



# Reaction of SO<sub>3</sub> with H<sub>2</sub>SO<sub>4</sub> and Its Implication for Aerosol Particle Formation in the Gas Phase and at the Air-Water

# Interface

Rui Wang <sup>a</sup>, Yang Cheng <sup>a,‡</sup>, Yue Hu <sup>a,‡</sup>, Shasha Chen <sup>a</sup>, Xiaokai Guo <sup>c</sup>, Fengmin
 Song <sup>a</sup>, Hao Li <sup>b,\*</sup>, Tianlei Zhang <sup>a,•</sup>

<sup>a</sup> Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi
 University of Technology, Hanzhong, Shaanxi 723001, P. R. China

8 <sup>b</sup> State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center

9 for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China

<sup>10</sup> <sup>c</sup> Department of Applied Chemistry, Yuncheng University, Yuncheng, Shanxi 044000, China

### 11 Abstract

3

12 The reactions between SO<sub>3</sub> and atmospheric acids are indispensable in improving the formation of 13 aerosol particle. However, relative to those of SO<sub>3</sub> with organic acids, the reaction of SO<sub>3</sub> with 14 inorganic acids has not received much attention. Here, we explore the atmospheric reaction between 15 SO<sub>3</sub> and H<sub>2</sub>SO<sub>4</sub>, a typical inorganic acid, in the gas phase and at the air-water interface by using 16 quantum chemical (QC) calculations and Born-Oppenheimer molecular dynamics simulations. We 17 also report the effect of H<sub>2</sub>S<sub>2</sub>O<sub>7</sub>, the product of the reaction between SO<sub>3</sub> and H<sub>2</sub>SO<sub>4</sub>, on new particle 18 formation (NPF) in various environments by using the Atmospheric Cluster Dynamics Code kinetic 19 model and the QC calculation. The present findings show that the gas phase reactions of  $SO_3$  + H<sub>2</sub>SO<sub>4</sub> without and with water molecule are both low energy barrier processes. With the 20 21 involvement of interfacial water molecules, H2O-induced the formation of S2O72-...H3O+ ion pair, 22  $HSO_4^-$  mediated the formation of  $HSO_4^-$ ... $H_3O^+$  ion pair and the deprotonation of  $H_2S_2O_7$  were 23 observed and proceeded on the picosecond time-scale. The present findings suggest the potential 24 contribution of SO<sub>3</sub>-H<sub>2</sub>SO<sub>4</sub> reaction to NPF and aerosol particle growth as the facts that i) H<sub>2</sub>S<sub>2</sub>O<sub>7</sub> 25 can directly participate in H<sub>2</sub>SO<sub>4</sub>-NH<sub>3</sub>-based cluster formation and can facilitate the fastest possible 26 rate of NPF from H<sub>2</sub>SO<sub>4</sub>-NH<sub>3</sub>-based clusters by about a factor of 6.92 orders of magnitude at 278.15 27 K; and *ii*) the formed interfacial  $S_2O_7^{2-}$  can attract candidate species from the gas phase to the water surface, and thus, accelerate particle growth. 28

<sup>\*</sup> Corresponding authors. Tel: +86-0916-2641083, Fax: +86-0916-2641083.

E-mail: ztianlei88@l63.com (T. L Zhang) ; haol@rcees.ac.cn (H. Li)

<sup>&</sup>lt;sup>‡</sup> Yang Cheng and Yue Hu contributed equally to this work.





# 29 1. Introduction

| 30 | Sulfur trioxide (SO <sub>3</sub> ) is a major air pollutant (Zhuang and Pavlish, 2012; Chen and                                |
|----|--------------------------------------------------------------------------------------------------------------------------------|
| 31 | Bhattacharya, 2013; Cao et al., 2010; Kikuchi, 2001; Mitsui et al., 2011) and can be considered as                             |
| 32 | the most important oxidation product of $SO_2$ (Starik et al., 2004). As an active atmospheric species,                        |
| 33 | $SO_3$ can lead to the formations of acid rain and atmospheric aerosol (Sipilä et al., 2010; Mackenzie                         |
| 34 | et al., 2015; England et al., 2000; Li et al., 2016; Renard et al., 2004) and thus plays a well-                               |
| 35 | documented role in regional climate and human health (Zhang et al., 2012; Pöschl, 2005; Zhang et                               |
| 36 | al., 2015; Pöschl and Shiraiwa, 2015; Haywood and Boucher, 2000; Lohmann and Feichter, 2005).                                  |
| 37 | In the atmosphere, the hydrolysis of SO_3 to product $\mathrm{H_2SO_4}\left(SA\right)$ is the most major loss route of SO_3    |
| 38 | (Morokuma and Muguruma, 1994; Akhmatskaya et al., 1997; Larson et al., 2000; Hazra and Sinha,                                  |
| 39 | 2011; Long et al., 2013a; Torrent-Sucarrat et al., 2012; Ma et al., 2020). As a complement to the                              |
| 40 | loss of SO <sub>3</sub> , ammonolysis reaction of SO <sub>3</sub> in polluted areas of $NH_3$ can form $H_2NSO_3H$ , which not |
| 41 | only can be competitive with the formation of SA from the hydrolysis reaction of SO <sub>3</sub> , but also can                |
| 42 | enhance the formation rates of sulfuric acid (SA)-dimethylamine (NH(CH_3)_2, DMA) clusters by                                  |
| 43 | about 2 times. Similarity, the reactions of $\mathrm{SO}_3$ with $\mathrm{CH}_3\mathrm{OH}$ and organic acids (such as HCOOH)  |
| 44 | were reported (Liu et al., 2019; Hazra and Sinha, 2011; Long et al., 2012; Mackenzie et al., 2015;                             |
| 45 | Huff et al., 2017; Smith et al., 2017; Li et al., 2018a), and both processes can provide a mechanism                           |
| 46 | for incorporating organic matter into aerosol particles. However, the reaction mechanism between                               |
| 47 | SO <sub>3</sub> and inorganic species are still unclear.                                                                       |

As a typical inorganic acid, SA can act as an important role in the new particle formation 48 49 (Weber et al., 1995; Weber et al., 1996; Weber et al., 2001; Sihto et al., 2006; Riipinen et al., 2007; 50 Sipilä et al., 2010; Zhang et al., 2012) and acid rain (Calvert et al., 1985; Finlayson-Pitts and Pitts 51 Jr, 1986; Wayne, 2000). The source of gas-phase SA is mainly produced by the gas-phase hydrolysis 52 reaction of SO<sub>3</sub>. For the direct reaction between SO<sub>3</sub> and H<sub>2</sub>O, it takes place hardly in the atmosphere 53 due to high energy barrier (Chen and Plummer, 1985; Hofmann and Schleyer, 1994; Morokuma and Muguruma, 1994; Steudel, 1995). However the addition of a second water molecule (Morokuma 54 55 and Muguruma, 1994; Larson et al., 2000; Loerting and Liedl, 2000), the hydroperoxyl radical 56 (Gonzalez et al., 2010), formic acid (Hazra and Sinha, 2011; Long et al., 2012), sulfuric acid (Torrent-Sucarrat et al., 2012), nitric acid (Long et al., 2013a), oxalic acid (Lv et al., 2019) and 57





| 58 | ammonia (Bandyopadhyay et al., 2017) have been reported to catalyze the formation of SA from                                             |
|----|------------------------------------------------------------------------------------------------------------------------------------------|
| 59 | the hydrolysis reaction of $SO_3$ as they can promote atmospheric proton transfer reactions. Similarity,                                 |
| 60 | as SA can give out protons more readily than $\mathrm{H}_{2}\mathrm{O},$ which in turn is more conducive to the proton                   |
| 61 | transfer, thus we predict that the addition reaction involving the proton transfer between $\mathrm{SO}_3$ and                           |
| 62 | SA is much easier under atmospheric conditions that between $\mathrm{SO}_3$ and $\mathrm{H}_2\mathrm{O}.$ However, this gas-             |
| 63 | phase reaction has not been investigated as far as we know. Meanwhile, in many gas phase reactions,                                      |
| 64 | single water molecule can play a catalyst role by increasing the stability of pre-reactive complexes                                     |
| 65 | and reducing the activation energy of transition states (Kanno et al., 2006; Stone and Rowley, 2005;                                     |
| 66 | Chen et al., 2014; Viegas and Varandas, 2012, 2016). For example, single water molecule in the                                           |
| 67 | $H_2O$ ···HO <sub>2</sub> + SO <sub>3</sub> reaction can catalyze the formation of HSO <sub>5</sub> (Gonzalez et al., 2010). Thus, it is |
| 68 | equally important to study the $SO_3 + SA$ reaction without and with $H_2O$ . In addition to the gas phase                               |
| 69 | reactions, many new atmospheric processes and new reaction pathways have been observed at the                                            |
| 70 | air-water interface (Zhong et al., 2017; Kumar et al., 2017; Kumar et al., 2018; Zhu et al., 2016; Li                                    |
| 71 | et al., 2016; Zhu et al., 2017). Such as, the organic acids reacting with $SO_3$ can form the ion pair of                                |
| 72 | carboxylic sulfuric anhydride and hydronium at the air-water interface (Zhong et al., 2019). This                                        |
| 73 | mechanism is different from the gas phase reaction in which the organic acid either serves as a                                          |
| 74 | catalyst for the hydrolysis of $SO_3$ or acts as a reactant reacting with $SO_3$ directly. So, water droplets                            |
| 75 | may play important roles in atmospheric behaviors between $\mathrm{SO}_3$ and $\mathrm{SA}$ . Thus, it is also important                 |
| 76 | to study the interfacial mechanism between $SO_3$ and $SA$ , and to compare its difference with the                                      |
| 77 | corresponding gas-phase reaction.                                                                                                        |

78 Previous experimental studies (Otto and Steudel, 2001; Abedi and Farrokhpour, 2013) found 79 that disulfuric acid (H<sub>2</sub>S<sub>2</sub>O<sub>7</sub>, DSA) is the product of the reaction between SO<sub>3</sub> and SA. From the 80 perspective of structure, DSA possesses two HO functional groups. Both HO groups can act as hydrogen donors and acceptors to interact with atmospheric particle precursors. It has been shown 81 82 that the products of SO3 with some important atmospheric species have been identified in promoting 83 NPF process. For example, the products of NH2SO3H, HOOCOOSO3H, CH3OSO3H and HOCCOOSO<sub>3</sub>H from the reactions of SO<sub>3</sub> with NH<sub>3</sub> (Li et al., 2018a), H<sub>2</sub>C<sub>2</sub>O<sub>4</sub> (Yang et al., 2021), 84 85 CH<sub>3</sub>OH (Liu et al., 2019) and HOOCCHO (Rong et al., 2020) all have a catalytic effect on the 86 formation of new particles in aerosols. However, whether DSA produced by the reaction between SO3 and SA contributes to aerosol formation or not is still unclear. Thus, another main question that 87





we intend to address here is the role of DSA in atmospheric SA-NH<sub>3</sub> (A) nucleation, which have
been recognized as dominant precursors in highly polluted areas, especially in some megacities in
Asia.

91 In this work, using quantum chemical calculations and Master Equation, we first studied the 92 gas-phase reaction between SO<sub>3</sub> and SA to product DSA with H<sub>2</sub>O acting as a catalyst. Then, we 93 use the Born-Oppenheimer Molecular Dynamic (BOMD) simulations to evaluate the reaction 94 mechanism of SO3 with SA at the air-water interface. Finally, we used Atmospheric Clusters 95 Dynamic Code (ACDC) and quantum chemical calculations to investigate atmospheric 96 implications of SO<sub>3</sub>-SA reaction to the atmospheric particle formation. Particular attention of this work is focused on the study of i) the mechanism difference of the  $SO_3 + SA$  reaction in the gas 97 98 phase and at the air-water interface; ii) the fate of DSA in atmospheric NPF and its influence at 99 various environmental conditions.

## 100 **2. Computational Details**

101 **2.1 Quantum Chemical Calculation**. For the gas-phase reaction of  $SO_3 + SA$  without and 102 with water molecule, the optimized geometries and vibrational frequencies of reactants, pre-103 reactive complexes, transition states (TSs), post-reactive complexes and products were 104 calculated using M06-2X method (Frisch et al., 1990) with 6-311++G(2df,2pd) basis set by 105 Gaussian 09 packages (Frisch, 2009). At the same level, the connectivity between the TSs and the 106 suitable pre- and post-reactant complexes was performed by intrinsic reaction coordinate (IRC) 107 calculations. Then, single point energy calculations were calculated at the CCSD(T)-F12/cc-pVDZ-108 F12 level by using ORCA (Bork et al., 2014; Myllys et al., 2016; Elm and Kristensen, 2017).

109 A multistep global minimum sampling technique was used to search for the global minima of 110 the  $(DSA)_x(SA)_y(A)_z$  ( $z \le x + y \le 3$ ) molecular clusters. In the first step, the initial structure of 111 1000 clusters were autogenerated by the ABCluster program (Zhang and Dolg, 2015, 2016) with 112 the CHARMM force field (MacKerell et al., 1998). Then, these structures were optimized firstly by 113 the semiempirical PM6 method in Mopac 2016 (Stewart, 2016). Next, up to 100 isomers were 114 reoptimized at the M06-2X/6-31+G(d,p) level. Finally, 10 lowest-lying structures were optimized 115 by the M06-2X/6-311++G(2df,2pd) level to determine the global minimum. The optimized 116 structures and the formation Gibbs free energy of the stable clusters were summarized in Fig. S9

128





and Table S8 of the SI Appendix, respectively.

118 2.2 Rate constant calculations. Using the Rice-Ramsperger-Kassel-Marcus based Master 119 Equation (ME/RRKM) model (Miller and Klippenstein, 2006), the kinetics for the SO3 + SA 120 reaction without and with water molecule were calculated by adopting a Master Equation Solver 121 for Multi Energy-well Reactions (MESMER) code (Glowacki et al., 2012). In the MESMER 122 calculation, the rate coefficients for the bimolecular barrierless association step (from reactants to 123 pre-reactive complexes) were evaluated by the Inverse Laplace Transform (ILT) method (Horváth 124 et al., 2020), meanwhile the unimolecular step was performed by the RRKM theory combined with 125 the asymmetric Eckart model. The ILT method and RRKM theory can be represented in Eq (1) and 126 Eq (2), respectively.

$$k^{\infty}(\beta) = \frac{1}{Q(\beta)} \int_0^{\infty} k(E)\rho(E) \exp(-\beta E) dE$$
(1)

$$k(E) = \frac{W(E - E_0)}{h\rho(E)}$$
<sup>(2)</sup>

Where *h* is denoted as Planck's constant;  $\rho(E)$  is denoted as the active density of state of the reactant at energy level *E*;  $E_0$  is denoted as the reaction threshold energy and  $W(E-E_0)$  is denoted as the sum of the rovibrational states of the transition state (TS) geometry (excluding the degree of freedom related to passing the transition state). The input parameters for electronic geometries, vibrational frequencies, and rotational constants were calculated at the M06-2X/6-311++G(2*df*,2*pd*) level and single-point energy calculations were refined at the CCSD(T)-F12/cc-pVDZ-F12 level for the modeling.

136 2.3 Born-Oppenheimer Molecular Dynamic (BOMD) Simulation. The CP2K code 137 (Hutter et al., 2014) was used in the BOMD simulations. The Becke-Lee-Yang-Parr (BLYP) 138 functional (Becke, 1988; Lee et al., 1988) was chosen to treat with the exchange and correlation 139 interactions, and the Grimme's dispersion was carried out to account for the weak dispersion 140 interaction (Grimme et al., 2010). The Goedecker-Teter-Hutter (GTH) conservation 141 pseudopotential (Goedecker et al., 1996; Hartwigsen et al., 1998) with the Gaussian DZVP 142 basis set (VandeVondele and Hutter, 2007) and the auxiliary plane wave basis set was applied 143 to correct the system valence electrons and the core electrons, respectively. For the plane wave basis set and Gaussian basis set, the energy cut off (Zhong et al., 2017; Zhong et al., 2018; 144





145 Zhong et al., 2019) were set to 280 and 40 Ry, respectively. For each simulation in the gas phase, a  $15 \times 15 \times 15$  Å<sup>3</sup> supercell with periodic boundary condition was adopted with a time step of 0.5 146 fs. The air-water interfacial system included 191 water molecules, SO3 and SA in the BOMD 147 148 simulation. To avoid periodic interactions between adjacent water droplets, the size of the 149 simulation box (Kumar et al., 2017; Kumar et al., 2018; Ma et al., 2020) was set as  $35 \times 35 \times$ 35 Å<sup>3</sup> with a time step of 1.0 fs. For all the simulations in the gas phase and at the air-water 150 151 interface, the Nose-Hoover thermostat (Zhong et al., 2017; Zhong et al., 2018; Zhong et al., 152 2019; Kumar et al., 2017; Kumar et al., 2018; Ma et al., 2020) was selected the NVT ensemble 153 to control the temperature around 300 K.

## 154 2.4 Atmospheric Clusters Dynamic Code (ACDC) Model

The Atmospheric Cluster Dynamics Code (ACDC) (McGrath et al., 2012) was used to simulate the cluster formation rates and mechanisms of  $(DSA)_x(SA)_y(A)_z$  ( $z \le x + y \le 3$ ) clusters at different temperatures and monomer concentrations. The thermodynamic data of quantum chemical calculation at the DLPNO-CCSD(T)/aug-cc-pVTZ//M06-2X/6-311++G (2*df*,2*pd*) level of theory can be used as the input of ACDC. The birth-death equation (Eq. 3) for clusters solves the time development of cluster concentrations by numerical integration using the ode15s solver in MATLAB program (Shampine and Reichelt, 1997).

162 
$$\frac{dc_i}{dt} = \frac{1}{2} \sum_{j < i} \beta_{j,(i-j)} C_j C_{(i-j)} + \sum_j \gamma_{(i+j) \to i} C_{i+j} - \sum_j \beta_{i,j} C_i C_j - \frac{1}{2} \sum_{j < i} \gamma_{i \to j} C_i + Q_i - S_i$$
(3)

163 Where  $c_i$  is the concentration of cluster i;  $\beta_{i,j}$  is the collision coefficient between clusters i and j;  $\gamma_{(i+j)}$ 164  $\neg_i$  is the evaporation coefficient of cluster i+j evaporating into clusters i and j, and  $Q_i$  is all other 165 source term of cluster i. (See more details of  $\beta$  and  $\gamma$  in *SI Appendix* Part 4). Besides, a constant 166 coagulation sink coefficient  $2 \times 10^{-2}$  s<sup>-1</sup> (corresponding to the median observed in contaminated 167 areas) was used for taking into account external losses (Yao et al., 2018; Zhang et al., 2022; 168 Liu et al., 2021b). The details for the boundary conditions and concentration ranges of SA, A 169 and DSA are presented in the *SI Appendix* Part 5.

## 170 **3. Results and discussion**

#### 171 **3.1 Reactions in the gas phase**

172 The addition reaction involving the proton transfer between  $SO_3$  and SA (Channel DSA)





| 173 | proceeded through the formation of SO <sub>3</sub> ···H <sub>2</sub> SO <sub>4</sub> complex followed by unimolecular transformation                                            |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 174 | through transition state $TS_{DSA}$ to form $H_2S_2O_7$ (Fig. 1(a)). The reactant complex $SO_3$ $H_2SO_4$ was                                                                  |
| 175 | a double six-membered ring complex with a relative Gibbs free energy of -1.6 kcal·mol <sup>-1</sup> . After the                                                                 |
| 176 | formation of $SO_3 \cdots H_2SO_4$ complex, Channel DSA overcame a Gibbs free energy barrier of 2.3                                                                             |
| 177 | kcal·mol <sup>-1</sup> , which was lower by 4.2 kcal·mol <sup>-1</sup> than that of $H_2O$ -catalyzed hydrolysis of SO <sub>3</sub> (Fig.                                       |
| 178 | S1). Rate constant for the $SO_3 + SA$ reaction was calculated at various temperatures (Table 1).                                                                               |
| 179 | Within the temperature range of 280-320 K, the rate constants for the $SO_3$ + SA reaction were                                                                                 |
| 180 | calculated to be 2.57 $\times$ 10 <sup>-12</sup> -5.52 $\times$ 10 <sup>-12</sup> cm <sup>3</sup> molecule <sup>-1</sup> s <sup>-1</sup> , which were larger by 3.43-4.03 times |
| 181 | than the corresponding values of $H_2O$ -catalyzed hydrolysis of $SO_3$ . Therefore, it can be said that the                                                                    |
| 182 | direct reaction between SO_3 and SA is more favorable over $\mathrm{H_2O}\text{-}\mathrm{catalyzed}$ hydrolysis of SO_3                                                         |
| 183 | energetically and kinetically.                                                                                                                                                  |

184 As the probability of simultaneous collision (Pérez-Ríos et al., 2014; Elm et al., 2013) of three 185 molecules of SO<sub>3</sub>, SA and H<sub>2</sub>O is quite low under realistic conditions, the SO<sub>3</sub> + SA reaction with 186 H<sub>2</sub>O (Channel DSA\_WM) can be considered as a sequential bimolecular process. In other words, 187 Channel DSA\_WM occurs via the collision between SO<sub>3</sub> (or SA) and H<sub>2</sub>O to form dimer 188 (SO3…H2O and H2SO4…H2O) first, and then the dimer encounters with the third reactant SA or 189 SO<sub>3</sub>. The computed Gibbs free energies of dimer complexes SO<sub>3</sub>…H<sub>2</sub>O and H<sub>2</sub>SO<sub>4</sub>…H<sub>2</sub>O were 190 respectively 0.8 kcal·mol<sup>-1</sup> and -1.9 kcal·mol<sup>-1</sup>, which were respectively consistent with the previous values (the range from -0.2 to 0.62 kcal·mol<sup>-1</sup> for SO<sub>3</sub>····H<sub>2</sub>O complex (Bandyopadhyay et al., 2017; 191 192 Long et al., 2012) and the range from -1.82 to -2.63 kcal·mol^-1 for  $H_2SO_4$ ···H<sub>2</sub>O complex (Long et al., 2012) 193 al., 2013b; Tan et al., 2018)). The Gibbs free energy of  $H_2SO_4\cdots H_2O$  was lower by 2.7 kcal·mol<sup>-1</sup> 194 than that of SO3...H2O, thus leading to that the equilibrium constant of the former complex is larger 195 by at least one order of magnitude than that of the latter one in Table S2. Additionally, the larger 196 equilibrium constant of H<sub>2</sub>SO<sub>4</sub>…H<sub>2</sub>O complex leads to its higher concentration in the atmosphere. 197 For example, when the concentrations of SO<sub>3</sub> (Yao et al., 2020), H<sub>2</sub>SO<sub>4</sub> (Liu et al., 2015) and H<sub>2</sub>O (Anglada et al., 2013) were 10<sup>6</sup>, 10<sup>8</sup> and 10<sup>17</sup> molecules cm<sup>-3</sup>, respectively, the concentrations of 198  $SO_3$ ... $H_2O$  and  $H_2SO_4$ ... $H_2O$  were  $2.41 \times 10^3$ - $2.01 \times 10^4$  and  $5.01 \times 10^5$ - $3.01 \times 10^8$  molecules cm<sup>-3</sup> 199 within the temperature range of 280-320 K (see Table S3), respectively. So, we predict that Channel 200 201 DSA\_WM mainly takes place via the collision of H2SO4...H2O with SO3. In order to check this 202 prediction, the effective rate constants for two bimolecular reactions of  $H_2SO_4$ ... $H_2O + SO_3$  and





| 203 | $SO_3$ ···H <sub>2</sub> O + H <sub>2</sub> SO <sub>4</sub> were calculated, and the details were shown in <i>SI Appendix</i> , Part 3 and Table |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 204 | 1. As seen in Table 1, the $SO_3$ ···H <sub>2</sub> O + H <sub>2</sub> SO <sub>4</sub> reaction can be neglected as its effective rate constant  |
| 205 | is smaller by 16.7-48.5 times than the corresponding value of the $H_2SO_4$ $\cdots$ $H_2O$ + SO <sub>3</sub> reaction.                          |
| 206 | Therefore, we only consider the $H_2SO_4\cdots H_2O + SO_3$ bimolecular reaction in $H_2O$ -catalyzed $SO_3 + SO_3$                              |
| 207 | SA reaction.                                                                                                                                     |

208 The H<sub>2</sub>SO<sub>4</sub>…H<sub>2</sub>O + SO<sub>3</sub> reaction occurred in a stepwise process as displayed in Fig. 1(b), 209 which was similar to the favorable routes in the hydrolysis of COS, HCHO and CH<sub>3</sub>CHO catalyzed 210 by sulfuric acid (Long et al., 2013b; Li et al., 2018b; Tan et al., 2018). When the H<sub>2</sub>SO<sub>4</sub>···H<sub>2</sub>O 211 complex and SO<sub>3</sub> served as reactants, the reaction was initiated by complex IM<sub>DSA WM</sub> where a van der Waals interaction (S2...O4, 2.75 Å) was found between the O4 atom of SA moiety in 212 213 H<sub>2</sub>SO<sub>4</sub>…H<sub>2</sub>O and the S atom of SO<sub>3</sub>. After complex IM<sub>DSA\_WM</sub>, the ring enlargement from 214 IM<sub>DSA WM</sub>' to SO<sub>3</sub>…H<sub>2</sub>SO<sub>4</sub>…H<sub>2</sub>O complex occurred through transition state TS<sub>DSA WM</sub>' with a Gibbs free energy barrier of 1.2 kcal·mol<sup>-1</sup>. Complex SO<sub>3</sub>…H<sub>2</sub>SO<sub>4</sub>…H<sub>2</sub>O was 6.1 kcal·mol<sup>-1</sup> lower 215 216 in energy than IM<sub>DSA WM</sub>'. In SO<sub>3</sub>···· H<sub>2</sub>SO<sub>4</sub>····H<sub>2</sub>O, SO<sub>3</sub> acted as double donors of hydrogen bond to 217 form a cage-like hydrogen bonding network with  $H_2SO_4$ . Then, starting with 218 SO3 ··· H2SO4 ··· H2O complex, the H2SO4 ··· H2O + SO3 reaction occurred through transition state 219  $TS_{DSA WM}$  with a Gibbs free barrier energy of 0.5 kcal·mol<sup>-1</sup> to form a quasi-planar network complex, 220 H<sub>2</sub>S<sub>2</sub>O<sub>7</sub>···H<sub>2</sub>O. TS<sub>DSA WM</sub> was in the middle of a double proton transfer, where H<sub>2</sub>O played as a 221 bridge for proton transfer, along with the simultaneous formation of the O4…S2 bond. In order to 222 estimate the catalytic ability of H<sub>2</sub>O in the SO<sub>3</sub> + SA reaction, the effective rate constant ( $k'_{\text{DSA WM s}}$ ) 223 of the H<sub>2</sub>SO<sub>4</sub>···H<sub>2</sub>O + SO<sub>3</sub> reaction were compared with the rate constant ( $k_{DSA}$ ) of the SO<sub>3</sub> + SA 224 reaction. As seen in Table 1, under the experimental concentration (Anglada et al., 2013) ([H<sub>2</sub>O] =  $5.20 \times 10^{16}$ - $2.30 \times 10^{18}$  molecules cm<sup>-3</sup>) within the temperature range of 280-320 K, the calculated 225  $k'_{\text{DSA}_{\text{WM}_{\text{S}}}}$  was  $1.03 \times 10^{-11}$ - $4.60 \times 10^{-12}$  cm<sup>3</sup>·molecule<sup>-1</sup>·s<sup>-1</sup>, which was larger by 1.79-1.86 times 226 227 than that of  $k_{DSA}$ . This result shows that H<sub>2</sub>O exerts catalytic role in promoting the rate of the SO<sub>3</sub> + 228 SA reaction.

#### **3.2 Reactions at the Air-water interface**

The mechanism for the  $SO_3 + SA$  reaction at the air-water interface was lacking and thus explored below. Due to the high reactivity of  $SO_3$  and SA at the air-water interface, the product  $SA^2$ is formed with extremely short times from both  $SO_3$  (Zhong et al., 2019) and SA (Fig. S2) (on the





| 233 | order of a few picoseconds) with interfacial water molecules. So, two possible models were mainly                                                                                 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 234 | considered for SO <sub>3</sub> -SA reaction on the water surface: ( <i>i</i> ) gaseous SO <sub>3</sub> colliding with SA <sup>-</sup> at the air-                                 |
| 235 | water interface and (ii) the DSA (the gas-phase product of SO <sub>3</sub> and SA) dissociating on water droplet.                                                                 |
| 236 | Gaseous SO3 Colliding with SA <sup>-</sup> at the Air-Water Interface. At the water droplet's surface,                                                                            |
| 237 | the interaction between $\mathrm{SO}_3$ and $\mathrm{SA}^{\text{-}}$ included two main channels: (i) H_2O-induced formation of                                                    |
| 238 | $S_2O_7^{2-\cdots}H_3O^+$ ion pair (Fig. 2, Fig. S3 and Movie S1) and ( <i>ii</i> ) SA <sup>-</sup> -mediated formation of SA <sup>-</sup> $\cdots$ H <sub>3</sub> O <sup>+</sup> |
| 239 | ion pair (Fig. 3, Fig. S4-S5 and Movie S2-S3). The BOMD simulations for $H_2O$ -induced formation                                                                                 |
| 240 | of $S_2O_7^{2-\dots}H_3O^+$ ion pair was illustrated in Fig. 2, the H1 atom of SA <sup>-</sup> ion can combine with a nearby                                                      |
| 241 | interfacial water molecule at 8.18 ps by hydrogen bond ( $d_{(O3-H1)} = 1.17$ Å) interaction, thus forming                                                                        |
| 242 | hydrated hydrogen sulfate ion (SA ${}^{\cdot}{}H_2O).$ Then, the H1 atom of SA ${}^{\cdot}$ ion was moved to the O3                                                               |
| 243 | atom of the interfacial water molecule at 8.28 ps, revealing the formation of $\mathrm{SO_4^{2-\cdots}H_3O^+}$ ion pair.                                                          |
| 244 | Additionally, $\mathrm{SO_4}^{2\text{-}}$ gradually approached to $\mathrm{SO_3}$ molecule with the shortening of S1-O1 bond. At                                                  |
| 245 | 9.26 ps, the S1-O1 bond length was 1.84 Å, which was close to the length of S-O1 bond in $S_2 O_7^{2\text{-}}$                                                                    |
| 246 | ion (Fig. S7), revealing the formation of $S_2O_7{}^2{}^{-}{}H_3O^+$ ion pair. Both direct (without the                                                                           |
| 247 | involvement of SA <sup>-</sup> , Fig. 3(a), Fig. S4 and Movie S2) and indirect (with the involvement of SA <sup>-</sup> ,                                                         |
| 248 | Fig. 3(b), Fig. S5 and Movie S3) forming mechanisms were observed in SA <sup>-</sup> -mediated formation of                                                                       |
| 249 | $SA^{\hbox{-}\cdots}H_3O^{+}$ ion pair. The direct $SA^{\hbox{-}}$ -mediated formation of $SA^{\hbox{-}\cdots}H_3O^{+}$ ion pair was a loop structure                             |
| 250 | mechanism, which was consistent with gas phase hydrolysis of SO3 assisted by acidic catalysts of                                                                                  |
| 251 | HCOOH, HNO <sub>3</sub> , $H_2C_2O_4$ and SA in the previous works (Long et al., 2012; Long et al., 2013a;                                                                        |
| 252 | Torrent-Sucarrat et al., 2012; Lv et al., 2019), and HNO3-mediated Criegee hydration at the air-                                                                                  |
| 253 | water interface. As for the direct formation mechanism of $SA^{-}H_3O^+$ ion pair seen in Fig. 3(a) and                                                                           |
| 254 | movie S2, an eight-membered loop complex, $SO_3 \cdots H_2O(1) \cdots SA^2$ , was found at 1.46 ps with the                                                                       |
| 255 | formations of two hydrogen bonds ( $d_{(O3 \cdots H2)} = 2.13$ Å; $d_{(O4 \cdots H3)} = 2.18$ Å) and a van der Waals                                                              |
| 256 | interaction ( $d_{(S1 \cdots O1)} = 2.14$ Å). Subsequently, SO <sub>3</sub> and interfacial H <sub>2</sub> O(1) were close to each other.                                         |
| 257 | At 1.59 ps, a transition state-like loop structure was observed and proton transfer from interfacial                                                                              |
| 258 | $H_2O(1)$ to another suspended $H_2O(2)$ was found, where the bond lengths of S1-O1, O1-H1 and H1-                                                                                |
| 259 | O2 were 1.94 Å, 1.19 Å and 1.32 Å, respectively. At 1.70 ps, the bond lengths of S-O1 and H1-O2                                                                                   |
| 260 | were reduced to 1.73 Å and 1.01 Å, while the bond length of H1-O2 was extended to 1.61 Å,                                                                                         |
| 261 | showing the formation of $SA^{\textbf{-}}\cdots H_3O^{+}$ ion pair. During the direct formation route of $SA^{\textbf{-}}\cdots H_3O^{+}$ ion                                     |
| 262 | pair, SA <sup>-</sup> played as a spectator, while interfacial water molecules acted as both a reactant and a                                                                     |





#### 263 proton acceptor.

As seen in Fig. 3(b) and Movie S3, the indirect forming process of SA<sup>----</sup>H<sub>3</sub>O<sup>+</sup> ion pair 264 contained two steps: (i) SO3 hydration along with SA formation and (ii) SA deprotonation. 265 266 Specifically, as for step (i), at 0.70 ps, a transition state like structure of SO<sub>3</sub> hydration was observed 267 with SO<sub>3</sub>, SA<sup>-</sup> and an interfacial water molecule involved. Note that at this time the H1 atom in 268 interfacial H<sub>2</sub>O molecule migrated to the O2 atom of SA<sup>-</sup> ion instead of the surrounding water molecule. At 0.96 ps, the O1-H1 bond of H<sub>2</sub>O was broken with the length of 1.56 Å, while the S1-269 270 O1 bond was formed with the length of 1.75 Å, demonstrating the completion of hydrolysis reaction 271 of SO<sub>3</sub> and the formation of SA molecule. Then, at 8.08 ps, the H2 proton transfer from SA to the 272 O4 atom of SA<sup>-</sup> ion to the O5 atom of the nearby water molecule was occurred, where the O3-H2 and O1-H3 bonds extended to 1.13 Å and 1.22 Å, and the length of O4-H2 and O5-H3 bonds 273 shortened to 1.45 Å and 1.20 Å. Finally, SA deprotonation was completed at 8.23 ps with the 274 formation of SA<sup>••••</sup>H<sub>3</sub>O<sup>+</sup> ion pair. During the whole indirect forming process of SA<sup>••••</sup>H<sub>3</sub>O<sup>+</sup> ion pair, 275 276 SA<sup>-</sup> played as protons donor and acceptor, and water molecules acted as hydration reactants and 277 proton acceptors.

278 The H<sub>2</sub>S<sub>2</sub>O<sub>7</sub> Dissociating on Water Droplet. In addition to the gaseous SO<sub>3</sub> colliding with SA<sup>-</sup> 279 at the air-water interface, DSA, the product of the barrierless reaction between  $SO_3$  and SA, can 280 further quickly react with interfacial water molecule at the air-water interface. As seen in Fig. 4, 281 Fig. S6 and Movie S4, DSA is highly reactive at the air-water interface and can undergo two 282 deprotonations to form  $S_2O_7^{2-}$  ion. Specifically, the DSA can firstly form a H-bond with interfacial 283 water molecule at 0.45 ps. After that, the H1 atom of DSA transferred to interfacial water and 284 produced  $HS_2O_7^-$  and  $H_3O^+$  ions. The formed  $HS_2O_7^-$  ion can survive for ~3 ps on water droplet. At 285 4.14 ps, the H2 atom of  $HS_2O_7^-$  ion moved to O4 atom of nearby interfacial water molecule and produced the formation of  $S_2O_7^{2-\cdots}H_3O^+$  ion pair, which was stable at the air-water interface over a 286 287 simulated time scale of 10 ps. Note that the second deprotonation of DSA indeed needs more time than its first deprotonation as the p $K_a1$  (p $K_a1 = -16.05$ ) of DSA is much smaller than its p $K_a2$  (p $K_a2$ 288 289 = -4.81) (Abedi and Farrokhpour, 2013). In brief, at the air-water interface, both these two routes of the formation of  $S_2O_7^{2-}$ ... $H_3O^+$  ion pair occur on the picosecond time scale. 290

#### 291 **3.3 Atmospheric Implications**

In the gas-phase, the main sink route of  $SO_3$  is  $H_2O$ -assisted hydrolysis of  $SO_3$  (Morokuma

312





(5)

| 293 | and Muguruma, 1994; Akhmatskaya et al., 1997; Larson et al., 2000; Hazra and Sinha, 2011; Long                                                                                                                                                                                                   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 294 | et al., 2013a; Torrent-Sucarrat et al., 2012; Ma et al., 2020). To study the atmospheric importance                                                                                                                                                                                              |
| 295 | of the SO <sub>3</sub> + SA reaction without and with H <sub>2</sub> O, the rate ratio ( $\nu_{DSA}/\nu_{SA}$ ) between the SO <sub>3</sub> + SA                                                                                                                                                 |
| 296 | reaction and H <sub>2</sub> O-assisted hydrolysis of $SO_3$ was compared, which was expressed in Eq. (4).                                                                                                                                                                                        |
|     | $\frac{v_{\text{DSA}}}{2} - \frac{k_{\text{DSA}} \times [\text{SO}_3] \times [\text{H}_2\text{SO}_4] + k_{\text{DSA}_{\text{WM}_s}} \times \text{K}_{\text{eq(H}_2\text{SO}_4 \cdots \text{H}_2\text{O})} \times [\text{SO}_3] \times [\text{H}_2\text{SO}_4] \times [\text{H}_2\text{O}_2]}{2}$ |
| 297 | $v_{SA} \qquad \qquad k_{SA_{WM}} \times K_{eq(SO_3 \cdots H_2 O)} \times [SO_3] \times [H_2 O] \times [H_2 O] $ (4)                                                                                                                                                                             |
| 298 | In Eq. (4), $K_{eq1}$ and $K_{eq2}$ were the equilibrium constant for the formation of complex $H_2SO_4\cdots H_2O_4$                                                                                                                                                                            |
| 299 | and SO <sub>3</sub> ····H <sub>2</sub> O shown in Table S2, respectively; $k_{DSA}$ , $k_{DSA\_WM}$ and $k_{SA\_WM}$ were respectively                                                                                                                                                           |
| 300 | denoted the bimolecular rate coefficient for the $H_2SO_4 + SO_3$ , $H_2SO_4 \cdots H_2O + SO_3$ and $SO_3 \cdots H_2O$                                                                                                                                                                          |
| 301 | + $H_2O$ reactions; $[H_2O]$ and $[H_2SO_4]$ were respectively represented the concentration of $H_2O$ and                                                                                                                                                                                       |
| 302 | SA taken from references (Anglada et al., 2013; Liu et al., 2015); The value of $v_{DSA}/v_{SA}$ was listed                                                                                                                                                                                      |
| 303 | in Table S6. As seen in Table S6, the hydrolysis reaction of $SO_3 + (H_2O)_2$ is usually the major sink                                                                                                                                                                                         |
| 304 | route of SO <sub>3</sub> , as the [H <sub>2</sub> O] is much larger than that of [H <sub>2</sub> SO <sub>4</sub> ] ( $10^4$ - $10^8$ molecules cm <sup>3</sup> ). However,                                                                                                                       |
| 305 | the formation of $H_2S_2O_7$ from the gas phase reaction of $SO_3$ with SA investigated in the present                                                                                                                                                                                           |
| 306 | work could play a role in the chemistry of the Earth's atmosphere.                                                                                                                                                                                                                               |
| 307 | Through the configuration (shown in Fig. S9) and stability analysis (shown in Fig. S10 and                                                                                                                                                                                                       |
| 308 | Table S8-S11), DSA was found to promote intermolecular interactions between SA and A to                                                                                                                                                                                                          |
| 309 | stabilize the corresponding clusters. To figure out how DSA affects the kinetic clustering process,                                                                                                                                                                                              |
| 310 | the potential influence of DSA to the SA-A-based particle formation was estimated by calculating                                                                                                                                                                                                 |
| 311 | the enhancement factor $R$ in Eq (5).                                                                                                                                                                                                                                                            |
|     | $R = \frac{J_{\text{SA-A-DSA}}}{J_{\text{SA-A-DSA}}} = \frac{J([\text{SA}] = x, [\text{A}] = y, [\text{DSA}] = z)}{J([\text{SA}] = z)}$                                                                                                                                                          |
| 312 | $J_{SA-A} = J_{([SA] = x, [A] = y, [DSA] = 0)}$ (5)                                                                                                                                                                                                                                              |

313 where JSA-A-DSA and JSA-A are represented the formation rate of SA-A-DSA and SA-A nucleating 314 system, respectively. x, y and z are the atmospheric concentration of SA, A and DSA. As the values of R shown in Table S12-S16, DSA was better enhancer for NPF of SA-A based system, because R 315 316 were all greater than or equal to 1.0 at four different temperatures of 218.15 K, 238.15 K, 258.15 K, 278.15 K and 298.15 K as well as the nucleation precursor concentration range ([SA] =  $10^{6}$ - $10^{8}$ 317 molecules  $cm^{-3}$ ; [A] = 10<sup>7</sup>-10<sup>11</sup> molecules  $cm^{-3}$  and the calculated DSA concentrations are [DSA] = 318 319  $10^1$ - $10^3$  molecules cm<sup>-3</sup> in Table S7).

320 Generally, J and R has been affected by the temperature and the concentrations of nucleating





| 321 | precursors (Liu et al., 2021a). The J of SA-A-DSA-based system in Fig. S11 is negatively dependent                            |
|-----|-------------------------------------------------------------------------------------------------------------------------------|
| 322 | on temperature, and it sharply rise with the increase of [DSA] at the normal temperature (298.15 K)                           |
| 323 | and the atmospheric pollution boundary layer (278.15 K). However, Fig. $5(a)$ showed that R rises                             |
| 324 | with the increase of temperature, and the rise trend of $R$ is relatively more obvious at 298.15 K and                        |
| 325 | 278.15 K which can be up to 7.19 and 3.82 orders of magnitude at higher [DSA], respectively. This                             |
| 326 | behavior may be because that although both the $J_{\text{SA-A-DSA}}$ and $J_{\text{SA-A}}$ decrease with the temperature      |
| 327 | increase, the reduction scale of $J_{SA-A}$ is much greater than that of $J_{SA-A-DSA}$ when the temperature is               |
| 328 | increased from 218.15 K to 298.15 K. Notedly, the values of $J$ at 298.15 K are lower by at least two                         |
| 329 | orders of magnitude than that at 278.15 K at higher [DSA]. So, in the following studies, attention is                         |
| 330 | mainly focused on the atmospheric pollution boundary layer (278.15 K). As illustrated in Fig. 5(b),                           |
| 331 | a remarkable rise of R with the increase of [A] has been discovered when [A] was larger than $10^9$                           |
| 332 | molecules $\cdot$ cm <sup>-3</sup> at 278.15 K. The significantly negative correlation of <i>R</i> with [SA] in all ranges of |
| 333 | [A] (Fig. 5(b)) has been established due to a competitive relationship between SA and DSA. When                               |
| 334 | [DSA] and [A] were the highest and [SA] was the lowest, the effect of $R$ was the strongest, and $R$                          |
| 335 | can reach 6.92 orders of magnitude. This conclusions about the change of $R$ with concentrations of                           |
| 336 | precursors could also be applied for the other four temperatures shown in Fig. S11. Hence, it can be                          |
| 337 | forecasted that the participation of DSA in SA-A-based NPF can likely enhance the number                                      |
| 338 | concentration of atmospheric particulates significantly in the polluted atmospheric boundary layer                            |
| 339 | (278.15 K) areas with relatively high [DSA] and [A].                                                                          |
| 340 | Two main cluster formation pathways, the pure SA-A-based cluster (a) and DSA-containing                                       |

ays, ie pi (a)ıg cluster (b), can be observed at 278.15 K (Fig. 6(A)). As seen, the DSA molecule exhibited an ability 341 to directly participate in cluster formation under median concentration precursors of SA and DSA, 342 343 and high [A], indicating that DSA can be a "participator" in promoting cluster formation. 344 Interestingly, at different temperature, the DSA molecule showed different effect mechanism and 345 contribution in SA-A system. As seen in Fig. 6(B), the cluster growth pathways were dominated by pure SA-A-based cluster formation under the conditions of 218.15 K, 238.15 K and 258.15 K, 346 347 whereas the DSA-containing cluster formation was dominant at 278.15 K. By the way, the cluster 348 growth pathways were completely dominated by the DSA-containing cluster at 298.15 K, and its 349 contribution for growth flux out of the system reached to 100% (Fig. S13). Meanwhile, the relative 350 contribution of the pure SA-A-based cluster pathway and the DSA-containing cluster pathway to





| 351 | the growth flux out of the system may also depend on the precursors concentration. Specifically,                   |
|-----|--------------------------------------------------------------------------------------------------------------------|
| 352 | when the temperature was fixed at 278.15 K, the contribution of DSA-containing pathway was                         |
| 353 | positively correlated with [DSA] in Fig. 6(C). Of particular note, at low DSA concentration ([DSA]                 |
| 354 | = $10^1$ molecule cm <sup>-3</sup> ), DSA do not substantially contribute to the cluster growth and the pathway    |
| 355 | just involved the pure SA-A-based clusters. While at the median concentration of DSA ([DSA] =                      |
| 356 | $10^2$ molecule cm <sup>-3</sup> ), the contribution of DSA-containing clusters for growth flux out of the system  |
| 357 | can up to 84%. When [DSA] raised to 10 <sup>3</sup> molecule cm <sup>-3</sup> , the DSA-containing clusters growth |
| 358 | mainly dominates cluster formation in the system, and its contribution for growth flux out of the                  |
| 359 | system increased to 95%. Besides, the contribution of DSA-containing pathway was negatively                        |
| 360 | correlated with [SA] because of the competition relationship between DSA and SA shown in Fig.                      |
| 361 | 6(D). These results suggested that DSA has the ability to act as a potential contributor to SA-A-                  |
| 362 | based NPF in the atmosphere, and the DSA participation pathway can be dominant in heavy sulfur                     |
| 363 | oxide polluted atmospheric boundary layer and in season of late autumn and early winter.                           |

364 At the air-water interface, important implication of the BOMD simulations is that the reaction between SO<sub>3</sub> and SA at the air-water interface can be accomplished within a few picoseconds, 365 366 among which the interfacial water molecules play a significant role in promoting the formation of 367  $S_2O_7^{2-} \cdots H_3O^+$  and  $SA^- \cdots H_3O^+$  ion pairs. Furthermore, the adsorption capacity of the  $S_2O_7^{2-}$ ,  $H_3O^+$ 368 and SA<sup>-</sup> to gasous precursors in the atmosphere was further investigated. Herein, the species of SA, 369 NH<sub>3</sub>, and HNO<sub>3</sub> have been regarded as the candidate species. (Kulmala et al., 2004; Kirkby et al., 2011). Our calculated results in Table 2 show that the interactions of  $S_2O_7^2 \cdots H_2SO_4$ ,  $S_2O_7^2 \cdots HNO_3$ , 370 S2O7<sup>2</sup>····(COOH)<sub>2</sub>, H<sub>3</sub>O<sup>+</sup>····NH<sub>3</sub>, H<sub>3</sub>O<sup>+</sup>····H<sub>2</sub>SO<sub>4</sub>, SA<sup>-</sup>···H<sub>2</sub>SO<sub>4</sub>, SA<sup>-</sup>···(COOH)<sub>2</sub>, and SA<sup>-</sup>··· HNO<sub>3</sub> 371 are stronger than those of H2SO4...NH3 (major precursor of atmospheric aerosols). These results 372 reveal that interfacial S<sub>2</sub>O<sub>7</sub><sup>2-</sup>, SA<sup>-</sup> and H<sub>3</sub>O<sup>+</sup> can attract candidate species from the gas phase to the 373 374 water surface, and thus in turn accelerates the growth of particle. Moreover, we evaluated the enhancing potential of S2O72- on SA-A cluster by considering geometrical structure and the 375 376 formation free energies of the  $(SA)_1(A)_1(S_2O_7^{2-})_1$  clusters. As compared with  $(SA)_1(A)_1(X)_1$  (X = 377 HOOCCH<sub>2</sub>COOH, HOCCOOSO<sub>3</sub>H, CH<sub>3</sub>OSO<sub>3</sub>H, HOOCCH<sub>2</sub>CH(NH<sub>2</sub>)COOH and HOCH<sub>2</sub>COOH) clusters (Zhong et al., 2019; Zhang et al., 2018; Rong et al., 2020; Gao et al., 2023; Liu et al., 2021a; 378 379 Zhang et al., 2017), the number of hydrogen bonds in (SA)<sub>1</sub>(A)<sub>1</sub>(S<sub>2</sub>O<sub>7</sub><sup>2-</sup>)<sub>1</sub> cluster presented in Fig. S8 increased and the ring of the complex was enlarged. It was demonstrated that  $S_2O_7^{2-}$  has the 380





| 381 | highest potential to stabilize SA-A clusters and promote SA-A nucleation in these clusters due to its               |
|-----|---------------------------------------------------------------------------------------------------------------------|
| 382 | acidity and structural factors such as more intermolecular hydrogen bond binding sites.                             |
| 383 | Subsequently, comparing to $(SA)_1(A)_1(X)_1$ clusters (Table 2), the Gibbs formation free energy $\Delta G$        |
| 384 | of $(SA)_1(A)_1(S_2O7^{2-})_1$ cluster is lower. Therefore, we predict that $S_2O7^{2-}$ at the air-water interface |
| 385 | has important implication to the aerosol NPF in highly industrial polluted regions with high                        |
| 386 | concentrations of SO <sub>3</sub> .                                                                                 |

## 387 **4. Summary and Conclusions**

388 In this work, we employed QC calculations, BOMD simulations and ACDC kinetic model to characterize the SO<sub>3</sub>-H<sub>2</sub>SO<sub>4</sub> interaction in the gas phase and at the air-water interface and to study 389 390 the effect of H<sub>2</sub>S<sub>2</sub>O<sub>7</sub> on H<sub>2</sub>SO<sub>4</sub>-NH<sub>3</sub>-based clusters. Results revealed that the energy barrier of the 391 gas phase  $SO_3 + H_2SO_4$  reaction without and with  $H_2O$  is less than 2.3 kcal·mol<sup>-1</sup>. Rate constants 392 indicated that though the  $SO_3 + H_2SO_4$  reaction cannot compete with  $H_2O$ -assisted hydrolysis of 393 SO<sub>3</sub> within the temperature range of 280-320 K, its rate constant was close to the upper limits for 394 bimolecular reactions and H<sub>2</sub>O exerts obvious catalytic role in promoting the reaction rate. 395 Moreover, ACDC kinetic simulations showed that DSA has unexpected facilitate effects on the NPF 396 process and can enhance the rate of NPF from SA-A by about 6.92 orders of magnitude in polluted 397 atmospheric boundary layer. Of particular note, DSA can directly participate in the SA-A-based 398 cluster formation pathway with its contribution up to 93% in regions with atmospheric pollution 399 boundary layer of high concentrations of SO<sub>3</sub>, especially in late autumn and early winter.

At the air-water interface, H<sub>2</sub>O-induced the formation of S<sub>2</sub>O<sub>7</sub><sup>2-</sup>···H<sub>3</sub>O<sup>+</sup> ion pair, SA<sup>-</sup> mediated 400 the formation of SA<sup> $\cdots$ </sup>H<sub>3</sub>O<sup>+</sup> ion pair and the deprotonation of H<sub>2</sub>S<sub>2</sub>O<sub>7</sub> were observed, both of which 401 can occur within a few picoseconds. The formed interfacial  $S_2O_7^{-2}$ , SA<sup>-</sup> and H<sub>3</sub>O<sup>+</sup> can attract 402 candidate species (such as H<sub>2</sub>SO<sub>4</sub>, NH<sub>3</sub>, and HNO<sub>3</sub>) for particle formation from the gas phase to the 403 404 water surface, and thus accelerates the growth of particle. Moreover, potential of  $X (X = S_2 O_7^{2-}, C_7^{2-})$ HOOCCH2COOH, HOCCOOSO3H, CH3OSO3H, HOOCCH2CH(NH2)COOH and HOCH2COOH) 405 406 in ternary SA-A-X cluster formation indicated that  $S_2O_7^{2-}$  has the highest potential to stabilize SA-407 A clusters and promote SA-A nucleation among X.

The present work will expand our understanding of new pathway for the loss of SO<sub>3</sub> in acidic
 polluted areas. Moreover, this work will also help to reveal some missing sources of metropolis





- 410 industrial regions NPF and to understand the atmospheric organic-sulfur cycle more
- 411 comprehensively.

#### 412 Acknowledgments

- 413 This work was supported by the National Natural Science Foundation of China (No: 22203052;
- 414 22073059; 22006158); the Natural Science Foundation of Shaanxi Province (NO: 2022JM-060);
- 415 the Key Cultivation Project of Shaanxi University of Technology (No: SLG2101); The Special
- 416 Scientific Research Project of Hanzhong City-Shaanxi University of Technology Co-construction
- 417 State Key Laboratory (SXJ-2106); The authors thank Prof. Qingzhu Zhang and Fei Xu from
- 418 Shandong University for their sincere assistance in calculating the air-water interface reaction.

#### 419 **Declaration of competing interest**

- 420 The authors declare that they have no known competing financial interests or personal
- 421 relationships that could have appeared to influence the work reported in this paper.

## 422 **Reference**

- 423 Abedi, M., and Farrokhpour, H.: Acidity constants of some sulfur oxoacids in aqueous solution using 424 CCSD and MP2 methods, Dalton Trans., 42, 5566-5572, 10.1039/C3DT33056G, 2013. 425 Akhmatskaya, E., Apps, C., Hillier, I., Masters, A., Palmer, I., Watt, N., Vincent, M., and Whitehead, J.: Hydrolysis of SO3 and ClONO2 in water clusters A combined experimental and theoretical study, J. 426 427 Am. Chem. Soc., 93, 2775-2779, 1997. 428 Anglada, J. M., Hoffman, G. J., Slipchenko, L. V., M. Costa, M., Ruiz-Lopez, M. F., and Francisco, J. S.: 429 Atmospheric significance of water clusters and ozone-water complexes, J. Phys. Chem. A, 117, 430 10381-10396. 2013.
- Bandyopadhyay, B., Kumar, P., and Biswas, P.: Ammonia Catalyzed Formation of Sulfuric Acid in
  Troposphere: The Curious Case of a Base Promoting Acid Rain, J. Phys. Chem. A, 121, 3101-3108,
  10.1021/acs.jpca.7b01172, 2017.
- Becke, A. D.: Density-functional exchange-energy approximation with correct asymptotic behavior,
  Phys. Rev. A, 38, 3098-3100, 1988.
- Bork, N., Elm, J., Olenius, T., and Vehkamäki, H.: Methane sulfonic acid-enhanced formation of
  molecular clusters of sulfuric acid and dimethyl amine, Atmos. Chem. Phys., 14, 12023-12030,
  2014.
- Calvert, J. G., Lazrus, A., Kok, G. L., Heikes, B. G., Walega, J. G., Lind, J., and Cantrell, C. A.: Chemical
  mechanisms of acid generation in the troposphere, Nature, 317, 27-35, 1985.
- 441 Cao, Y., Zhou, H., Jiang, W., Chen, C. W., and Pan, W. P.: Studies of the fate of sulfur trioxide in coal-
- 442 fired utility boilers based on modified selected condensation methods, Environ. Sci. Technol., 44,
  443 3429-3434, 2010.
- Chen, L., and Bhattacharya, S.: Sulfur emission from Victorian brown coal under pyrolysis, oxy-fuel
  combustion and gasification conditions, Environ. Sci. Technol., 47, 1729-1734, 2013.





| 446        | Chen, T., and Plummer, P. L.: Ab initio MO investigation of the gas-phase reaction sulfur trioxide + water.                                                                       |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 447        | fwdarw. sulfuric acid, J. Phys. Chem. A, 89, 3689-3693, 1985.                                                                                                                     |
| 448        | Chen, X., Tao, C., Zhong, L., Gao, Y., Yao, W., and Li, S.: Theoretical study on the atmospheric reaction                                                                         |
| 449        | of SO <sub>2</sub> with the HO <sub>2</sub> and HO <sub>2</sub> ·H <sub>2</sub> O complex formation HSO <sub>4</sub> and H <sub>2</sub> SO <sub>3</sub> , Chem. Phys. Lett., 608, |
| 450        | 272-276, 2014.                                                                                                                                                                    |
| 451        | Elm, J., Bilde, M., and Mikkelsen, K. V.: Influence of nucleation precursors on the reaction kinetics of                                                                          |
| 452        | methanol with the OH radical, J. Phys. Chem. A, 117, 6695-6701, 2013.                                                                                                             |
| 453<br>454 | Elm, J., and Kristensen, K.: Basis set convergence of the binding energies of strongly hydrogen-bonded                                                                            |
| 454        | aunospheric clusters, Phys. Chem. Chem. Phys., 19, 1122-1155, 2017.                                                                                                               |
| 455        | England, G. C., Zielinska, B., Loos, K., Crane, I., and Kliter, K.: Characterizing PW2. 5 emission profiles                                                                       |
| 450        | for stationary sources: comparison of traditional and dilution sampling techniques, Fuel Process.                                                                                 |
| 457        | Technol., 65, 17/-188, 2000.                                                                                                                                                      |
| 458        | Finlayson-Pitts, B. J., and Pitts Jr, J. N.: Atmospheric chemistry. Fundamentals and experimental                                                                                 |
| 459        | techniques, John Wiley and Sons: New York, 1986.                                                                                                                                  |
| 460        | Frisch, M. J., Head-Gordon, M., and Pople, J. A.: Semi-direct algorithms for the MP2 energy and gradient,                                                                         |
| 461        | Chem. Phys. Lett., 166, 281-289, https://doi.org/10.1016/0009-2614(90)80030-H, 1990.                                                                                              |
| 462        | Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani,                                                                          |
| 463        | G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P.,                                                                            |
| 464        | Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda,                                                                               |
| 465        | R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery,                                                                              |
| 466        | J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov,                                                                       |
| 467        | V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S.,                                                                                  |
| 468        | Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V.,                                                                                 |
| 469        | Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R.,                                                                                   |
| 470        | Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador,                                                                             |
| 471        | P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V.,                                                                                   |
| 472        | Cioslowski, J., and Fox, D. J: Gaussian09 Revision D. 01, Gaussian Inc. Wallingford CT, See also:                                                                                 |
| 473        | URL: http://www. gaussian. com, 2009.                                                                                                                                             |
| 474        | Gao, J., Wang, R., Zhang, T., Liu, F., and Wang, W.: Effect of methyl hydrogen sulfate on the formation                                                                           |
| 475        | of sulfuric acid-ammonia clusters: A theoretical study, J. Chin. Chem. Soc., 70, 689-698,                                                                                         |
| 476        | https://doi.org/10.1002/jccs.202200148, 2023.                                                                                                                                     |
| 477        | Glowacki, D. R., Liang, CH., Morley, C., Pilling, M. J., and Robertson, S. H.: MESMER: an open-                                                                                   |
| 478        | source master equation solver for multi-energy well reactions, J. Phys. Chem. A, 116, 9545-9560,                                                                                  |
| 479        | 2012.                                                                                                                                                                             |
| 480        | Goedecker, S., Teter, M., and Hutter, J.: Separable dual-space Gaussian pseudopotentials, Phys. Rev. B,                                                                           |
| 481        | 54, 1703, 1996.                                                                                                                                                                   |
| 482        | Gonzalez, J., Torrent-Sucarrat, M., and Anglada, J. M.: The reactions of SO3 with HO2 radical and                                                                                 |
| 483        | $\mathrm{H}_{2}\mathrm{O}^{}\mathrm{HO}_{2}$ radical complex. Theoretical study on the atmospheric formation of $\mathrm{HSO}_{5}$ and $\mathrm{H}_{2}\mathrm{SO}_{4}$ ,          |
| 484        | Phys. Chem. Chem. Phys., 12, 2116-2125, 2010.                                                                                                                                     |
| 485        | Grimme, S., Antony, J., Ehrlich, S., and Krieg, H.: A consistent and accurate ab initio parametrization of                                                                        |
| 486        | density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys., 132,                                                                                   |
| 487        | 154104, 2010.                                                                                                                                                                     |
| 488        | Hartwigsen, C., Goedecker, S., and Hutter, J.: Relativistic separable dual-space Gaussian                                                                                         |
| 489        | pseudopotentials from H to Rn, Phys. Rev. B, 58, 3641-3662, 1998.                                                                                                                 |





| 490 | Haywood, J., and Boucher, O.: Estimates of the direct and indirect radiative forcing due to tropospheric                                 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------|
| 491 | aerosols: A review, Rev. Geophys., 38, 513-543, 2000.                                                                                    |
| 492 | Hazra, M. K., and Sinha, A.: Formic acid catalyzed hydrolysis of SO3 in the gas phase: A barrierless                                     |
| 493 | mechanism for sulfuric acid production of potential atmospheric importance, J. Am. Chem. Soc.,                                           |
| 494 | 133, 17444-17453, 2011.                                                                                                                  |
| 495 | Hofmann, M., and Schleyer, P. v. R.: Acid rain: Ab initio investigation of the H <sub>2</sub> O•SO <sub>3</sub> complex and its          |
| 496 | conversion to H <sub>2</sub> SO <sub>4</sub> , J. Am. Chem. Soc., 116, 4947-4952, 1994.                                                  |
| 497 | Horváth, G., Horváth, I., Almousa, S. AD., and Telek, M.: Numerical inverse Laplace transformation                                       |
| 498 | using concentrated matrix exponential distributions, Perform. Evaluation, 137, 102067, 2020.                                             |
| 499 | Huff, A. K., Mackenzie, R. B., Smith, C. J., and Leopold, K. R.: Facile Formation of Acetic Sulfuric                                     |
| 500 | Anhydride: Microwave Spectrum, Internal Rotation, and Theoretical Calculations, J. Phys. Chem.                                           |
| 501 | A, 121, 5659-5664, 10.1021/acs.jpca.7b05105, 2017.                                                                                       |
| 502 | Hutter, J., Iannuzzi, M., Schiffmann, F., and VandeVondele, J.: Wiley Interdiscip, Wiley Interdiscip. Rev.                               |
| 503 | Comput. Mol. Sci., 4, 15-25, 2014.                                                                                                       |
| 504 | Kanno, N., Tonokura, K., and Koshi, M.: Equilibrium constant of the HO2-H2O complex formation and                                        |
| 505 | kinetics of HO <sub>2</sub> + HO <sub>2</sub> -H <sub>2</sub> O: Implications for tropospheric chemistry, J. Geophys. Res.: Atmos., 111, |
| 506 | 10.1029/2005jd006805, 2006.                                                                                                              |
| 507 | Kikuchi, R.: Environmental management of sulfur trioxide emission: impact of SO3 on human health,                                        |
| 508 | Environ. Manage., 27, 837-844, 2001.                                                                                                     |
| 509 | Kirkby, J., Curtius, J., Almeida, J., Dunne, E., Duplissy, J., Ehrhart, S., Franchin, A., Gagné, S., Ickes,                              |
| 510 | L., Kürten, A., Kupc, A., Metzger, A., Riccobono, F., Rondo, L., Schobesberger, S., Tsagkogeorgas,                                       |
| 511 | G., Wimmer, D., Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Downard, A.,                                         |
| 512 | Ehn, M., Flagan, R. C., Haider, S., Hansel, A., Hauser, D., Jud, W., Junninen, H., Kreissl, F., Kvashin,                                 |
| 513 | A., Laaksonen, A., Lehtipalo, K., Lima, J., Lovejoy, E. R., Makhmutov, V., Mathot, S., Mikkilä, J.,                                      |
| 514 | Minginette, P., Mogo, S., Nieminen, T., Onnela, A., Pereira, P., Petäjä, T., Schnitzhofer, R., Seinfeld,                                 |
| 515 | J. H., Sipilä, M., Stozhkov, Y., Stratmann, F., Tomé, A., Vanhanen, J., Viisanen, Y., Vrtala, A.,                                        |
| 516 | Wagner, P. E., Walther, H., Weingartner, E., Wex, H., Winkler, P. M., Carslaw, K. S., Worsnop, D.                                        |
| 517 | R., Baltensperger, U., and Kulmala, M.: Role of sulphuric acid, ammonia and galactic cosmic rays                                         |
| 518 | in atmospheric aerosol nucleation, Nature, 476, 429-433, 10.1038/nature10343, 2011.                                                      |
| 519 | Kulmala, M., Vehkamäki, H., Petäjä, T., Dal Maso, M., Lauri, A., Kerminen, V. M., Birmili, W., and                                       |
| 520 | McMurry, P. H.: Formation and growth rates of ultrafine atmospheric particles: a review of                                               |
| 521 | observations, J. Aerosol Sci., 35, 143-176, https://doi.org/10.1016/j.jaerosci.2003.10.003, 2004.                                        |
| 522 | Kumar, M., Zhong, J., Francisco, J. S., and Zeng, X. C.: Criegee intermediate-hydrogen sulfide chemistry                                 |
| 523 | at the air/water interface, Chem. Sci., 8, 5385-5391, 2017.                                                                              |
| 524 | Kumar, M., Zhong, J., Zeng, X. C., and Francisco, J. S.: Reaction of Criegee Intermediate with Nitric                                    |
| 525 | Acid at the Air-Water Interface, J. Am. Chem. Soc., 140, 4913-4921, 10.1021/jacs.8b01191, 2018.                                          |
| 526 | Larson, L. J., Kuno, M., and Tao, FM.: Hydrolysis of sulfur trioxide to form sulfuric acid in small water                                |
| 527 | clusters, J. Chem. Phys., 112, 8830-8838, 2000.                                                                                          |
| 528 | Lee, C., Yang, W., and Parr, R. G.: Development of the Colle-Salvetti correlation-energy formula into a                                  |
| 529 | functional of the electron density, Phys. Rev. B, 37, 785-789, 1988.                                                                     |
| 530 | Li, H., Zhong, J., Vehkamäki, H., Kurtén, T., Wang, W., Ge, M., Zhang, S., Li, Z., Zhang, X., Francisco,                                 |
| 531 | J. S., and Zeng, X. C.: Self-Catalytic Reaction of SO3 and NH3 To Produce Sulfamic Acid and Its                                          |
| 532 | Implication to Atmospheric Particle Formation, J. Am. Chem. Soc., 140, 11020-11028,                                                      |
| 533 | 10.1021/jacs.8b04928, 2018a.                                                                                                             |





| 534 | Li, K., Song, X., Zhu, T., Wang, C., Sun, X., Ning, P., and Tang, L.: Mechanistic and kinetic study on the           |
|-----|----------------------------------------------------------------------------------------------------------------------|
| 535 | catalytic hydrolysis of COS in small clusters of sulfuric acid, Environ. Pollut., 232, 615-623,                      |
| 536 | 10.1016/j.envpol.2017.10.004, 2018b.                                                                                 |
| 537 | Li, L., Kumar, M., Zhu, C., Zhong, J., Francisco, J. S., and Zeng, X. C.: Near-barrierless ammonium                  |
| 538 | bisulfate formation via a loop-structure promoted proton-transfer mechanism on the surface of water,                 |
| 539 | J. Am. Chem. Soc., 138, 1816-1819, 2016.                                                                             |
| 540 | Liu, J., Fang, S., Wang, Z., Yi, W., Tao, F. M., and Liu, J. Y.: Hydrolysis of sulfur dioxide in small clusters      |
| 541 | of sulfuric acid: Mechanistic and kinetic study, Environ. Sci. Technol., 49, 13112-13120, 2015.                      |
| 542 | Liu, J., Liu, L., Rong, H., and Zhang, X.: The potential mechanism of atmospheric new particle formation             |
| 543 | involving amino acids with multiple functional groups, Phys. Chem. Chem. Phys., 23, 10184-10195,                     |
| 544 | 10.1039/D0CP06472F, 2021a.                                                                                           |
| 545 | Liu, L., Zhong, J., Vehkamäki, H., Kurtén, T., Du, L., Zhang, X., Francisco, J. S., and Zeng, X. C.:                 |
| 546 | Unexpected quenching effect on new particle formation from the atmospheric reaction of methanol                      |
| 547 | with SO <sub>3</sub> , Proc. Natl. Acad. Sci. U.S.A., 116, 24966-24971, 2019.                                        |
| 548 | Liu, L., Yu, F., Tu, K., Yang, Z., and Zhang, X.: Influence of atmospheric conditions on the role of                 |
| 549 | trifluoroacetic acid in atmospheric sulfuric acid-dimethylamine nucleation, Atmos. Chem. Phys., 21,                  |
| 550 | 6221-6230, 10.5194/acp-21-6221-2021, 2021b.                                                                          |
| 551 | Loerting, T., and Liedl, K. R.: Toward elimination of discrepancies between theory and experiment: The               |
| 552 | rate constant of the atmospheric conversion of SO3 to H2SO4, Proc. Natl. Acad. Sci. U. S. A., 97,                    |
| 553 | 8874-8878, 2000.                                                                                                     |
| 554 | Lohmann, U., and Feichter, J.: Global indirect aerosol effects: a review, J. Atmos. Chem. Phys., 5, 715-             |
| 555 | 737, 2005.                                                                                                           |
| 556 | Long, B., Long, Zw., Wang, Yb., Tan, Xf., Han, Yh., Long, Cy., Qin, Sj., and Zhang, Wj.:                             |
| 557 | Formic Acid Catalyzed Gas-Phase Reaction of H2O with SO3 and the Reverse Reaction: A                                 |
| 558 | Theoretical Study, ChemPhysChem, 13, 323-329, 10.1002/cphc.201100558, 2012.                                          |
| 559 | Long, B., Chang, C. R., Long, Z. W., Wang, Y. B., Tan, X. F., and Zhang, W. J.: Nitric acid catalyzed                |
| 560 | hydrolysis of SO3 in the formation of sulfuric acid: A theoretical study, Chem. Phys. Lett., 581, 26-                |
| 561 | 29, 2013a.                                                                                                           |
| 562 | Long, B., Tan, XF., Chang, CR., Zhao, WX., Long, ZW., Ren, DS., and Zhang, WJ.: Theoretical                          |
| 563 | studies on gas-phase reactions of sulfuric acid catalyzed hydrolysis of formaldehyde and                             |
| 564 | formaldehyde with sulfuric acid and H2SO4…H2O complex, J. Phys. Chem. A 117, 5106-5116,                              |
| 565 | 2013b.                                                                                                               |
| 566 | Lv, G., Sun, X., Zhang, C., and Li, M.: Understanding the catalytic role of oxalic acid in SO <sub>3</sub> hydration |
| 567 | to form H <sub>2</sub> SO <sub>4</sub> in the atmosphere, Atmos. Chem. Phys., 19, 2833-2844, 2019.                   |
| 568 | Ma, X., Zhao, X., Ding, Z., Wang, W., Wei, Y., Xu, F., Zhang, Q., and Wang, W.: Determination of the                 |
| 569 | amine-catalyzed SO3 hydrolysis mechanism in the gas phase and at the air-water interface,                            |
| 570 | Chemosphere, 252, 126292, 2020.                                                                                      |
| 571 | Mackenzie, R. B., Dewberry, C. T., and Leopold, K. R.: Gas phase observation and microwave                           |
| 572 | spectroscopic characterization of formic sulfuric anhydride, Science, 349, 58-61, 2015.                              |
| 573 | MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., Field, M. J., Fischer, S.,            |
| 574 | Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F. T. K., Mattos, C.,                  |
| 575 | Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., Reiher, W. E., Roux, B., Schlenkrich, M., Smith,                  |
| 576 | J. C., Stote, R., Straub, J., Watanabe, M., Wiórkiewicz-Kuczera, J., Yin, D., and Karplus, M.: All-                  |





| 577 | Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins, J. Phys. Chem.                     |
|-----|----------------------------------------------------------------------------------------------------------------------|
| 578 | B, 102, 3586-3616, 10.1021/jp973084f, 1998.                                                                          |
| 579 | McGrath, M. J., Olenius, T., Ortega, I. K., Loukonen, V., Paasonen, P., Kurtén, T., Kulmala, M., and                 |
| 580 | Vehkamäki, H.: Atmospheric Cluster Dynamics Code: a flexible method for solution of the birth-                       |
| 581 | death equations, Atmos. Chem. Phys., 12, 2345-2355, 10.5194/acp-12-2345-2012, 2012.                                  |
| 582 | Miller, J. A., and Klippenstein, S. J.: Master equation methods in gas phase chemical kinetics, J. Phys.             |
| 583 | Chem. A, 110, 10528-10544, 2006.                                                                                     |
| 584 | Mitsui, Y., Imada, N., Kikkawa, H., and Katagawa, A.: Study of Hg and SO3 behavior in flue gas of oxy-               |
| 585 | fuel combustion system, Int. J. Greenhouse Gas Control, 5, S143-S150, 2011.                                          |
| 586 | Morokuma, K., and Muguruma, C.: Ab initio molecular orbital study of the mechanism of the gas phase                  |
| 587 | reaction SO <sub>3</sub> + H <sub>2</sub> O: Importance of the second water molecule, J. Am. Chem. Soc., 116, 10316- |
| 588 | 10317, 1994.                                                                                                         |
| 589 | Myllys, N., Elm, J., Halonen, R., Kurten, T., and Vehkamaki, H.: Coupled cluster evaluation of the                   |
| 590 | stability of atmospheric acid-base clusters with up to 10 molecules, J. Phys. Chem. A, 120, 621-630,                 |
| 591 | 2016.                                                                                                                |
| 592 | Otto, A. H., and Steudel, R.: Gas-Phase Structures and Acidities of the Sulfur Oxoacids $H_2S_nO_6$ ( $n = 2$ -      |
| 593 | 4) and H <sub>2</sub> S <sub>2</sub> O <sub>7</sub> , Eur. J. Inorg. Chem., 2001, 3047-3054, 2001.                   |
| 594 | Pérez-Ríos, J., Ragole, S., Wang, J., and Greene, C. H.: Comparison of classical and quantal calculations            |
| 595 | of helium three-body recombination, J. Chem. Phys., 140, 044307, 2014.                                               |
| 596 | Pöschl, U.: Atmospheric aerosols: composition, transformation, climate and health effects, Angew.                    |
| 597 | Chem., Int. Ed. Engl., 44, 7520-7540, 2005.                                                                          |
| 598 | Pöschl, U., and Shiraiwa, M.: Multiphase chemistry at the atmosphere-biosphere interface influencing                 |
| 599 | climate and public health in the anthropocene, Chem. Rev., 115, 4440-4475, 2015.                                     |
| 600 | Renard, J. J., Calidonna, S. E., and Henley, M. V.: Fate of ammonia in the atmosphere-a review for                   |
| 601 | applicability to hazardous releases, J. Hazard. Mater., 108, 29-60, 2004.                                            |
| 602 | Riipinen, I., Sihto, SL., Kulmala, M., Arnold, F., Dal Maso, M., Birmili, W., Saarnio, K., Teinilä, K.,              |
| 603 | Kerminen, VM., and Laaksonen, A.: Connections between atmospheric sulphuric acid and new                             |
| 604 | particle formation during QUEST III-IV campaigns in Heidelberg and Hyytiälä, Atmos. Chem.                            |
| 605 | Phys., 7, 1899-1914, 2007.                                                                                           |
| 606 | Rong, H., Liu, L., Liu, J., and Zhang, X.: Glyoxylic sulfuric anhydride from the gas-phase reaction                  |
| 607 | between glyoxylic acid and SO3: a potential nucleation precursor, J. Phys. Chem. A, 124, 3261-                       |
| 608 | 3268, 2020.                                                                                                          |
| 609 | Shampine, L. F., and Reichelt, M. W.: The MATLAB ODE Suite, J. Sci. Comput., 18, 1-22,                               |
| 610 | 10.1137/s1064827594276424, 1997.                                                                                     |
| 611 | Sihto, SL., Kulmala, M., Kerminen, VM., Dal Maso, M., Petäjä, T., Riipinen, I., Korhonen, H., Arnold,                |
| 612 | F., Janson, R., and Boy, M.: Atmospheric sulphuric acid and aerosol formation: implications from                     |
| 613 | atmospheric measurements for nucleation and early growth mechanisms, Atmos. Chem. Phys., 6,                          |
| 614 | 4079-4091, 2006.                                                                                                     |
| 615 | Sipilä, M., Berndt, T., Petäjä, T., Brus, D., Vanhanen, J., Stratmann, F., Patokoski, J., Mauldin III, R. L.,        |
| 616 | Hyvärinen, AP., and Lihavainen, H.: The role of sulfuric acid in atmospheric nucleation, Science,                    |
| 617 | 327, 1243-1246, 2010.                                                                                                |
| 618 | Smith, C. J., Huff, A. K., Mackenzie, R. B., and Leopold, K. R.: Observation of Two Conformers of                    |
| 619 | Acrylic Sulfuric Anhydride by Microwave Spectroscopy, J. Phys. Chem. A, 121, 9074-9080,                              |
| 620 | 10.1021/acs.jpca.7b09833, 2017.                                                                                      |





| 621 | Starik, A., Savel'Ev, A., Titova, N., Loukhovitskaya, E., and Schumann, U.: Effect of aerosol precursors                                       |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------|
| 622 | from gas turbine engines on the volatile sulfate aerosols and ion clusters formation in aircraft plumes,                                       |
| 623 | Phys. Chem. Chem. Phys., 6, 3426-3436, 2004.                                                                                                   |
| 624 | Steudel, R.: Sulfuric acid from sulfur trioxide and water-a surprisingly complex reaction, Angew. Chem.                                        |
| 625 | Int. Ed. Engl., 34, 1313-1315, 1995.                                                                                                           |
| 626 | Stewart, J.: MOPAC2016 Stewart computational chemistry. Colorado Springs, CO: OpenMOPAC, in,                                                   |
| 627 | 2016.                                                                                                                                          |
| 628 | Stone, D., and Rowley, D. M.: Kinetics of the gas phase HO2 self-reaction: Effects of temperature,                                             |
| 629 | pressure, water and methanol vapours, Phys. Chem. Chem. Phys., 7, 2156-2163,                                                                   |
| 630 | 10.1039/B502673C, 2005.                                                                                                                        |
| 631 | Tan, X. F., Long, B., Ren, D. S., Zhang, W. J., Long, Z. W., and Mitchell, E.: Atmospheric chemistry of                                        |
| 632 | CH <sub>3</sub> CHO: the hydrolysis of CH <sub>3</sub> CHO catalyzed by H <sub>2</sub> SO <sub>4</sub> , Phys. Chem.Chem.Phys., 20, 7701-7709, |
| 633 | 2018.                                                                                                                                          |
| 634 | Torrent-Sucarrat, M., Francisco, J. S., and Anglada, J. M.: Sulfuric acid as autocatalyst in the formation                                     |
| 635 | of sulfuric acid, J. Am. Chem. Soc., 134, 20632-20644, 2012.                                                                                   |
| 636 | VandeVondele, J., and Hutter, J.: Gaussian basis sets for accurate calculations on molecular systems in                                        |
| 637 | gas and condensed phases, J. Chem. Phys., 127, 114105, 2007.                                                                                   |
| 638 | $Viegas, L. \ P., and \ Varandas, A. \ J.: Can water be a catalyst on the \ HO_2 + H_2O + O_3 \ reactive \ cluster?, Chem.$                    |
| 639 | Phys., 399, 17-22, 2012.                                                                                                                       |
| 640 | Viegas, L. P., and Varandas, A. J.: The $HO_2 + (H_2O)_n + O_3$ reaction: an overview and recent developments,                                 |
| 641 | Eur. Phys. J. D, 70, 1-9, 2016.                                                                                                                |
| 642 | Wayne, R. P.: Chemistry of Atmospheres. An Introduction to the Chemistry of the Atmospheres of Earth,                                          |
| 643 | the Planets, and Their Satellites, 3rd Oxford University Press, 10.1021/ja004780n, 2000.                                                       |
| 644 | Weber, R., McMurry, P., Eisele, F., and Tanner, D.: Measurement of expected nucleation precursor                                               |
| 645 | species and 3-500-nm diameter particles at Mauna Loa observatory, Hawaii, J. Atmos. Sci., 52,                                                  |
| 646 | 2242-2257, 1995.                                                                                                                               |
| 647 | Weber, R., Marti, J., McMurry, P., Eisele, F., Tanner, D., and Jefferson, A.: Measured atmospheric new                                         |
| 648 | particle formation rates: Implications for nucleation mechanisms, Chem. Eng. Commun., 151, 53-                                                 |
| 649 | 64, 1996.                                                                                                                                      |
| 650 | Weber, R., Chen, G., Davis, D., Mauldin III, R., Tanner, D., Eisele, F., Clarke, A., Thornton, D., and                                         |
| 651 | Bandy, A.: Measurements of enhanced H <sub>2</sub> SO <sub>4</sub> and 3-4 nm particles near a frontal cloud during the                        |
| 652 | First Aerosol Characterization Experiment (ACE 1), J. Geophys. Res. Atmos., 106, 24107-24117,                                                  |
| 653 | 2001.                                                                                                                                          |
| 654 | Yang, Y., Liu, L., Wang, H., and Zhang, X.: Molecular-Scale Mechanism of Sequential Reaction of                                                |
| 655 | Oxalic Acid with SO3: Potential Participator in Atmospheric Aerosol Nucleation, J. Phys. Chem. A,                                              |
| 656 | 125, 4200-4208, 2021.                                                                                                                          |
| 657 | Yao, L., Garmash, O., Bianchi, F., Zheng, J., Yan, C., Kontkanen, J., Junninen, H., Mazon, S. B., Ehn,                                         |
| 658 | M., Paasonen, P., Sipilä, M., Wang, M., Wang, X., Xiao, S., Chen, H., Lu, Y., Zhang, B., Wang, D.,                                             |
| 659 | Fu, Q., Geng, F., Li, L., Wang, H., Qiao, L., Yang, X., Chen, J., Kerminen, VM., Petäjä, T., Worsnop,                                          |
| 660 | D. R., Kulmala, M., and Wang, L.: Atmospheric new particle formation from sulfuric acid and                                                    |
| 661 | amines in a Chinese megacity, Science, 361, 278-281, doi:10.1126/science.aao4839, 2018.                                                        |
| 662 | Yao, L., Fan, X., Yan, C., Kurtén, T., Daellenbach, K. R., Li, C., Wang, Y., Guo, Y., Dada, L., Rissanen,                                      |
| 663 | M. P., Cai, J., Tham, Y. J., Zha, Q., Zhang, S., Du, W., Yu, M., Zheng, F., Zhou, Y., Kontkanen, J.,                                           |
| 664 | Chan, T., Shen, J., Kujansuu, J. T., Kangasluoma, J., Jiang, J., Wang, L., Worsnop, D. R., Petäjä, T.,                                         |





| 665 | Kerminen, V. M., Liu, Y., Chu, B., He, H., Kulmala, M., and Bianchi, F.: Unprecedented Ambient               |
|-----|--------------------------------------------------------------------------------------------------------------|
| 666 | Sulfur Trioxide (SO3) Detection: Possible Formation Mechanism and Atmospheric Implications,                  |
| 667 | Environ. Sci. Technol. Lett., 7, 809-818, 10.1021/acs.estlett.0c00615, 2020.                                 |
| 668 | Zhang, H., Kupiainen-Määttä, O., Zhang, X., Molinero, V., Zhang, Y., and Li, Z.: The enhancement             |
| 669 | mechanism of glycolic acid on the formation of atmospheric sulfuric acid-ammonia molecular                   |
| 670 | clusters, J. Chem. Phys., 146, 184308, 10.1063/1.4982929, 2017.                                              |
| 671 | Zhang, H., Li, H., Liu, L., Zhang, Y., Zhang, X., and Li, Z.: The potential role of malonic acid in the      |
| 672 | atmospheric sulfuric acid-ammonia clusters formation, Chemosphere, 203, 26-33, 2018.                         |
| 673 | Zhang, J., and Dolg, M.: ABCluster: the artificial bee colony algorithm for cluster global optimization,     |
| 674 | Phys. Chem. Chem. Phys., 17, 24173-24181, 10.1039/C5CP04060D, 2015.                                          |
| 675 | Zhang, J., and Dolg, M.: Global optimization of clusters of rigid molecules using the artificial bee colony  |
| 676 | algorithm, Phys. Chem. Chem. Phys., 18, 3003-3010, 10.1039/C5CP06313B, 2016.                                 |
| 677 | Zhang, R., Khalizov, A., Wang, L., Hu, M., and Xu, W.: Nucleation and growth of nanoparticles in the         |
| 678 | atmosphere, Chem. Rev., 112, 1957-2011, 2012.                                                                |
| 679 | Zhang, R., Wang, G., Guo, S., Zamora, M. L., Ying, Q., Lin, Y., Wang, W., Hu, M., and Wang, Y.:              |
| 680 | Formation of urban fine particulate matter, Chem. Rev., 115, 3803-3855, 2015.                                |
| 681 | Zhang, R., Shen, J., Xie, H. B., Chen, J., and Elm, J.: The role of organic acids in new particle formation  |
| 682 | from methanesulfonic acid and methylamine, Atmos. Chem. Phys., 22, 2639-2650, 10.5194/acp-                   |
| 683 | 22-2639-2022, 2022.                                                                                          |
| 684 | Zhong, J., Kumar, M., Zhu, C. Q., Francisco, J. S., and Zeng, X. C.: Frontispiece: Surprising Stability of   |
| 685 | Larger Criegee Intermediates on Aqueous Interfaces, Angew. Chem. Int. Ed., 56, 7740-7744,                    |
| 686 | 10.1002/anie.201782761, 2017.                                                                                |
| 687 | Zhong, J., Kumar, M., Francisco, J. S., and Zeng, X. C.: Insight into chemistry on cloud/aerosol water       |
| 688 | surfaces, Acc. Chem. Res., 51, 1229-1237, 2018.                                                              |
| 689 | Zhong, J., Li, H., Kumar, M., Liu, J., Liu, L., Zhang, X., Zeng, X. C., and Francisco, J. S.: Mechanistic    |
| 690 | Insight into the Reaction of Organic Acids with SO3 at the Air-Water Interface, Angew. Chem. Int.            |
| 691 | Ed., 131, 8439-8443, 2019.                                                                                   |
| 692 | Zhu, C., Kumar, M., Zhong, J., Li, L., Francisco, J. S., and Zeng, X. C.: New Mechanistic Pathways for       |
| 693 | Criegee-Water Chemistry at the Air/Water Interface, J. Am. Chem. Soc., 138, 11164-11169,                     |
| 694 | 10.1021/jacs.6b04338, 2016.                                                                                  |
| 695 | Zhu, C., Kais, S., Zeng, X. C., Francisco, J. S., and Gladich, I.: Interfaces select specific stereochemical |
| 696 | conformations: the isomerization of glyoxal at the liquid water interface, J. Am. Chem. Soc., 139,           |
| 697 | 27-30, 2017.                                                                                                 |
| 698 | Zhuang, Y., and Pavlish, J. H.: Fate of hazardous air pollutants in oxygen-fired coal combustion with        |
| 699 | different flue gas recycling, Environ. Sci. Technol., 46, 4657-4665, 2012.                                   |





**Table 1** The rate constant (cm<sup>3</sup>·molecule<sup>-1</sup>·s<sup>-1</sup>) for the SO<sub>3</sub> + H<sub>2</sub>SO<sub>4</sub> reaction and the effective rate constant (cm<sup>3</sup>·molecule<sup>-1</sup>·s<sup>-1</sup>) for the SO<sub>3</sub> + H<sub>2</sub>SO<sub>4</sub> reaction with H<sub>2</sub>O (100%RH) within the temperature range of 280-320 K

| <i>T/</i> (K)         | 280 K                    | 290 K                    | 298 K                  | 300 K                       | 310 K                    | 320 K                    |
|-----------------------|--------------------------|--------------------------|------------------------|-----------------------------|--------------------------|--------------------------|
| $k_{\rm DSA}$         | $5.52 	imes 10^{-12}$    | $4.60 \times 10^{-12}$   | $3.95\times10^{12}$    | $3.80 	imes 10^{-12}$       | $3.13 	imes 10^{-12}$    | $2.57\times10^{12}$      |
| $k'_{\rm DSA_WM_o}$   | $2.12 \times 10^{-13}$   | $2.68 \times 10^{-13}$   | $2.88 \times 10^{-13}$ | $2.89\times10^{\text{-13}}$ | $2.89\times10^{13}$      | $2.75 \times 10^{-13}$   |
| $k'_{\rm DSA\_WM\_s}$ | 1.03 × 10 <sup>-11</sup> | 8.55 × 10 <sup>-12</sup> | $7.42 \times 10^{-12}$ | 7.11 × 10 <sup>-12</sup>    | 5.79 × 10 <sup>-12</sup> | 4.60 × 10 <sup>-12</sup> |

 $k_{\text{DSA}}$  is the rate constant for the SO<sub>3</sub> + H<sub>2</sub>SO<sub>4</sub> reaction;  $k'_{\text{DSA}_{\text{WM}_{0}}}$  and  $k'_{\text{DSA}_{\text{WM}_{s}}}$  are respectively the effective rate constants for H<sub>2</sub>O-assisted SO<sub>3</sub> + H<sub>2</sub>SO<sub>4</sub> reaction occurring through one-step and stepwise routes.





**Table 2** Gibbs free energy ( $\Delta G$ , kcal·mol<sup>-1</sup>) for the formation of  $S_2O_7^{2-\cdots}H_2SO_4$ ,  $S_2O_7^{2-\cdots}H_NO_3$ , $S_2O_7^{2-\cdots}(COOH)_2$ ,  $H_3O^+\cdots NH_3$ ,  $H_3O^+\cdots H_2SO_4$ ,  $HSO_4^-\cdots H_2SO_4$ ,  $HSO_4^-\cdots (COOH)_2$ ,  $HSO_4^-\cdots HNO_3$ , $MOOCCH_2COOH\cdots H_2SO_4\cdots NH_3$ , $HOCCOOSO_3H\cdots H_2SO_4$ 

|            | $S_2O_7^{2-}\cdots H_2SO_4$                            | S <sub>2</sub> O <sub>7</sub> <sup>2-</sup> ····HNO <sub>3</sub> | S <sub>2</sub> O <sub>7</sub> <sup>2-</sup> (COOH) <sub>2</sub> | H <sub>3</sub> O <sup>+</sup> ···NH <sub>3</sub> | $H_2SO_4 \cdots NH_3$       |
|------------|--------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------|-----------------------------|
| $\Delta G$ | -46.3 -30.6                                            |                                                                  | -39.9                                                           | -51.7<br>(-49.2) <sup>a</sup>                    | -8.9<br>(-8.9) <sup>a</sup> |
|            | ${ m H_3O^+\cdots H_2SO_4}$                            | HSO4H2SO4                                                        | HSO4-····(COOH)2                                                | HSO4 <sup>-</sup> ···· HNO3                      | $S_2O_7^{2-}$               |
| $\Delta G$ | -27.5<br>(-27.0) <sup>a</sup>                          | -41.6                                                            | -33.6                                                           | -27.8                                            | -40.1                       |
|            | HOOCCH <sub>2</sub> COOH                               | HOCCOOSO3H                                                       | CH <sub>3</sub> OSO <sub>3</sub> H                              | HOOCCH <sub>2</sub> CH(NH <sub>2</sub> )COOH     | HOCH <sub>2</sub> COOH      |
|            | ····H <sub>2</sub> SO <sub>4</sub> ····NH <sub>3</sub> | ····H2SO4····NH3                                                 | ····H2SO4····NH3                                                | ···H2SO4···NH3                                   | ····H2SO4····NH3            |
| $\Delta G$ | -13.1 (-13.6) <sup>b</sup>                             | -20.4 (-22.5) <sup>c</sup>                                       | -18.8 (-20.7) <sup>d</sup>                                      | -13.2 (-14.0) <sup>e</sup>                       | -12.8 (-13.5) <sup>f</sup>  |

| NIT     |                        |               | 1 HOOCCH     | CHAIL COA        |                                | I 200 IZ    |
|---------|------------------------|---------------|--------------|------------------|--------------------------------|-------------|
| ···пп3, | $CH_3OSO_3H^{\bullet}$ | $-H_2SO_4$ NH | 3 and HOUCCH | $_2 CH(NH_2)COU$ | $JH^{-1}H_{2}SO_{4}^{-1}M_{1}$ | 13 al 298 K |

Energies are given in kcal-mol<sup>-1</sup>, and calculated at the M06-2X/6-311++G(2*df*,2*pd*) theoretical level. References are as follows: [a] Zhong et al., 2019.; [b] Zhang et al., 2018.; [c] Rong et al., 2020.; [d] Gao et al., 2023.; [e] Liu et al., 2021a; [f] Zhang et al., 2017.







**Graphic abstract** 





# **Figure Caption**

Fig. 1 Schematic potential energy surface for the  $SO_3 + H_2SO_4 \rightarrow H_2S_2O_7$  reaction; Distances is in angstrom at the M06-2X/6-311++G(2df,2pd) level, while the energy values correspond to the calculations at the CCSD(T)-F12/cc-pVDZ-F12//M06-2X/6-311++G(2df,2pd) level. The TS in the SO<sub>3</sub>+ H<sub>2</sub>SO<sub>4</sub>  $\rightarrow$  H<sub>2</sub>S<sub>2</sub>O<sub>7</sub> reaction without and with H<sub>2</sub>O is denoted by "TS<sub>DSA</sub>" and "TS<sub>DSA\_WM</sub>", respectively. The mark of a specific hydrogen bond complex depends on molecular formula and the connection sequence of each moiety.

Fig. 2 Top panel: Snapshot structures taken from the BOMD simulations, which illustrate  $H_2O$ -induced the formation of  $S_2O_7^{2-\cdots}H_3O^+$  ion pair from the reaction of SO<sub>3</sub> with HSO<sub>4</sub><sup>-</sup> at the air-water interface. Lower panel: time evolution of key bond distances (S-O1, O2-H1, and O3-H1) involved in the induced mechanism.

**Fig. 3** Top panel: Snapshot structures taken from the BOMD simulations, which illustrate the hydration reaction mechanism of SO<sub>3</sub> mediated by HSO<sub>4</sub><sup>-</sup> at the air water interface. Lower panel: time evolution of key bond distances (S-O1, O1-H2, O5-H2, O2-H1, O3-H4 and O4-H3) involved in the hydration mechanism.

Fig. 4 Top panel: Snapshot structures taken from the BOMD simulations, which illustrate the deprotonation of  $H_2S_2O_7$  at the air water interface. Lower panel: time evolution of key bond distances (O1-HI, O1-H2, O3-H2 and H2-O4) involved in the hydration mechanism.

**Fig. 5** The logarithms of the enhancement strength of DSA (lg*R*) as a function of [DSA] from  $10^1$  to  $10^3$  molecules cm<sup>-3</sup> under different temperatures (218.15, 238.15, 258.15, 278.15 and 298.15 K) where [SA] =  $10^7$  molecules cm<sup>-3</sup> and [A] =  $10^9$  molecules cm<sup>-3</sup> (a); The logarithms of the enhancement strength of DSA (lg*R*) as a function of [A] from  $10^7$  to  $10^{11}$  molecules cm<sup>-3</sup> at *T* = 278.15 K and [DSA] =  $10^3$  molecules cm<sup>-3</sup> under different [SA] =  $10^6$ - $10^8$  molecules cm<sup>-3</sup> (b).

**Fig. 6** The main pathways of clusters growing out of the research system under the conditions where T = 278.15 K,  $[SA] = 10^7$  molecules cm<sup>-3</sup>,  $[A] = 10^{11}$  molecules cm<sup>-3</sup>, and  $[DSA] = 10^3$  molecules cm<sup>-3</sup> (A). The pure SA-A-based cluster pathway (a) and the DSA-containing pathway (b). The black and blue fluxes represent the pathways of the SA-A-based cluster and the SA-A-DSA-based cluster, respectively. The effects of temperature (B), [DSA] (C), and [SA] (D) on the relative contribution of the pure SA-A-based cluster pathway and the DSA-containing pathway to the flux out of the system. Others in (B), (C), and (D) indicate that the pathway contribution of the cluster growing out of the studied system is less than 5%.







Fig. 1













Fig. 3













Fig. 5







Fig. 6