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Abstract. A one-dimensional climate energy balance model (1D-EBM) is a simplified climate model for the zonally aver-
aged global temperature profile, based on the Earth’s energy budget. We examine a class of 1D-EBMs which emerges as the
parabolic equation corresponding to the Euler—Lagrange equations of an associated variational problem, covering spatially
inhomogeneous models such as with latitude-dependent albedo. Sufficient conditions are provided for the existence of at least
three steady-state solutions in the form of two local minima and one saddle, that is, of coexisting “cold”, “warm” and unstable
“intermediate” climates. We also give an interpretation of minimisers as “typical” or “likely” solutions of time-dependent and
stochastic 1D-EBMs.

We then examine connections between the value function, which represents the minimum value (across all temperature
profiles) of the objective functional, regarded as a function of greenhouse gas concentration, and the global mean temperature
(also as a function of greenhouse gas concentration, i.e. the bifurcation diagram).

Specifically, the global mean temperature varies continuously as long as there is a unique minimising temperature profile, but
coexisting minimisers must have different global mean temperatures. Furthermore, global mean temperature is non-decreasing
with respect to greenhouse gas concentration and its jumps must necessarily be upward.

Applicability of our findings to more general spatially heterogeneous reaction—diffusion models is also discussed, as are

physical interpretations of our results.

1 Introduction
1.1 Low dimensional energy balance models

Energy balance models are a fundamental tool used to understand the Earth’s climate system and its energy dynamics. It
represents the energy budget within the Earth’s atmosphere, land, oceans, and ice by quantifying the balance between incoming
solar radiation and outgoing solar radiation. Although highly simplified compared to general circulation models, EBMs are
appreciated for their interpretability, mathematical tractability, and ability to capture the essential dynamics of the Earth’s
system (Budyko (1969); Sellers (1969); North (1975); Ghil (1976); Diaz (1997); Cannarsa et al. (2022)). Two important
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feedback mechanisms are typically present in such models: the ice-albedo feedback and the Stefan-Boltzmann law. The positive
ice-albedo feedback occurs when the melting of ice and snow reduces the surface reflectivity (albedo), causing the planet to
absorb more solar radiation. According to the Stefan-Boltzmann law, a warmer body emits more radiation, thereby providing
a negative feedback which stabilises the planet’s temperature. Depending on the precise configuration, these mechanisms may
endow EBMs with bistability, suggesting the existence of two stable climates commonly referred to as the snowball climate
and the warm climate. The snowball climate, supported by paleoclimatic evidence from the Cryogenian period around 650
million years ago, is characterized by the absence of vegetation and ice caps extending over the entire planet’s surface. In
contrast, the warm climate exhibits relatively low albedo, ice caps limited to the polar regions, and the presence of oceans
and vegetation. Additionally, EBMs typically allow for a third possible climate, albeit unstable. Transitions between stable
climates in an EBM, as well as in general multistable models, can occur in various ways. But two important mechanisms are
the following. The first consists of changes in factors influencing the climate system, such as variations in greenhouse gas
(GHG) concentrations like carbon dioxide (CO-), altering the balance of incoming and outgoing radiation and amplifying the
greenhouse effect. Mathematically, this mechanism can be described by assuming that the model depends on one additional
parameter, and changes in the parameter lead the model to undergo a bifurcation (Ashwin et al. (2012)); the second consists
in noise-induced transitions resulting from unresolved processes in climate models or the representation of short-timescale
weather as stochastic forcing acting on slow variables, as observed in stochastic reduced models (Imkeller (2001); Lucarini
et al. (2022)). These two types of transitions correspond to mechanisms recognized to induce climate tipping, that is rapid
non-linear changes in the climate system with potentially irreversible and catastrophic consequences (Lenton et al. (2008);
Scheffer et al. (2009); Lenton et al. (2012); Lucarini and Bédai (2019); Ghil and Lucarini (2020)).

A zero-dimensional (0D) EBM is the simplest version of EBM describing the evolution in time for the annual averaged
global mean temperature 7', without any space dependence (Berger (1981); North (1990); North and Kim (2017); Ghil and
Lucarini (2020)). This model is given by an ordinary differential equation (ODE) of the form:

dTT  —
CTE:Qoﬂ(T)‘FC]—UOEOTAl, t>0,
Tjey = To. (1)

In this equation, C > 0 represents the heat capacity, @, > 0 is the globally averaged solar radiation and the co-albedo 3
is modelled by a continuous function (overbars typically denote globally averaged quantities). Further, ¢ > 0 is a positive
parameter modelling the effect of the CO on the energy budget (Bastiaansen et al. (2022)). The term R, (T) = ogeoT* on the
right-hand side of Eq. (1) accounts for the outgoing solar radiation, following the Stefan-Boltzmann law (where oy denotes the
Stefan-Boltzmann constant and € is the globally averaged emissivity). The fixed points of the model are the solutions of the

equation:
ar
dt
corresponding to points in Figure 1 where the absorbed radiation R, (T) = Q,3(T) + ¢ and the emitted radiation R.(T)

0,

intersect. Figure 1a furthermore illustrates that this model is generally characterized by bistability, with two stable fixed points

Ts and Ty . These points correspond to the snowball and warm climate states mentioned earlier and are separated by an



50

55

60

65

70

unstable intermediate fixed point T;. Furthermore, as highlighted by Figure 1b, the stable points correspond to minimum
points of a primitive function F for the negative radiation budget R. In other words, F is any regular function such that:

—/

F(T) = Ru(T) - Ra(T) = ~R(T).

To better capture the variability of global mean surface temperature, it has been proposed to add a stochastic forcing, such
as white noise, to the radiation balance. This is interpreted as the effect of the fast components of the climate system, i.e. the
weather, over slow components (Hasselmann (1976); North and Cahalan (1981); Imkeller (2001); Diaz et al. (2009)). For this

reason, we are interested in considering the stochastic differential equation (SDE) given by:
AT = R(T)dt + edW,, 2)

where £ > 0 is the noise intensity and (W;);>¢ is a Brownian motion (Baldi (2017)). This SDE is of gradient type and possesses
a unique Gibbs invariant measure 7 (Lelievre and Stoltz (2016)). An invariant measure is a probability distribution 7 in the
state space of Eq. (2) (i.e. the real numbers in this case) with the property that if a solution 7" is distributed according to 7 at

some time ¢ then it remanis so for all later times. It is given by:
H(dT) = » 2 5(T) ) ar 3)
v =—-exp|——

7P\ "2 ’

where Z is a normalization constant and d1" denotes the standard volume element on R (we note the technical detail that to
give meaning to Eq. (2) and Eq. (3), the radiation budget R should be extended to negative values for the Kelvin temperature
T in a way such that F — 400 as T — —o0). The key observation from the explicit formula (3) is that T is concentrated
around the minimum points of the function F. Indeed, if T is a strict minimum point and T} # Ty is a point close to T} s.t.
F(Ty) > F(Ty), then the mass given by the measure v in a small neighbourhood of T} is exponentially lower than the mass
around Tp; more specifically, the ratio between the two masses is given by exp (=3 (F(T1) — F(Tp))).

A one-dimensional (1D) EBM is given by a parabolic partial differential equation where the space variable is one-dimensional
(Budyko (1969); Sellers (1969); North and Kim (2017)). Denoting the temperature averaged in the zonal direction by u =
u(t, ), it extends the 0D-EBM by introducing the sine of the latitude = = sin(¢), where ¢ € [—7, 7] denotes the latitude and
t > 0 represents time. We assume that the non-linear radiation balance of the planet, denoted by R(z,u;q), depends on the
sine of the latitude and on an additive parameter q. This parameter models the effect of carbon dioxide concentration on the
radiation budget (Bastiaansen et al. (2022)). Atmospheric and ocean transport of heat between latitudes is modelled in a very

simplified way by a diffusion term. Assuming spatially homogeneous diffusion in this introductory section and thus ignoring

the dependence of « on latitude and temperature, we obtain a non-degenerate reaction-diffusion equation:
Ou = kAu+ R(x,u;q), >0,z (—1,1),
ug(t,—1) =uy(t,1) =0, ¢t>0
u(0,z) = u(x), =ze€[-1,1] 4)

where A = 0,,, denotes the Laplace operator in dimension one, the Neumann boundary conditions impose no-heat flux at

the poles and @ is an initial condition. The steady-state solutions of this model, representing the asymptotic solutions for the
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Figure 1. (a) Absorbed radiation R, and emitted radiation R. for a 0D-EBM. The graphs intersect in the three fixed points of the model
Ts <Twm <Tw; Ts and Ty are stable, T/ is unstable. (b) Double-well potential F associated to OD-EBM. The function F satisfies

F = R. — R,. The minimum points T's and Ty of F correspond to stable fixed points.

time-evolving dynamics, correspond to the non-negative solutions u = u(x) of the elliptic problem:

0=ru"+ R(z,u;q), z€(-1,1),
u'(=1) =4/(1) =0, 5)

where © = u(z) depends only on the space variable. This elliptic problem forms a necessary condition for u = u(z) to be our

extremal (in particular a local minimiser) for the potential functional

1
Fu) = [ Reusayds + 5| ©

-1

where 0, R(z,u;q) = —R(z,u;q) and ||u'||3 = f_ll (w')? dx is the square of the norm of v’ in L2(—1,1). The calculus of
variations is a widely employed technique for studying the existence of a solution to the previous problem (North (1975);
North et al. (1979, 1981); Brezis (2011)). However, proving the existence of a local (but not global) minimum point is generally
challenging, and this technique focuses on studying the existence of the global minimum point. The functional F, in Eq. (6) has
another interpretation though which renders it more important than being merely a characterisation of solutions to the elliptic

problem. Indeed, consider the stochastic partial differential equation (SPDE) on the Hilbert space H = L?(—1,1) given by:
du = (kAu+ R(x,u;q)) dt + edWy, @)

obtained by adding a space-time white noise (W;);>o modelled by a cylindrical Brownian motion on H = L?*(—1,1) to Eq.

(7). R has a cut-off at negative temperature as in Section 3.1 and £ > 0 is the noise intensity. We refer to (Da Prato and Zabczyk
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(2014)) for more details about SPDEs. It can be shown that this SPDE has a unique invariant Gibbs measure v (Da Prato
(2004)), given (broadly speaking) by an expression as in Eq. (3), with F, replacing F' (see Section 2.1 and 3.1). Therefore,
as in the zero-dimensional case, v concentrates on minimum points of the functional F;,. These minimisers satisfy the elliptic
problem (5), which therefore describes temperature profiles around which the solutions of the stochastic problem (7) tend to

cluster.
1.2 Main results and structure of the paper

This paper focuses on the study of the properties and the interpretation of the steady-state solutions of a 1D-EBM depending
on a bifurcation parameter. Motivated by 0D-EBMs, there is a wide consensus in the literature, supported mainly by numerical
simulations, regarding the existence of either one or three "interesting" steady-state solutions for 1D-EBMs. Firstly, in Theorem

1 we prove the existence of a steady-state solution for the ID-EBM by solving the associated variational problem
inf{Fy(u) | veX},

i.e. showing the existence of a global minimum point for the functional F, over a suitable function space X. Secondly, in
Theorem 2 we provide sufficient conditions to have at least three steady-state solutions. These consist of two local minima and

one saddle point. The conditions can be summarized as follows:

(i) the viscosity « should be sufficiently large,

(i1) the space-averaged global radiation balance R of the 1D-EBM should present a double-well potential with sufficiently

deep minimum values attained at the two minimum points.

In essence, the conditions require that steady-state solutions of the spatially in-homogeneous 1D-EBM (5) are sufficiently well
approximated by steady-state solutions of the spatially homogeneous model obtained from spatially averaging the terms in Eq.
(5). These assumptions give us the possibility to prove the existence of two minimum points for F; further, these minimum
points are also close to the minimum points of the space-averaged model. Then, the Mountain Pass theorem, a classical result
from the calculus of variations, enables us to deduce the existence of a third steady-state solution (Ghil and Childress (1987);

Jabri (2003)). Thirdly, we investigate the uniqueness of the solution of the variational problem in terms of the value function
Vig) = inf{Fy(u) | uweX},
which is the minimum value attained by I, as a function of ¢ which relates to the greenhouse gas concentration. In fact:
(i) in Theorem 3, we show that V' is Lipschitz continuous, thus differentiable except for a Lebesgue zero-measure set;

(ii) furthermore, the value function fails to be differentiable if and only if there are two or more co—existing global minimisers

for F,. Moreover, V' is concave and hence its derivative V' is non-increasing.

(iii) in Corollary 4, we demonstrate how the derivative of V' is, up to the sign, the global mean temperature of the global
minimum point ug for Fj,. This establishes a one-to-one correspondence between the graph of V' and the branch of the

bifurcation diagram corresponding to uyg.
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A by—product of our analysis is that the global mean temperature is non-increasing with respect to greenhouse gas concentration
q. Moreover, it varies continuously with respect to ¢, as long as there is a unique minimising temperature profile. However,
for greenhouse gas concentration with coexisting global minimisers, the global mean temperature may exhibit a discontinuous
jump as coexisting minimisers cannot all have the same global mean temperature. Furthermore, if a jump occurs, it must
necessarily be upward with increasing greenhouse gas concentration.

Our results have a number of interesting physical interpretations. The elliptic ID-EBM not only describes stationary solutions
of the time dependent 1D-EBM but moreover characterises “likely” climates around which the solutions of the stochastic 1D-
EBM fluctuate. Global minimisers carry special importance as they are exponentially more likely than just local minimisers.
Co-existence of global minimisers is just of special interest as these represent equally likely climate scenarios, and intuitively
it seems plausible that rapid transitions between those climates are a dominant feature of the dynamics, although this point
is not investigated further here. Furthermore co-existence of global minimisers imply a discontinuous change of global mean
temperature which will jump upwards with increasing greenhouse gas concentration.

We expect that additional interesting physical conclusions can be drawn through identifying F7, with the (negative) entropy
production rate (North and Kim, 2017, Section 7.4.2); this will be subject to future work.

This paper is organized as follows. In Section 2, we describe the methodology used throughout our work. Firstly, we review
the 1D-EBM proposed in (Bastiaansen et al. (2022)). This model serves as the reference for our paper and it is characterized by
the presence of an additive parameter in the radiation budget, which determines the number of steady-state solutions. Secondly,
we recall the properties of the steady-state solutions of the 1D-EBM, that can be obtained from numerical simulations. Finally,
we rigorously define the stochastic EBM by introducing space-time white noise. Specifically, we review the invariant measure
formula for the resulting reaction-diffusion SPDE. In Section 3, we present our novel findings. In Section 3.1, we discuss the
existence of a solution for the variational problem and outline the properties of the potential functional. Moreover, we explain
why the invariant measure of the stochastic EBM concentrates around the global minimum points of the potential functional.
Finally, we provide sufficient conditions to demonstrate the existence of at least three steady-state solutions. In Section 3.2,
we characterize the uniqueness of the solution to the variational problem in terms of the value function. Additionally, we
demonstrate that the value function is Lipschitz, concave and its derivative is non-increasing. In Section 3.3, we illustrate how
knowledge of the value function allows derivation of a portion of the bifurcation diagram and vice versa. In Section 4, we offer
a comprehensive summary of our work. In Appendix A, we describe the finite difference method employed to conduct the
numerical simulations presented in this study. Furthermore, the Supplementary Material manuscript includes rigorous proofs

of our main results.

2 Background and methodology
2.1 A 1D energy balance model

The fundamental mechanism of 1D-EBMs is that the temperature u = u(t,x), averaged in the zonal direction, evolves in time

due to: (i) the diffusion of energy between adjacent regions, (ii) the energy absorbed by the planet, and (iii) the energy emitted



140

145

by the planet. The 1D-EBM we consider in this paper is a Seller type EBM where the absorbed radiation depends on an additive

parameter (Bastiaansen et al. (2022)). We only add a change in the diffusion term in order to get a non-degenerate parabolic
PDE. Given an initial condition %, the non-linear, parabolic, reaction-diffusion PDE governing the model is given by:

ou

T

K(=Dug(t,—1) = k(1)ug(t,1) =0, t>0

Oy [K(2)0pu] + Ro(x,u) — Re(u;q), t>0,z€(—1,1)

u(0,2) =a(z), xe€[-1,1], (3)

where R, and R, represent the radiation absorbed and emitted by the planet per unit area, respectively. C is the heat capacity,
and the differential term parametrizes the meridional heat transport. The boundary conditions impose no flux at the poles. We
now provide further details regarding the parametrization of these terms. The values of the constants of the model can be found
in Table 1.

Firstly, the absorbed radiation is assumed to have the form:
Ra(z,u) = Qo(z)(1 — a(u)),
where @ is the solar radiation per unit area and « is the albedo. The solar radiation is assumed to be
Qo(z) = Qo (c1 — c22?), ¢ >0

where Qy is the mean solar radiation and ¢; are constants. The albedo, which is the proportion of the incident light or radiation
that is reflected by a surface, is parametrized by a smooth monotonically decreasing function with a peak derivative in a
reference temperature u,..s close to the melting point of ice. Specifically

1+ tanh (K (u — trey))
2

a(u) =a1+ (g —aq)

where K > 0 is a rate parameter and oy > s are respectively the ice-albedo and the water-albedo.

Second, the emitted radiation is modelled using the Stefan-Boltzmann law, in other words assuming that the Earth radiates
as a black body. Under this assumption, the energy radiated is proportional to the fourth power of its temperature and it is given
by:

Re(u;q) = egoou’ —q,

where ¢y and o are respectively the emissivity and Boltzmann’s constant. The additive parameter g describes, in a simplified
way, the radiative forcing by COa, i.e. the effect of atmospheric CO> on the energy budget (Stocker et al., 2014). It is worth
explaining: (i) the additive structure of ¢, and (ii) its independence on the spatial variable z. About the first point, denote by
C the global CO2 concentration in part per million (ppm) and assume, just for explanation purposes, a dependence of the
outgoing radiation both on u and C. To avoid confusion, we denote by R. =R, (u,C) the outgoing radiation depending on

temperature and CO5 concentration. If we linearize R, w.rt. temperature, we get:

Re(u,C) = A(C) + B(u— ),
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where 4 is a reference temperature. In (Myhre et al., 1998), three radiative transfer models are used in order to get that the
dependence of the outgoing radiation which respect to changes in CO; is given by:
A(C)=A4;—As-In (CC'O) ,
where C is a reference CO4 concentration and A;, A2 > 0 are explicit constants. In conclusion
R.=A1+B(u—1a)—q, q:AQ~ln<C>7
Co
and thus the radiative forcing of CO- has an additive structure. About point (ii), we adopt the well-mixed hypothesis for COs.
In other words, we assume that atmospheric CO; is globally homogeneous, thereby inducing a radiative forcing ¢ independent
of latitude (Houghton et al., 2001). This assumption overlooks the spatial pattern of CO5 concentration, which affects many
aspects of the climate system, such as the pole-ward heat transport (Huang et al., 2017). It was the state-of-the-art assumption
two decades ago, although today is it clear to keep in consideration the spatial distribution of radiative forcing. (Houghton
et al., 2001; Byrne and Goldblatt, 2014; Zhang et al., 2019).

The third component of the model is the term 0, (x(x)u, ). It parametrizes the meridional heat transport, that is the phe-
nomenon resulting from the poleward transportation of heat by the Earth-atmosphere system due to the surplus of net radiation
heating in the tropics and the deficit in the poleward regions. Usually, the diffusion function x(z) is assumed null at the poles,
i.e. with a form such as x(z) = D(1—2?), where D is a diffusion constant. This choice is based on the paradigm of mimicking
the conduction of heat on a sphere, see (North and Kim (2017)) for a derivation. On the other hand, it leads to mathematical
difficulties in the treatment of the singular PDE arising, in particular in the study of the corresponding variational problem,
from which all our results follow. To avoid these difficulties, which at the moment remain an open problem to solve, we add as

simplifying assumption that x is non-degenerate and given by:
k(x) =D —2*)+6, D,5>0.

We choose § = 0.003, but its value is not important for the results of this work and different choices can be made.

For the parabolic problem (8), the global existence and uniqueness of the solution can be demonstrated, given a regular
initial condition (Temam (1997)). Furthermore, if the initial condition is non-negative, the solution remains non-negative for
any time ¢ > 0. This can be shown proving that [0, 400) is an invariant region for Eq. (8), exploiting the fact that there exist
C4,C5 > 0 such that R(x,u;q) > Cy > 0 for all x € [—1,1], u € [0,C5] (Smoller (2012)).

We recall the formulation of stochastic EBMs using the theory of SPDEs (Da Prato and Zabczyk (2014)). Denote by A the

Laplace operator with Neumann boundary conditions. Given an initial condition u € H, we consider the SPDE
Opu = KAu~+ Qo(z)B(u) — Re(u;q) + edWy

Ujpmo = ©)

where € > 0 and (W;);>0 is a cylindrical Brownian motion on H. Under the minor cut-off modifications introduced in Section

3.1, it can be proved that the H-valued stochastic process (u;); which solves in mild sense (9) is unique and has continuous
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trajectories (Da Prato and Zabczyk (2014)). In addition to this, there exists a unique Gibbs invariant measure

1
1 2
v(du) = 7 &P ——Z/R(x,u;q)da: w(du), (10)
€
1
where R is as in Eq. (6), . ~ N (0, fiAfl) is a symmetric Gaussian measure on H with covariance Q = fiAfl (Da Prato

(2004, 2006)). The covariance operator Q: H — H is the unique linear operator such that [, (h1,¢)(h2,¢)u(d¢) for each
hi,he € H, where (-,-) denotes the scalar product in H. Further, it can be shown that Q is symmetric, positive-definite and
its eigenvalues (A\p)rez satisfy >, ., Ax < oo. In the following lines, given a symmetric, positive-definite operator Q such
that kez A < 00, we are going to explain how to construct an H-valued random variable X with law A/(0, Q). Indeed,
consider a sequence (Ry)kez of i.i.d. R-N(0,1) random variables defined on a probability space (€2, F,P). We can assume
without loss of generality that the eigenvectors (e )xcz associated to the eigenvalues (Ag)xez form an orthonormal basis of

H . Then, the H-valued random variable

X = Z mRkek7

kEZ
is well defined, i.e. the series defining X converges in L?(Q, F,P; H), and has law A/ (0, Q) (Da Prato, 2006, Proposition 2.18).
Further, the convergence also holds P-a.s. in H (Da Prato, 2006, Proposition 2.13).
As mentioned in the introduction, this measure is concentrated on minimum points of the functional F,. A heuristic expla-
nation of this fact can be found in Section 3.1.

The stationary problem associated with the 1D-EBM is given by the elliptic equation for u = u(z):

(k(z)u) 4+ Qo) B(u) +q—coopu* =0, ze(—1,1),
W'(=1)=4'(1)=0, wu(x)>0. (11)

These solutions can be either stable or unstable, depending on the long-term behaviour of their infinitesimal perturbations. As
pointed out in (Bastiaansen et al. (2022)), if the reaction-diffusion equation for u = u(¢, ) was space-homogeneous, i.e. of the

form:
Ou = kAu+ R(u), (12)

then the stable steady-state solutions would correspond to functions that are constant in space and time, with values given as
the roots of

R(y)=0.

A rigorous result in this direction has been shown in (Gaspar and Guaraco (2018)). Indeed, for a fixed double-well symmetric
potential, it has been proved that: (i) if x is large enough, the only steady-state solutions of (12) are the constants where
the potential is critical, and (ii) the number of unstable steady-state solutions to (12) can be made arbitrary large as k — 0.
Introducing a spatial dependence in R = R(z,u) leads to a space-heterogeneous model. Depending on the space heterogeneity,

it can exhibit any number of both stable and unstable steady-state solutions (Bastiaansen et al. (2022)). The variational approach
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Figure 2. (a) Bifurcation diagram of the steady-state solutions in the (¢, %) plane, with & = [ _11 u(x)dzx. Solid lines denote stable solutions
us and uw, while dashed lines the unstable solution was. (b) Steady-state solutions of the EBM for g = 25. In every point « of the space
domain, the three steady-state solutions satisfy ugs(z) < un(z) < uw (x), with maximum temperature attained at the equator and minimum

temperature attained at the poles.

to the study of steady-state solutions provides a tool for characterizing the stable ones, which are the local minimum points of
a functional.

In the following paragraph, we describe the properties of the solutions of (11). As the parameter ¢ changes, numerical
simulations for Eq. (11) suggest the existence of either one or three steady-state solutions. That is, there exists ¢; < g2 s.t. Eq.
(8) has one steady-state solution if ¢ < ¢ or ¢ > ¢o, and the steady-state solutions are three if ¢; < g < g». In the latter case,
we denote the solutions by ug < ups < uyy, corresponding respectively to the snowball climate, a middle (or intermediate)
climate and the warm climate. As an analogy, we denote by ug the unique steady-state solution for ¢ < ¢; and by uyy the
unique one for ¢ > ¢o. Figure 2a shows the bifurcation diagram of the model in the (¢,u) plane, where @ = [ _11 u(z)dx
denotes the average temperature. Figure 2b depicts the three steady-state solutions for ¢ = 25 € (q1,¢2). A stability analysis
can be conducted to determine the stability of the steady-state solutions. The results show that ug and uy are stable, while the
middle climate u; is unstable. Furthermore, it’s worth noting that special values ¢ = g1, g2 correspond to bifurcation points of
saddle-node type, where the unstable solution u,; collides with either uy (for ¢ = q1) or ug (for ¢ = ¢2) and then disappears.
These numerical findings regarding the number and stability of the steady-state solutions will be supported and validated using

rigorous arguments, as in the next section.

10
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Table 1. Parameters and constants appearing in the Seller EBM (8).

Symbol Meaning Value
D Diffusivity constant 0.3
) Perturbation constant- meridional heat transport parametrization 0.003
Qo Mean solar radiation 341.3 Wm™?
€0 Emissivity 0.61
00 Boltzmann’s constant 5.67-10"%Wm2K™!
o Ice albedo 0.7
a2 Water albedo 0.289
K Constant rate - albedo parametrization 0.1
Ureyf Reference temperature - albedo parametrization 275K
Cr Heat capacity 5-10% Jm—2K!

3 Results
3.1 Potential functional and its minimiser

In this section, we: (i) provide an intuitive motivation for why the invariant measure for the stochastic EBM concentrates on
minimum points of the functional F;, (ii) prove the existence of global minimum points for Fj, using the direct method, (iii)
present sufficient conditions on the viscosity « and the space-averaged potential R (u) = 3 f_ll R(z,u)dz, with d,R = —R =
R. — R,, to ensure that the 1D-EBM has at least three steady-state solutions.
Firstly, consider the stochastic EBM (9). Assume that for a negative value of u, where the model has no physical meaning,
the Stefan-Boltzmann law is extended as:
gooout, ifu>0

Re(u) =
0, if u <O0.

and [ is smoothly extended to 5 by setting it to zero outside the physically relevant range, as described in the Supplementary

Material. Then, Eq. (9) possesses a unique Gibbs invariant probability measure given by:

5
2 U 2
ity cexn (<2 [ en 0%~ Qu0) B —quds | ),y N0~ (13)
€ K
21
where (u)4+ = max{u,0} is the positive part, N'(0, — %Afl) denotes a symmetric gaussian measure with covariance operator

Q=— %Afl over the Hilbert space H = L?(—1,1) and Z is the normalization constant. See (Da Prato (2004)) for a rigorous

derivation of the invariant measure for a reaction-diffusion model with a polynomial homogeneous reaction term. We move to
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explain in what sense v is concentrated around minimum points of Fy. In fact, for v € H the gaussian measure y is formally

given by:
(du) = — (07 uu) ) d
u)=—exp| —— u, U u
/’L Zl p 2 ) b
where Q1 = —i—'jA. Here, Z; is a normalization constant, (-, ) denotes the scalar product in H, and du is a formal notation

for the Lebesgue measure on H. If we perform an integration by parts, we get

1 1
pld) = - exp (S5 (u"u) ) du = - exp (— g |[3) du.

Plugging the previous identity into Eq. (10), we obtain:
(v)

5

1
2

v(du) xexp | —— /5000

€

—1

K
£ Qo(e) Blu) — qud + 5|13 | | du

X exp <—€22Fq(u)> du.

From this heuristic formula, we see that points u such that Fy () is not a global minimum have exponentially smaller density
than the minimum points. Indeed, if u; is a global minimum point and u # w1, then the mass given by v in a small neigh-
bourhood around u is exponentially smaller than the mass given to a neighbourhood of the same size around w4 ; in particular,
the ratio between the two masses is given by exp (— 2 (Fy(u) — Fy(uq))). The previous derivation is formal because the
Lebesgue measure cannot be defined on an infinite dimensional Hilbert space. For a more rigorous explanation, see Section 2
in the Supplementary Material.

Next, we discuss the properties of the functional F,;: H»?(—1,1) N {u > 0} — R given by:

1

£

1
Fyfu) = [ %000 = Qo()Blu) = quds + 5 [ k(o) (@))* da.
1 -1
where B is a primitive of the co-albedo 3(u) =1— a(u) and H! = H*?(—1,1) denotes the Sobolev space of order 1 and
exponent 2, i.e. the function space where a function v and its derivative v’ (in weak-sense) are both square integrable over
[—1,1]. See (Brezis (2011)) for more details about Sobolev spaces. The functional Fj, depending on the parameter ¢, is
known in the literature as potential functional or Lyapunov function (North et al. (1979); North and Kim (2017)). The study
of the functional Fj, gives useful information thanks to its links with the invariant measure for the stochastic ID-EBM, as we
have seen, and the stable steady-state solutions for the deterministic ID-EBM which emerge as necessary conditions for the

stationarity of F,. Going deeper with the former point, the first variation of Fj, in the point v in direction h is given by:

d
O0F(u,h) = —Fy(u+sh)js—o =

a (12000 — Qo(a)3(u) — ) e + [ w(a)u (2} ()

[u4€000 = Qo(z)B(u) —q— (n(m)u’(m))’} hdx

L L—
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where in the last identity we have used the integration by parts. Since h is arbitrary, u is a stationary point for the functional F,
if and only if it is a steady-state solution for the EBM. In particular, local extremum points for F;, correspond to steady-state
solutions of the EBM. Any local minimiser of Iy, represents a locally attractive solution of the deterministic 1D-EBM. In view
of our interpretation of Fy, in terms of the invariant measure, however, global minimisers play a special role since if present and
unique they are exponentially more likely than any other state (including minimisers that are just local). The following result
establishes the existence of a global minimum point for F.

Theorem 1. If g > O, then there exists a global regular non-negative minimiser for I,. In other words, if we consider the

variational problem
inf { Fy(u) |[ue H', u>0}, (14)
then there exists ug € C™° s.t. ug is a solution of the EBM and
Fy(up) =inf {Fy(u) [u€e H', u>0}.
In addition to this, if q belongs to a bounded interval, then u can be bounded uniformly with respect to q:
IM > 0s.t. ug(x) <M, Vzel[-1,1]. (15)

A rigorous proof of the previous result can be found in Section 3 of the Supplementary Material manuscript. The proof relies
on standard arguments from the direct method of calculus of variation exploiting the fact that the outgoing radiation in the
EBM model prevents the temperature from being too high.

Concerning the existence of two local minimum points, let us describe a sufficient condition. Consider the potential function

R: R — R coming from the space averaged model
) 1
R(u) = i/R(x,u)dx.
-1

If the viscosity & > 0 is sufficiently large and the function R has a double well shape with sufficiently deep minimum values
attained at the minimum points, then we are able to prove the existence of two minimum points for F},. Further, it is possible
to prove that the functional F; satisfies a compactness condition known as Palais-Smale condition. This property and the
Mountain Pass theorem give the possibility to deduce the existence of a third steady-state solution. Next, we characterize a
situation in which there are three steady-state solutions, two of which are local minimisers (Jabri (2003)). This is summarized
in the following result.

Theorem 2. Denote by Byyi (v,p) ={u € H* | |lu—v||g: < p} the open ball in H* with center v and radius p > 0. Assume
R has two non-negative minimum points uy # ug, with F,(u1) > F,(uz). Then, there existw > 0 and f,g € O(s™ ) ase — 0T
s.t. if € > 0 satisfies:

(i) R"(u;) > f(8), fori=1,2,
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(ii) k> g(&),
(iii) € <w,
then Fq has two local minimum points U, ,us such that:
(a) B (u1,€) N By (ug, &) =10,
(b) @; € By1(u;,€), fori=1,2,
(c) If ||u—u1|| g1 =& then Fy(u) > Fy(uy) + 6, with § = §(€) > 0.

Note how the previous result can be also interpreted as giving sufficient conditions for the convergence of the stable solutions
of a space-inhomogeneous EBM to the stable solution of the corresponding space-averaged model, as the diffusion becomes

large.
3.2 Value Function and uniqueness for the functional minimiser
The key element of this section is the value function, which is given by:
V(g) =inf{F,(u) |[u€e H", u>0}.

From Section 3.1, we know that the previous infimum is indeed a minimum and so V'(¢) can be interpreted as the minimum
possible value attained by the potential functional over the possible temperature profiles «. Since a minimum point for F,
is also a stationary point for the functional, the value function can be evaluated numerically by computing the minimum of
the three steady-state solutions wug, us, uyw . Following this strategy, Figure 3 shows g — F(u.), with u, € {ug,upr, uw }.
Particularly, there exists a point g3 s.t. us it the global minimum point of Fj, for ¢ < g3, while uyy is the global minimum point
for g > ¢s. Further, for ¢ = g3 the function F, has two different global minimum points ug,uy and g = g3 correspond a non-
differentiability point for V. In addition to this, the value function appears to be concave, thus with a decreasing derivative,
where it exists. Summarizing, the numerical evaluations of V' (q) suggest the following result, a rigorous proof of which is
included in the Supplementary Material.

Theorem 3. Assume q belongs to a bounded interval. Then:

(i) V is Lipschitz continuous.

(ii) q is a non-differentiable point for V' if and only if there is more than one minimiser for F,.
(iii) V is concave and V' is non-increasing.

We also see numerically that u ;s is actually never a global minimiser for the specific functional I, considered here, but we
do no have rigorous proof of this fact. Let’s briefly discuss the proofs of the previous points. The proof of (i) follows from the

facts that the sup-norm of the minimiser u( can be bounded uniformly in ¢ and that, given a family {g; },c; of L;-Lipschitz

14
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Figure 3. Potential functional F}; evaluated in the three steady-state solutions us,unr, uw. For ¢ < g3, us is the global minimum point,
while uw is a local minimum point. On the other hand, for ¢ > g3 the vice versa happens. Solid lines correspond to values of the functional

attained on stable solutions, dashed lines for values corresponding to unstable ones.

functions g;, then ing gi is Lipschitz if the constants L; can be bounded uniformly. In our case, given u € H' non-negative, we
1€

have
1
|y (w) = Fuy (w)] < |pa — pof / |u(z)|da < 2M |1 — pof
-1

where M > 0 is the constant appearing in Eq. (15). On the other hand, the proof of point (ii) is less straightforward, although
being very similar to the one for the existence of a solution for the variational problem. The proof of point (iii) makes use
of the concept of semiconcavity, a generalisation of that of concavity, which is fundamental in optimal control (Cannarsa and
Sinestrari, 2004). The main reason for the concavity of V' though is that V' is an infimum over functions that are affine in q.

Hence the fact that ¢ is additive is essential for this result. More details can be found in Section 4 and 5 of Supplementary

Material.
3.3 Value function graph and bifurcation diagram

An additional property of the value function can be observed when comparing the bifurcation diagram (Figure 4a) and the
graph of the value function (Figure 3).

Corollary 4. If V is differentiable, then V'(q) = — fil wo(x)dx, where v is the only minimiser for F.

In other words, the part of the bifurcation diagram that corresponds to the global minimiser, represented by the subgraph
(q, f_ll uo(x),dz), can be determined based on the knowledge of V”’, and vice versa. Figure 4 compares Figure 2a and Figure
3, highlighting in magenta the corresponding parts of the two graphs. From the mathematical point of view, the previous result

is a consequence of the proof of Theorem 3.
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Figure 4. Comparison between the value function graph (left) and bifurcation diagram (right) for the 1D-EBM. The magenta-shaded area
highlights the parts of the plots which are in one-to-one correspondence. (a) Functional Fy evaluated on steady-state solutions, as in Figure

3. (b) Bifurcation diagram, as in Figure 2a.

It is worth pointing out that by combining Theorem 3 and Corollary 4, a valuable property emerges, i.e., the global mean
temperature of the functional minimiser is non-decreasing with respect to ¢. In other words, as the concentration of CO rises,
the global mean temperature increases. Additionally, through this monotonicity and Froda’s theorem (Rudin, 1976, Theorem
4.30), we also establish that the global mean temperature is continuous, except for, at most, a countable number of upward
jumps.

In the second part of this section, we demonstrate the applicability of Corollary 4 to other reaction-diffusion equations. We
use as an example a spatially heterogeneous Allen-Cahn equation (ACE), already considered in (Bastiaansen et al., 2022). For
an initial condition u, this model is given by:

Opu = ﬁloAu +u(l—u®)+q+ %cos(mc), x € (-1,1), t >0,
ug(t,—1) =u,(t,1) =0, ¢>0,

Ujr—o = T (16)
The associated elliptic problem for © = u(z) is
0= Lu”—&—u(l—uz)—l—q—i—lcos(waz) ze(—1,1)
100 2 ’ T
u'(=1)=4/(1) =0. a7

In this case, the potential functional takes the form

/ ut(z) P (x
Jq(w) :/ i ) _ é ) —u(x)(Q+%cos(7m‘))dx,
S
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Figure 5. Comparison between the value function and the bifurcation diagram for the non-homogeneous ACE. The magenta-shaded area
highlights the parts of the plots which are in one-to-one correspondence. (a) Potential functional evaluated on the steady-state solutions: u; is
the global minimum point for ¢ < —ge, u3 is the global minimum point for —gs < ¢ < gs, us is the global minimum point for ¢ > g¢. Note
that ¢ = £q¢s are the non-differentiability point for the value function, corresponding to non-uniqueness of the minimiser. (b) Bifurcation

diagram.

and all the properties discussed in Section 3.1 and 3.2 can be extended to this equation. Specifically, Theorems 1, 2 and 3
hold. But in this case, the structure of the bifurcation diagram is more complex, even if symmetric which respect to ¢ = 0.
Indeed, through numerical experiments, it is possible to deduce the existence of 0 < g4 < g5 such that: (a) for |¢| > g5 or
lg| < qu, there exists a single steady-state solution, which is stable, (b) for ¢4 < |q| < g5, there are three steady-state solutions,
two of which are stable while the third is unstable. Further, ¢ = q4, g5 are bifurcation points of saddle-node type. We denote
by wu; the steady-state solution for ¢ < —gs, by ug,us3 the steady-state solutions appearing at the bifurcation point ¢ = —g5
and existing for —gs < ¢ < —q4 in addition to u; and by u4,us the steady-state solutions appearing at ¢ = g4 and existing for
qa < q < g5 in addition to u3. Regarding the potential functional J,, in this case there exists gs € (q4,q5) such that u; is the
global minimum point for the functional for ¢ < —gg and u3 is the global minimum point for —gg < q < gg, while us becomes
the global minimum point for ¢ > g¢. A picture for the bifurcation diagram just described and the value function is shown in
Figure 5. Note that ¢ = £¢g are the only values of the parameter ¢ for which the value function is not differentiable and also

the only points in which the global minimiser of the variational problem is not unique.

4 Conclusions

In this paper, we have considered a one-dimensional energy balance model depending on a bifurcation parameter ¢, describing
the effect of CO5 concentration in the atmosphere and affecting the energy absorbed by the planet. Numerical simulations show
that this model can exhibit either one or three asymptotic solutions, depending on the values of ¢g. We began our analysis by in-

troducing the potential functional Fj, associated with the steady-state solutions. The functional F, has significant implications,
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as it is closely linked to both the stability of steady-state solutions of the EBM and the invariant measure for the stochastic
EBM obtained by perturbing the model with an additive Gaussian white noise. In particular, the invariant measure of the sys-
tem concentrates on global minimisers of F};, giving them exponentially larger weight than local minimisers. By analyzing the
first variation of F;, and applying standard arguments from the direct method of calculus of variations, we established that F,
possesses a global regular minimiser for all values of the parameter g. Furthermore, we provide sufficient conditions to prove
the existence of at least three steady-state solutions for the ID-EBM.

We then introduced the value function V'(¢), which represents the minimum value attained by the potential functional among
all possible temperature profiles. By evaluating V' (¢) numerically using the steady-state solutions ug,ups,uy, we observed
that the function exhibits Lipschitz continuity and concavity. Furthermore, non-differentiability points of V' (g) coincide with
points where multiple global minimisers exist for F,. Lastly, when V' is differentiable, its derivative is non-increasing and equal
to the negative global mean temperature, i.e. V’(¢q) = — [ 711 uo () dz, where v is the minimiser for F;,. Moreover, as a conse-
quence of the explicit expression for V”, the global mean temperature is non-decreasing with respect to g and it is continuous,
except for a Lebesgue zero-measure set of upwards jumps. These are the non-differentiability points of V, corresponding to
the case where two or more global minimisers, hence multiple climate equally probable, exist for the stochastic EBM. These
findings, which we are able to prove rigorously, allow us to establish a correspondence between the bifurcation diagram and the
graph of the value function. Additionally, we applied our results to a spatially inhomogeneous Allen-Cahn equation, to show
how our results still hold for more general space-inhomogeneous reaction-diffusion equations.

The diffusion function x = x(x) that we have examined is non-degenerate at the boundary of the spatial domain. As noted
in Section 2.1, this is an assumption to simplify the study of the variation problem. At present, there remains a problem with
how to extend our results to the case where & is degenerate at the boundary.

Concerning future development of this work, one interesting aspect we are working on is to understand how the invariant
measure for the stochastic EBM changes close to bifurcation points. This points in the direction of using statistical indicators
to detect the approach tipping points, which in our model correspond to points of discontinuity of the global mean temperature

with respect to the parameter q.

Data availability. This work does not include any externally supplied code, data, or other material. All material in the text and figures
was produced by the authors using standard mathematical and numerical analysis by the authors. The code is available at Zenodo (DOI:

10.5281/zenodo.10469451).

Appendix A: Numerical methods

In this section, we describe the numerical method adopted to approximate the solutions of the elliptic problem (11) numerically.
We used a classical finite difference scheme, which we are going to illustrate (Quarteroni and Valli (2008); Thomas (2013)).

To simplify the notation, let’s define f(z,u) = R.(z,u) — R, (u) the non-linear reaction term. We consider a uniform mesh for

18



[—1,1] made of n 4 1 points

2
ro=—-l<z1<---<zp=1, x;=—14iAz, i=0,...,n, Axr=—.
n
355 Then, the solution to the problem can be approximated by considering the system

Ui—1 i1 = Ui (K1 F Ry 1) HUip1hg L

Ax?

+f(xl7u2):0a i=0,..,n

Uy —u—1 _ Un41 — Up—1 -0
2Ax 2Ax

where u_1,un41 are ghost points and u; = u(x;), kix1 = k(T 1), Tx1 = 2; £ Ax/2. The system of equations can be

written in vector form as:

[—Az/2 0 Az/2 | [0 ]
Kotz —(K_1j2+HK1y2) K12 fo
1 .
A wtl ] =0
Kn—1/2  —(Kn—1/2 T Knt1/2) Eny1/2 In
i —Az/2 0 Az/2 ] | 0 |
T K
with u = [u717 . +1} and f; = f(z;,u(z;)). At this point, multiplying the first equation by 2—2%, subtracting the second

one and dividing by 2, we get
k12t K1y Koigthye  fo
5 U_1 + — 5 UQ 5 = 0.

In a symmetric way, multiplying the last equation by —2%;/2, subtracting the second last equation and dividing by 2, we get

Hn—1/2+ffn+1/2u _ Kn—1/2 1 K12 fn

9 n ) Un+1 — ? - O

In this way, the Neumann version of the elliptic problem has the form:

[ K_o1/2FK1/2 K_1/2FK1/2 e - .
T2 2 —fo/2
K_1/2 —(K_1/2 +K1/2) K12 fo
1
.-. .-. ... u+ : :O
Az? :
Kn—1/2  —(Kp—1/2 +Knt1/2) Knt1/2 In
Kn—1/2FtKnt1/2 Kn—1/2FKnt1/2
L 2 - 2 h __f'n/2_

and consists in a set of (n+3) non-linear equations, whose solution u can be approximated using the Newton-Raphson method
(NRM). The initial guess used to start the iteration in NRM is obtained via a shooting method, thus reducing the boundary
value problem given by the elliptic PDE in Eq. (11) to an initial value problem (IVP). A linear search is applied to find the
360 shooting parameter, i.e. the initial condition of the IVP. Lastly, the solution of the IVP is approximated using the classical

Euler’s method for ODEs.
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