We are grateful to the referee for their constructive review. Please find below our point by
point response to the review. The comment of the referee are shown in blue and our
response in black below. Proposed modifications of the manuscript are shown in green
with page and line numbering corresponding to the preprint version of the article.

Summary:

This work proposes a methodological improvement to surface energy balance modeling
over frozen ice surfaces by merging the benefits of two diverging current approaches to
coupling air temperature and ice temperature. The coupling approach appears effective
and insightful and is an important contribution to the field. The paper presents two case
studies, one over snow and one over a glacier (with highly idealized implementations) as
demonstrations of the accuracy. There is a well motivated exploration of the
implementation's dependence on time and spatial resolution, which are not only practically
important for anyone wishing to implement this method, but also provide the opportunity to
discuss numerical stability.

General comments:

It is exciting to see this paper address both snowpack and glacier surface energy balance.
It would be good to discuss (briefly) the physical similarities and differences (structure, air
content) between the two.

We have added to the manuscript that snowpacks and glacier surfaces can be modeled in
a similar framework as they share (i) the same fundamental governing equation (i.e. the
energy conservation equation with heat conduction and shortwave absorption as a
processes), and (ii) a first order phase change transition, where melt/refreeze occurs with
latent heat. These similarities have already been used in the literature to treat snow and
glacier ice in a unified framework, for instance in the model COSIPY. However, snowpacks
and glacier surfaces present some differences that might complexify this unified treatment,
for instance the fact that water does not percolate similarly in snow and glacier ice or that
vapor movement plays a role significant role in snow but not in glacier ice.

We revised the manuscript to:

P3 -L60

“As snowpack and glaciers share many similarities and processes, such as heat
conduction or the presence of a phase transition when the melt temperature is reached,
they can be represented by the same type of equations. These similarities enable
simulations mixing snow and glacier ice within a single framework (e.g. Sauter et al.,
2020). Hence, for the sake of generality, the equations discussed in the following sections
apply to both snow and glacier ice. That being said, snow and glacier ice present some
differences, notably concerning liquid water percolation. As addressed later, this might
require a differential treatment of glacier ice and snow when implementing the liquid water
percolation scheme.”

There is a consistent overuse of commas in the setup ‘,that’ (many of which should be
‘which’ with no comma)
This was also pointed out by the review Richard Essery. This is now corrected.

The manuscript is clearly structured in introducing a new method to approach temperature
and melt numerical modeling and then applying that method to two test cases. However,
the test cases are very specific and thus convey limited information about the broader



application of the method — these limitations should be discussed, especially as a future
goal would likely be to apply this numerical routine to more complicated cases.

This point was also stressed in the review of Richard Essery. We were also aware of this
potential limitation when doing this study, and wondered if more realistic cases should be
analyzed. We however decided to limit this study to simple idealized cases. Our goal
behind this choice was to provide simple cases from which the impact of the numerical
implementation can be clearly analyzed.

We also decided not to include comparisons with direct observations. Indeed, it would not
be possible to decipher errors due to the numerical implementations (which is the focus of
our paper) from errors due to the assumed physics, parametrizations, and forcings (which
we do not and cannot not address in this study). Therefore, we think that to meaningfully
analyze numerical implementations in terms of cost, accuracy and robustness, the use of
simplified test cases is appropriate. We however agree that the test cases should not be
too unrealistic if we want their results to be informative of how a numerical scheme might
behave in a realistic settings. That it is why we have used realistic forcings and initial
conditions.

We revised the manuscript to specify our intention more clearly. We explain that our simple
test cases are meant to ease the comparison of the numerical implementations of the
surface-internal energy budgets, but that our toy-model should not be viewed as proper a
snowpack/glacier model as many important components are lacking.

P12 - L330

“Two simple examples, showcasing the differences between numerical treatments, are
presented below. We note that these simulations cannot be considered as fully realistic
simulations of a snowpack or glacier surface, as many processes, such as the deposition
of atmospheric precipitation or mechanical settling, are lacking. The goal is rather to
provide a simplified setting in which the impact of the numerical implementation of the
SEB can be analyzed. In the same idea, we do not attempt to compare the simulation
results to field observations. Indeed, it would not be possible to decipher errors due
numerical discretization (the focus of this paper) from errors due to the assumed physics,
parametrizations and atmospheric forcing. Nonetheless, in order for the results to still be
informative of how a given numerical implementation might behave in a realistic setting,
we use realistic atmospheric forcings, initial conditions, and physical parametrizations. The
first simulation is meant to highlight the behavior of the numerical models when simulating
the surface energy balance on a snow-free glacier. The second one focuses on the impact
of the model implementations on the simulation of the energy budget of a seasonal
snowpack, during the melting period.”

Lastly, the finding that a coupled surface model can outperform other models at coarser
grid sizes is implied here to be more computationally efficient due to the change in mesh
size. However, this is not generally true when you are also changing the numerical
scheme, so the assertion of computational cost savings which maintaining accuracy (as
claimed here) should be backed up by either reports of the time taken for the computations
and/or a clear statement that the numerical implementations are computationally identical
by construction. This, if true, should also be mentioned in the conclusion as it is an
important outcome! This is somewhat related to the discussion of numerical reduction
(back to the same order of the original models) that you get from the Schur complement,
but they are not discussed together and the data are not shown.

To answer this question we have computed the number of basic operations
(addition/substraction and multiplication/division) required to perform the linear algebra



problem solvings of the three presented models, including the use of Schur-complements.
The exact number are now presented in the new Appendix A and discussed in the article.
We found that in terms of operations the standard skin-layer scheme requires about 40%
less operations than the coupled-surface and no-surface schemes (which both require
very similar number of operations). The last two schemes are more computationally
expensive as they require the extra computation of the Schur-complement that is a bit
more costly than the standard inversion used in the standard-skin layer formulation.
Therefore, and based on the Figures 5 to 9, the introduction of a coupled degree of
freedom at the surface (to transform a Class 1 into the coupled-surface scheme) is an
interesting numerical trade-off, as it only marginally increase the numerical cost of the
method while allowing coarser meshes. Concerning the standard skin-layer models, the
trade-off of transforming into a coupled-surface scheme is not as evident as the numerical
cost is multiplied by a bit less than 1.70. It allows the use of large time steps, without
numerical instabilities, but at the expense of an increased number of steps.

We propose to discuss in more details the numerical cost of the methods in Section 4.1.1

P11 - L294

“An analysis of the numerical cost (in terms of number of basic operations) of this
numerical scheme is given in Appendix A, alongside analyses of the numerical cost of
Class 1 and 2 models. It shows that the proposed scheme and the Class 1 models have
similar numerical costs, which a bit less than 1.7 times larger than the standard-skin layer.”

in the conclusion:

P25 - L551

“Furthermore, a reduction technique, based on the computation of a Schur complement, is
presented so that the numerical cost of the proposed framework remains of the same
order as that of the standard implementations for the same mesh. In particular, for a given
mesh, the numerical cost is similar to that of models not explicitly having a surface and
about 1.7 larger than that of the standard-skin layer formulation.”

P26 - L563

“Moreover, a tightly-coupled treatment of the SEB allows unconditional stability, while the
standard skin-layer formulation can be unstable and displays large spurious oscillations
with large time steps and small mesh sizes. Thus, while a bit more numerically costly, the
formulation presented in this article can be used to overall reduce the numerical cost of a
snowpack/glacier model through the use of larger time steps.”

As well as in the new Appendix A:

“We see that whole system of Eqs. (A1) is a tri-diagonal system of dimension (N+1)x
(N+1), with N the number of cells. Without a Schur-complement, the computation of A”'B
can thus be solved with Thomas algorithm in 10N -1 base operations (addition,
Subtraction, multiplication, and division) per non-linear iteration (neglecting the time spent
assembling the matrices). We also note that Ay is a tri-diagonal matrix, and thus Thomas
algorithm also applies. Moreover, we see that A,, and A are almost empty matrices,
which simplifies the number of operations necessary to compute Adiag”’ Aup and Aiow Adiag”’
A.p. Specifically, the Schur-complement technique used in this paper can be employed
with 7N-9 (Adag” Aup, Once per time step) + 10N-21 (Adag”’ B, ONCE per time step) + 15
(assembly and solving of Schur-complement, once per iteration) + 2N (re-injection to
compute T, once per time step) steps, i.e. a total of 177N-6 + 15n;: steps, with n; the
number of non-linear iterations. We see, that the advantage of the Schur-complement
technique is that the cost of performing non-linear iterations do not increase with the mesh



resolution, yielding a smaller numerically cost than inverting the while system for each
non-linear iteration.

One may then wonder how the numerical cost of the scheme proposed in the article
compares to the Class 1 and 2 models discussed in the paper. The Class 1 model (once a
Schur-complement technique has been employed) as a similar numerical cost as the
proposed coupled-surface scheme approach, namely 17N-23 + 15n; steps. For a given
mesh, it has one less degree of freedom as the coupled-surface scheme and is thus only
marginally cheaper. The Class 2 model is the cheapest of all schemes discussed in the
paper. Indeed, once the SEB and the surface temperature have been solved through
scalar non-linear iterations, it relies on a single tri-diagonal inversion of dimension NxN,
which can be done in 10N-11 steps. The ratio of the numerical cost of the scheme
proposed in the article over that of the standard skin-layer is of about 1.7.”

Finally, we note that we cannot analyze this numerical cost directly in terms of computation
time in our implementations. Indeed, they were implemented using the (interpreted) python
language with only some parts using pre-compiled (and thus much faster) libraries.
Directly comparing computation time would unfairly favor the schemes using pre-compiled
librairies.

Specific comments:

L3-4: “This surface energy budget is the sum of the various surface energy fluxes, that
depend on the input meteorological variables and surface temperature, and to which heat
conduction towards the interior of the snow/ice and potential melting need to be added.”
the comma between ‘fluxes’ and ‘that’ is incorrect, as are similarly positioned commas
throughout, and ‘that’ should be ‘which.’

This is now corrected. The same error is also corrected elsewhere in the text.

L2-4: ‘and to which heat conduction towards the interior...” this sentence is unclear to me
We wanted to highlights that the conduction of heat towards the interior of the
snowpack/glacier is an important factor that affects the SEB and hence the surface
temperature. We clarified this in the revised manuscript:

P1-L2

“This surface energy budget is the result of various surface energy fluxes, which depend
on the input meteorological variables and surface temperature, of heat conduction towards
the interior of the snow/ice, and potentially of surface melting if the melt temperature is
reached.”

L26: once the SEB acronym is introduced, it should be used consistently in the paper
We now systematically use SEB instead of “surface energy budget” once introduced.

L25-30: There is a large focus on the nonlinearity of SEB processes, which is important
but not hugely challenging in the modeling field, as many of the nonlinearities are easily
solved. It would be good to mention this and discuss sources of nonlinearity in a more
mechanistic sense. For example, the “regime change” mentioned is due to thermal energy
being used for processes with different reaction coefficients in warming frozen ice vs.
phase change. This will help build intuition to support the truncation method discussed
later. Perhaps mention another example.



We have reformulated the paragraph to lighten the references to non-linearity and clarified
that the regime change between a melting and non-melting surface occurs at the fusion
point (and not above as previously stated).

We have also precised how the SEB of melting and non-melting surface differs.

P2 -129

“Mathematically, the SEB thus appears as a non-linear top boundary condlition for
snowpacks and glaciers. This non-linearity is even reinforced by the existence of a regime
change between a melting and non-melting surface, with different thermodynamical
behaviors below and at the melting point. Indeed, once the melting point is reached at the
surface, the SEB becomes more akin to a Stefan-problem with a discontinuity in the
energy fluxes and can no longer be simply described in terms of surface temperature. This
leads to numerical challenges when solving the governing equations.”

L42: which domain? The ice domain?
By domain we mean the physical space over which the equations are solved, that is to say
in our case the snowpack or the glacier. This is now clearer in the text.

P2 -1L40

“On the other hand, some FVM implementations do not define a specific temperature
associated with the surface, but rather use the temperature of the top-most numerical
layer of the domain (i.e. the top layer of the simulated snowpack/glacier) for solving the
SEB (Anderson, 1976, Brun et al., 1989, Jordan, 1991, Vionnet et al., 2012, van
Kampenhout et al., 2017).”

L63: specify Fourier’s law of heat conduction
This is now specified.

L90-95: specify the sign convention used for fluxes
We now specify the sign convention for the fluxes.

Figure :1: clarify the meaning of the blue/orange colors of dots in the figures. Additional
labels within the diagram would improve the clarity of the figure. It is also somewhat
redundant to label Class 1 as a), class 2 as b) etc. since they are all in essentially the
same panel. Consider just labeling the columns as class 1, class2, this paper.

We now specify that the nodes corresponds to variables to be solved (i.e. the cell
temperatures and the surface state) and their position in space. This was also added to
the caption. The color are meant to group the variables that are solved simultaneously and
will be explained in the caption. We also revised the Figure to change the panels labeling
to “Class1”, “Class2”, and “proposed scheme”.

We propose for the new caption:

P6 - Fig 1

“Classification of FVM models with respect to their treatment of the SEB. Class 1: The
surface energy and the internal temperatures are solved in a tightly-coupled manner but
there is no explicit surface. Class 2: An explicit surface temperature (and surface melting)
exists but it is solved in sequential manner with respect to the internal temperatures.
Proposed scheme in this article: An explicit surface temperature is considered and is
solved in a tightly-coupled manner with the internal temperatures. In the schematic, dots
represent the prognostic variables of the schemes (with or without temperature at the
surface) while the colors indicate which variables are solved simultaneously.”



L115: “We therefore do not treat the finite elements method, which is for instance used in
the SNOPACK model.” -> “We therefore exclude implementations of the the finite elements
method, such as in the SNOWPACK model.”

Following the review of Michael Lehning, we now discuss the equivalent of our
implementation in a FEM setting. We explain that by construction, the FEM posses a
surface node which naturally allows one to computed a tightly-coupled SEB with the
interior of the snowpack, but that the mix of node-wise (temperatures) and element-wise
(energy content, liquid water content) variables in the FEM complexifies its use. The
implementation of an equivalent FEM scheme is presented in the new Appendix C
(attached at the end of this response) and discussed in the manuscript:

P4 -L112

“Moreover, we focus on numerical schemes based on FVM, as it is the method employed
by most models (e.g. Anderson, 1976, Sauter et al., 2020, Westermann et al., 2023). We
note that, contrary to the FVM, the use of the finite element method (FEM) naturally
incorporates the presence of a surface temperature, which can be used for a fully-coupled
treatment of the SEB, as done in SNOWPACK for instance (Bartelt and Lehning, 2002).”

P11 - L292
“Finally, a translation of this numerical strategy (including the fictitious variable and the
Schur-complement technique) in a FEM framework is presented in Appendix C.”

P12 -L329

“Finally, note that we do not include the FEM in this comparison. As detailed in Appendix
C, a specificity of FEM models is to rely on a temperature field that can be defined
element-wise or node-wise. It is thus required to convert back and forth between these two
representations. However, the relation between the two is not bijective. This prevents an
unambiguous transformation from element-wise to node-wise temperatures, affecting the
end-result of our simulations. Because of this problem, the FEM is not further explored in
this article, as a direct comparison to the FVM models is not possible.”

L179: omit the word “let’s” or use “we” instead

We modified the manuscript accordingly.

L275: the introduction of new terminology in representing equations 5 and 9 as a block-
matrix system with decomposed components (Adiag, etc.) requires additional explanatio of
the correspondence between terms in Equations 5 and 9 and their placement in Equation
11.

We now clearly explain how Eqgs (5) and (9) can be cast as the block-system of Equation
(11). This is done in a new Appendix A, attached at the end of this response.

L350: the bottom boundary no heat flux assumption seems strong to me, or at least
appropriate in a limited set of conditions. A citation or further discussion of this would help.
We think that in the glacier test case, the assumption of a no-flux boundary condition at the
bottom is appropriate as the temperature is essentially isothermal in this region (as given
by the initial conditions derived from a COSIPY run). Moreover, as this boundary condition
is far away from the surface (~189m), it would take much more than a year for it to
influence the surface where we perform our analysis. To quantify this point we have run a
simulation of the glacier test case with a 64.7 mW/m2 geothermal heat flux (GHF; Davies,
2013, Talalay et al., 2020) instead of a no-flux conditions. This difference in surface
temperature between the simulation with and without GHF is displayed in the Figure
below. It barely exceeds 4mK over the simulation, with a standard deviation of 0.4mK.
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We added this number in the text:

P13 - L352

“For instance, we performed a simulation in which a 64.7 mW m? geothermal heat flux is
applied instead (Davies, 2013). The impact on the surface temperature remains below 0.4
mK.”

Finally, we also want to note that the goal of our simplified simulation set-up is to provide
an easy framework for the comparison of numerical methods. While more realistic
boundary conditions could be used, this will not change our conclusion that are confined to
behavior of the numerical schemes.

L353-355: these constants are also introduced on L 66 and 72-75, use the same symbols
here to connect them.
We now re-use the alredy introduced symbol to refer to the physical variables.

L354: thermal conductivity of ice is temperature sensitive! If making this assumption,
please explain why it is warranted in this case (i.e., the temperature ranges reasonably
experienced in this case are small enough that there is not meaningful variation?)

Indeed, the thermal conductivity of ice is expected to vary of about 10% over the range of
temperature considered in this test case (from 2.5 W/K/m at 240K to about 2.22 W/K/m at
273K").

We however chose not to introduce the temperature dependence of ice in our computation
as (i) this is the assumption followed by the other models discussed in the paper (i.e.
COSIPY or Crocus) and (ii) this added complexity would not influence the numerical
benefit of tight-coupling the surface and internal energy budgets, and the properties we
want to study (time step and mesh sensitivity, stability, etc). We also want to add that
including a temperature-dependence for the thermal conductivity would render the system
of equation globally non-linear (rather than just locally near the surface) and would thus
obscure the advantage of variable elimination to speed up the resolution of system of
equation where non-linearities only appears locally. We think this last point is important
has it is relevant for simplified snowpack/glacier models, which do not necessarily include
such temperature dependence, and that are part of larger climate and Earth system
models and where speed up of the snowpack/glacier component would be benéeficial.

1 https://www.engineeringtoolbox.com/ice-thermal-properties-d_576.html



Furthermore, we have run a simulation of the glacier test case with the temperature
dependence on the thermal conductivity. The difference in surface temperature between
the simulations with and without this temperature-dependence is visible in the Figure
below. It shows that the difference remains below 0.06K, with a standard-deviation of
0.01K.
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We now in the revised manuscript that considering the thermal conductivity (and specific
thermal capacity) as temperature-independent is a simplifying assumption that is regularly
made in models and that allows the internal heat budget equation to be linear (and hence
more easily solvable). This assumption could be relaxed, but to the detriment of a more
numerically costly system to be solved.

P3 - 182

“Finally, in this article we consider the thermal conductivity A and capacity ¢_p not to
depend on temperature. The motivation for this is twofold as it (i) corresponds to a
simplifying assumption regularly made by snowpack and glacier surface models (e.g. van
Pelt et al., 2012, Vionnet et al., 2012, Sauter et al., 2020, Covi et al., 2023) and (ii) it
allows keeping the internal heat equation linear”

P11 - L294

“We also note that to apply this technique, the assumption of temperature-independent
thermal capacity and conductivity is important, as otherwise the internal heat equation
system would not be linear and thus the matrices Adiag, Aup, @and Aww Not constant.”

L385: albedo over what wavelength range? In most of the visible spectrum, this would be a
quite low value in clean snow. Further, the longwave emissivity of snow is more density
dependent due to the presence of air. It seems reasonable to use 1 for this approach, as
the emissivity is still usually quite high

The albedo used in this work refers to the broadband albedo (i.e. integrated over the while
solar spectrum). This is now specified in the manuscript.

We chose a simple constant value of 0.6 as the simulation is meant to take place during
the melting season, when the snow albedo is at its lowest. We agree that this value is on
the lower-hand of snow albedo. Thus, we have changed this value to 0.7 in the article
(Section 5.2), increased the duration of the snowpack simulations, re-ran them, and



updated the numbers in the manuscript (notably Figures 4, 7, 8, 11, 12, and 14). The
conclusions of the article remain unchanged.

L435: the “lag” of one time step mentioned here is interesting and well explained. The
impacts of this on interpreting a snow model output may be sensitive to the time step. If
there is a long time step, this would be problematic as it may prevent modeling melt. A
short time step may be more resilient to this lag.

We added to the text that this lag become less problematic with short time step.

P16 - L435
“The impact of this lagging problem can be mitigated by the use of small time steps, but
with the drawback of numerical cost.”

L440: the observation that numerical instability is leading to differences between class 2
models and other models is interesting and seen clearly in Figure 4. The fact that this is
not happening in the glacier model is only vaguely referenced. A direct comparison of the
reasons for this — if there is an inherent numerical instability in class 2 models, why is there
not an instability in the glacier model? Is all of the oscillation occurring in the meltwater
percolation?

We do not think that the overall difference between models visible in Figure 4 can be
readily explained by the presence of oscillations in the Class 2 model. For instance, at the
beginning of the plot the Coupled surface and Class 2 appear quite in agreement on
average, despite the occasional instabilities of Class 2. The two models then diverges
(even not considering the presence of instabilities) before re-agreeing later in the graph. It
is therefore not straight forward to link the overall agreement/disagreement of the two
models with the presence/absence of instabilities, as there are periods with a good
agreement despite instabilities, and periods a divergence despite the absence of
instabilities.

While less visible, instabilities in the glacier test case are still possible, as for instance
seen in Figure 13. As far as we understand, the presence or absence of oscillations is
linked to the stiffness of the equations that relates the SEB and the internal temperature,
and will depend on the specific thermal conductivity, thermal capacity, cell sizes, and on
the time step at play.

To illustrate this point we performed a simple stability analysis of the standard skin-layer
scheme (keeping in mind that this kind of stability analysis requires to linearize the system
of equations, which departs from the actual scheme). The derivation is available at the end
of this response and in the new Appendix E. It shows that the standard skin-layer scheme
is not unconditionally stable, and that there is exist a maximum time step size. The
presence of instabilities is favored in the case of large thermal conductivities or of a large
derivative of the atmospheric fluxes with respect to the surface temperature in the SEB.
On the contrary, these instabilities are hindered in the case of large cell sizes or large
specific thermal capacity.

This is now discussed in the manuscript:

P21 - L503

“The unstable nature of class 2 models can be shown with a linear stability analysis,
provided in Appendix E. Such analysis shows that class 2 models are only conditionally
stable, and confirm that instabilities are favored in the case of large time steps and small
mesh sizes. We stress that these oscillations can appear even if the time integration of the



internal energy budget relies on the Backward Euler method, known for its robustness
against instabilities (Fazio, 2001, Butcher, 2008). Our understanding is that the sequential
treatment of the standard skin-layer formulation breaks the implicit nature of the time
integration by using "lagged" (in other words, explicit rather than implicit) terms. This,
combined with the fact that the surface layer does not possess any thermal inertia and that
its temperature can thus vary rapidly in time, permits large temperature swings if the time
step is too large or the mesh size too small. On the other hand, it can be shown that the
two schemes with a tightly-coupled SEB are unconditionally stable (Appendix E), in
agreement with the absence of oscillations in their simulations. Notably, the unconditional
stability of the coupled-surface scheme proposed in this article entails that the model does
not need an adaptive time step size strategy depending on the mesh size. This ensures
that it remains robust, regardless of the time step and mesh size.

P26 - L563

“Moreover, a tightly-coupled treatment of the SEB allows unconditional stability, while the
standard skin-layer formulation can be unstable and displays large spurious oscillations
with large time steps and small mesh sizes.”

Figure 4: it is impossible to see the coupled surface line in panel b — consider adding
markers or some other formatting choice which would allow us to see it clearly. Layering
the coupled surface model on the front may help if markers are not working favorably.
Indeed, for some reason panel b of the Figure was done using a lighter shade of blue for
the coupled-surface line. This was fixed and the Figure should be more readable now.

Figure 6: right panel y axis would benefit from additional labels
We added additional labels in Figures 6.

L490-495: as worded, the phrase “the class 2 model exhibits the largest phase change
rate errors for an initial number of cells of 225" is ambiguous — is 225 the worst number of
cells for C2 models or is C2 the worst option when working with 225 cells? From the
graph, it is the second option, which is potentially less important than discussing the fact
that for the other two model options, a larger number of cells generally confers better
performance (within the parameter space explored here), but that is not the case for class
2 when moving from 90 to 225. Why might this be?

This deterioration is due to the development of numerical instabilities with small mesh size
in the Class 2 model. This is now specified in the text.

P20 - L 490

“Finally, Fig. (10) reveals that in the glacier test case, the phase change rate errors of the
class 2 tend to deteriorate with further mesh refinement past a certain point (here for an
initial cell number above 90). We interpret this deterioration as a result of the appearance
of numerical instabilities that develop with small mesh sizes.”

L504: implicit backward Euler method?
There is one backward too much. It is now corrected.

L506: “explicit” ?
We modified the text to:

P21 - L506

(in other words, explicit rather than implicit)”.



L509: “too”
We corrected the typo.

519: is the Dirichlet approach actually used? If not, it is not relevant to compare it here
The same comment was brought-up by Richard Essery. The potentiality of using the
surface temperature as a Dirichlet condition rather than the subsurface conduction flux
was made aware to us from reading the publicly available COSIPY code
(cosipy/modules/heatEquation.py files, last accessed 08/11/2023) and EBFM codes.
However, we stress that these codes use a Forward Euler time stepping, and in this case
the using the sub-surface conduction flux or a Dirichlet condition are equivalent.

As mentioned in our response to the Richard Essery’s review, we think it is important to
mention and show that using a Dirichlet condition will lead to greatly deteriorated
simulations, since the use of a Dirichlet condition actually numerically stabilizes the system
(which can be seen with the absence of instabilities in the orange curve of Fig. 14 and can
be demonstrated with a stability analysis, provided at the end of this document and in the
new Appendix E) and might be used in this attempt. However, this stabilization is at the
detriment of accuracy and energy conservation.

We propose to better justify in the manuscript that the use of a Dirichlet condition might be
tempting to obtain stability, but that it will produce large errors in response. We also
propose to shorten the first part of the Section:

P23 - L511

“As explained in Section 2.2, the heat conduction flux from the surface to the interior of the
domain (i.e. G in Equation 3) needs to have the same value in the computation of the SEB
and in the computation of the energy budget of the first interior cell. Inconsistencies in G
between these two budgets lead to the violation of energy conservation and create an
artificial energy source/sink near the surface. Such inconsistencies could be created when
implementing the standard skin-layer formulation (class 2 models) due to the sequential
treatment of the surface and internal energy budgets. Indeed, after solving the SEB, one
can either use the surface temperature or the subsurface heat flux G as a boundary
condition for the computation of the internal temperatures. We note that the use the
computed surface temperature as a boundary condition leads to an unconditionally stable
numerical scheme (Appenddix E). However, using such Dirichlet condition in order to
stabilize the standard-skin layer formulation comes at the expense of energy conservation
and deteriorates of the simulated results.”

Figure 13: this is a time series of temperature, not a graph of numerical instabilities and
should be labeled as such. It seems that the goal is to point out the larger variance in the
higher number of cells-driven runs, so | would recommend either adding the time average
standard deviation, or converting this plot to a time series of deviation from some sort of
rolling mean in order to focus more on the instability-driven variance. Or, add a second
column that contains histograms of that variance for each case.

We modified the caption to refer to the Figure as a temperature time series, and we will
add the computation of a rolling standard deviation to quantify the instabilities and their
presence.

P24 - Fig. 13

“Time series of surface temperatures (in blue, left y-axis) and of their 24hr-running
standard deviations (in orange, right y-axis) highlighting the presence of numerical
instabilities with the standard skin-layer scheme. The simulations correspond to the glacier



test case with a time step of 2 hr. Each panel corresponds to a level of mesh refinement.
The lowest mesh refinement is at the top and displays the smallest level of instabilities,
while the highest mesh refinement is at the bottom and displays numerous large
instabilities in the first half of the simulation.”

L560: the level of accuracy is similar but not identical

We are not sure to fully understand the comment of the referee. We have have modified
the manuscript to explain that the tightly-coupled scheme results overall in a better
accuracy, but not always.

P26 - L559

“Mesh and time step convergence analyses show that combining a coupled treatment of
the SEB with the explicit introduction of a surface results in an overall better accuracy
when compared to the classical implementations.”

L613 “This approach is, for instance, used in the Crocus model” add commas
We added the commas.



