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Abstract. A one-dimensional climate energy balance model (1D-EBM) is a simplified climate model that describes the evo-

lution of Earth’s temperature based on the planet’s energy budget. In this study, we examine a 1D-EBM that incorporates a

bifurcation parameter representing the impact of carbon dioxide on the energy balance. Firstly, independent of the value of the

additive parameter, we demonstrate the existence of a steady-state solution by solving the associated variational problem, which

involves minimizing a potential functional. Again using variational techniques, we can give sufficient conditions to prove the5

existence of at least three-steady state solutions. Secondly, we establish the uniqueness of the solution for the variational prob-

lem by examining the differentiability of the value function, which represents the minimum value of the potential functional

across all temperature profiles. Lastly, we explore how this characterization provides valuable insights into the structure of the

bifurcation diagram. Specifically, we demonstrate a one-to-one correspondence between the derivative of the value function

and the mean value of the minimizer for the variational problem. Furthermore, we show the applicability of our findings to10

more general reaction-diffusion spatially heterogeneous models.

1 Introduction

1.1 Low dimensional energy balance models

Energy balance models are a fundamental tool used to understand the Earth’s climate system and its energy dynamics. It

represents the energy budget within the Earth’s atmosphere, land, oceans, and ice by quantifying the balance between incoming15

solar radiation and outgoing solar radiation. Although highly simplified compared to general circulation models, EBMs are

appreciated for their interpretability, mathematical tractability, and ability to capture the essential dynamics of the Earth’s

system (Budyko (1969); Sellers (1969); North (1975); Ghil (1976); Díaz (1997); Cannarsa et al. (2022)). Two important

feedback mechanisms are typically present in such models: the ice-albedo feedback and the Stefan-Boltzmann law. The positive

ice-albedo feedback occurs when the melting of ice and snow reduces the surface reflectivity (albedo), causing the planet to20

absorb more solar radiation. According to the Stefan-Boltzmann law, a warmer body emits more radiation, thereby providing

a negative feedback which stabilises the planet’s temperature. Depending on the precise configuration, these mechanisms may
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endow EBMs with bistability, suggesting the existence of two stable climates commonly referred to as the snowball climate

and the warm climate. The snowball climate, supported by paleoclimatic evidence from the Cryogenian period around 650

million years ago, is characterized by the absence of vegetation and ice caps extending over the entire planet’s surface. In25

contrast, the warm climate exhibits relatively low albedo, ice caps limited to the polar regions, and the presence of oceans

and vegetation. Additionally, EBMs typically allow for a third possible climate, albeit unstable. Transitions between stable

climates in an EBM, as well as in general multistable models, can occur in various ways. But two important mechanisms are

the following. The first consists of changes in factors influencing the climate system, such as variations in greenhouse gas

(GHG) concentrations like carbon dioxide (CO2), altering the balance of incoming and outgoing radiation and amplifying the30

greenhouse effect. Mathematically, this mechanism can be described by assuming that the model depends on one additional

parameter, and changes in the parameter lead the model to undergo a bifurcation (Ashwin et al. (2012)); the second consists

in noise-induced transitions resulting from unresolved processes in climate models or the representation of short-timescale

weather as stochastic forcing acting on slow variables, as observed in stochastic reduced models (Imkeller (2001); Lucarini

et al. (2022)). These two types of transitions correspond to mechanisms recognized to induce climate tipping, that is rapid35

non-linear changes in the climate system with potentially irreversible and catastrophic consequences (Lenton et al. (2008);

Scheffer et al. (2009); Lenton et al. (2012); Lucarini and Bódai (2019); Ghil and Lucarini (2020)).

A zero-dimensional (0D) EBM is the simplest version of EBM describing the evolution in time for the annual averaged

global mean temperature T , without any space dependence (Berger (1981); North (1990); North and Kim (2017); Ghil and

Lucarini (2020)). This model is given by an ordinary differential equation (ODE) of the form:40

CT
dT

dt
= Q0β(T ) + q−σ0ε0T

4, t > 0,

T|t=0 = T0. (1)

In this equation, CT > 0 represents the heat capacity, Q0 > 0 is the globally averaged solar radiation and the co-albedo β

is modelled by a continuous function (overbars typically denote globally averaged quantities). Further, q > 0 is a positive

parameter modelling the effect of the CO2 on the energy budget (Bastiaansen et al. (2022)). The term Re(T ) = σ0ε0T
4 on the

right-hand side of Eq. (1) accounts for the outgoing solar radiation, following the Stefan-Boltzmann law (where σ0 denotes

the Stefan-Boltzmann constant and ε0 is the globally averaged emissivity). The fixed points of the model correspond to the

solutions of the equation:
dT

dt
= 0,

corresponding to points in Figure 1 where the absorbed radiation Ra(T ) = Q0β(T ) + q and the emitted radiation Re(T )

intersect. Figure 1a furthermore illustrates that this model is generally characterized by bistability, with two stable fixed points

TS and TW . These points correspond to the snowball and warm climate states mentioned earlier and are separated by an

unstable fixed point TM . Furthermore, as highlighted by Figure 1b, the stable points correspond to minimum points of a

primitive function F for the negative radiation budget R. In other words, F is any regular function such that:

F
′
(T ) = Re(T )−Ra(T ) =−R(T ).
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Figure 1. (a) Absorbed radiation Ra and emitted radiation Re for a 0D-EBM. The graphs intersect in the three fixed points of the model

TS < TM < TW ; TS and TW are stable, TM is unstable. (b) Double-well potential F associated to 0D-EBM. The function F satisfies

F
′
= Re −Ra. The minimum points TS and TW of F correspond to stable fixed points.

To better capture the variability of global mean surface temperature, it has been proposed to add a stochastic forcing, such

as white noise, to the radiation balance. This is interpreted as the effect of the fast components of the climate system, i.e. the

weather, over slow components (Hasselmann (1976); North and Cahalan (1981); Imkeller (2001); Díaz et al. (2009)). For this

reason, we are interested in considering the stochastic differential equation (SDE) given by:45

dT = R(T )dt + εdWt, (2)

where ε > 0 is the noise intensity and (Wt)t≥0 is a Brownian motion (Baldi (2017)). This SDE is of gradient type and possesses

a unique Gibbs invariant measure ν (Lelièvre and Stoltz (2016)), which can be written as:

ν(dT ) =
1
Z

exp
(
− 2

ε2
F (T )

)
dT, (3)

where Z is a normalization constant and dT denotes the standard volume element on R (we note the technical detail that to50

give meaning to Eq. (2) and Eq. (3), the radiation budget R should be extended to negative values for the Kelvin temperature

T in a way such that F →+∞ as T →−∞). The key observation from the explicit formula (3) is that ν is concentrated

around the minimum points of the function F . Indeed, if T0 is a strict minimum point and T1 ̸= T0 is a point close to T0 s.t.

F (T1) > F (T0), then the mass given by the measure ν in a small neighbourhood of T1 is exponentially lower than the mass

around T0; more specifically, the ratio between the two masses is given by exp
(
− 2

ε2

(
F (T1)−F (T0)

))
.55

A one-dimensional (1D) EBM is given by a parabolic partial differential equation where the space variable is one-dimensional

(Budyko (1969); Sellers (1969); North and Kim (2017)). Denoting the temperature averaged in the zonal direction by u =

u(t,x), it extends the 0D-EBM by introducing the sine of the latitude x = sin(ϕ), where ϕ ∈ [−π
2 , π

2 ] denotes the latitude and

t≥ 0 represents time. We assume that the non-linear radiation balance of the planet, denoted by R(x,u;q), depends on the sine
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of the latitude and on an additive parameter q. This parameter models the effect of carbon dioxide concentration on the radia-60

tion budget (Bastiaansen et al. (2022)). Atmospheric and ocean transport of heat between latitudes is modelled by a diffusion

term. Assuming spatially homogeneous diffusion, we obtain a non-degenerate reaction-diffusion equation:

∂tu = κuxx + R(x,u;q), t > 0, x ∈ (−1,1)

ux(t,−1) = ux(t,1) = 0, t≥ 0

u(0,x) = ũ(x), x ∈ [−1,1] (4)

where the Neumann boundary conditions impose no-heat flux at the poles and ũ is an initial condition. The steady-state

solutions of this model, representing the asymptotic solutions for the time-evolving dynamics, correspond to the non-negative65

solutions of the elliptic problem:

0 = κ∆u + R(x,u;q), x ∈ (−1,1)

u′(−1) = u′(1) = 0.

This elliptic problem forms a necessary condition for u to be our extremal (in particular a local minimizer) for the potential

functional

Fq(u) =

1∫

−1

R(x,u;q)dx +
κ

2
||u′||22 (5)70

where ∂uR(x,u;q) =−R(x,u;q). The calculus of variations is a widely employed technique for studying the existence of a

solution to the previous problem (North (1975); North et al. (1979, 1981); Brezis (2011)). However, proving the existence of

a local (but not global) minimum point is generally challenging, and this technique focuses on studying the existence of the

global minimum point. The functional Fq in Eq. (5) has another interpretation though which renders it more important than

being merely a characterisation of solutions to the elliptic problem. Indeed, consider the stochastic partial differential equation75

(SPDE) on the Hilbert space H = L2(−1,1) given by:

du = (κ∆u + R(x,u;q))dt + εdWt, (6)

obtained by adding a space-time white noise (Wt)t≥0 modelled by a cylindrical Brownian motion on H = L2(−1,1) to Eq.

(6). R has a cut-off at negative temperature as in Section 3.1 and ε > 0 is the noise intensity. We refer to (Da Prato and Zabczyk

(2014)) for more details about SPDEs. It can be shown that this SPDE has a unique invariant Gibbs measure ν (Da Prato80

(2004)), given (broadly speaking) by an expression as in Eq. (3), with Fq replacing F . Therefore, as in the zero-dimensional

case, ν concentrates on minimum points of the functional Fq .

1.2 Main results and structure of the paper

This paper focuses on the study of the properties and the interpretation of the steady-state solutions of a 1D-EBM depending

on a bifurcation parameter. Motivated by 0D-EBMs, there is a wide consensus in the literature, supported mainly by numerical
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simulations, regarding the existence of either one or three "interesting" steady-state solutions for 1D-EBMs. Firstly, in Theorem

1 we prove the existence of a steady-state solution for the 1D-EBM by solving the associated variational problem

inf {Fq(u) | u ∈ X} ,

i.e. showing the existence of a global minimum point for the functional Fq over a suitable function space X. Secondly, in

Theorem 2 we provide sufficient conditions to have at least three steady-state solutions. These conditions can be summarized85

as follows:

(i) the viscosity κ should be sufficiently large,

(ii) the space-averaged global radiation balance R of the 1D-EBM should present a double-well potential with sufficiently

deep minimum values attained at the two minimum points.

These assumptions give us the possibility to prove the existence of two minimum points for Fq; further, these minimum points

are also close to the minimum points of the space-averaged model. Then, the Mountain Pass theorem, a classical result from

the calculus of variations, enable us to deduce the existence of a third steady-state solution (Ghil and Childress (1987); Jabri

(2003)). Thirdly, we investigate the uniqueness of the solution of the variational problem in terms of the value function

V (q) = inf {Fq(u) | u ∈ X} ,

which is the minimum value attained by Fq . In fact:90

(i) in Theorem 3, we show that V is differentiable except for a Lebesgue zero-measure set;

(ii) in Theorem 3, we prove that the non-differentiability points correspond to non-uniqueness points for the solution of the

variational problem;

(iii) in Corollary 4, we demonstrate how the derivative of V is, up to the sign, the global mean temperature of the global

minimum point u0 for Fq . This establishes a one-to-one correspondence between the graph of V and the branch of the95

bifurcation diagram corresponding to u0.

Our physical interpretation of these results is that either the climate will fluctuate around a single equilibrium state, other states

are exponentially less likely, and the global mean temperature will change smoothly with changes in CO2; or there are several

equally likely states, some of which must differ in their global mean temperature.

This paper is organized as follows. In Section 2, we describe the methodology used throughout our work. Firstly, we review100

the 1D-EBM proposed in (Bastiaansen et al. (2022)). This model serves as the reference for our paper and it is characterized by

the presence of an additive parameter in the radiation budget, which determines the number of steady-state solutions. Secondly,

we recall the properties of the steady-state solutions of the 1D-EBM, that can be obtained from numerical simulations. Finally,

we rigorously define the stochastic EBM by introducing space-time white noise. Specifically, we review the invariant measure

formula for the resulting reaction-diffusion SPDE. In Section 3, we present our novel findings. In Section 3.1, we discuss the105
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existence of a solution for the variational problem and outline the properties of the potential functional. Moreover, we explain

why the invariant measure of the stochastic EBM concentrates around the global minimum points of the potential functional.

Finally, we provide sufficient conditions to demonstrate the existence of at least three steady-state solutions. In Section 3.2,

we characterize the uniqueness of the solution to the variational problem in terms of the value function. Additionally, we

demonstrate that the value function is Lipschitz. In Section 3.3, we illustrate how knowledge of the value function allows110

derivation of a portion of the bifurcation diagram and vice versa. In Section 4, we offer a comprehensive summary of our

work. In Appendix A, we describe the finite difference method employed to conduct the numerical simulations presented in

this study. Furthermore, the Supplementary Material manuscript includes rigorous proofs of our main results.

2 Background and methodology

2.1 A 1D energy balance model115

The fundamental mechanism of 1D-EBMs is that the temperature u(t,x), averaged in the zonal direction, evolves in time due

to: (i) the diffusion of energy between adjacent regions, (ii) the energy absorbed by the planet, and (iii) the energy emitted by

the planet. The 1D-EBM we consider in this paper is a Seller type EBM where the absorbed radiation depends on an additive

parameter (Bastiaansen et al. (2022)). We only add a change in the diffusion term in order to get a non-degenerate parabolic

PDE. Given an initial condition ũ, the non-linear, parabolic, reaction-diffusion PDE governing the model is given by:120

CT
∂u

∂t
= ∂x [κ(x)∂xu] +Ra(x,u;q)−Re(u), t > 0, x ∈ (−1,1)

κ(−1)ux(t,−1) = κ(1)ux(t,1) = 0, t≥ 0

u(0,x) = ũ(x), x ∈ [−1,1], (7)

where Ra and Re represent the radiation absorbed and emitted by the planet per unit area, respectively. CT is the heat capacity,

and the differential term parametrizes the meridional heat transport. The boundary conditions impose no flux at the poles. We

now provide further details regarding the parameterization of these terms. The values of the constants of the model can be

found in Table 1.125

Firstly, the absorbed radiation is assumed to have the form:

Ra(x,u;q) = Q0(x)(1−α(u)) + q,

where Q0 is the solar radiation per unit area, α is the albedo, and q is a parameter of the system describing, in a simplified way,

the effect of atmospheric CO2 on the energy budget. The solar radiation is assumed to be

Q0(x) = Q̂0

(
c1− c2x

2
)
, ci > 0

where Q̂0 is the mean solar radiation and ci are constants. The albedo, which is the proportion of the incident light or radiation

that is reflected by a surface, is parametrized by a smooth monotonically increasing function with a peak derivative in a
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reference temperature uref close to the melting point of ice. Specifically

α(u) = α1 + (α2−α1)
[
1 + tanh(K(u−uref ))

2

]

where K > 0 is a rate parameter and α1 > α2 are respectively the ice-albedo and the water-albedo.

Second, the emitted radiation is modelled using the Stefan-Boltzmann law, in other words assuming that the Earth radiates

as a black body. Under this assumption, the energy radiated is proportional to the fourth power of its temperature and it is given

by:

Re(u) = ε0σ0u
4.

where ε0 and σ0 are respectively the emissivity and Boltzmann’s constant.

The third component of the model is the term ∂x (κ(x)ux). It parametrizes the meridional heat transport, that is the phe-

nomenon resulting from the poleward transportation of heat by the Earth-atmosphere system due to the surplus of net radiation

heating in the tropics and the deficit in the poleward regions. Usually, the diffusion function κ(x) is assumed null at the poles,

i.e. with a form such as κ(x) = D(1−x2), where D is a diffusion constant. This choice is based on the paradigm of mimicking

the conduction of heat on a sphere, see (North and Kim (2017)) for a derivation. On the other hand, it leads to mathematical

difficulties in the treatment of PDEs, which becomes singular. For this reason, we assume as a simplifying hypothesis that κ is

given by:

κ(x) = D(1−x2) + δ, D,δ > 0.

We choose δ = 0.003, but its value is not important for the results of this work and different choices can be made.

For the parabolic problem (7), the global existence and uniqueness of the solution can be demonstrated, given a regular

initial condition (Temam (1997)). Furthermore, if the initial condition is non-negative, the solution remains non-negative for130

any time t > 0. This can be shown proving that [0,+∞) is an invariant region for Eq. (7), exploiting the fact that there exist

C1,C2 > 0 such that R(x,u;q) > C1 > 0 for all x ∈ [−1,1], u ∈ [0,C2] (Smoller (2012)).

We recall the formulation of stochastic EBMs using the theory of SPDEs (Da Prato and Zabczyk (2014)). Denote by ∆ the

Laplace operator with Neumann boundary conditions. Given an initial condition ũ ∈H , we consider the SPDE

∂tu = κ∆u + Q0(x)β(u) + q−Re(u) + εdWt

u|t=0 = ũ (8)135

where ε > 0 and (Wt)t≥0 is a cylindrical Brownian motion on H . Under the minor cut-off modifications introduced in Section

3.1, it can be proved that the H-valued stochastic process (ut)t which solves in mild sense (8) is unique and has continuous

trajectories (Da Prato and Zabczyk (2014)). In addition to this, there exists a unique Gibbs invariant measure

ν(du) =
1
Z

exp


− 2

ε2

1∫

−1

R(x,u;q)dx


µ(du), (9)

whereR is as in Eq. (5), µ∼N (0,− ε2

2κ∆−1) is a symmetric Gaussian measure on H with covarianceQ=− ε2

2κ∆−1 (Da Prato140

(2004, 2006)). In other words, µ is the distribution of random elements of H with Fourier expansion ε√
2κ

∑
j∈Z exp(2πijx)aj

j ,
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with {aj}j i.i.d. N (0,1). As mentioned in the introduction, this measure is concentrated on minimum points of the functional

Fq . A heuristic explanation of this fact can be found in Section 3.1.

The stationary problem associated with the 1D-EBM is given by the elliptic equation:

(κ(x)ux)′+ Q0(x)β(u) + q− ε0σ0u
4 = 0, x ∈ (−1,1)

u′(−1) = u′(1) = 0, u(x)≥ 0. (10)145

These solutions can be either stable or unstable, depending on the long-term behaviour of their infinitesimal perturbations. As

pointed out in (Bastiaansen et al. (2022)), if the reaction-diffusion equation was space-homogeneous, i.e. of the form:

∂tu = κ∆u + R(u), (11)

then the stable steady-state solutions would correspond to constant functions, taking the same values as the stable fixed point

of the ODE

y′(t) = R(y(t)).

A rigorous result in this direction has been shown in (Gaspar and Guaraco (2018)). Indeed, for a fixed double-well symmetric

potential, it has been proved that: (i) if κ is large enough, the only steady-state solutions of (11) are the constants where150

the potential is critical, and (ii) the number of unstable steady-state solutions to (11) can be made arbitrary large as κ→ 0.

Introducing a spatial dependence in R = R(x,u) leads to a space-heterogeneous model. Depending on the space heterogeneity,

it can exhibit any number of both stable and unstable steady-state solutions (Bastiaansen et al. (2022)). The variational approach

to the study of steady-state solutions provides a tool for characterizing the stable ones, which are the local minimum points of

a functional.155

In the following paragraph, we describe the properties of the solutions of (10). As the parameter q changes, numerical

simulations for Eq. (10) suggest the existence of either one or three steady-state solutions. That is, there exists q1 < q2 s.t. Eq.

(7) has one steady-state solution if q < q1 or q > q2, and the steady-state solutions are three if q1 ≤ q ≤ q2. In the latter case, we

denote the solutions by uS ≤ uM ≤ uW , corresponding respectively to the snowball climate, a middle climate and the warm

climate. As an analogy, we denote by uS the unique steady-state solution for q < q1 and by uW the unique one for q > q2. Figure160

2a shows the bifurcation diagram of the model in the (q, ū) plane, where ū =
∫ 1

−1
u(x)dx denotes the average temperature.

Figure 2b depicts the three steady-state solutions for q = 25 ∈ (q1, q2). A stability analysis can be conducted to determine the

stability of the steady-state solutions. The results show that uS and uW are stable, while the middle climate uM is unstable.

Furthermore, it’s worth noting that special values q = q1, q2 correspond to bifurcation points of saddle-node type, where the

unstable solution uM collides with either uW (for q = q1) or uS (for q = q2) and then disappears. These numerical findings165

regarding the number and stability of the steady-state solutions will be supported and validated using rigorous arguments, as

in the next section.
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Figure 2. (a) Bifurcation diagram of the steady-state solutions in the (q, ū) plane, with ū =
∫ 1

−1
u(x)dx. Solid lines denote stable solutions

uS and uW , while dashed lines the unstable solution uM . (b) steady-state solutions of the EBM for q = 25. In every point x of the space

domain, the three steady-state solutions satisfy uS(x) < uM (x) < uW (x), with maximum temperature attained at the equator and minimum

temperature attained at the poles.

Table 1. Parameters and constants appearing in the Seller EBM (7).

Symbol Meaning Value

D Diffusivity constant 0.3

δ Perturbation constant- meridional heat transport parametrization 0.003

Q̂0 Mean solar radiation 341.3 Wm−2

ε0 Emissivity 0.61

σ0 Boltzmann’s constant 5.67 · 10−8Wm−2 K−1

α1 Ice albedo 0.7

α2 Water albedo 0.289

K Constant rate - albedo parametrization 0.1

uref Reference temperature - albedo parametrization 275 K

CT Heat capacity 5 · 108 Jm−2K−1

9
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3 Results

3.1 Potential functional and its minimizer

In this section, we: (i) provide an intuitive motivation for why the invariant measure for the stochastic EBM concentrates on170

minimum points of the functional Fq , (ii) prove the existence of global minimum points for Fq using the direct method, (iii)

present sufficient conditions on the viscosity κ and the space-averaged potential R̄(u) = 1
2

∫ 1

−1
R(x,u)dx, with ∂uR=−R =

Re−Ra, to ensure that the 1D-EBM has at least three steady-state solutions.

Firstly, consider the stochastic EBM (8). Assume that for a negative value of u, where the model has no physical meaning,

the Stefan-Boltzmann law is extended as:175

Re(u) =





ε0σ0u
4, if u≥ 0

0, if u < 0.

and β is smoothly extended to β̃ by setting it to zero outside the physically relevant range, as described in the Supplementary

Material. Then, Eq. (8) possesses a unique Gibbs invariant probability measure given by:

ν(du)∝ exp


− 2

ε2

1∫

−1

ε0σ0

(
u5

)
+

5
−Q0(x)B(u)− qudx


µ(du), µ∼N (0,− ε2

2κ
∆−1), (12)

where (u)+ = max{u,0} is the positive part,N (0,− ε2

2 ∆−1) denotes a symmetric gaussian measure with covariance operator180

Q=− ε2

2κ∆−1 over the Hilbert space H = L2(−1,1) and Z is the normalization constant. See (Da Prato (2004)) for a rigorous

derivation of the invariant measure for a reaction-diffusion model with a polynomial homogeneous reaction term. We move to

explain in what sense ν is concentrated around minimum points of Fq . In fact, for u ∈H the gaussian measure µ is formally

given by:

µ(du) =
1
Z1

exp
(
−1

2
⟨Q−1u,u⟩

)
du,185

where Q−1 =− 2κ
ε2 ∆. Here, Z1 is a normalization constant, ⟨·, ·⟩ denotes the scalar product in H , and du is a formal notation

for the Lebesgue measure on H . If we perform an integration by parts, we get

µ(du) =
1
Z1

exp
( κ

ε2
⟨u′′,u⟩

)
du =

1
Z1

exp
(
− κ

ε2
||u′||22

)
du.

Plugging the previous identity into Eq. (9), we obtain:

ν(du)∝ exp


− 2

ε2




1∫

−1

ε0σ0

(
u5

)
+

5
−Q0(x)B(u)− qudx +

κ

2
||u′||22





du

∝ exp
(
− 2

ε2
Fq(u)

)
du.
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From this heuristic formula, we see that points u such that Fq(u) is not a global minimum have exponentially smaller density

than the minimum points. Indeed, if u1 is a global minimum point and u ̸= u1, then the mass given by ν in a small neigh-

bourhood around u is exponentially smaller than the mass given to a neighbourhood of the same size around u1; in particular,190

the ratio between the two masses is given by exp
(
− 2

ε2 (Fq(u)−Fq(u1))
)
. The previous derivation is formal because the

Lebesgue measure cannot be defined on an infinite dimensional Hilbert space. For a more rigorous explanation, see Section 2

in the Supplementary Material.

Next, we discuss the properties of the functional Fq : H1,2(−1,1)∩{u≥ 0}→ R given by:

Fq(u) =

1∫

−1

u5

5
ε0σ0−Q0(x)B(u)− qudx +

1
2

1∫

−1

κ(x)(u′(x))2 dx,

where B is a primitive of the co-albedo β(u) = 1−α(u) and H1 = H1,2(−1,1) denotes the Sobolev space of order 1 and

exponent 2, i.e. the function space where a function u and its derivative u′ (in weak-sense) are both square integrable over195

[−1,1]. See (Brezis (2011)) for more details about Sobolev spaces. The functional Fq , depending on the parameter q, is

known in the literature as potential functional or Lyapunov function (North et al. (1979); North and Kim (2017)). The study

of the functional Fq gives useful information thanks to its links with the invariant measure for the stochastic 1D-EBM, as we

have seen, and the stable steady-state solutions for the deterministic 1D-EBM which emerge as necessary conditions for the

stationarity of Fq . Going deeper with the former point, the first variation of Fq in the point u in direction h is given by:200

δFq(u,h) =
d

ds
Fq(u + sh)|s=0 =

1∫

−1

(
u4ε0σ0−Q0(x)β(u)− q

)
hdx +

1∫

−1

κ(x)u′(x)h′(x)dx

=

1∫

−1

[
u4ε0σ0−Q0(x)β(u)− q− (κ(x)u′(x))′

]
hdx

where in the last identity we have used the integration by parts. Since h is arbitrary, u is a stationary point for the functional Fq

if and only if it is a steady-state solution for the EBM. In particular, local extremum points for Fq correspond to steady-state

solutions of the EBM. Any local minimizer of Fq represents a locally attractive solution of the deterministic 1D-EBM. In view

of our interpretation of Fq in terms of the invariant measure, however, global minimizers play a special role since if present and205

unique they are exponentially more likely than any other state (including minimizes that are just local). The following result

establishes the existence of a global minimum point for Fq .

Theorem 1. If q > 0, then there exists a global regular non-negative minimizer for Fq . In other words, if we consider the

variational problem

inf
{
Fq(u) | u ∈H1, u≥ 0

}
, (13)210

then there exists u0 ∈ C∞ s.t. u0 is a solution of the EBM and

Fq(u0) = inf
{
Fq(u) | u ∈H1, u≥ 0

}
.
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In addition to this, if q belongs to a bounded interval, then u can be bounded uniformly with respect to q:

∃M > 0 s.t. u0(x)≤M, ∀x ∈ [−1,1]. (14)

A rigorous proof of the previous result can be found in Section 3 of the Supplementary Material manuscript. The proof relies

on standard arguments from the direct method of calculus of variation exploiting the fact that the outgoing radiation in the

EBM model prevents the temperature from being too high.215

Concerning the existence of two local minimum points, let us describe a sufficient condition. Consider the potential function

R̄ : R→ R coming from the space averaged model

R̄(u) =
1
2

1∫

−1

R(x,u)dx.

If the viscosity κ > 0 is sufficiently large and the function R̄ has a double well shape with sufficiently deep minimum values

attained at the minimum points, then we are able to prove the existence of two minimum points for Fq . Further, it is possible

to prove that the functional Fq satisfies a compactness condition known as Palais-Smale condition. This property and the

Mountain Pass theorem give the possibility to deduce the existence of a third steady-state solution. Next, we characterize a

situation in which there are three steady-state solutions, two of which are local minimizers (Jabri (2003)). This is summarized220

in the following result.

Theorem 2. Denote by BH1(v,ρ) = {u ∈H1 | ||u−v||H1 < ρ} the open ball in H1 with center v and radius ρ > 0. Assume

R̄ has two non-negative minimum points u1 ̸= u2, with Fq(u1)≥ Fq(u2). Then, there exist ω > 0 and f,g ∈O(ε−1) as ε→ 0+

s.t. if ε̄ > 0 satisfies:

(i) R̄′′(ui) > f(ε̄), for i = 1,2,225

(ii) κ > g(ε̄),

(iii) ε̄≤ ω,

then F̃q has two local minimum points ũ1, ũ2 such that:

(a) BH1(u1, ε̄)∩BH1(u2, ε̄) = ∅,

(b) ũi ∈BH1(ui, ε̄), for i = 1,2,230

(c) If ||u−u1||H1 = ε̄, then Fq(u)≥ Fq(u1) + δ, with δ = δ(ε̄) > 0.

Note how the previous result can be also interpreted as giving sufficient conditions for the convergence of the stable solutions

of a space-inhomogeneous EBM to the stable solution of the corresponding space-averaged model, as the diffusion becomes

large.
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Figure 3. Potential functional Fq evaluated in the three steady-state solutions uS ,uM ,uW . For q < q3, uS is the global minimum point,

while uW is a local minimum point. On the other hand, for q > q3 the vice versa happens. Solid lines correspond to values of the functional

attained on stable solutions, dashed lines for values corresponding to unstable ones.

3.2 Value Function and uniqueness for the functional minimizer235

The key element of this section is the value function, which is given by:

V (q) = inf
{
Fq(u) | u ∈H1, u≥ 0

}
.

From Section 3.1, we know that the previous infimum is indeed a minimum and so V (q) can be interpreted as the minimum

possible value attained by the potential functional over the possible temperature profiles u. Since a minimum point for Fq

is also a stationary point for the functional, the value function can be evaluated numerically by computing the minimum of

the three steady-state solutions uS ,uM ,uW . Following this strategy, Figure 3 shows q 7→ Fq(u∗), with u∗ ∈ {uS ,uM ,uW }.

Particularly, there exists a point q3 s.t. uS it the global minimum point of Fq for q < q3, while uW is the global minimum240

point for q > q3. Further, for q = q3 the function Fq has two different global minimum points uS ,uW and q = q3 correspond

a non-differentiability point for V . Summarizing, the numerical evaluations of V (q) suggest the following result, that can be

rigorously proved.

Theorem 3. Assume q belongs to a bounded interval. Then:

(i) V is Lipschitz continuous.245

(ii) q is a non-differentiable point for V if and only if there is more than one minimizer for Fq .

We also see numerically that uM is actually never a global minimizer for the specific functional Fq considered here, but we

do no have rigorous proof of this fact. Let’s briefly discuss the proofs of the previous points. The proof of (i) follows from the

facts that the sup-norm of the minimizer u0 can be bounded uniformly in q and that, given a family {gi}i∈I of Li-Lipschitz
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Figure 4. Comparison between the value function graph (left) and bifurcation diagram (right) for the 1D-EBM. The magenta-shaded area

highlights the parts of the plots which are in one-to-one correspondence. (a) Functional Fq evaluated on steady-state solutions, as in Figure

3. (b) Bifurcation diagram, as in Figure 2a.

functions gi, then inf
i∈I

gi is Lipschitz if the constants Li can be bounded uniformly. In our case, given u ∈H1 non-negative, we

have

|Fµ1(u)−Fµ2(u)| ≤ |µ1−µ2|
1∫

−1

|u(x)|dx≤ 2M |µ1−µ2|

where M > 0 is the constant appearing in Eq. (14). On the other hand, the proof of point (ii) is less straightforward, although

being very similar to the one for the existence of a solution for the variational problem. More details can be found in Section 4

of Supplementary Material.

3.3 Value function graph and bifurcation diagram250

An additional property of the value function can be observed when comparing the bifurcation diagram (Figure 4a) and the

graph of the value function (Figure 3).

Corollary 4. If V is differentiable, then V ′(q) =−
∫ 1

−1
u0(x)dx, where u0 is the only minimizer for Fq .

In other words, the part of the bifurcation diagram that corresponds to the global minimizer, represented by the subgraph

(q,
∫ 1

−1
u0(x),dx), can be determined based on the knowledge of V ′, and vice versa. Figure 4 compares Figure 2a and Figure255

3, highlighting in magenta the corresponding parts of the two graphs. From the mathematical point of view, the previous result

is a consequence of the proof of Theorem 3.

In the second part of this section, we demonstrate the applicability of this result to other reaction-diffusion equations. We

use as an example a spatially heterogeneous Allen-Cahn equation (ACE), already considered in (Bastiaansen et al., 2022). For
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an initial condition ũ, this model is given by:260

∂tu =
1

100
∆u + u(1−u2) + q +

1
2

cos(πx), x ∈ (−1,1), t > 0,

ux(t,−1) = ux(t,1) = 0, t≥ 0,

u|t=0 = ũ. (15)

The associated elliptic problem is

0 =
1

100
∆u + u(1−u2) + q +

1
2

cos(πx), x ∈ (−1,1),

u′(−1) = u′(1) = 0. (16)

In this case, the potential functional takes the form

Jq(u) =

1∫

−1

u4(x)
4

− u2(x)
2

−u(x)(q +
1
2

cos(πx)) dx,

and all the properties discussed in Section 3.1 and 3.2 can be extended to this equation. Specifically, Theorems 1, 2 and 3

hold. But in this case, the structure of the bifurcation diagram is more complex, even if symmetric which respect to q = 0.265

Indeed, through numerical experiments, it is possible to deduce the existence of 0 < q4 < q5 such that: (a) for |q|> q5 or

|q|< q4, there exists a single steady-state solution, which is stable, (b) for q4 < |q|< q5, there are three steady-state solutions,

two of which are stable while the third is unstable. Further, q = q4, q5 are bifurcation points of saddle-node type. We denote

by u1 the steady-state solution for q <−q5, by u2,u3 the steady-state solutions appearing at the bifurcation point q =−q5

and existing for −q5 < q <−q4 in addition to u1 and by u4,u5 the steady-state solutions appearing at q = q4 and existing for270

q4 < q < q5 in addition to u3. Regarding the potential functional Jq , in this case there exists q6 ∈ (q4, q5) such that u1 is the

global minimum point for the functional for q <−q6 and u3 is the global minimum point for −q6 < q < q6, while u5 becomes

the global minimum point for q > q6. A picture for the bifurcation diagram just described and the value function is shown in

Figure 5. Note that q =±q6 are the only values of the parameter q for which the value function is not differentiable and also

the only points in which the global minimizer of the variational problem is not unique.275

4 Conclusions

In this paper, we have considered a one-dimensional energy balance model depending on a bifurcation parameter q, describing

the effect of CO2 concentration in the atmosphere and affecting the energy absorbed by the planet. Numerical simulations

show that this model can exhibit either one or three asymptotic solutions, depending on the values of q. We began our anal-

ysis by introducing the potential functional Fq associated with the steady-state solutions. The functional Fq has significant280

implications, as it is closely linked to both the stability of steady-state solutions of the EBM and the invariant measure for the

stochastic EBM obtained by perturbing the model with an additive Gaussian white noise. By analyzing the first variation of Fq
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Figure 5. Comparison between the value function and the bifurcation diagram for the non-homogeneous ACE. The magenta-shaded area

highlights the parts of the plots which are in one-to-one correspondence. (a) Potential functional evaluated on the steady-state solutions: u1 is

the global minimum point for q <−q6, u3 is the global minimum point for −q6 < q < q6, u5 is the global minimum point for q > q6. Note

that q =±q6 are the non-differentiability point for the value function, corresponding to non-uniqueness of the minimizer. (b) Bifurcation

diagram.

and applying standard arguments from the direct method of calculus of variations, we established that Fq possesses a global

regular minimizer for all values of the parameter q. Furthermore, we provide sufficient conditions to prove the existence of at

least three steady-state solutions for the 1D-EBM.285

We then introduced the value function V (q), which represents the minimum value attained by the potential functional among

all possible temperature profiles. By evaluating V (q) numerically using the steady-state solutions uS ,uM ,uW , we observed

that the function exhibits Lipschitz continuity. Furthermore, non-differentiability points of V (q) coincide with points where

multiple global minimizers exist for Fq . Lastly, when V is differentiable, its derivative is equal to the negative global mean

temperature, i.e. V ′(q) =−
∫ 1

−1
u0(x)dx, where u0 is the minimizer for Fq . These findings, which can all be proven rigorously,290

allow us to establish a correspondence between the bifurcation diagram and the graph of the value function. Additionally, we

applied our results to a spatially inhomogeneous Allen-Cahn equation, to show how our results still hold for more general

space-inhomogeneous reaction-diffusion equations.

Data availability. This work does not include any externally supplied code, data, or other material. All material in the text and figures was

produced by the authors using standard mathematical and numerical analysis by the authors. The code is available upon request.295
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Appendix A: Numerical methods

In this section, we describe the numerical method adopted to approximate the solutions of the elliptic problem (10) numerically.

We used a classical finite difference scheme, which we are going to illustrate (Quarteroni and Valli (2008); Thomas (2013)).

To simplify the notation, let’s define f(x,u) = Re(x,u)−Ra(u) the non-linear reaction term. We consider a uniform mesh for

[−1,1] made of n + 1 points

x0 =−1 < x1 < · · ·< xn = 1, xi =−1 + i∆x, i = 0, ...,n, ∆x =
2
n

.

Then, the solution to the problem can be approximated by considering the system

ui−1κi− 1
2
−ui(κi− 1

2
+ κi+ 1

2
) +ui+1κi+ 1

2

∆x2
+ f(xi,ui) = 0, i = 0, ...,n

u1−u−1

2∆x
=

un+1−un−1

2∆x
= 0

where u−1,un+1 are ghost points and ui = u(xi), κi± 1
2

= κ(xi± 1
2
), xi± 1

2
:= xi±∆x/2. The system of equations can be

written in vector form as:

1
∆x2




−∆x/2 0 ∆x/2

κ−1/2 −(κ−1/2 + κ1/2) κ1/2

. . . . . . . . .

κn−1/2 −(κn−1/2 + κn+1/2) κn+1/2

−∆x/2 0 ∆x/2




u +




0

f0

...

fn

0




= 0,

with u =
[
u−1, · · ·un+1

]T

and fi = f(xi,u(xi)). At this point, multiplying the first equation by 2κ1/2

∆x , subtracting the second

one and dividing by 2, we get

−κ−1/2 + κ1/2

2
u−1 +

κ−1/2 + κ1/2

2
u0−

f0

2
= 0.

In a symmetric way, multiplying the last equation by −2κn−1/2

∆x , subtracting the second last equation and dividing by 2, we get

κn−1/2 + κn+1/2

2
un−

κn−1/2 + κn+1/2

2
un+1−

fn

2
= 0.

In this way, the Neumann version of the elliptic problem has the form:

1
∆x2




−κ−1/2+κ1/2

2

κ−1/2+κ1/2

2

κ−1/2 −(κ−1/2 + κ1/2) κ1/2

. . . . . . . . .

κn−1/2 −(κn−1/2 + κn+1/2) κn+1/2

κn−1/2+κn+1/2

2 −κn−1/2+κn+1/2

2




u +




−f0/2

f0

...

fn

−fn/2




= 0

and consists in a set of (n+3) non-linear equations, whose solution u can be approximated using the Newton-Raphson method.
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