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Abstract. Avalanches are important contributors to the mass balance of glaciers located in mountain ranges with steep 

topographies. Avalanches result in localised over-accumulation that is seldom accounted for in glacier models, due to the 

difficulty to quantify this contribution, let alone the occurrence of avalanches in these remote regions. Here, we developed an 15 

approach to semi-automatically map avalanche deposits over long time periods and at scales of multiple glaciers, utilising 

imagery from Sentinel-1 Synthetic Aperture Radar (SAR). This approach performs particularly well for scenes acquired in 

winter and in the morning, but can also be used to identify avalanche events throughout the year. We applied this method to 

map 16,302 avalanche deposits over a period of five years at a 6 to 12 days interval over the Mt Blanc massif (European Alps), 

the Everest (Central Himalaya) and Hispar (Karakoram) regions. These three survey areas are all characterised by steep 20 

mountain slopes, but also present contrasting climatic characteristics. Our results enable the identification of avalanche 

hotspots on these glaciers and allow us to quantify the avalanche activity and its spatio-temporal variability across the three 

regions. The avalanche deposits are preferentially located at lower elevations relative to the hypsometry of the glacierized 

catchments, and are also constrained to a smaller elevation range at the Asian sites, where they have a limited influence on 

their extensive debris-covered tongues. Avalanche events coincide with solid precipitation events, which explains the high 25 

avalanche activity in winter in the Mt Blanc massif and during the monsoon in the Everest region. However, there is also a 

time lag of 1-2 months, visible especially in the Everest region, between the precipitation and avalanche events, indicative of 

some snow retention on the mountain headwalls. This study therefore provides critical insights into these mass redistribution 

processes as well as tools to account for their influence on glacier mass balance. 

 30 
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1 Introduction 

Mountain glaciers usually gain mass via solid precipitation falling in their accumulation area that is then advected downstream 

with ice flow. The mass balance of a glacier is traditionally expected to increase with elevation, as higher altitudes typically 

have colder temperatures leading to less melting and more snow accumulation (Benn and Lehmkuhl, 2000). For catchments 

with strong topographic gradients, there can be large mass inputs from mountain headwalls at localised portions of the glacier, 35 

both in the accumulation and ablation zones, which leads to non-linear patterns of glacier surface mass balance (Miles et al., 

2021; Kirkbride and Deline, 2013; Brun et al., 2019). Avalanches, defined here as the process of gravitational mass 

redistribution (in the form of snow, ice or rocks) to lower elevation from surrounding slopes, are important contributors to the 

mass balance of glaciers (Benn and Lehmkuhl, 2000; Laha et al., 2017; Hynek et al., 2023). These inputs, which vary in size 

and originate from the redistribution of snow or ice from mountain headwalls or hanging glaciers, contribute to the persistence 40 

of glaciers at low altitudes (Hughes, 2008; DeBeer and Sharp, 2009; Carturan et al., 2013) and could therefore, to some extent, 

buffer the depletion of mountain water resources (Burger et al., 2018). Such buffering effect is however strongly dependent 

on the mass supply from avalanches, and small variations in this supply may have important consequences for the overall 

glacier mass balance (Purdie et al., 2015). Furthermore, the presence or the absence of avalanches on a glacier may influence 

the interpretation of the glacier boundaries, which are known to vary considerably depending on the method or the definition 45 

applied (Kaushik et al., 2022; Nuimura et al., 2015).  

 

We expect avalanches in glacierized catchments to differ at least partly from off-glacier snow avalanches. One can expect a 

different seasonality in these avalanches, as snow can accumulate even during the melt season at the elevations of the 

accumulation areas. Furthermore, these gravitational mass contributions are not limited to snow avalanches but also likely 50 

include ice avalanches from seracs or hanging glaciers (Pralong and Funk, 2006) or rock avalanches that are suspected to 

contribute to the development of on-glacier debris cover (Berthier and Brun, 2019; Scherler and Egholm, 2020; McCarthy et 

al., 2022). Such processes can to some extent be represented implicitly in glacio-hydrological models using flow-routing 

algorithms of excess snow (Gruber, 2007; Bernhardt and Schulz, 2010; Mimeau et al., 2019), but these parameterizations are 

often difficult to calibrate and rely on a limited number of avalanche outlines from a small number of optical images (Bernhardt 55 

and Schulz, 2010; Ragettli et al., 2015).  

 

Very little data exists in remote glacierized mountain catchments on the occurrence of such avalanche events, contrary to 

populated valleys where they are monitored, generally based on field observations, for hazard management (Maggioni and 

Gruber, 2003; Schweizer et al., 2020; Bourova et al., 2016; Eckert et al., 2013). This is particularly the case in remote ranges 60 

of High Mountain Asia (HMA), despite a number of recent efforts to quantify the avalanche activity in parts of the range 

devoid of long-term avalanche monitoring (Caiserman et al., 2022; Singh et al., 2022; Acharya et al., 2023). Several strategies 

have been proposed to derive hazard maps in such a data-scarce region. For example, some recent catastrophic events such as 
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the extreme avalanches and landslides triggered by the 2015 Gorkha earthquake in Nepal have been carefully mapped and 

analysed (Kargel et al., 2016; Fujita et al., 2017), but they do not allow consistent hazard assessment. Recent promising efforts 65 

have used end-of-season optical satellite images to derive inventories of major avalanche deposits (Caiserman et al., 2022; 

Singh et al., 2022), which has the advantage of providing a spatially unbiased dataset, but remains limited to the largest deposits 

and does not give any information on the temporal variability of these events. More generally, it is possible to identify 

avalanche deposits in very high-resolution (<5m) images taken within a few days from one another (Lato et al., 2012; Bühler 

et al., 2009) based on surface texture changes, but these approaches are hindered by the availability of cloud-free acquisitions 70 

which need to be tasked, thus limiting them to small regions and targeted time periods (Hafner et al., 2021; 2022; Eckerstorfer 

et al., 2016). These data limitations highlight the need for quantitative inventories of avalanche events, with as little spatial 

and temporal bias as possible. This is becoming a possibility thanks to the use of optical and SAR satellite products, Sentinel-

1 especially, which currently allow the inventory of avalanches across mountain ranges at high temporal resolution 

(Eckerstorfer et al., 2019).  75 

 

In recent years, numerous approaches have been developed to detect avalanche deposits from freely-available Sentinel-1 SAR 

satellite data (Vickers et al., 2016; Eckerstorfer et al., 2019; Abermann et al., 2019; Karas et al., 2022; Sartori and Darbiri, 

2023; Guiot et al., 2023; Bianchi et al., 2021). Sentinel-1 satellites have a repeat frequency of 6-12 days for low latitude regions 

(European Alps and HMA) and are unaffected by clouds, making them a promising way to derive avalanche characteristics in 80 

data-scarce regions (Yang et al., 2020). The avalanche mapping methods rely on the detection of increases in the backscatter 

between two successive images caused by the increase in surface roughness at the location of the avalanche deposits (Leinss 

et al., 2020; Wesselink et al., 2017). Such approaches have been applied at various spatial and temporal scales, and are now 

implemented across entire regions at an operational level (Eckerstorfer et al., 2019; Karas et al., 2022). The validity of these 

approaches has been demonstrated by quantifying the overlap between outlines from Sentinel-1 images and those obtained 85 

from high-resolution optical and field observations (Leinss et al., 2020; Hafner et al., 2021). More recently a number of studies 

have also trained machine learning approaches to improve the mapping of avalanches (Tompkin and Leinss, 2021; Waldeland 

et al., 2018; Yang et al., 2020; Bianchi et al., 2021; Kapper et al., 2023; Liu et al., 2021). There remain limitations to these 

approaches, especially as they fail to detect smaller events (<4000 m2) or have a high rate of false detections in the case of 

transitions from wet to dry snow that also result in increasing the SAR backscatter (Eckerstorfer et al., 2019; 2022; Hafner et 90 

al., 2021), or will not work in areas affected by radar shadow or layover. Even though initial observations seem to confirm the 

ability of such Sentinel-1 based approaches to identify large avalanches in glacierized environments (Leclercq et al., 2021), 

this on-glacier avalanche detection potential remains to be assessed quantitatively. Furthermore, the sensitivity of the method 

to image repetition, e.g. 6 days in Europe vs 12 days in HMA, has not been assessed yet.  

 95 

Here, we develop a new approach to semi-automatically derive avalanche deposits from Sentinel-1 images and apply it to a 

five-year period across three glacierized regions with different topo-climatic characteristics, in the European Alps, the Central 
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Himalaya and the Karakoram. Our goal is to evaluate the suitability of this method to map on-glacier avalanches on a broad 

scale and to derive the main spatio-temporal characteristics of the identified deposits in these three regions. To this end we (1) 

calibrate and evaluate our automated mapping approach at each site and assess its transferability to other sites, (2) extract the 100 

size-frequency characteristics of avalanches at various spatial scales over a period of five years and (3) evaluate the 

implications for the glacier mass balance.  

2 Data  

We focus on three survey areas located in the Central Himalaya (Everest region; Fig. 1a), the European Alps (Mt. Blanc massif; 

Fig. 1b) and the Karakoram (Hispar region; Fig. 1c). All three zones are characterised by a large number of glaciers and by a 105 

relatively steep topography with more than 50% of the slopes steeper than 30° in the glacierized catchments (Fig. S1), which 

we defined as the area covered by the glaciers and their upstream area. The steep topography is indicative of a strong avalanche 

potential (Hughes, 2008; Laha et al., 2017). These three zones are located in contrasting climatic regimes. The Everest region 

receives most of its precipitation during the monsoon season, which is also the warmest period of the year (Wagnon et al., 

2013, 2021), leading to summer-type accumulation glaciers. The more westerly-driven climate in the Karakoram results in 110 

more temporally-distributed precipitation over the Hispar region, with more important snowfall in the winter (Li et al., 2020; 

Shaw et al., 2022). The Mt Blanc massif, in the European Alps, also receives most of its solid precipitation in the winter 

(Vionnet et al., 2019). 

 

For each survey domain we derived the entire time series of Sentinel-1 images for the period 11/2017 - 10/2022 for the two 115 

sites in HMA along two ascending and descending orbits, and the period 11/2016 - 10/2021 for the Mt Blanc region. We used 

one orbit for the ascending and descending tracks, respectively 6 or 12 days apart depending on the survey domain, to guarantee 

that the incidence angles remained the same throughout the study periods. We used a different study period for the Mt Blanc 

region as Sentinel-1B experienced malfunction in December 2021 and the acquisition frequency dropped from 6 to 12 days 

over the European Alps (Table 1). This had little impact for the HMA sites, which had been monitored almost solely by 120 

Sentinel-1A, and only from the second half of 2017 at regular time intervals. Despite systematic acquisition strategy, there 

were a few gaps (<10%) in the time series of the Mt Blanc and Everest regions, which were more important in the descending 

acquisitions over Hispar (65% gaps, with no images from October 2020 onwards, Table 1). For all three survey domains the 

ascending acquisitions were made late in the afternoon and the descending acquisitions early in the morning (Table 1). 

 125 
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Figure 1: The different survey domains to which the avalanche mapping was applied (a-c). The numbers in the upper right corner 

indicate the total area of interest covered by the ascending and descending scenes, respectively, and the third number indicates the 

percentage of glacierized area covered by ascending or descending scenes. Randolph Glacier Inventory (RGI) 6.0 outlines (RGI 130 
Consortium, 2017) are shown in black, the mapping extents for the ascending (resp. descending) scenes are shown in blue (red). The 

red triangle in (a) indicates the location of the Pyramid precipitation gauge. The orange outline in (b) indicates the footprint of the 

Pléiades images. Background images are the AW3D30 30m multidirectional hillshades. (d) Overview map of the three survey areas, 

with the RGI 6.0 glaciers indicated in blue.  

 135 

Table 1: Characteristics of the Sentinel-1 acquisitions in the ascending and descending orbits for each of the three survey domains.  

S1 scenes Study 

period 

Relative 

orbit 

Revisit 

time 

Acquisition 

time 

Number of 

image pairs 

Temporal 

gaps 

Training 

period 

Number of image pairs 

used for 

validation/calibration 

Mt. Blanc 

ASC 

 

11/2016 - 

88  

 

19:30 

(UTC+02:00) 

288 6%  

 

29/30 
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Mt. Blanc 

DESC 

10/2021 66 6 days 07:30 

(UTC+02:00) 

287 6%  

 
 

 

 
 

11/2019 - 

10/2020 

30/30 

Everest 

ASC 

 

11/2017 - 
10/2022 

12  

 
12 days 

18:00 

(UTC+05:45) 

143 7% 14/15 

Everest 

DESC 

121 06:00 

(UTC+05:45) 

147 4% 15/16 

Hispar ASC  

11/2017 - 
10/2022 

27  

 
12 days 

18:00 

(UTC+05:00) 

146 5% 14/15 

Hispar 

DESC 

34 06:00 

(UTC+05:00) 

54 65% 7/7 

 

In addition to the Sentinel-1 time series, we used four cloud-free Pléiades orthoimages acquired over the Mt Blanc massif with 

a spatial resolution of 0.5 metres. Two images were taken during winter (08/12/2020 and 19/01/2021) and the two others 

during summer (08/07/2020 and 09/08/2020), and they were used to derive high precision avalanche deposits to evaluate the 140 

outlines obtained with Sentinel-1. The winter and August Pléiades scenes were acquired on the same day as a Sentinel-1 

acquisition, while the July scene was acquired two days before the nearest Sentinel-1 acquisition. 

 

The characteristics of the avalanche deposits (size, elevation, slope), were derived using the global AW3D30 30m DEM 

(Tadono et al., 2014). The avalanche time series obtained were also compared to the precipitation time series over the different 145 

study areas, as an indication of the amount of snow deposited at high elevations. For the Mt Blanc massif we used the rainfall 

and snowfall at 3000 m a.s.l from the S2M reanalysis product (Vernay et al., 2022). For the Everest region we used precipitation 

measurements from the Pyramid precipitation gauge (Fig. 1a) with a Geonor sensor using a weighing device suitable to 

measure liquid and solid precipitation (Khadka et al., 2022) located at 5035 m a.s.l on the southern side of the survey domain. 

No station data was available for the Hispar region so we used precipitation from the ERA5-Land reanalysis (Muñoz Sabater, 150 

2019).  

3 Methods 

3.1 Image pre-processing 

All images were pre-processed in Google Earth Engine, using the S1 GRD (Ground Range Detected) library (Gorelick et al., 

2017). We filtered the images per orbit and kept only one ascending and one descending orbit per survey area to have 155 

observations at regular intervals (6 days for Mt Blanc, 12 days for Everest and Hispar). We conducted all the processing steps 

independently for the ascending and descending acquisitions. Images were mosaiced per day in case of overlapping images. 

We applied a 500m high pass filter to reduce the influence of large-scale snow wetness changes and averaged the VV and VH 

polarizations to reduce the speckle (Leinss et al., 2020). The backscatter values were then clamped to [-25; -6] dB, a range 
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beyond which we do not expect to observe changes in the backscatter caused by changes in the snow surface roughness, and 160 

normalized to [0, 1] (Fig. 2). The images were then combined into RGB composites, with the backscatter of the D image 

(image taken on the day of interest) stored in the green channel and the D-i image (last image taken prior the day of interest, i 

is equal to 6 or 12 days depending on the domain) stored in the red and blue channels. This enabled the identification of 

increases in the backscatter as green and decreases as purple (Fig. 3). We downloaded the first GRD images of each orbit from 

the Alaska Satellite Facility to produce a mask of shadow and layover using the ESA SNAP software. These masks were 165 

extended to all locations where the mean annual backscatter (brightness) was lower than 0.1 or higher than 0.82 or outside the 

Randolph Glacier Inventory (RGI) 6.0 glacier extents  (RGI Consortium, 2017) plus a 200 m buffer (Fig. 1). As a result, 35%, 

28% and 43% of the considered area was masked out for the Everest, Mt Blanc and Hispar regions, resulting in a total area 

available for mapping of 492, 140 and 762 km2, respectively (Fig. 1). 

3.2 Avalanche mapping 170 

The mapping approach that we developed is adapted from the method by Karas et al. (2022) and as such uses the RGB images 

converted to HSV (Hue, Saturation, Value) space. This approach uses minimum Saturation and Value thresholds (TS and TV) 

to determine if the green patches in the image (which indicate an increase in the backscatter) should be classified as avalanche 

deposits. By targeting the saturation and brightness of these green patches, this approach is well suited to identify avalanche 

deposits in RGB images, with a true positive rate between 0.36 and 0.58 (Karas et al., 2022).  175 

 

In this approach, which targeted the mapping of avalanche deposits over a multi-year period, we normalised the Saturation and 

Value by the mean values of the first images of the time series to improve the temporal consistency of the signal. We used a 

35° slope threshold above which the increases in backscatter were not considered to be avalanche deposits, and removed all 

detections smaller than 40 pixels (4000 m2; Leinss et al., 2020; Eckerstorfer et al., 2019). Furthermore, in addition to the two 180 

thresholds on Saturation (TS) and Value (TV) proposed by Karas et al. (2022), we added extra constraints to reduce the effect 

of changes in snow wetness which would otherwise lead to a large amount of false positive detections. First, once the bright 

green patches had been detected, we allowed them to expand within a vicinity of 7 pixels (70 m) to capture less bright parts of 

the avalanche deposit according to another threshold value TO, identical for both the Saturation and Value (Fig. 2, 2nd filtering 

step). Second, we directly differentiated the image at D with low pass filtered images at D and D-i (Sm D and Sm D-i). The 185 

low pass filter consisted of a 45 pixel (450 m) wide Gaussian filter. We selected this kernel size to be able to smooth even the 

largest avalanche deposits. We kept only pixels for which at least one of the differences was above set thresholds (TD1, TD2 

and TD3, 3rd filtering step, Fig. 2). The idea of this additional step was that an avalanche event results in a spatial discontinuity 

in the backscatter, if not with the image before, at least in the current image. 
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 190 

Figure 2: Processing steps (grey) applied to the Sentinel-1 GRD data (white) to obtain avalanche maps. The polarizations VV and 

VH at D (image taken on the day of interest) and D-i (last image taken prior the day of interest, i is equal to 6 or 12 days depending 

on the domain) are averaged to get backscatter (BS) images which are then combined into an RGB and then an HSV image. These 

HSV images are then filtered following three filtering steps using six different thresholds (TS, TV, TO, TD1, TD2 and TD3), before the 

final morphological filtering step and correction for glacier elevation change. Sm indicates the smoothed images after application of 195 
the 45-pixel low-pass filter. 

3.3 Parameter calibration 

We manually derived the avalanche deposits outlines of all images between November 2019 and October 2020 at all sites, 

based on the pre-processed RGB images. The main advantage of the manual mapping is that it gives the possibility to account 

for the shape of the events to discriminate avalanche deposits from changes in snow wetness, for example (Vickers et al., 2016; 200 

Eckerstorfer et al., 2016; Hafner et al., 2021). A single operator performed the manual detection, and to account for biases in 

the delineations, we compared on a pixel-by-pixel basis these outlines with those of four other operators for 4 scenes (2 

ascending and 2 descending) covering the Mt Blanc region and 4 scenes covering the Everest region (Kneib et al., 2021; Table 

S1, Fig. S2-S3).   

 205 

The manual outlines were used to calibrate and validate the six free parameters (TS, TV, TO, TD1, TD2 and TD3) used for the 

mapping (Fig. 2). We used the F1-score, also known as the Dice coefficient, as a metric to quantify the goodness-of-fit of the 

automated delineation on a pixel-by-pixel basis (Dice, 1945; Sørensen, 1948):  



9 

 

𝐹1 =  
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
,         (1) 

Where TP is the number of pixels classified as true positives, FP as false positives and FN as false negatives (Fig. 3). This 210 

metric is therefore well suited when the mapping targets represent a small percentage of the total area of the scene, and a 

calibration based on this metric will result in finding the parameters that lead to maximising the number of TP while also 

balancing the number of FP and FN (Kneib et al., 2020). For a perfect classification, the F1-score is equal to 1. 

 

 215 

Figure 3: Example of the different processing steps from two pre-processed Sentinel-1 images taken at a 6 days interval (a-b), 

combined into one RGB image for change detection (c). The different bands range between -25 and -6 dB. This image is then used 

for the manual (blue outlines) and automated (red outlines) mapping of the avalanche deposits that appear in green (d). These 

outlines are then compared based on the confusion matrix, used to compute the F1-score, TN corresponding to the true negative 

pixels, TP to the true positive pixels, FP to the false positive pixels and FN to the false negative pixels (e). 220 

We used every second image pair for the calibration and the remaining half was used for validation (~28 pairs for the Mt 

Blanc, ~14 for the Hispar and Everest regions for ascending and for descending scenes). We split the time series into two time 

periods, November-April and May-October to account for lower backscatter values across large portions of the glaciers during 

the melt season, which we considered to be bounded by the May-October period for all survey domains (Karbou et al., 2021; 

Scher et al., 2021). Thus, the calibration and validation were done independently for each ascending and descending orbit of 225 

each survey domain and for each time period. We started from an initial guess of all parameter values (TS, TV, TO, TD1, TD2 
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and TD3) based on trial and error and then randomly sampled the parameter space within reasonable bounds (Fig. 2), using the 

following ranges of value ([min; max]) obtained from trial and error tests: [0.20; 0.65], [0.20; 0.65], [0.01; 0.16], [0.05; 0.11], 

[0.01; 0.09] and [0.31; 0.43]. For each survey area and each orbit, we choose the set of parameters that maximised the F1-

score. This parameter selection was then evaluated against the validation set and used to automatically map avalanche deposits 230 

across the entire Sentinel-1 time series.  

 

Of all six parameters used for the calibration, the saturation threshold TS was the only one with a defined value maximising 

the F1-score, between 0.3 and 0.5 (Fig. S4), and therefore also the most sensitive. The other parameters did not have a clear 

maximum defined and several combinations of these parameters could lead to similarly high F1-scores (Fig. S5-9).  235 

3.4 Comparison with optical images 

We compared on a pixel-by-pixel basis the Sentinel-1 outlines that occurred over given periods in the summer and in the winter 

with manually derived outlines of avalanche deposits from high resolution (0.5 m) Pléiades orthoimages over part of the Mt 

Blanc survey area, acquired on 08/12/2020, 19/01/2021, 08/07/2020 and 09/08/2020. We also compared the aggregation of 

one year (11/2019-09/08/2020) of Sentinel-1 manual outlines from ascending and descending orbits with all the avalanche 240 

deposits identified in a Pléiades image taken at the end of the summer season (09/08/2020), with the assumption that these 

end-of-summer deposits result from the union of all individual deposits throughout the year. This comparison was made for 

all deposits above 2700 m a.s.l, which was the altitude of the snow line, derived from the Pléiades orthoimage. We also 

restricted the comparison to locations with slopes lower than 35° and within the ascending or descending mapping extents 

(Fig. 1). We attempted to do the same over the Everest survey domain using 5 m resolution Venus multi-spectral images 245 

(Raynaud et al., 2020) but found that the spatial resolution was not high enough to outline the deposits with a high enough 

confidence. For the Hispar region also, no such high-resolution (<5m) optical images were available for the study period. 

3.5 Application to entire Sentinel-1 time series 

After calibration and validation of the mapping approach, we applied it to a five-year time series of Sentinel-1 images over the 

three survey domains (Table 1), using 6-day intervals for the Mt Blanc region and 12-day intervals for the Everest and Hispar 250 

regions. We required highly accurate maps of avalanche deposits for the analysis of their spatio-temporal characteristics. False 

positive (including from crevassed areas, changes related to snow wetness, vegetated areas, frozen supra glacial lakes) and 

false negative detections were corrected manually to obtain a dataset comparable to the 11/2019-10/2020 calibration/validation 

dataset. The Google Earth Engine Sentinel-1 images are map projected using the SRTM DEM, so we had to account for glacier 

elevation change by shifting the outlines based on the local elevation change rates from Hugonnet et al., (2021), as well as the 255 

Sentinel-1 look and heading angles for each orbit (Fig. S10). While these shifts were negligible in the accumulation area of 

most glaciers, they reached values of 5 m yr-1 in the lower ablation zone of the glaciers in the Mt Blanc, which had the highest 
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surface lowering rates. The final outlines were aggregated into avalanche 'activity' maps indicating the avalanche frequency 

for the different avalanche deposits. 

3.6 Characterization of avalanche activity 260 

The union of all avalanche pixels over time indicates individual deposits affected by more or less avalanche activity. We 

estimated the influence of avalanches on a given glacier, independently for ascending and descending orbits, with two metrics: 

area affected by avalanches and avalanche activity. The area affected by avalanches is estimated by taking the union of all 

individual avalanche deposits, and expressed relative to glacier area. The avalanche activity is calculated for each pixel as the 

number of avalanches affecting this pixel over a given time period. It is then calculated on a per-deposit basis by taking the 265 

maximum activity and on a per-glacier or per-elevation band basis by taking the area of the glacier affected by avalanches 

divided by glacier area or area of elevation band, respectively. We also defined a catchment for each glacier by taking all its 

upstream area following the D-infinity method (Schwanghart and Scherler, 2014). We could then calculate for each glacier the 

ratio (R) of the area of the catchment with slopes steeper than 30°, which stands as a proxy for the avalanche contribution area, 

and the glacier area (Hughes, 2008; Laha et al., 2017).  270 

4 Results 

Here, we first compare our manually derived outlines with high-resolution Pléiades images and evaluate the performance and 

transferability of the automated mapping approach (Section 4.1). We then use the manually updated set of outlines to obtain 

the characteristics of avalanche deposits (Section 4.2) and their spatio-temporal variability (Section 4.3) for all three survey 

domains.  275 

4.1 Sentinel-1 avalanche mapping 

4.1.1 Comparison of Sentinel-1 and Pléiades manual detections 

The qualitative comparison of the manually derived Sentinel-1 deposits with the Pléiades deposits detected over time periods 

of ~1 month in the winter and summer seasons gives more insights on the potential of Sentinel-1 images to identify particular 

deposits (Fig. 4). It indicates locations of very good agreement, usually for large deposits with a lot of surface texture (Fig. 280 

4c). But there are also false positive detections, for example caused by the opening of crevasses (Fig. 4b), as well as false 

negatives (Fig. 4a), that could reach large sizes (up to 60000 m2, Fig. 4d). The comparison of the aggregation of one year of 

Sentinel-1 manual outlines with all the deposits identifiable in the end-of-summer Pléiades scene above 2700 m a.s.l results in 

a F1-score value of 0.47, with a majority of false negatives (Fig. S11). A large amount of deposits identified in Pléiades but 

not Sentinel-1 are smaller than the Sentinel-1 detectability threshold of 4000 m2. Nevertheless, excluding them does not change 285 

the comparison (F1-score value of 0.49) between the Pléiades and aggregated Sentinel-1 deposits. 
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Figure 4: Examples of manual avalanche detections in the Sentinel-1 (red) and Pléiades (blue) images (© CNES, distribution 

AIRBUS DS): (a and d) Dry snow avalanches clearly identifiable in the Pléiades images, but only the deposits with high surface 290 
roughness are visible in the Sentinel-1 RGB images, (b) false positive detection of an opening crevasse in Sentinel-1, (c) large 

avalanche deposit clearly visible in both Pléiades and Sentinel-1 imagery.  

The comparison of the manual outlines from four independent operators provide some insights on potential biases of the 

manual delineation. The F1-scores of the three external operators relative to the main operator who derived the entire manual 

dataset for all three sites range between 0.54 and 0.66 (Table S1, Fig. S2-S3). We also directly compared the manual outlines 295 

from this operator with the consensus outlines from the other three operators, which were the outlines for which at least two 

operators agreed (Kneib et al., 2021). The outlines used for the calibration and validation of the automated mapping approach 

lead to less avalanche detections (-29% +/- 36% of events detected and -46% +/- 27% of deposit areas) than the consensus 

outlines, and can therefore be considered as a lower bound for the manual detection of avalanches in the Sentinel-1 RGB pairs. 
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4.1.2 Evaluation of the automated mapping approach 300 

We obtained F1-scores ranging between 0.29 and 0.78 when calibrating the mapping parameters against the manually derived 

outlines from Sentinel-1 (Table 2). The F1-scores are similar for both calibration and validation sets, which indicates the good 

transferability of the parameters between scenes taken during the same season and with the same orbit. F1-scores are generally 

lower for the ascending orbits (average F1-score of 0.47) compared to the descending ones (0.62) and for the warm season 

(0.49) compared to the cold season (0.60). Except for the Everest ascending scenes, the F1-scores obtained for the calibration 305 

were always higher than 0.49.  

Table 2: results of the calibration and validation of Sentinel-1 avalanche outlines for the period 11/2019-10/2020 for each of the three 

survey areas. The values of the calibrated parameters are indicated along with the F1-scores obtained for the calibration and 

validation sets. For each parameter the minimum value obtained is indicated in cyan and the maximum in magenta. F1-scores are 

written in blue when higher than 0.5, and in orange when lower. 310 

Survey 
area 

Path Season TO TS TV TD1 TD2 TD3 F1-score 

calibration 
F1-score 

validation 

Mt Blanc Descending November-April 0.15 0.31 0.73 0.08 0.01 0.30 0.56 0.53 

May-October 0.13 0.33 0.65 0.07 0.02 0.39 0.56 0.54 

Ascending November-April 0.09 0.36 0.51 0.11 0.06 0.41 0.54 0.51 

May-October 0.07 0.31 0.61 0.10 0.07 0.42 0.49 0.36 

Everest Descending November-April 0.07 0.33 0.67 0.07 0.06 0.34 0.67 0.68 

May-October 0.01 0.44 0.26 0.09 0.01 0.35 0.53 0.50 

Ascending November-April 0.17 0.47 0.68 0.07 0.04 0.29 0.39 0.45 

May-October 0.15 0.55 0.38 0.11 0.08 0.42 0.29 0.34 

Hispar Descending November-April 0.04 0.30 0.65 0.03 0.06 0.33 0.78 0.78 

May-October 0.04 0.32 0.40 0.11 0.00 0.27 0.59 0.59 

Ascending November-April 0.04 0.30 0.60 0.06 0.04 0.38 0.64 0.55 

May-October 0.06 0.38 0.42 0.13 0.01 0.26 0.49 0.37 

 

Local increases in the Sentinel-1 backscatter that are discarded in the manual delineation but that can be detected as false 

positives in the automated approach can in some cases be linked to widespread snow backscatter increases likely due to wetness 

changes, especially during the May-October season (Fig. S12a) or calving into proglacial lakes (Fig. S12b). Conversely, the 
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automated approach could miss events which had backscatter values below the imposed thresholds but had the obvious shape 315 

of an avalanche (Fig. S12c). Such false positive or false negative detections were manually removed or added based on 

considerations of shape, size and location, and this manual filtering was applied to all time series of all survey domains for the 

results presented in sections 4.2 and 4.3. Over the entire automatically derived dataset we removed 36% of the mapped deposits 

and added 41% of what we considered were false negatives (Fig. S13). Furthermore, we also observed that deposits with a 

high avalanche activity remained with a high backscatter value for time periods of several months during which there is not 320 

enough time, surface melt or precipitation for the surface roughness of the deposits to change significantly between two 

Sentinel-1 acquisitions. The only way that avalanches can be detected on such deposits is when they are large enough to have 

their runout zone go beyond the previous avalanche deposits (Fig. S12d, S14). Therefore, for many deposits across the three 

survey domains, the frequency and size of avalanche events is likely to be underestimated. 

 325 

We compared the total size and number of manually and automatically derived avalanche events for the Sentinel-1 validation 

image sets over the 11/2019-10/2020 period (Fig. 5, S15-S17). There is a relatively good correspondence between the two 

categories for the Mt Blanc as well as the Everest and the Hispar regions during the cold and warm seasons, with Pearson’s 

correlation coefficients (Pearson, 1895) higher than 0.85 for the total size, 0.71 for the number of detected deposits. The 

automated mapping generally underestimates the number and sizes of the avalanche deposits, especially in the May-October 330 

season, which is due to conservative thresholds to reduce the false positive detections of snow wetness changes (Fig. 5, S15-

S17). But it provides a good estimate of temporal variability in avalanche activity, as shown by the high correlation scores. 
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Figure 5: Total size and number of manually and automatically detected avalanche events as a function of time for the period 

11/2019-10/2020 for the validation datasets of Mt Blanc. The Pearson’s correlation coefficients characterizing the correlation 335 
between the validation set and the outlines from the automated mapping approach are indicated in blue (ascending) and red 

(descending). 

4.1.3 Transferability of the automated mapping parameters 

To test the transferability of the calibrations obtained for the different orbits and periods of the different survey domains, we 

applied these parametrizations to the other survey domains, including to the Mt Blanc scenes with a 12-day interval (Table 3), 340 

without any manual edits. Most parameterizations are well transferable to the Hispar and Everest November-April descending 

scenes and to the Hispar May-October descending scenes with F1-scores above 0.5 in 78% of cases (0.6 in 83% of the cases 

for the Hispar November-April scenes). The ascending scenes present in general lower F1-scores (lower than 0.5 in 92% of 

cases), particularly the May-October scenes of Everest for which the F1-score never exceeds 0.32. With an average F1-score 

of 0.46, the Everest descending November-April parameter set is the most transferable, but still performs poorly (F1-score<0.4) 345 

for some of the ascending and/or May-October scenes (Table 3). 
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Table 3: F1-score obtained when applying different sets of parameters to sets of images for which they were not calibrated, without 

any manual edits. The parameters in the last column correspond to the median parameters calibrated over Mt. Blanc (6 days 350 
intervals), Everest and Hispar. The values on the diagonal correspond to the calibrated parameter sets for the given study area, 

orbit and period. N-A and M-O stand for the November-April and May-October periods, respectively. 

F1-score 

  

Parameters 

Everest Hispar Mt Blanc (6 days) Median 

DESC ASC DESC ASC DESC ASC 

N-A M-O N-A M-O N-A M-O N-A M-O N-A M-O N-A M-O 

S
ce

n
es

 

Everest DESC Nov-Apr 0.65 0.40 0.56 0.42 0.63 0.50 0.56 0.51 0 0.50 0.50 0.53 0.57 

May-Oct 0.28 0.51 0.36 0.48 0.26 0.39 0.29 0.41 0.27 0.29 0.42 0.32 0.34 

ASC Nov-Apr 0.37 0.22 0.40 0.19 0.33 0.23 0.32 0.25 0.05 0.29 0.21 0.29 0.34 

May-Oct 0.19 0.25 0.24 0.32 0.14 0.13 0.14 0.15 0.20 0.14 0.21 0.18 0.17 

Hispar DESC Nov-Apr 0.74 0.43 0.66 0.42 0.78 0.68 0.74 0.63 0.75 0.75 0.63 0.69 0.70 

May-Oct 0.51 0.42 0.44 0.35 0.50 0.59 0.54 0.56 0.50 0.55 0.57 0.55 0.56 

ASC Nov-Apr 0.59 0.27 0.44 0.25 0.65 0.42 0.60 0.41 0.36 0.61 0.42 0.51 0.53 

May-Oct 0.36 0.32 0.34 0.23 0.37 0.46 0.38 0.45 0.36 0.38 0.39 0.36 0.39 

Mt Blanc  

(12 days) 

DESC Nov-Apr 0.55 0.13 0.29 0.13 0.50 0.37 0.50 0.32 0.59 0.52 0.43 0.53 0.53 

May-Oct 0.46 0.11 0.17 0.02 0.39 0.36 0.42 0.33 0.37 0.41 0.43 0.45 0.45 

ASC Nov-Apr 0.39 0.38 0.49 0.37 0.32 0.27 0.35 0.33 0.26 0.31 0.42 0.38 0.38 

May-Oct 0.40 0.05 0.05 0 0.33 0.27 0.35 0.25 0.29 0.32 0.39 0.43 0.39 

Mean 0.46 0.29 0.37 0.27 0.43 0.39 0.43 0.38 0.33 0.42 0.42 0.44 0.45 

 

The F1-scores obtained for the Mt Blanc with a 12-day interval are maximised by the Mt Blanc 6 days parameters, but with 

generally lower F1-scores than the ones obtained for the Mt Blanc scenes with a 6-day interval (Table 2). The application of 355 

the different parameters sets to the Mt Blanc 12-day scenes results in more false positive detections than false negatives (Table 

S2).  

4.2 Characteristics of avalanche deposits 

After manually editing the automated outlines, we detect 1801 (2761) avalanche events in the Mt Blanc, 1192 (2808) in the 

Everest and 4323 (3417) in the Hispar regions with the ascending (descending) scenes, corresponding to 3.6x10 -2, 1.0x10-2 360 

and 3.2x10-2 avalanches m-2 yr-1 in the ascending and 5.9x10-2, 2.0x10-2 and 4.8x10-2 avalanches m-2 yr-1 in the descending 

orbits, respectively to the three above-mentioned regions.  

 

0.4 0.5 0.6 
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Due to the time frequency of images, there appears to be more avalanches detected over Mt Blanc than over the two HMA 

domains (Fig. 6a). The size distribution of the avalanches follows a similar distribution for the different regions, at least beyond 365 

the 4000 m2 detectability thresholds (Fig. 6b). These distributions followed an exponential decrease, with slopes between -

1.1x10-5 m-2 for Hispar and -2.6x10-5 m-2 for Mt Blanc, with a coefficient of determination (R2) between 0.44 and 0.89 (Table 

S3). Some of the largest events (up to 1.0x106 m2) are found in the Hispar region, which is also the region with the highest 

number of detected avalanches relative to the area and number of image pairs. The distribution of avalanches is tightly related 

to the hypsometry of the surveyed areas (which correspond to the buffered glacierized areas minus the shadow and layover 370 

masks) although for all three survey domains, and for the Mt Blanc region especially, the peak in avalanche activity is generally 

slightly lower than the peak in hypsometry (Fig. 6c). The elevation range over which avalanches are actively detected is 

narrower than the catchments’ hypsometry for Everest and Hispar, where proportionally avalanches affect the upper elevations 

less, which are also the steepest (Fig. S1b), and where there are extensive and relatively flat glacier tongues with no visible 

avalanche activity. This is not the case for the Mt Blanc massif where avalanches are the most frequent at lower elevations, 375 

relative to the hypsometry. 
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Figure 6: Size distribution of avalanche events at the three different sites, with (a) and without (b) normalisation. (c) Normalized 

area of all avalanche events expressed as a function of the surveyed area segmented in 200m elevation bins. The legend in panel (a) 

applies to all three panels. 380 

Avalanche deposits have a maximum activity of 3.8 events per year for the Mt Blanc massif, and up to 4.6 events per year for 

the Hispar and Everest regions, where Sentinel-1 image pairs are acquired at a 12-day interval (Fig. 7a). These maxima are 

likely an underestimation of the actual deposit activity given that deposits with a frequent avalanche activity remain for long 

periods of time with high surface roughness and therefore high backscatter values preventing the detection of further 

avalanches (Fig. S12c-d, S14). Despite these limitations, distributed deposit activity maps are indicators of where the most 385 

active avalanche deposits are located, which is generally at the base of steep headwalls and in some cases below large hanging 

glaciers (Fig. 7b-e). 

 

Figure 7: (a) Avalanche activity for all avalanche deposits. (b-e) Examples of avalanche activity maps (number of avalanches over 

the five-year study period) at various locations across the three survey domains, on Argentière Glacier (b) and Talèfre Glacier (c) 390 
in the Mt. Blanc, on Khumbu Glacier (d) in the Everest region, and on Mulungutti Glacier (e) in the Hispar region. Deposits detected 

in ascending images are shown on top of the deposits detected in descending images. Contour lines are from the AW3D30 DEM and 



19 

 

are taken every 200 m. Background images from Google Earth. The shaded grey areas correspond to the intersection of ascending 

and descending masks. 

We compared the avalanche activity and proportion of avalanche deposits on the different glaciers of the three survey domains 395 

with the proportion of slopes steeper than 30° in the glaciers’ catchments (R index, Hughes, 2008; Laha et al., 2017). We found 

that for a given proportion of steep slopes, the maximum avalanche activity and proportion of avalanche deposits per glacier 

is generally around one order of magnitude smaller than this R index (Fig. S18-S19). It is also noteworthy that a number of 

(generally smaller) glaciers have an avalanche activity and proportion of avalanche deposits smaller than this maximum value, 

indicating that while a high R index value is a necessary condition for a high avalanche activity, it is not sufficient. 400 

4.3 Spatio-temporal evolution of avalanches 

The avalanche activity varies seasonally and with elevation. There are pronounced seasonal differences (Fig. 8-10, S21-S23, 

Table S4) enhanced by the interannual variability of deposit activity (Fig. S20). Interestingly, only a minority of deposits are 

active every year, which indicates that the detected yearly avalanche activity at a given location is not very regular (Fig. S20). 

 405 

At all three sites, the spatio-temporal patterns of number and size of detected avalanche events are similar from year to year 

(Fig. 8-10, S21-S23). There are avalanches all year round over the Mt Blanc massif, but with a higher activity between January 

and July (Fig. 8, S24-S28). Between January and April there are well individualised peaks in avalanche activity which 

correspond to peaks in solid precipitation and are well captured by the avalanche forecast (Fig. S26-S28). From mid-April to 

July, despite the lower amount of precipitation (Table S5), there are longer periods of avalanche activity with similar number 410 

and size of events as in the colder January-March months, but which are not captured by the avalanche forecast (Fig. S26-S28, 

Table S4). From mid-November to mid-April, avalanches are mostly identified at elevations lower than 3500 m a.s.l, and as 

low as 1500 m a.s.l, which is the lowest elevation reached by glaciers in this survey domain (Fig. S1). This lower limit of 

avalanche detections rises from 1500 m to 2700 m a.s.l between April and July, and from mid-June the avalanche activity 

reduces and all events take place between 2700 m and 4300 m a.s.l. The avalanche activity increases again from December 415 

onwards and the elevation of detected avalanches lowers again to 1500 m a.s.l by January. Peaks in avalanche activity generally 

correspond to peaks in precipitation, including during the warmer months of April-July (Fig. S24-S28). 
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Figure 8: Five years (11/2016-10/2021) of avalanche time series over the Mt Blanc massif in the ascending orbits. (a) Total area and 

(b) number of avalanches as a function of time and elevation for each Sentinel-1 pair. Frequency of acquisitions is 6 days. White 420 
rectangles indicate data gaps. (c) Total precipitation and mean daily air temperature at 3000 m a.s.l over the Mt Blanc massif 

according to the S2M reanalysis product (Vernay et al., 2022). 

A seasonality is also apparent for the Everest region, with the highest avalanche activity occurring in the monsoon months, 

between June 21st and September 21st (45-53% of the annual avalanche activity, Table S4) with a ~1 month lag relative to the 

start of the monsoonal precipitation events (Fig. 9, S22, Table S4-S5), with some high pre-monsoon avalanche events such as 425 

at the end of May 2021 seemingly not affecting the avalanche activity. This is also when avalanches are detected at higher 

elevations, between 5300 m and 7100 m a.s.l. During the periods from October to April avalanches range between 5100 and 

6300 m a.s.l and are much less frequent, with periods with no detected avalanches at all. 
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 430 

Figure 9: Five years (11/2017-10/2022) of avalanche time series over the Everest region in the ascending orbits. (a) Total area and 

(b) number of avalanches as a function of time and elevation for each Sentinel-1 pair. Frequency of acquisitions is 12 days. White 

rectangles indicate data gaps. (c) Daily precipitation and mean air temperature recorded at the Pyramid precipitation gauge (5035 

m a.s.l).  

There is also a seasonal signal visible for the Hispar domain, mostly linked to temperature and snow conditions as precipitation 435 

occurs all year round without a clear seasonality (Fig. 10, Table S5). The avalanche activity is highest between May and 

October, which is also when air temperatures are higher and avalanches are detected at higher elevations, between 4500 and 

6700 m a.s.l. This lower elevation bound does not vary much during the year, however, the upper elevation bound lowers down 

to 5300 m a.s.l during the cold period between October and May, even if it is less defined as for the two other survey domains. 

 440 
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Figure 10: Five years (11/2017-10/2022) of avalanche time series over the Hispar region in the ascending orbits. (a) Total area and 

(b) number of avalanches as a function of time and elevation for each Sentinel-1 pair. Frequency of acquisitions is 12 days. White 

rectangles indicate data gaps. (c) Daily precipitation and mean air temperature over the region from the ERA5-Land reanalysis 

product (Muñoz Sabater, 2019). Daily precipitation values were normalised due to potential biases (Khadka et al., 2022). 445 

5 Discussion 

5.1 Suitability of Sentinel-1 for detecting avalanches in remote glacierized regions 

We have applied a semi-automated approach to obtain a long-term (five years) time series of avalanche deposits in remote 

glacierized areas of the European Alps and High Mountain Asia, locations where little data on such events existed. 

 450 

We used Sentinel-1 images to detect avalanche events, which enabled us to obtain a massif-wide distributed dataset, at least 

for the zones unaffected by shadow and layover (57-72% of our survey domains characterized by steep topographies), therefore 

less spatially biased than ground-based inventories in populated valleys (Eckert et al., 2010; Schweizer et al., 2020). Our 

comparison of the Sentinel-1 with the Pléiades avalanche deposit outlines indicate that avalanches detected with Sentinel-1 

are of relatively large size (>4000 m2 deposits) with high surface roughness, which limits the detectability to avalanches with 455 

high enough snow temperatures to form granular deposits  (Steinkogler et al., 2015), or which are formed from cohesive wind 

slabs (Fig. 4a) or that entrain rock or ice debris, for instance from serac falls (Fig. 4c). Therefore, cold, low density snow 

progressively redistributed down steep rock faces or snow gullies (Sommer et al., 2015) is likely to be missed by this method, 

which likely also explains the upper elevation limits to avalanche detections, especially during the cold season (Fig. 8-10). 
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Similarly, the detection of the avalanche events requires the previous deposits to have regained lower backscatter values for 460 

the signal to be visible, meaning that the surface of the deposit needs to have been smoothed by additional precipitation or 

melt for the next events to be visible at this location. We have observed this smoothing to require several weeks and even 

months before avalanches can be detected at the location of old deposits, while avalanche events are still occurring in the 

meantime and are therefore difficult to detect (Fig. S12d, S14). In other cases, high wind speeds or new precipitation are likely 

to mask the deposits in the time interval of 6 to 12 days. The avalanche activity that is detected is therefore a lower bound 465 

value of the actual avalanche activity, and the aggregation of all Sentinel-1 deposits is still an underestimation of all the 

glacierized areas affected by gravitational snow redistribution (Fig. S11). It is also noteworthy that this mapping approach with 

Sentinel-1 will likely not differentiate large rockfalls on glaciers from snow avalanches, which could explain some of the 

activity in the summer and autumn in the Mt Blanc massif. Nevertheless, this semi-automated approach is promising to explore 

the temporal and spatial variability of avalanches in remote areas, especially in glacierized regions of HMA, where close to no 470 

data exists on the occurrence of such events  (Ballesteros-Cánovas et al., 2018; Caiserman et al., 2022; Acharya et al., 2023; 

Singh et al., 2022). 

 

The performance metrics obtained from our automated mapping approach compared to the manual detections in the Sentinel-

1 outlines, have a wide range of values (F1-score between 0.29 and 0.78) depending on the season and acquisition time. For 475 

most scenes, the F1-score was similar to those obtained by manual outlines from independent operators (Table S1, Hafner et 

al., 2023). These results are similar to that of other studies following similar threshold-based approaches (Leinss et al., 2020; 

Eckerstorfer et al., 2019; Karas et al., 2022; Wesselink et al., 2017). The performance of such approaches is generally very 

good in dry snow conditions, with high precision (>0.7) and low false positive rates (<0.4), which correspond to F1-scores 

above 0.6-0.7 (Leinss et al., 2020; Eckerstorfer et al., 2019). Therefore, while dry snow conditions lead to detectability 480 

limitations in Sentinel-1 images (Fig. 4), when avalanches are manually detected in Sentinel-1 scenes in dry snow conditions, 

they are usually also well mapped by the automated approach, as indicated by the high F1-scores (Eckerstorfer et al., 2022). 

The few studies that targeted extensive periods rather than a specific event also encountered the most difficulties for periods 

with wet snow conditions, leading to extensive false positive detections which had to be removed manually in situations of dry 

to wet snow transitions  (Eckerstorfer et al., 2019). Such false positive detections can be discarded manually based on size and 485 

texture considerations, which indicates that deep learning approaches based on convolutional neural networks, for example, 

offer a promising way to improve these classifications (Tompkin and Leinss, 2021; Waldeland et al., 2018; Yang et al., 2020; 

Bianchi et al., 2021; Kapper et al., 2023; Liu et al., 2021; Lê et al., 2023). Such machine learning approaches trained with large 

enough datasets (Hafner et al., 2021) would likely also improve the transferability of the mapping to other sites with different 

topo-climatic conditions and frequency of acquisitions. Indeed, scenes unaffected by snow wetness changes 490 

(descending/morning acquisitions during the cold season) are well mapped regardless of the parameter set (Table 3). Ascending 

scenes, acquired in the afternoon, are more likely to be affected by snow wetness changes than descending scenes, acquired in 

the morning, which explains the lower F-1 scores for these scenes.  
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For future implementation of SAR detection of avalanches, we therefore recommend prioritising the use of morning-to-495 

morning scenes. Although scenes acquired in the afternoon may help fill spatial and temporal gaps and could be used as a 

confirmation for some detections, it is important to note that they will require additional work to separate actual avalanche 

events from false positive detections caused by snow wetness changes. This is a difficult task leading to higher uncertainties 

for the mapping, and will likely not considerably change the long-term spatio-temporal patterns of avalanche activity (Fig. 8-

10). At this stage, automated outlines need to be carefully checked manually even during the cold season and for the morning 500 

scenes, with up to 36% of detected false positive detections and 41% of identified false negative detections for our survey 

domains (Fig. S13). Our semi-automated mapping therefore still requires manual edits, although we consider that applying the 

automated mapping approach and then updating the outlines by hand has reduced the mapping time by at least half relative to 

a fully manual mapping, more if only morning scenes were to be considered. Similarly, the parameters used for the automated 

mapping are likely not directly transferable to other locations. However, using the median of all our parameter sets (Table 2) 505 

is likely a good first guess to apply our mapping approach to other survey areas (Table 3), either for the calibration of new 

parameters or to obtain a first reasonable avalanche map which can then easily be updated manually. Future method 

developments could also benefit from separating the VV and VH polarizations, particularly for regions of the SAR images 

with low incidence angles (Tompkin and Leinss, 2021). While in our case we obtained better results by averaging the two 

(Table S7), other machine learning-based approaches would likely benefit from the additional information provided by the 510 

two polarizations (Liu et al., 2022). In the end, this study resulted in a manually checked dataset of 16,302 avalanche deposits, 

which will be highly beneficial for the training of future mapping approaches. 

5.2 Characteristics of on-glacier avalanches 

The size distribution of avalanches with Sentinel-1 RGB pairs reaches a maximum around 4000 m2 (avalanches smaller than 

4000 m2 have been filtered and therefore not considered in this study). Beyond this 4000 m2 value the frequency of avalanches 515 

decreases with size following a similar exponential decrease for all survey areas (Fig. 6, Table S3). Similar observations have 

been made for snow avalanches in the European Alps or North America based on field inventories (Faillettaz et al., 2004; 

Birkeland, 2002; Schweizer et al., 2020). The lower number of small avalanches in these inventories is generally interpreted 

as an observation bias, with small events being difficult to detect visually and not consistently inventoried (Schweizer et al., 

2020), unless automatically recorded by seismic sensors (Reuter et al., 2022). This is also the case for detections of avalanches 520 

(or any other features) using remote sensing products, that are constrained in this case by the spatial resolution of the images 

(Hafner et al., 2021; Miles et al., 2017; Kneib et al., 2020). The 4000 m2 threshold was therefore interpreted as a size 

detectability threshold below which avalanches are likely to be missed. This value is consistent with other studies that have 

used Sentinel-1 images for the detection of avalanches (Eckerstorfer et al., 2019).  

 525 
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During the periods with the highest avalanche activity in the three survey domains we detected between 2 (Everest) and 8 (Mt 

Blanc) avalanches/day/100 km2, which is relatively low compared to the value of 10-20 avalanches/day/100 km2 suggested by 

Schweizer et al. (2020) for days with a high avalanche level (4) in the Davos region of Switzerland. This difference is likely 

due to the detectability threshold, as well as the fact that recurring avalanches are likely to be missed if the surface roughness 

does not change between two events (Fig. S12c-d, S14). More avalanches are detected in the Mt Blanc massif, which is likely 530 

at least partly due to the higher temporal frequency of Sentinel-1 acquisitions over this range. Indeed, manual mapping of 

avalanches with images with a 12-day interval results in 4 to 62% less avalanche area detected than with images with a 6-day 

interval (Table S6). As a result, the activity of the deposits in the Mt Blanc massif is also higher than in the two other regions 

(Fig. 7a). The activity of the deposits on Everest and Hispar is similar, with the Hispar deposits being generally more active 

than in the Everest region, which could be due to precipitation events in the westerlies-influenced Karakoram being more 535 

distributed throughout the year, while the avalanche activity in the Everest region is low outside of the monsoon (Fig. 9-10). 

Some deposits appear to be much more active (up to 4.6 avalanches/year, Fig. 7) than what has previously been observed for 

snow avalanches in the European Alps (<0.6 avalanches/year, Eckert et al., 2013). This could be related to the fact that at 

higher elevations the deposits remain active for longer periods of time, if not throughout the year, due to snow accumulation 

and the presence of hanging glaciers that may break off on a more or less regular basis, irrespective of the season (Pralong and 540 

Funk, 2006), as snow avalanches cannot be distinguished from serac falls in the Sentinel-1 images. 

 

Avalanches tend to be more concentrated at low elevations for all three survey domains, and we observed a shift between the 

hypsometry of the glacierized catchments and the avalanche activity (Fig. 6c). This is likely related to the slope distribution 

with regards to elevation, as for all survey domains the proportion of slopes higher than 30° increases with elevation, from 0 545 

to close to 100% (Fig. S1). Avalanche deposits therefore preferentially occur in the lower half of the catchments, thus 

highlighting the redistribution of snow from higher altitudes. In addition, the detection at these lower elevations could be aided 

by the wetter snow conditions, leading to lower backscatter background values that are favourable for the avalanche detection 

(Eckerstorfer et al., 2022; Abermann et al., 2019). Contrary to the Mt Blanc massif where avalanching events are frequent at 

the lowest elevations of glaciers (Fig. 6c) and especially in winter (Fig. 8), the large ablation zones of the Hispar and the 550 

Everest regions are less affected in proportion by avalanching (Fig. 6c). This is likely due to the fact that most avalanches 

occur in the summer months, when the snow-rain transition and snowline elevation is higher (Fig S1, 9-10; Racoviteanu et al., 

2019; Girona‐Mata et al., 2019). 

 

We could outline a clear seasonality of the avalanche activity at each domain, with contrasting patterns between the three sites 555 

(Fig. 8-10). The avalanche activity is more important in winter and spring in the Mt Blanc massif (21-35% and 32-44% of the 

avalanche activity, respectively, Table S4), and the avalanche peaks coincide with high precipitation events, following what is 

typically observed at lower elevations in the European Alps (Baggi and Schweizer, 2009; Schweizer et al., 2020). There is also 

a good correspondence between the avalanche activity and the predicted avalanche danger level in the winter months (Fig. 
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S26-28). The number and size of avalanches decreases and their minimum elevation increases in Spring with rising 560 

temperatures and their dependence on precipitation and correspondence with the avalanche danger level is less strong (Fig. 8, 

S26-28), highlighting the transition from dry to wet avalanches (Baggi and Schweizer, 2009). These relatively high values in 

Spring could partly originate from a bias in the avalanche detection, as low backscatter background values (wet snow) make 

it easier to detect avalanche deposits (Eckerstorfer et al., 2022; Abermann et al., 2019). In any case, this also hints towards a 

delay of a few months for the redistribution of part of the snow from the mountain headwalls down to the glaciers. Avalanche 565 

deposits are still detected in the summer months at high elevation, related either to snow and ice avalanches, but also to rock 

avalanches from de-glacierized headwalls (Legay et al., 2021). The Everest region, characterised by a monsoon-dominated 

climate with very little precipitation in winter (Sherpa et al., 2017) reaches its peak avalanche activity during the monsoon 

season between July and September, with avalanches then mostly occurring at high elevations relative to the hypsometry of 

the study area (Fig. 6c, 9). There again, there appears to be a 1-2 months delay between the occurrence of precipitation and the 570 

avalanche activity, both at the start and at the end of the monsoon. The avalanche activity is also higher in the summer in the 

Hispar region (37-51% of the annual avalanche activity), although the seasonality of the precipitation is much less strong than 

for Everest (27% of the annual precipitation, Table S5). This seasonality in avalanche activity could partly be explained by the 

presence of cold and dry snow at high elevations in the winter, leading to high backscatter background values that may reduce 

the detectability of avalanches, and especially slab avalanches (Fig. 4), in these upper reaches.  575 

 

The three survey domains are characterised by many hanging glaciers located on numerous headwalls of the studied glaciers 

(Kaushik et al., 2022). We expect these hanging glaciers to sporadically release large avalanches, well visible in the Sentinel-

1 images due to the presence of ice blocks in the deposit area. However, the avalanche activity at the scale of the three survey 

domains seemed to be mainly driven by temperature and precipitation, which are unlikely to influence ice detachments from 580 

these glaciers (Pralong and Funk, 2006). This indicates that mass redistribution is dominated by snow avalanches. A 

complementary explanation is that ice detachments from hanging glaciers are more likely to trigger large deposits when they 

can entrain snow that has accumulated along the avalanche flow path, and they therefore enhance the avalanche signal during 

periods of already high snow avalanche activity (Fujita et al., 2017).  

5.3 Implications for glacier mass balance 585 

The Sentinel-1 time series also enabled the identification of avalanche ‘hotspots’, i.e. locations at the surface of the glaciers 

with a high avalanche activity. At the glacier scale, we could therefore show that the presence of steep slopes within the glacier 

catchments is a clear necessary condition for avalanches to occur (Fig. S18-S19; Hughes, 2008; Laha et al., 2017), although 

not a sufficient one. At the scale of a glacierized massif we could also extract a clear seasonal and altitudinal signal in avalanche 

activity, controlled mainly by precipitation events, thus indicating that at this scale the mass redistribution after a snowfall can 590 

be considered to occur almost instantaneously, with a time lag of 1-2 months at most (Fig. 8-10, S21-S28). 
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While the Sentinel-1 images do not give any indication on the volume or mass of the redistributed snow, we obtained from 

these products key information related to the spatial extents of the avalanche deposits and the spatio-temporal variability of 

the avalanche activity (Fig. 8-10). Avalanches are important contributors to the mass balance of glaciers, and with no prior 595 

knowledge of the location of the main avalanche deposits, this contribution has to date been estimated only indirectly (Laha et 

al., 2017) and on the basis of topographical characteristics (Hughes, 2008; Brun et al., 2019), or directly but only at specific 

locations (Hynek et al., 2023; Purdie et al., 2015; Mott et al., 2019). Avalanche extents derived from remote sensing images 

have been used at a handful of locations to calibrate simple mass redistribution routines based on excess snow to be 

redistributed from pixels where the snow height exceeds a certain threshold that decreases exponentially with the slope 600 

(Bernhardt and Schulz, 2010; Ragettli et al., 2015). Such calibration has been conducted in a qualitative way based on 

comparing the deposits from the model and the general shape and extents of deposits in a few optical images. Avalanche 

outlines from the Sentinel-1 images therefore provide a much more detailed and consistent dataset to calibrate such 

parametrizations to adapt them to different topo-climatic settings. Once calibrated, such avalanche redistribution 

parametrization can be coupled to the mass balance routine of a glacier model, for a more accurate representation of 605 

accumulation processes (Bernhardt and Schulz, 2010; Ragettli et al., 2015; Quéno et al., 2023). 

6 Conclusion 

Our study derived and explored a five-year time series of avalanches across three distinct remote glacierized areas. These 

regions were expected to be strongly affected by avalanching, yet lacked consistent avalanche observation records. Leveraging 

the capabilities of repeat Sentinel-1 SAR images, we successfully established a semi-automated framework for identifying 610 

avalanche deposits within intervals of 6 to 12 days. Notably, the devised automated method exhibited strong performance, 

particularly for the morning and cold-season scenes, although certain limitations required manual refinements of parts of the 

outlines. 

 

The semi-automated mapping of avalanche deposits enabled the characterization of avalanche events in terms of size, 615 

frequency and spatio-temporal evolution. We could use this dataset to identify avalanche hotspots at various locations of the 

survey domains and to link the on-glacier avalanche activity with the proportion of steep slopes in the glaciers’ catchments. 

Our analysis revealed that the exponential decline in size distribution of avalanche deposits was consistent across all three 

surveyed domains, with the Hispar region displaying a somewhat gentler slope. Importantly, the distribution of avalanches 

shows a bias towards lower elevations, with however minimal impact on the expansive glacier tongues of the Hispar and 620 

Everest regions. This altitudinal distribution varies seasonally, with avalanche deposits expanding at lower elevations during 

the colder periods. This temporal variability is also strongly controlled by precipitation, with the snow redistribution occurring 

almost immediately after a snowfall, albeit with some time lags of approximately 1-2 months in the Mt Blanc and Everest 

regions. 
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 625 

While it does not give any information on the mass redistributed by avalanches, our approach enables the mapping of avalanche 

deposits over long time periods at the scale of a small mountain range, thus providing crucial information on the timing and 

spatial distribution of avalanche characteristics, to better account for this mass redistribution in glacier models. While still 

requiring manual checks, this approach considerably reduces the mapping effort, and the large dataset obtained will help train 

future mapping approaches, and calibrate mass redistribution parametrizations to be applied in the surface mass balance 630 

routines of glacio-hydrological models.  
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