
We thank the referee for their constructive review. Please find below our point by point
response to the review. The comment of the referee are shown in blue and our response in
black below. Proposed modifications of the manuscript are shown in green with page and
line numbering corresponding to the preprint version of the article.

The authors present an approach to numerical modeling of snowpack or glacier interface 
with atmosphere using a finite volume method discretization of thermodynamic relations. 
The novelty of the approach lies in coupled computation of heat transfer through the 
ice/snow and the thermodynamic balance at the surface. The authors provide sufficient 
numerical experiments to support the agreement of their implementation with previously 
published results.
The only critical comment I would like to make is the relatively vague mathematical 
description of their approach, or the problem at hand. The authors discus the Fourier's law 
for the heat transfer in ice (Equation 1) and the balance of energy fluxes at the ice surface 
(Equation 3).  Then, they immediately follow on to numerical discretization, leaving the 
reader curious as to what assumptions and specific method choices they made. I would 
outline below a few of my concerns.

We revised the manuscript trying to be more precise on the mathematical framework and 
on the notations. We hope the following modifications clarified the text.

The authors start with the heat equation:

∂th - div (λ grad(T)) = Q
where
h = cp(T-T0) + ρwLθ

which leads to 

cp∂tT + ρwL∂tθ - div (λ grad(T)) = Q.             (1)

In the subsequent paragraph they discuss issues with representing the effects of phase 
changes on the temperature, but I believe they mean that they neglect the ρwL∂tθ term in 
their model. Please state that clearly.

Yes, we meant that while solving the processes of heat conduction and shortwave 
absorption, we neglect the ρwL∂tθ term, and all accumulated energy is used to modify the 
temperature, even if the fusion point has been crossed. Note that this term is then used in 
a second step to re-establish thermal equilibrium between the ice and liquid water. In case 
of melt/refreeze, the sensible heat  (cp∂tT term) and liquid water latent heat (ρwL∂tθ term) 
are both used to create/remove water while maintaining the energy conservation.

This is now rephrased more clearly in the revised manuscript:

P3 - L75
“Note that in Eq. (1) the time derivative of the internal energy content h cannot in principle 
be replaced by cp dtT, but should also include the term ρw Lfus dtθ. Indeed, once the 
temperature has reached the fusion point, a further increase in energy translates into an 
increase in the liquid water content (dtθ != 0) and of the associated latent heat content, 
rather than a further increase in the temperature. Yet, as discussed below, snowpack and 
glacier models nonetheless usually consider that the temperature can increase past the 
fusion point when integrating Eq. (1) in time (Vionnet et al., 2012, Sauter et al., 2020). This



is equivalent to neglecting the effects of first-order phase changes (melting and refreezing)
on the temperature field, and thus setting ρw Lfus dtθ to zero while solving the heat 
equation.”

Moving on, the authors jump to Equation 5, where they present the discretized version of 
(1) using finite volumes. It would be useful to state the implicit assumptions here, that the 
three dimensional equation (1) is now considered as one-dimensional equation

cp∂tT  - ∂z (λ ∂zT) = Q,

which is then integrated over each "volume", which in this case is segment of length Δzk. 
This integration, along with replacing the point variables with their volume averages (with 
abuse of notation: Tk = 1/Δzk ∫Tdz), and using fundamental theorem of calculus (we are in 
one dimension now, no need for divergence theorem) gives
Δzkcp∂tT  -  (λ ∂zT)k+1/2 + (λ ∂zT)k-1/2 = ΔzkQ, where subscripts k+1/2 and k-1/2 refer to 
the (top and bottom) endpoints of the cell Δzk

We now state directly from Eq. (1) that we are working in a 1D setting.

P3 - L70
“In this article, we assume that the snowpack/glacier can be represented as 1D column,
and therefore Eq. (1) should be understood as 1D equation.”

For the introduction of Equation (5) we specify that the Tk in represent the average 
temperature of the kth cell. Moreover, reading the reviewer comment we realized that a 
subscript k is missing for the temperature in Equation (5). This is now corrected.

At this point the authors introduce the approximation of the (λ ∂zT)k+1/2 term with 
Equation 6. I am curious, however, whether it is not better to leave the term (λ ∂zT)z=surf 
at the top of the first layer as is, and replace it with the term G from the surface energy 
balance equation (3)? I am not sure whether this is the way the authors achieve coupling, 
or whether they still discretize the temperature gradient at the ice surface using the surface
temperature and half of the top layer size?

We were indeed sloppy in the description of the fluxes at the cell boundaries. We believe 
that the issue arises from the fact the top (and bottom) cell is a special case, which was 
not reflected in our article. For the top cell, the top flux is not computed using Eq. (6), but 
rather with the subsurface conduction flux G.
We propose to modify the text to clearly state that Eqs (5) and (6) only applies to interior 
cells, and that cells touching the top and bottom boundaries needs to include the boundary
fluxes (which is G for the top most-cell).

P7 - L183
“where Δzk is the thickness of the kth cell, cpk its volumetric thermal capacity, Qk the 
average volumetric energy source in the cell, and Fk+1/2 and Fk-1/2 are the heat conduction 
fluxes at the top and bottom interfaces of the cell. For internal cells, Fk+1/2 and Fk-1/2 
correspond to the fluxes between the kth and the k+1th cells and the k-1th and kth cells, 
respectively. For the top cell Fk+1/2 corresponds the heat flux leaving towards the surface 
(i.e. -G) and for the bottom cell Fk-1/2 corresponds to the flux from the ground.”



P7 - L189
“The heat conduction fluxes between cells need to be estimated from the temperatures 
and thermal conductivities of adjacent cells. The flux Fk+1/2 between cells k and k+1 is 
computed as:

Eq. (6)

where λharmk+1/2 is the weighted harmonic average of the thermal conductivity of the two 
adjacent cells. The use of an harmonic average provides better results in the case of 
layered media such as snow (Kadioglu et al., 2008) and ensures that no heat conduction 
occurs in case one of the cells is a perfect thermal insulator.
Note that Eq. (6) only applies to fluxes between cells and must be replaced for the two 
boundary cells, at the top and bottom of the domain. For the bottom cell, a flux between 
the domain and the ground below must be used as a bottom boundary condition. For the 
top cell, the heat flux coming from the surface must be used. This flux corresponds to the 
discretized version of the term G in the SEB, provided in Eq. (10) below.”

The authors discuss in lines 103-105 that term G depends on surface temperature and 
temperature within ice, which indicates that this term is indeed discretized. 

This term is discretized using Eq(10), and used instead of F_{k+1/2} for the energy budget 
of the top-most cell. This is now clearly put in the text:

P7 - L195
“This flux corresponds to the discretized version of the term G in the SEB, provided in Eq. 
(10) below.”

I would urge the authors to provide a more detailed and careful mathematical description 
of their work, as it would improve the reproducibility of their result, not only for the finite 
volume method community, but also researchers working with other numerical 
discretizations.  

Following the review of Michael Lehning, we have also added an Appendix describing how
to implement an equivalent model using FEM (attached at the end of this response). 
However, in the FEM framework appears the problem of converting element-wise 
temperatures into node-wise temperatures. This transformation has no straight-forward 
answer and requires some additional assumptions that affects the end-result of the 
simulations. As such, we were not able to integrate a FEM model in comparisons to the 
FVM ones.

This is now is explained in the new Appendix C, as well as in the main part of the revised 
manuscript:

P11 - L292
“Finally, a translation of this numerical strategy (including the fictitious variable and the
Schur-complement technique) in a FEM framework is presented in Appendix C.”

P12 - L329
“Finally, note that we do not include the FEM in this comparison. As detailed in Appendix
C,  a  specificity  of  FEM models  is  to  rely  on a  temperature  field  that  can be defined
element-wise or node-wise. It is thus required to convert back and forth between these two



representations. However, the relation between the two is not bijective. This prevents an
unambiguous transformation from element-wise to node-wise temperatures, affecting the
end-result of the simulations. Because of this problem, the FEM is not further explored in
this article, as a direct comparison to the FVM models is not possible.”


