typical snow/ice model
errors.
We now compare the difference between the modeled snow surface temperature with bias
observed during the inter-comparison exercise ESM-SnowMIP.

P15 - L432
“As with the glacier test case, the models exhibit surface temperature differences of about
a couple of degrees. This is of the same order as the biases observed in the snow model
inter-comparison exercise ESM-SnowMIP (Menard et al., 2021).”

Unfortunately, we are not aware of such an inter-comparison model exercise for glacier
temperature surfaces. We therefore propose to include a mention of Sauter et al., (2020)
which includes a comparison of COSIPY with measured glacier surface temperatures.

P15 - L421
“Concerning the glacier test-case, Fig. 3 shows that the class 1 model (no explicit surface)
is systematically different compared to the two other models, with a slower decrease of the
surface temperature at night, resulting in a surface temperature that is usually warmer of a
couple of degrees for the represented period. For comparison, Sauter et al., (2020) report
root  mean  square  errors  around  3K  when  comparing  COSIPY  simulations  with
observations of the Zhadang glacier surface temperature.”

8) l. 438: why “model 2” now, not clear?
There was indeed a typo here, it the Class 1 model that produces less melt and thus that
percolates less. This is now corrected in the text:

P16 - L 438
“This effect is due to the smaller melting predicted by the class 1 model.”



9) l. 450 ff. should the reference not be a hundreds (900) of seconds consistent with
typical time steps used?
The reference  simulation  is  meant  to  replace  the  analytical  solutions,  that  we  cannot
derive. It is meant to provide the reference toward which the numerical schemes should
converge at high spatial and temporal resolutions, and should therefore be obtained with a
quite small time step (30s here).

For the range of other tested time step, we decided to go above 900s as some models use
larger time steps by default (3600s for COSIPY for instance) and we think it is interesting
to analyze the behavior of models at large time step, as such a choice can be motivated to
reduce the numerical cost of snowpack/glacier models in large simulation systems such as
Earth system models.

P17 - L452
“The largest time step of 7200 s corresponds to twice the default value used for instance
in COSIPY (Sauter et al., 2020) and is meant to represent the case of models used at
quite large time steps for numerical cost considerations.”

10) l. 460: should it be “worse” instead of better?
We wanted to state that sometimes the Class 2 yields smaller error than the scheme we
proposed, but that in these cases the Class 2 is only slightly better. This was visibly not
clearly enough stated in the manuscript as Richard Essery had the same comment. We
revised the sentence to:

P17 - L458
“For almost all investigated time steps and in both test cases, the newly proposed scheme
displays the lowest level of errors. Sometimes, the class 2 model yields the smallest error,
but does so only by a small margin.”

We have also re-formulated a similar sentence later in the manuscript.

P20 - L481
“Again,  among the three implementations the tightly-coupled surface model  yields the
smaller errors for almost all investigated mesh refinements (as in the glacier test case, the
class 2 model is however sometimes marginally better).”

11) l. 491: can you explain the deterioration?
This increase of error with smaller mesh size is a result  of  numerical  instabilities, that
develop with small mesh sizes. This is now mentioned in the text:

P20 – L 490
“Finally, Fig. (10) reveals that in the glacier test case, the phase change rate errors of the
class 2 tend to deteriorate with further mesh refinement past a certain point (here for an
initial cell number above 90). We interpret this deterioration as a result of the appearance
of numerical instabilities that develop with small mesh sizes.”
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Appendix C: Finite Element Method scheme710

In this paper, we focus on the FVM for spatial discretization. However, the heat budget equation could also be spatially dis-

cretized with the FEM. Indeed, the FEM naturally includes a node at the surface, and thus possesses a surface temperature,

which helps to tightly couple the SEB to the interior of the snowpack/glacier. This strategy is for instance employed in the

SNOWPACK model (Bartelt and Lehning, 2002; Wever et al., 2020). Specifically, in SNOWPACK, the coupled SEB is intro-

duced as a top Robin boundary condition.715

The goal of this appendix is to briefly present how the techniques presented in the main part of the manuscript (namely the use

of fictitious variable and of a Schur-complement) can be used to implement a tightly-coupled FEM model.

C1 Expression of the heat equation in FEM

We consider the mesh of the domain to be discretized into N 1D elements (the direct equivalent of the cells in FVM) and thus720

of N +1 nodes (the end-points of the elements). As classically done with FEM (Pepper and Heinrich, 2005), we assume the

temperature field to be a linear combination of basis functions φj , i.e. T (z, t) =
∑N

k=1Tj(t)φj(z). Here, we use basic linear

elements. In this framework, Tj(t) corresponds to the nodal value of the temperature field (which evolves over time) and the

basis functions φj(z) are piece-wise linear functions, valued 1 at node j and 0 at all other nodes. The standard Galerkin form

(Pepper and Heinrich, 2005) of the internal heat budget (Eq. (1)) is:725

∀i
∑
j

dtTj

∫
Ω

cpφjφidL+
∑
j

Tj

∫
Ω

λ∇φj · ∇φidL =

∫
Ω

QφidL+Fsφi(s) (C1)

where Ω represents the domain of simulation, Fs is the energy fluxes entering at the top of the domain (i.e. G), and φi(s)

is the basis function φi evaluated at top of the domain. We note that similarly to the FVM case, the temperature at the top of

the domain presents a regime change whether the surface is melting or not. To handle this, we rely on the fictitious variable τ ,

i.e. Ts = Ts(τ). The vector of unknowns, denoted U , is thus composed of the internal temperatures and of the surface fictitious730

variable. Finally, we have not included any bottom energy flux to lighten the notation, but it could be included easily. Once

temporally discretized with a Backward Euler scheme and linearized, the problem can be expressed in matrix form AUn =B,

with A= (M +∆tK +∆tL)JT and B =MTn−1 +∆tQ+∆tF (Tn−1 being the vector of temperature from the previous

time step), and

M(i, j) =

∫
Ω

cpφjφidL (C2)735

K(i, j) =

∫
Ω

λ∇φj · ∇φidL (C3)
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L(N +1,N +1) =−dτSEB+Lfusdτṁ (C4)

JT (i, i) =

1 if i≤N

dτTs else
(C5)

Q(i) =

∫
Ω

QφidL (C6)

and740

F (N +1) = SEB(τ i)− dτSEBτ
i − ṁ+Lfus

(
dτṁτ

i
)

(C7)

where SEB and dτSEB corresponds to the atmospheric fluxes in the SEB and their derivatives with respect to τ at the

current iteration, and ṁ and dτṁ are the melting rate and its derivative at the current iteration. In the equations above, only the

non-zero terms have been given.

745

As in the FVM case, this system is composed of a linear-part (the interior, corresponding to the first N − 1 equations) and

a non-linear part (the surface, corresponding to the last two equations). Its solving can thus be accelerated using a Schur-

complement technique (Section 4.1.1) by breaking the matrix A into four blocks: a constant (N−1)× (N−1) diagonal Adiag

block, a constant (N −1)×2 vertical Aup block, a constant 2× (N −1) horizontal Alow block, and a 2×2 diagonal block As

to be re-computed at each non-linear iteration.750

C2 The rest of the model

After solving the coupled heat budgets with FEM, we obtain a nodal temperature field. Since conserved quantities, such as en-

ergy or mass, are defined element-wise in snowpack/glacier FEM models (Bartelt and Lehning, 2002), the nodal temperature

field needs to be converted into an element-wise energy field. We note that this also defines an element-wise temperature field,755

where the temperature of an element is simply the average of the nodal temperatures at its end. This element-wise energy field

can then be used to simulate melt/refreeze, liquid water percolation, and to remesh the domain using the same routines as in

FVM models.

Once all routines for a given time step have been performed, we are left with an element-wise temperature field that needs760

to be converted back to a nodal temperature field, as required for the FEM. However, this conversion is not straightforward.
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First, as we have N element-wise temperatures to transform into N +1 nodal temperatures, the problem is not properly closed

and an extra (arbitrary) constraint needs to be added. This could, for instance, be setting the surface temperature to the value

computed in the SEB. Furthermore, even after choosing an extra constraint to close the problem, the element-wise to node-

wise transformation can produce spurious oscillations in the nodal field even if the element-wise field is monotonous (in other765

words, the transformation does not respect a form of discrete maximum principle; Ciarlet and Raviart, 1973). It is therefore not

possible to derive an optimal scheme for this transformation that would (i) not modify the element-wise temperature field and

(ii) not create spurious oscillations in the node-wise temperature field.

As spurious oscillations in the temperature field would affect the estimation of the temperature gradients that are used in snow-

pack models to estimate metamorphism (e.g. Bartelt and Lehning, 2002; Vionnet et al., 2012), it seems preferable to rather770

allow the modification of the element-wise temperature field. That being said, such a strategy implies a spatial re-distribution

of energy between elements that is not motivated by any underlying physical mechanism. We note that the SNOWPACK model

handles this element to node transformation during a phase change step after the liquid percolation scheme, and does so without

creating large spurious temperature oscillations.

775

Unfortunately, it is not possible to directly implement the SNOWPACK scheme in our toy-model, as the sequential treatment

is not the same. Moreover, we did not manage to derive a scheme that performs this element to node transformation without

affecting the surface temperature. Thus, in our numerical simulations, the FVM and FEM models yield different results. In the

absence of an analytical solution, a direct comparison of the FEM and FVM implementations remains impossible.
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