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Abstract  11 

The reactions between SO3 and atmospheric acids are indispensable in improving the formation of 12 

aerosol particle. However, relative to those of SO3 with organic acids, the reaction of SO3 with 13 

inorganic acids has not received much attention. Here, we explore the atmospheric reaction between 14 

SO3 and H2SO4, a typical inorganic acid, in the gas phase and at the air-water interface by using 15 

quantum chemical (QC) calculations and Born-Oppenheimer molecular dynamics simulations. We 16 

also report the effect of H2S2O7, the product of the reaction between SO3 and H2SO4, on new particle 17 

formation (NPF) in various environments by using the Atmospheric Cluster Dynamics Code kinetic 18 

model and the QC calculation. The present findings show that the gas phase reactions of SO3 + 19 

H2SO4 without and with water molecule are both low energy barrier processes. With the 20 

involvement of interfacial water molecules, H2O-induced the formation of S2O7
2-
H3O

+ ion pair, 21 

HSO4
- mediated the formation of HSO4

-
H3O

+ ion pair and the deprotonation of H2S2O7 were 22 

observed and proceeded on the picosecond time-scale. The present findings suggest the potential 23 

contribution of SO3-H2SO4 reaction to NPF and aerosol particle growth as the facts that i) H2S2O7 24 

can directly participate in H2SO4-NH3-based cluster formation and can facilitate the fastest possible 25 

rate of NPF from H2SO4-NH3-based clusters by about a factor of 6.92 orders of magnitude at 278.15 26 

K; and ii) the formed interfacial S2O7
2- can attract candidate species from the gas phase to the water 27 

surface, and thus, accelerate particle growth. 28 
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1. Introduction 29 

Sulfur trioxide (SO3) is a major air pollutant (Zhuang and Pavlish, 2012; Chen and 30 

Bhattacharya, 2013; Cao et al., 2010; Kikuchi, 2001; Mitsui et al., 2011) and can be considered as 31 

the most important oxidation product of SO2 (Starik et al., 2004). As an active atmospheric species, 32 

SO3 can lead to the formations of acid rain and atmospheric aerosol (Sipilä et al., 2010; Mackenzie 33 

et al., 2015; England et al., 2000; Li et al., 2016; Renard et al., 2004) and thus plays a well-34 

documented role in regional climate and human health (Zhang et al., 2012; Pöschl, 2005; Zhang et 35 

al., 2015; Pöschl and Shiraiwa, 2015; Haywood and Boucher, 2000; Lohmann and Feichter, 2005). 36 

In the atmosphere, the hydrolysis of SO3 to product H2SO4 (SA) is the most major loss route of SO3 37 

(Morokuma and Muguruma, 1994; Akhmatskaya et al., 1997; Larson et al., 2000; Hazra and Sinha, 38 

2011; Long et al., 2013a; Torrent-Sucarrat et al., 2012; Ma et al., 2020). As a complement to the 39 

loss of SO3, ammonolysis reaction of SO3 in polluted areas of NH3 can form H2NSO3H, which not 40 

only can be competitive with the formation of SA from the hydrolysis reaction of SO3, but also can 41 

enhance the formation rates of sulfuric acid (SA)-dimethylamine (NH(CH3)2, DMA) clusters by 42 

about 2 times. Similarity, the reactions of SO3 with CH3OH and organic acids (such as HCOOH) 43 

were reported (Liu et al., 2019; Hazra and Sinha, 2011; Long  et al., 2012; Mackenzie et al., 2015; 44 

Huff et al., 2017; Smith et al., 2017; Li et al., 2018a), and both processes can provide a mechanism 45 

for incorporating organic matter into aerosol particles. However, the reaction mechanism between 46 

SO3 and inorganic species are still unclear. 47 

As a typical inorganic acid, SA can act as an important role in the new particle formation 48 

(Weber et al., 1995; Weber et al., 1996; Weber et al., 2001; Sihto et al., 2006; Riipinen et al., 2007; 49 

Sipilä et al., 2010; Zhang et al., 2012) and acid rain (Calvert et al., 1985; Finlayson-Pitts and Pitts 50 

Jr, 1986; Wayne, 2000). The source of gas-phase SA is mainly produced by the gas-phase hydrolysis 51 

reaction of SO3. For the direct reaction between SO3 and H2O, it takes place hardly in the atmosphere 52 

due to high energy barrier (Chen and Plummer, 1985; Hofmann and Schleyer, 1994; Morokuma and 53 

Muguruma, 1994; Steudel, 1995). However the addition of a second water molecule (Morokuma 54 

and Muguruma, 1994; Larson et al., 2000; Loerting and Liedl, 2000), the hydroperoxyl radical 55 

(Gonzalez et al., 2010), formic acid (Hazra and Sinha, 2011; Long  et al., 2012) , sulfuric acid 56 

(Torrent-Sucarrat et al., 2012), nitric acid (Long et al., 2013a), oxalic acid (Lv et al., 2019) and 57 
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ammonia (Bandyopadhyay et al., 2017) have been reported to catalyze the formation of SA from 58 

the hydrolysis reaction of SO3 as they can promote atmospheric proton transfer reactions. Similarity, 59 

as SA can give out protons more readily than H2O, which in turn is more conducive to the proton 60 

transfer, thus we predict that the addition reaction involving the proton transfer between SO3 and 61 

SA is much easier under atmospheric conditions that between SO3 and H2O. However, this gas-62 

phase reaction has not been investigated as far as we know. Meanwhile, in many gas phase reactions, 63 

single water molecule can play a catalyst role by increasing the stability of pre-reactive complexes 64 

and reducing the activation energy of transition states (Kanno et al., 2006; Stone and Rowley, 2005; 65 

Chen et al., 2014; Viegas and Varandas, 2012, 2016). For example, single water molecule in the 66 

H2OHO2 + SO3 reaction can catalyze the formation of HSO5 (Gonzalez et al., 2010). Thus, it is 67 

equally important to study the SO3 + SA reaction without and with H2O. In addition to the gas phase 68 

reactions, many new atmospheric processes and new reaction pathways have been observed at the 69 

air-water interface (Zhong et al., 2017; Kumar et al., 2017; Kumar et al., 2018; Zhu et al., 2016; Li 70 

et al., 2016; Zhu et al., 2017). Such as, the organic acids reacting with SO3 can form the ion pair of 71 

carboxylic sulfuric anhydride and hydronium at the air-water interface (Zhong et al., 2019). This 72 

mechanism is different from the gas phase reaction in which the organic acid either serves as a 73 

catalyst for the hydrolysis of SO3 or acts as a reactant reacting with SO3 directly. So, water droplets 74 

may play important roles in atmospheric behaviors between SO3 and SA. Thus, it is also important 75 

to study the interfacial mechanism between SO3 and SA, and to compare its difference with the 76 

corresponding gas-phase reaction.  77 

Previous experimental studies (Otto and Steudel, 2001; Abedi and Farrokhpour, 2013) found 78 

that disulfuric acid (H2S2O7, DSA) is the product of the reaction between SO3 and SA. From the 79 

perspective of structure, DSA possesses two HO functional groups. Both HO groups can act as 80 

hydrogen donors and acceptors to interact with atmospheric particle precursors. It has been shown 81 

that the products of SO3 with some important atmospheric species have been identified in promoting 82 

NPF process. For example, the products of NH2SO3H, HOOCOOSO3H, CH3OSO3H and 83 

HOCCOOSO3H from the reactions of SO3 with NH3 (Li et al., 2018a), H2C2O4 (Yang et al., 2021), 84 

CH3OH (Liu et al., 2019) and HOOCCHO (Rong et al., 2020) all have a catalytic effect on the 85 

formation of new particles in aerosols. However, whether DSA produced by the reaction between 86 

SO3 and SA contributes to aerosol formation or not is still unclear. Thus, another main question that 87 
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we intend to address here is the role of DSA in atmospheric SA‐NH3 (A) nucleation, which have 88 

been recognized as dominant precursors in highly polluted areas, especially in some megacities in 89 

Asia. 90 

In this work, using quantum chemical calculations and Master Equation, we first studied the 91 

gas-phase reaction between SO3 and SA to product DSA with H2O acting as a catalyst. Then, we 92 

use the Born-Oppenheimer Molecular Dynamic (BOMD) simulations to evaluate the reaction 93 

mechanism of SO3 with SA at the air-water interface. Finally, we used Atmospheric Clusters 94 

Dynamic Code (ACDC) and quantum chemical calculations to investigate atmospheric 95 

implications of SO3-SA reaction to the atmospheric particle formation. Particular attention of this 96 

work is focused on the study of i) the mechanism difference of the SO3 + SA reaction in the gas 97 

phase and at the air-water interface; ii) the fate of DSA in atmospheric NPF and its influence at 98 

various environmental conditions. 99 

2. Computational Details 100 

2.1 Quantum Chemical Calculation. For the gas-phase reaction of SO3 + SA without and 101 

with water molecule, the optimized geometries and vibrational frequencies of reactants, pre-102 

reactive complexes, transition states (TSs), post-reactive complexes and products were 103 

calculated using M06-2X method (Frisch et al., 1990) with 6-311++G(2df,2pd) basis set by 104 

Gaussian 09 packages (Frisch, 2009). At the same level, the connectivity between the TSs and the 105 

suitable pre- and post-reactant complexes was performed by intrinsic reaction coordinate (IRC) 106 

calculations. Then, single point energy calculations were calculated at the CCSD(T)-F12/cc-pVDZ-107 

F12 level by using ORCA (Bork et al., 2014; Myllys et al., 2016; Elm and Kristensen, 2017). 108 

A multistep global minimum sampling technique was used to search for the global minima of 109 

the (DSA)x(SA)y(A)z (z ≤ x + y ≤  3) molecular clusters. In the first step, the initial structure of 110 

1000 clusters were autogenerated by the ABCluster program (Zhang and Dolg, 2015, 2016) with 111 

the CHARMM force field (MacKerell et al., 1998). Then, these structures were optimized firstly by 112 

the semiempirical PM6 method in Mopac 2016 (Stewart, 2016). Next, up to 100 isomers were 113 

reoptimized at the M06-2X/6-31+G(d,p) level. Finally, 10 lowest-lying structures were optimized 114 

by the M06-2X/6-311++G(2df,2pd) level to determine the global minimum. The optimized 115 

structures and the formation Gibbs free energy of the stable clusters were summarized in Fig. S9 116 
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and Table S8 of the SI Appendix, respectively. 117 

2.2 Rate constant calculations. Using the Rice-Ramsperger-Kassel-Marcus based Master 118 

Equation (ME/RRKM) model (Miller and Klippenstein, 2006), the kinetics for the SO3 + SA 119 

reaction without and with water molecule were calculated by adopting a Master Equation Solver 120 

for Multi Energy-well Reactions (MESMER) code (Glowacki et al., 2012). In the MESMER 121 

calculation, the rate coefficients for the bimolecular barrierless association step (from reactants to 122 

pre-reactive complexes) were evaluated by the Inverse Laplace Transform (ILT) method (Horváth 123 

et al., 2020), meanwhile the unimolecular step was performed by the RRKM theory combined with 124 

the asymmetric Eckart model. The ILT method and RRKM theory can be represented in Eq (1) and 125 

Eq (2), respectively. 126 

0

1
( ) ( ) ( )exp( )

( )
k k E E E dE

Q
  




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                       (1) 127 
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( )

W E E
k E

h E

−
=

                               (2) 128 

Where h is denoted as Planck’s constant; ρ(E) is denoted as the active density of state of the reactant 129 

at energy level E; E0 is denoted as the reaction threshold energy and W(E-E0) is denoted as the sum 130 

of the rovibrational states of the transition state (TS) geometry (excluding the degree of freedom 131 

related to passing the transition state). The input parameters for electronic geometries, vibrational 132 

frequencies, and rotational constants were calculated at the M06-2X/6-311++G(2df,2pd) level and 133 

single-point energy calculations were refined at the CCSD(T)-F12/cc-pVDZ-F12 level for the 134 

modeling. 135 

2.3 Born-Oppenheimer Molecular Dynamic (BOMD) Simulation. The CP2K code 136 

(Hutter et al., 2014) was used in the BOMD simulations. The Becke-Lee-Yang-Parr (BLYP) 137 

functional (Becke, 1988; Lee et al., 1988) was chosen to treat with the exchange and correlation 138 

interactions, and the Grimme’s dispersion was carried out to account for the weak dispersion 139 

interaction (Grimme et al., 2010). The Goedecker-Teter-Hutter (GTH) conservation 140 

pseudopotential (Goedecker et al., 1996; Hartwigsen et al., 1998) with the Gaussian DZVP 141 

basis set (VandeVondele and Hutter, 2007) and the auxiliary plane wave basis set was applied 142 

to correct the system valence electrons and the core electrons, respectively.  For the plane wave 143 

basis set and Gaussian basis set, the energy cut off (Zhong et al., 2017; Zhong et al., 2018; 144 
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Zhong et al., 2019) were set to 280 and 40 Ry, respectively. For each simulation in the gas phase, 145 

a 15 × 15 × 15 Å3 supercell with periodic boundary condition was adopted with a time step of 0.5 146 

fs. The air-water interfacial system included 191 water molecules, SO3 and SA in the BOMD 147 

simulation. To avoid periodic interactions between adjacent water droplets, the size of the 148 

simulation box (Kumar et al., 2017; Kumar et al., 2018; Ma et al., 2020) was set as 35 × 35 × 149 

35 Å3 with a time step of 1.0 fs. For all the simulations in the gas phase and at the air-water 150 

interface, the Nose-Hoover thermostat (Zhong et al., 2017; Zhong et al., 2018; Zhong et al., 151 

2019; Kumar et al., 2017; Kumar et al., 2018; Ma et al., 2020) was selected the NVT ensemble 152 

to control the temperature around 300 K. 153 

2.4 Atmospheric Clusters Dynamic Code (ACDC) Model 154 

The Atmospheric Cluster Dynamics Code (ACDC) (McGrath et al., 2012) was used to 155 

simulate the cluster formation rates and mechanisms of (DSA)x(SA)y(A)z (z ≤ x + y ≤ 3) 156 

clusters at different temperatures and monomer concentrations. The thermodynamic data of 157 

quantum chemical calculation at the DLPNO-CCSD(T)/aug-cc-pVTZ//M06-2X/6-311++G 158 

(2df,2pd) level of theory can be used as the input of ACDC. The birth-death equation (Eq. 3) 159 

for clusters solves the time development of cluster concentrations by numerical integration 160 

using the ode15s solver in MATLAB program (Shampine and Reichelt, 1997). 161 

,( ) ( ) ( ) ,

1 1

2 2

i
j i j j i j i j i i j i j i j i j i i i

j i j j j i

dc
C C C C C C Q S

dt
   − − + → + →

 

= + − − + −        (3) 162 

Where ci is the concentration of cluster i; βi,j is the collision coefficient between clusters i and j; γ(i+j)163 

→i is the evaporation coefficient of cluster i+j evaporating into clusters i and j, and Qi is all other 164 

source term of cluster i. (See more details of β and γ in SI Appendix Part 4). Besides, a constant 165 

coagulation sink coefficient 2 × 10-2 s-1 (corresponding to the median observed in contaminated 166 

areas) was used for taking into account external losses (Yao et al., 2018; Zhang et al., 2022; 167 

Liu et al., 2021b). The details for the boundary conditions and concentration ranges of SA, A 168 

and DSA are presented in the SI Appendix Part 5. 169 

3. Results and discussion  170 

3.1 Reactions in the gas phase 171 

The addition reaction involving the proton transfer between SO3 and SA (Channel DSA) 172 
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proceeded through the formation of SO3H2SO4 complex followed by unimolecular transformation 173 

through transition state TSDSA to form H2S2O7 (Fig. 1(a)). The reactant complex SO3H2SO4 was 174 

a double six-membered ring complex with a relative Gibbs free energy of -1.6 kcalmol-1. After the 175 

formation of SO3H2SO4 complex, Channel DSA overcame a Gibbs free energy barrier of 2.3 176 

kcalmol-1, which was lower by 4.2 kcalmol-1 than that of H2O-catalyzed hydrolysis of SO3 (Fig. 177 

S1). Rate constant for the SO3 + SA reaction was calculated at various temperatures (Table 1). 178 

Within the temperature range of 280-320 K, the rate constants for the SO3 + SA reaction were 179 

calculated to be 2.57 × 10-12-5.52 × 10-12 cm3·molecule-1·s-1, which were larger by 3.43-4.03 times 180 

than the corresponding values of H2O-catalyzed hydrolysis of SO3. Therefore, it can be said that the 181 

direct reaction between SO3 and SA is more favorable over H2O-catalyzed hydrolysis of SO3 182 

energetically and kinetically. 183 

As the probability of simultaneous collision (Pérez-Ríos et al., 2014; Elm et al., 2013) of three 184 

molecules of SO3, SA and H2O is quite low under realistic conditions, the SO3 + SA reaction with 185 

H2O (Channel DSA_WM) can be considered as a sequential bimolecular process. In other words, 186 

Channel DSA_WM occurs via the collision between SO3 (or SA) and H2O to form dimer 187 

(SO3H2O and H2SO4H2O) first, and then the dimer encounters with the third reactant SA or 188 

SO3. The computed Gibbs free energies of dimer complexes SO3H2O and H2SO4H2O were 189 

respectively 0.8 kcalmol-1
 and -1.9 kcalmol-1, which were respectively consistent with the previous 190 

values (the range from -0.2 to 0.62 kcalmol-1 for SO3H2O complex (Bandyopadhyay et al., 2017; 191 

Long  et al., 2012) and the range from -1.82 to -2.63 kcalmol-1 for H2SO4H2O complex (Long et 192 

al., 2013b; Tan et al., 2018)). The Gibbs free energy of H2SO4H2O was lower by 2.7 kcalmol-1 193 

than that of SO3H2O, thus leading to that the equilibrium constant of the former complex is larger 194 

by at least one order of magnitude than that of the latter one in Table S2. Additionally, the larger 195 

equilibrium constant of H2SO4H2O complex leads to its higher concentration in the atmosphere. 196 

For example, when the concentrations of SO3 (Yao et al., 2020), H2SO4 (Liu et al., 2015) and H2O 197 

(Anglada et al., 2013) were 106, 108 and 1017 moleculescm-3, respectively, the concentrations of 198 

SO3H2O and H2SO4H2O were 2.41 × 103-2.01 × 104 and 5.01 × 105-3.01 × 108 moleculescm-3 199 

within the temperature range of 280-320 K (see Table S3), respectively. So, we predict that Channel 200 

DSA_WM mainly takes place via the collision of H2SO4H2O with SO3. In order to check this 201 

prediction, the effective rate constants for two bimolecular reactions of H2SO4H2O + SO3 and 202 
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SO3H2O + H2SO4 were calculated, and the details were shown in SI Appendix, Part 3 and Table 203 

1. As seen in Table 1, the SO3H2O + H2SO4 reaction can be neglected as its effective rate constant 204 

is smaller by 16.7-48.5 times than the corresponding value of the H2SO4H2O + SO3 reaction. 205 

Therefore, we only consider the H2SO4H2O + SO3 bimolecular reaction in H2O-catalyzed SO3 + 206 

SA reaction. 207 

The H2SO4H2O + SO3 reaction occurred in a stepwise process as displayed in Fig. 1(b), 208 

which was similar to the favorable routes in the hydrolysis of COS, HCHO and CH3CHO catalyzed 209 

by sulfuric acid (Long et al., 2013b; Li et al., 2018b; Tan et al., 2018). When the H2SO4H2O 210 

complex and SO3 served as reactants, the reaction was initiated by complex IMDSA_WM' where a van 211 

der Waals interaction (S2O4, 2.75 Å) was found between the O4 atom of SA moiety in 212 

H2SO4H2O and the S atom of SO3. After complex IMDSA_WM', the ring enlargement from 213 

IMDSA_WM' to SO3H2SO4H2O complex occurred through transition state TSDSA_ WM' with a 214 

Gibbs free energy barrier of 1.2 kcal·mol-1. Complex SO3H2SO4H2O was 6.1 kcal·mol-1 lower 215 

in energy than IMDSA_WM'. In SO3 H2SO4H2O, SO3 acted as double donors of hydrogen bond to 216 

form a cage-like hydrogen bonding network with H2SO4H2O. Then, starting with 217 

SO3H2SO4H2O complex, the H2SO4H2O + SO3 reaction occurred through transition state 218 

TSDSA_WM with a Gibbs free barrier energy of 0.5 kcal·mol-1 to form a quasi-planar network complex, 219 

H2S2O7H2O. TSDSA_WM was in the middle of a double proton transfer, where H2O played as a 220 

bridge for proton transfer, along with the simultaneous formation of the O4S2 bond. In order to 221 

estimate the catalytic ability of H2O in the SO3 + SA reaction, the effective rate constant (k′DSA_WM_s) 222 

of the H2SO4H2O + SO3 reaction were compared with the rate constant (kDSA) of the SO3 + SA 223 

reaction. As seen in Table 1, under the experimental concentration (Anglada et al., 2013) ([H2O] = 224 

5.20 × 1016-2.30 × 1018 molecules·cm-3) within the temperature range of 280-320 K, the calculated 225 

k′DSA_WM_s was 1.03 × 10-11-4.60 × 10-12 cm3·molecule-1·s-1, which was larger by 1.79-1.86 times 226 

than that of kDSA. This result shows that H2O exerts catalytic role in promoting the rate of the SO3 + 227 

SA reaction.  228 

3.2 Reactions at the Air-water interface  229 

The mechanism for the SO3 + SA reaction at the air-water interface was lacking and thus 230 

explored below. Due to the high reactivity of SO3 and SA at the air-water interface, the product SA- 231 

is formed with extremely short times from both SO3 (Zhong et al., 2019) and SA (Fig. S2) (on the 232 
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order of a few picoseconds) with interfacial water molecules. So, two possible models were mainly 233 

considered for SO3-SA reaction on the water surface: (i) gaseous SO3 colliding with SA- at the air-234 

water interface and (ii) the DSA (the gas-phase product of SO3 and SA) dissociating on water droplet.  235 

Gaseous SO3 Colliding with SA- at the Air-Water Interface. At the water droplet’s surface, 236 

the interaction between SO3 and SA- included two main channels: (i) H2O-induced formation of 237 

S2O7
2-
H3O

+ ion pair (Fig. 2, Fig. S3 and Movie S1) and (ii) SA--mediated formation of SA-
H3O

+ 238 

ion pair (Fig. 3, Fig. S4-S5 and Movie S2-S3). The BOMD simulations for H2O-induced formation 239 

of S2O7
2-
H3O

+ ion pair was illustrated in Fig. 2, the H1 atom of SA- ion can combine with a nearby 240 

interfacial water molecule at 8.18 ps by hydrogen bond (d(O3-H1) = 1.17 Å) interaction, thus forming 241 

hydrated hydrogen sulfate ion (SA-
H2O). Then, the H1 atom of SA- ion was moved to the O3 242 

atom of the interfacial water molecule at 8.28 ps, revealing the formation of SO4
2-
H3O

+ ion pair. 243 

Additionally, SO4
2- gradually approached to SO3 molecule with the shortening of S1-O1 bond. At 244 

9.26 ps, the S1-O1 bond length was 1.84 Å, which was close to the length of S-O1 bond in S2O7
2- 245 

ion (Fig. S7), revealing the formation of S2O7
2-
H3O

+ ion pair. Both direct (without the 246 

involvement of SA-, Fig. 3(a), Fig. S4 and Movie S2) and indirect (with the involvement of SA-, 247 

Fig. 3(b), Fig. S5 and Movie S3) forming mechanisms were observed in SA--mediated formation of 248 

SA-
H3O

+ ion pair. The direct SA--mediated formation of SA-
H3O

+ ion pair was a loop structure 249 

mechanism, which was consistent with gas phase hydrolysis of SO3 assisted by acidic catalysts of 250 

HCOOH, HNO3, H2C2O4 and SA in the previous works (Long  et al., 2012; Long et al., 2013a; 251 

Torrent-Sucarrat et al., 2012; Lv et al., 2019), and HNO3-mediated Criegee hydration at the air-252 

water interface. As for the direct formation mechanism of SA-
H3O

+ ion pair seen in Fig. 3(a) and 253 

movie S2, an eight-membered loop complex, SO3H2O(1)SA-, was found at 1.46 ps with the 254 

formations of two hydrogen bonds (d(O3H2) = 2.13 Å; d(O4H3) = 2.18 Å) and a van der Waals 255 

interaction (d(S1O1) = 2.14 Å). Subsequently, SO3 and interfacial H2O(1) were close to each other. 256 

At 1.59 ps, a transition state-like loop structure was observed and proton transfer from interfacial 257 

H2O(1) to another suspended H2O(2) was found, where the bond lengths of S1-O1, O1-H1 and H1-258 

O2 were 1.94 Å, 1.19 Å and 1.32 Å, respectively. At 1.70 ps, the bond lengths of S-O1 and H1-O2 259 

were reduced to 1.73 Å and 1.01 Å, while the bond length of H1-O2 was extended to 1.61 Å, 260 

showing the formation of SA-
H3O

+ ion pair. During the direct formation route of SA-
H3O

+ ion 261 

pair, SA- played as a spectator, while interfacial water molecules acted as both a reactant and a 262 
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proton acceptor. 263 

As seen in Fig. 3(b) and Movie S3, the indirect forming process of SA-
H3O

+ ion pair 264 

contained two steps: (i) SO3 hydration along with SA formation and (ii) SA deprotonation. 265 

Specifically, as for step (i), at 0.70 ps, a transition state like structure of SO3 hydration was observed 266 

with SO3, SA- and an interfacial water molecule involved. Note that at this time the H1 atom in 267 

interfacial H2O molecule migrated to the O2 atom of SA- ion instead of the surrounding water 268 

molecule. At 0.96 ps, the O1-H1 bond of H2O was broken with the length of 1.56 Å, while the S1-269 

O1 bond was formed with the length of 1.75 Å, demonstrating the completion of hydrolysis reaction 270 

of SO3 and the formation of SA molecule. Then, at 8.08 ps, the H2 proton transfer from SA to the 271 

O4 atom of SA- ion to the O5 atom of the nearby water molecule was occurred, where the O3-H2 272 

and O1-H3 bonds extended to 1.13 Å and 1.22 Å, and the length of O4-H2 and O5-H3 bonds 273 

shortened to 1.45 Å and 1.20 Å. Finally, SA deprotonation was completed at 8.23 ps with the 274 

formation of SA-
H3O

+ ion pair. During the whole indirect forming process of SA-
H3O

+ ion pair, 275 

SA- played as protons donor and acceptor, and water molecules acted as hydration reactants and 276 

proton acceptors.  277 

The H2S2O7 Dissociating on Water Droplet. In addition to the gaseous SO3 colliding with SA- 278 

at the air-water interface, DSA, the product of the barrierless reaction between SO3 and SA, can 279 

further quickly react with interfacial water molecule at the air-water interface. As seen in Fig. 4, 280 

Fig. S6 and Movie S4, DSA is highly reactive at the air-water interface and can undergo two 281 

deprotonations to form S2O7
2- ion. Specifically, the DSA can firstly form a H-bond with interfacial 282 

water molecule at 0.45 ps. After that, the H1 atom of DSA transferred to interfacial water and 283 

produced HS2O7
- and H3O

+ ions. The formed HS2O7
- ion can survive for ~3 ps on water droplet. At 284 

4.14 ps, the H2 atom of HS2O7
- ion moved to O4 atom of nearby interfacial water molecule and 285 

produced the formation of S2O7
2-
H3O

+ ion pair, which was stable at the air-water interface over a 286 

simulated time scale of 10 ps. Note that the second deprotonation of DSA indeed needs more time 287 

than its first deprotonation as the pKa1 (pKa1 = -16.05) of DSA is much smaller than its pKa2 (pKa2 288 

= -4.81) (Abedi and Farrokhpour, 2013). In brief, at the air-water interface, both these two routes of 289 

the formation of S2O7
2-
H3O

+ ion pair occur on the picosecond time scale. 290 

3.3 Atmospheric Implications 291 

In the gas-phase, the main sink route of SO3 is H2O-assisted hydrolysis of SO3 (Morokuma 292 
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and Muguruma, 1994; Akhmatskaya et al., 1997; Larson et al., 2000; Hazra and Sinha, 2011; Long 293 

et al., 2013a; Torrent-Sucarrat et al., 2012; Ma et al., 2020). To study the atmospheric importance 294 

of the SO3 + SA reaction without and with H2O, the rate ratio (vDSA/vSA) between the SO3 + SA 295 

reaction and H2O-assisted hydrolysis of SO3 was compared, which was expressed in Eq. (4). 296 

2 4 2

3 2

DSA DSA_WM_s 2

SA_WM 2 2

2 4 2 43 eq(H SO H O) 3DSA

SA eq(SO H O) 3

H O

H O H O

[SO ] [H SO ] K [SO ] [H SO ] [ ]

K [SO ] [ ] [ ]

k kv

v k
=

  +    

   
  (4) 297 

In Eq. (4), Keq1 and Keq2 were the equilibrium constant for the formation of complex H2SO4H2O 298 

and SO3H2O shown in Table S2, respectively; kDSA, kDSA_WM and kSA_WM were respectively 299 

denoted the bimolecular rate coefficient for the H2SO4 + SO3, H2SO4H2O + SO3 and SO3H2O 300 

+ H2O reactions; [H2O] and [H2SO4] were respectively represented the concentration of H2O and 301 

SA taken from references (Anglada et al., 2013; Liu et al., 2015); The value of vDSA/vSA was listed 302 

in Table S6. As seen in Table S6, the hydrolysis reaction of SO3 + (H2O)2 is usually the major sink 303 

route of SO3, as the [H2O] is much larger than that of [H2SO4] (104-108 moleculescm3). However, 304 

the formation of H2S2O7 from the gas phase reaction of SO3 with SA investigated in the present 305 

work could play a role in the chemistry of the Earth’s atmosphere. 306 

Through the configuration (shown in Fig. S9) and stability analysis (shown in Fig. S10 and 307 

Table S8-S11), DSA was found to promote intermolecular interactions between SA and A to 308 

stabilize the corresponding clusters. To figure out how DSA affects the kinetic clustering process, 309 

the potential influence of DSA to the SA-A-based particle formation was estimated by calculating 310 

the enhancement factor R in Eq (5). 311 

SA-A-DSA

SA-A

([SA] ,[A] ,[DSA] )

([SA] ,[A] ,[DSA] 0)

J J x y z
R

J J x y

= = =
= =

= = =
                    (5) 312 

where JSA-A-DSA and JSA-A are represented the formation rate of SA-A-DSA and SA-A nucleating 313 

system, respectively. x, y and z are the atmospheric concentration of SA, A and DSA. As the values 314 

of R shown in Table S12-S16, DSA was better enhancer for NPF of SA-A based system, because R 315 

were all greater than or equal to 1.0 at four different temperatures of 218.15 K, 238.15 K, 258.15 K, 316 

278.15 K and 298.15 K as well as the nucleation precursor concentration range ([SA] = 106-108 317 

molecules⸱cm-3; [A] = 107-1011 molecules⸱cm-3 and the calculated DSA concentrations are [DSA] = 318 

101-103 molecules⸱cm-3 in Table S7).  319 

Generally, J and R has been affected by the temperature and the concentrations of nucleating 320 
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precursors (Liu et al., 2021a). The J of SA-A-DSA-based system in Fig. S11 is negatively dependent 321 

on temperature, and it sharply rise with the increase of [DSA] at the normal temperature (298.15 K) 322 

and the atmospheric pollution boundary layer (278.15 K). However, Fig. 5(a) showed that R rises 323 

with the increase of temperature, and the rise trend of R is relatively more obvious at 298.15 K and 324 

278.15 K which can be up to 7.19 and 3.82 orders of magnitude at higher [DSA], respectively. This 325 

behavior may be because that although both the JSA-A-DSA and JSA-A decrease with the temperature 326 

increase, the reduction scale of JSA-A is much greater than that of JSA-A-DSA when the temperature is 327 

increased from 218.15 K to 298.15 K. Notedly, the values of J at 298.15 K are lower by at least two 328 

orders of magnitude than that at 278.15 K at higher [DSA]. So, in the following studies, attention is 329 

mainly focused on the atmospheric pollution boundary layer (278.15 K). As illustrated in Fig. 5(b), 330 

a remarkable rise of R with the increase of [A] has been discovered when [A] was larger than 109 331 

molecules⸱cm-3 at 278.15 K. The significantly negative correlation of R with [SA] in all ranges of 332 

[A] (Fig. 5(b)) has been established due to a competitive relationship between SA and DSA. When 333 

[DSA] and [A] were the highest and [SA] was the lowest, the effect of R was the strongest, and R 334 

can reach 6.92 orders of magnitude. This conclusions about the change of R with concentrations of 335 

precursors could also be applied for the other four temperatures shown in Fig. S11. Hence, it can be 336 

forecasted that the participation of DSA in SA-A-based NPF can likely enhance the number 337 

concentration of atmospheric particulates significantly in the polluted atmospheric boundary layer 338 

(278.15 K) areas with relatively high [DSA] and [A]. 339 

Two main cluster formation pathways, the pure SA-A-based cluster (a) and DSA-containing 340 

cluster (b), can be observed at 278.15 K (Fig. 6(A)). As seen, the DSA molecule exhibited an ability 341 

to directly participate in cluster formation under median concentration precursors of SA and DSA, 342 

and high [A], indicating that DSA can be a “participator” in promoting cluster formation. 343 

Interestingly, at different temperature, the DSA molecule showed different effect mechanism and 344 

contribution in SA-A system. As seen in Fig. 6(B), the cluster growth pathways were dominated by 345 

pure SA-A-based cluster formation under the conditions of 218.15 K, 238.15 K and 258.15 K, 346 

whereas the DSA-containing cluster formation was dominant at 278.15 K. By the way, the cluster 347 

growth pathways were completely dominated by the DSA-containing cluster at 298.15 K, and its 348 

contribution for growth flux out of the system reached to 100% (Fig. S13). Meanwhile, the relative 349 

contribution of the pure SA-A-based cluster pathway and the DSA-containing cluster pathway to 350 
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the growth flux out of the system may also depend on the precursors concentration. Specifically, 351 

when the temperature was fixed at 278.15 K, the contribution of DSA-containing pathway was 352 

positively correlated with [DSA] in Fig. 6(C). Of particular note, at low DSA concentration ([DSA] 353 

= 101 molecule⸱cm-3), DSA do not substantially contribute to the cluster growth and the pathway 354 

just involved the pure SA-A-based clusters. While at the median concentration of DSA ([DSA] = 355 

102 molecule⸱cm-3), the contribution of DSA-containing clusters for growth flux out of the system 356 

can up to 84%. When [DSA] raised to 103 molecule⸱cm-3, the DSA-containing clusters growth 357 

mainly dominates cluster formation in the system, and its contribution for growth flux out of the 358 

system increased to 95%. Besides, the contribution of DSA-containing pathway was negatively 359 

correlated with [SA] because of the competition relationship between DSA and SA shown in Fig. 360 

6(D). These results suggested that DSA has the ability to act as a potential contributor to SA-A-361 

based NPF in the atmosphere, and the DSA participation pathway can be dominant in heavy sulfur 362 

oxide polluted atmospheric boundary layer and in season of late autumn and early winter. 363 

At the air-water interface, important implication of the BOMD simulations is that the reaction 364 

between SO3 and SA at the air-water interface can be accomplished within a few picoseconds, 365 

among which the interfacial water molecules play a significant role in promoting the formation of 366 

S2O7
2-
H3O

+ and SA-
H3O

+ ion pairs. Furthermore, the adsorption capacity of the S2O7
2-, H3O

+ 367 

and SA- to gasous precursors in the atmosphere was further investigated. Herein, the species of SA, 368 

NH3, and HNO3 have been regarded as the candidate species. (Kulmala et al., 2004; Kirkby et al., 369 

2011). Our calculated results in Table 2 show that the interactions of S2O7
2-
H2SO4, S2O7

2-
HNO3, 370 

S2O7
2-
(COOH)2, H3O

+
NH3, H3O

+
H2SO4, SA-

H2SO4, SA-
(COOH)2, and SA-

 HNO3 371 

are stronger than those of H2SO4NH3 (major precursor of atmospheric aerosols). These results 372 

reveal that interfacial S2O7
2-, SA- and H3O

+ can attract candidate species from the gas phase to the 373 

water surface, and thus in turn accelerates the growth of particle. Moreover, we evaluated the 374 

enhancing potential of S2O7
2- on SA-A cluster by considering geometrical structure and the 375 

formation free energies of the (SA)1(A)1(S2O7
2-)1 clusters. As compared with (SA)1(A)1(X)1 (X = 376 

HOOCCH2COOH, HOCCOOSO3H, CH3OSO3H, HOOCCH2CH(NH2)COOH and HOCH2COOH) 377 

clusters (Zhong et al., 2019; Zhang et al., 2018; Rong et al., 2020; Gao et al., 2023; Liu et al., 2021a; 378 

Zhang et al., 2017), the number of hydrogen bonds in (SA)1(A)1(S2O7
2-)1 cluster presented in Fig. 379 

S8 increased and the ring of the complex was enlarged. It was demonstrated that S2O7
2- has the 380 
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highest potential to stabilize SA-A clusters and promote SA-A nucleation in these clusters due to its 381 

acidity and structural factors such as more intermolecular hydrogen bond binding sites. 382 

Subsequently, comparing to (SA)1(A)1(X)1 clusters (Table 2), the Gibbs formation free energy ∆G 383 

of (SA)1(A)1(S2O7
2-)1 cluster is lower. Therefore, we predict that S2O7

2- at the air-water interface 384 

has important implication to the aerosol NPF in highly industrial polluted regions with high 385 

concentrations of SO3. 386 

4. Summary and Conclusions 387 

In this work, we employed QC calculations, BOMD simulations and ACDC kinetic model to 388 

characterize the SO3-H2SO4 interaction in the gas phase and at the air-water interface and to study 389 

the effect of H2S2O7 on H2SO4-NH3-based clusters. Results revealed that the energy barrier of the 390 

gas phase SO3 + H2SO4 reaction without and with H2O is less than 2.3 kcalmol-1. Rate constants 391 

indicated that though the SO3 + H2SO4 reaction cannot compete with H2O-assisted hydrolysis of 392 

SO3 within the temperature range of 280-320 K, its rate constant was close to the upper limits for 393 

bimolecular reactions and H2O exerts obvious catalytic role in promoting the reaction rate. 394 

Moreover, ACDC kinetic simulations showed that DSA has unexpected facilitate effects on the NPF 395 

process and can enhance the rate of NPF from SA-A by about 6.92 orders of magnitude in polluted 396 

atmospheric boundary layer. Of particular note, DSA can directly participate in the SA-A-based 397 

cluster formation pathway with its contribution up to 93% in regions with atmospheric pollution 398 

boundary layer of high concentrations of SO3, especially in late autumn and early winter.  399 

At the air-water interface, H2O-induced the formation of S2O7
2-
H3O

+ ion pair, SA- mediated 400 

the formation of SA-
H3O

+ ion pair and the deprotonation of H2S2O7 were observed，both of which 401 

can occur within a few picoseconds. The formed interfacial S2O7
2-, SA- and H3O

+ can attract 402 

candidate species (such as H2SO4, NH3, and HNO3) for particle formation from the gas phase to the 403 

water surface, and thus accelerates the growth of particle. Moreover, potential of X (X = S2O7
2-, 404 

HOOCCH2COOH, HOCCOOSO3H, CH3OSO3H, HOOCCH2CH(NH2)COOH and HOCH2COOH) 405 

in ternary SA-A-X cluster formation indicated that S2O7
2- has the highest potential to stabilize SA-406 

A clusters and promote SA-A nucleation among X.  407 

The present work will expand our understanding of new pathway for the loss of SO3 in acidic 408 

polluted areas. Moreover, this work will also help to reveal some missing sources of metropolis 409 
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industrial regions NPF and to understand the atmospheric organic-sulfur cycle more 410 

comprehensively. 411 
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Table 1 The rate constant (cm3
molecule-1

s-1) for the SO3 + H2SO4 reaction and the effective rate 

constant (cm3·molecule-1·s-1) for the SO3 + H2SO4 reaction with H2O (100%RH) within the 

temperature range of 280-320 K 

T/(K) 280 K 290 K 298 K 300 K 310 K 320 K 

kDSA 5.52 × 10-12 4.60 × 10-12 3.95 × 10-12 3.80 × 10-12 3.13 × 10-12 2.57 × 10-12 

k′DSA_WM_o 2.12 × 10-13 2.68 × 10-13 2.88 × 10-13 2.89 × 10-13 2.89 × 10-13 2.75 × 10-13 

k′DSA_WM_s 1.03 × 10-11 8.55 × 10-12 7.42 × 10-12 7.11 × 10-12 5.79 × 10-12 4.60 × 10-12 

kDSA is the rate constant for the SO3 + H2SO4 reaction; k′DSA_WM_o and k′DSA_WM_s are respectively the effective rate 

constants for H2O-assisted SO3 + H2SO4 reaction occurring through one-step and stepwise routes. 
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Table 2 Gibbs free energy (ΔG, kcalmol-1) for the formation of S2O7
2-
H2SO4, S2O7

2-
HNO3, 

S2O7
2-
(COOH)2, H3O

+
NH3, H3O

+
H2SO4, HSO4

-
H2SO4, HSO4

-
(COOH)2, HSO4

-

HNO3, H2SO4NH3, SO7
2-
H2SO4NH3, HOOCCH2COOHH2SO4NH3, 

HOCCOOSO3HH2SO4 

NH3, CH3OSO3HH2SO4NH3 and HOOCCH2CH(NH2)COOHH2SO4NH3 at 298 K  

 S2O7
2-
H2SO4 S2O7

2-
HNO3 S2O7

2-
(COOH)2 H3O+

NH3
 H2SO4NH3 

ΔG -46.3 -30.6 -39.9 
-51.7 

(-49.2)a 

-8.9 

(-8.9)a 

 H3O+
H2SO4

 HSO4
-
H2SO4 HSO4

-
(COOH)2 HSO4

-
 HNO3 S2O7

2-

H2SO4NH3 
ΔG 

-27.5 

(-27.0)a 
-41.6 -33.6 -27.8 -40.1 

 
HOOCCH2COOH 

H2SO4NH3 

HOCCOOSO3H 

H2SO4NH3 

CH3OSO3H 

H2SO4NH3 

HOOCCH2CH(NH2)COOH 

H2SO4NH3 

HOCH2COOH 

H2SO4NH3 

ΔG -13.1 (-13.6)b -20.4 (-22.5)c -18.8 (-20.7)d -13.2 (-14.0)e -12.8 (-13.5)f 

Energies are given in kcalmol-1, and calculated at the M06-2X/6-311++G(2df,2pd) theoretical level. References are 

as follows: [a] Zhong et al., 2019.; [b] Zhang et al., 2018.; [c] Rong et al., 2020.; [d] Gao et al., 2023.; [e] Liu et al., 

2021a; [f] Zhang et al., 2017.  
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Figure Caption 

 

Fig. 1 Schematic potential energy surface for the SO3 + H2SO4 → H2S2O7 reaction; Distances is in 

angstrom at the M06-2X/6-311++G(2df,2pd) level, while the energy values correspond to the 

calculations at the CCSD(T)-F12/cc-pVDZ-F12//M06-2X/6-311++G(2df,2pd) level. The TS in the 

SO3+ H2SO4 → H2S2O7 reaction without and with H2O is denoted by “TSDSA” and “TSDSA_WM”, 

respectively. The mark of a specific hydrogen bond complex depends on molecular formula and the 

connection sequence of each moiety.  

 

 

Fig. 2 Top panel: Snapshot structures taken from the BOMD simulations, which illustrate H2O-

induced the formation of S2O7
2-
H3O

+ ion pair from the reaction of SO3 with HSO4
- at the air-water 

interface. Lower panel: time evolution of key bond distances (S-O1, O2-H1, and O3-H1) involved 

in the induced mechanism. 

 

 

Fig. 3 Top panel: Snapshot structures taken from the BOMD simulations, which illustrate the 

hydration reaction mechanism of SO3 mediated by HSO4
-
 at the air water interface. Lower panel: 

time evolution of key bond distances (S-O1, O1-H2, O5-H2, O2-H1, O3-H4 and O4-H3) involved 

in the hydration mechanism. 

 

Fig. 4 Top panel: Snapshot structures taken from the BOMD simulations, which illustrate the 

deprotonation of H2S2O7 at the air water interface. Lower panel: time evolution of key bond 

distances (O1-HI, O1-H2, O3-H2 and H2-O4) involved in the hydration mechanism. 

 

 

Fig. 5 The logarithms of the enhancement strength of DSA (lgR) as a function of [DSA] from 101 

to 103 molecules cm-3 under different temperatures (218.15, 238.15, 258.15, 278.15 and 298.15 K) 

where [SA] = 107 molecules∙cm-3 and [A] = 109 molecules∙cm-3
 (a); The logarithms of the 

enhancement strength of DSA (lgR) as a function of [A] from 107 to 1011 molecules cm-3 at T = 

278.15 K and [DSA] = 103 molecules∙cm-3 under different [SA] = 106-108 molecules∙cm-3 (b).  

 

 

Fig. 6 The main pathways of clusters growing out of the research system under the conditions where 

T = 278.15 K, [SA] = 107 molecules⸱cm-3, [A] = 1011 molecules⸱cm-3, and [DSA] = 103 

molecules⸱cm-3 (A). The pure SA-A-based cluster pathway (a) and the DSA-containing pathway (b). 

The black and blue fluxes represent the pathways of the SA-A-based cluster and the SA-A-DSA-

based cluster, respectively. The effects of temperature (B), [DSA] (C), and [SA] (D) on the relative 

contribution of the pure SA-A-based cluster pathway and the DSA-containing pathway to the flux 

out of the system. Others in (B), (C), and (D) indicate that the pathway contribution of the cluster 

growing out of the studied system is less than 5%. 
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