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Abstract. The spatial heterogeneity related to complex topography in California demands high-resolution (<5 km) model-

ing, but global convection-permitting climate models are computationally too expensive to run multi-decadal simulations. We

developed a 3.25 km California climate modeling framework by leveraging regional mesh refinement (CARRM) using the

U.S. Department of Energy’s (DOE) global Simple Cloud Resolution E3SM Atmospheric Model (SCREAM) version 0. Four

5-year time periods (2015-2020, 2029-2034, 2044-2049, 2094-2099) were simulated by nudging CARRM outside California5

to 1° coupled simulation of E3SMv1 under the SSP5-8.5 future scenario. The 3.25 km grid spacing adds considerable value

to the prediction of the California climate changes, including more realistic high temperatures in the Central Valley, much im-

proved spatial distributions of precipitation and snowpack in the Sierra Nevada and coastal stratocumulus. Under the SSP5-8.5

scenario, CARRM simulation predicts widespread warming of 6-10 °C over most of California, a 38% increase in statewide

average 30-day winter-spring precipitation, a near complete loss of the alpine snowpack, and a sharp reduction in shortwave10

cloud radiative forcing associated with marine stratocumulus by the end of the 21st century. We note a climatological wet

precipitation bias for the CARRM and discuss possible reasons. We conclude that SCREAM-RRM is a technically feasible

and scientifically valid tool for climate simulations in regions of interest, providing an excellent bridge to global convection-

permitting simulations.

1 Introduction15

California is a topographically diverse state known for the rugged Sierra Nevada mountain range, the expansive Central Val-

ley, and its scenic and complex coastline. California has a unique and diverse combination of Mediterranean, mountain, and

desert climates each of which includes their own microclimates due to fine-scale heterogeneity caused by complex topography,

coastline, and elevation differences. Due to the seasonal persistence of high pressure ridges, California is under the influence

of large-scale subsidence that typically results in dry summer months (Karnauskas and Ummenhofer, 2014). The high pressure20

ridge in combination with marine fog results in a relatively cool summer climate along the coast (Pilié et al., 1979; Samelson

et al., 2021), while low-lying inland valleys and desert areas are subjected to a much hotter summer climate. Atmospheric

rivers (ARs) are responsible for the majority of California’s precipitation (Huang and Swain, 2022) and are characterized as

narrow, concentrated moisture surges from the central Pacific Ocean often during wintertime (Ralph et al., 2006; Leung and
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Qian, 2009; Dettinger et al., 2011; Chen et al., 2018; Swain et al., 2018; Huang et al., 2020; Rhoades et al., 2021; Huang and25

Swain, 2022). California’s precipitation patterns are highly intermittent, with snowpack acting as a key natural store of that

precipitation during the wet winter season and spring snowmelt runoff producing large freshwater supply primarily from the

Sierra Nevada (Bales et al., 2011; Hanak et al., 2017). Snowpack is also important to California’s energy component, with

hydroelectric power providing 56% of the western U.S. energy supply and up to 21% of California’s diverse energy portfolio

(Stewart, 1996; Bartos and Chester, 2015; Solaun and Cerdá, 2019).30

With climate change, California is likely to experience significantly warmer temperatures, less snowpack, a shorter snowpack

season, and more precipitation settling as rain rather than snow, resulting in earlier runoff diversions, increased risk of winter

flooding, and reduced summer surface water supplies (Gleick and Chalecki, 1999; Hayhoe et al., 2004; Leung et al., 2004). As

one of the world’s largest agricultural suppliers and a key U.S. energy supplier, changes in regional temperature, precipitation,

snowpack, and water availability in California could significantly affect the state’s agricultural economy and future power35

supply capacity (Tanaka et al., 2006; Hanak and Lund, 2012; California Department of Food and Agriculture, 2016; Bartos

and Chester, 2015; Pathak et al., 2018; Arellano-Gonzalez et al., 2021). Specifically, recent downscaling studies have found

that under the impacts of climate change, California and the western U.S. will experience significant reductions in snowpack,

including reduced winter snowfall, earlier spring snowmelt, and increased interannual variability, with important implications

for water management and flood risk (Berg et al., 2016; Hall et al., 2017; Musselman et al., 2017; Rhoades et al., 2017; Walton40

et al., 2017; Musselman et al., 2018; Rhoades et al., 2018a; Marshall et al., 2019; Sun et al., 2019; Siirila-Woodburn et al.,

2021). In addition, other renewable energy facilities, particularly wind and solar, are growing rapidly in California, with wind

deployment plans are projected to provide 14% of the energy supply by 2050 (Edenhofer et al., 2011; Barthelmie and Pryor,

2014). Predictions of future wind and solar generation in California have also received attention (Crook et al., 2011; Wang

et al., 2018).45

California’s winter precipitation fluctuates dramatically from year to year due to changes in the location of the jet stream,

and this strong precipitation volatility can subject California to extreme hydrological events such as megafloods and extreme

droughts (Swain et al., 2018; Dettinger, 2016). While the majority of California typically remains dry during the summer

months, the high-elevation deserts in the southeast portion of the state can experience brief but intense thunderstorms due to

the southwest monsoon (Adams and Comrie, 1997; Prein et al., 2022; Higgins et al., 1999). Virtually all parts of California are50

vulnerable to relatively long-duration heat waves during the summer months (Gershunov et al., 2009), with inland communities

being most affected. These heat-waves not only pose major health risks, but they often contribute to increased wildfire activity.

In the autumn, strong Santa Ana/Diablo winds from the interior desert plateau rapidly increase the risk of wildfires (Williams

et al., 2019; Keeley et al., 2009). In addition, the intricate variability of temperatures and climates over very short distances

across California, such as the cool downslope mountain-valley circulations at night (Zängl, 2005; Pagès et al., 2017; Jin et al.,55

2016; Junquas et al., 2018) and the elevation dependence of snow-rain transition (Guo et al., 2016; Minder et al., 2018; Winter

et al., 2017; Rhoades et al., 2016, 2017), underscore the state’s vulnerability to diverse climate extremes. The processes that

give rise to these microclimates require the use of high-resolution models to understand their interactions and project how they

may become altered under climate change.
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To reliably predict climate change in California and assess the impacts of extreme events in the future, high-resolution60

climate simulations are needed to resolve microclimate features that are highly dependent on the fine-scale heterogeneity.

These include topographic precipitation, mountain snowpack, coastal fog, Santa Ana winds, etc. For example, Caldwell et al.

(2019) found that 25 km was necessary to capture general mountain topography and the associated climatological precipitation

patterns with fidelity. Tang et al. (2023) showed that the topographic precipitation and mountain snowpack are improved in the

E3SMv2 North American 25 km Regionally Refined Model overview relative to the 100 km configuration. However, Huang65

et al. (2020) found that even higher resolution, specifically ~3 km, was needed to accurately simulate and predict precipitation

distributions and potential hazard impacts related to AR events. Rhoades et al. (2023) recently evaluated RRM-E3SM at 14km

vs 7km vs 3.5 km horizontal resolutions and demonstrated the forecast skill of 3.5 km in recreating extreme floods. A 3-km

resolution represents the typical convection-permitting scale, and thus the resolution advantages go far beyond the ability to

simulate ARs since the uncertainties associated with deep convection parameterizations can be avoided (Hohenegger et al.,70

2008; Chikira and Sugiyama, 2010; Kendon et al., 2012; Ban et al., 2014; Prein et al., 2015; Yano et al., 2018; Neumann et al.,

2019; Stevens et al., 2019; Lucas-Picher et al., 2021; Gao et al., 2022, 2023). As an example, Caldwell et al. (2021) found that

many long-standing biases typically associated with conventionally parameterized GCMs are significantly reduced when run

at ~3 km horizontal resolution.

Recently, global convection-permitting models (GCPMs) have become a reality thanks to advances in high performance75

computing (HPC), algorithms, and software optimizations (Satoh et al., 2019). However, it is still very computationally expen-

sive and difficult to perform interannual climate simulations using GCPMs and most simulations using these type of models

have thus far focused on durations of ∼40 days (Stevens et al., 2019; Caldwell et al., 2021; Hohenegger et al., 2023). Higher

resolution requires smaller time steps to achieve numerical stability, which contributes greatly to the cost. In addition, man-

aging the large volumes of data produced by GPCMs further adds more complication. Given the expensive cost of GCPMs,80

regional climate models (RCMs) have played an important role in the last decades (Giorgi, 2019; Gutowski et al., 2020), al-

lowing for low-resolution boundary condition data to be dynamically downscaled to high resolution over regions of interest.

The low-resolution GCMs have been able to provide plausible large- and synoptic-scale climatologies given large scale forcing

(e.g., future emissions and land use changes described in future scenario projections). The sub-grid scale processes are repre-

sented by downscaling techniques (Giorgi, 2019). While RCMs were developed based on limited-area nesting models, GCMs85

now have the capability to employ variable resolution grids and regionally refined meshes by capitalizing on unstructured grid

development (Fox-Rabinovitz et al., 2006; Abiodun et al., 2008; Tomita, 2008; Zarzycki et al., 2014; Skamarock et al., 2018).

In contrast to regional CPMs, which refer to regional climate models with limited areas (e.g., Prein et al., 2015; Kendon et al.,

2017), RRMs are global models. When RRM is run freely, it works exactly like a typical GCM (e.g., Tang et al., 2023), and

there are studies discussing the upscale effects of the refined area in large-scale circulations (e.g., Sakaguchi et al., 2016). Thus,90

although both can be pushed to a CP resolution, RRM and limited-area regional models are fundamentally different in terms

of grid structure and evolutionary history.

Modern regionally refined models (RRM) allow for a gradual transition of the grid from the synoptic scale to the kilometer

scale (Harris and Lin, 2013; Zarzycki and Jablonowski, 2014; Guba et al., 2014; Zarzycki et al., 2014; Rauscher and Ringler,
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2014; Harris et al., 2016; Tang et al., 2019). A unique feature of RRM is that it allows for a seamless transition from coarse to95

fine resolution regions, provided that the model has physical parameterizations that are scale aware. It can also be implemented

as a configuration that more closely resembles a RCM by “relaxing" or “nudging" the refined region to atmospheric and

land/oceanic boundary conditions outside the region of interest (Gutowski et al., 2020). RRM methods have been used in

idealized aquaplanet simulations (Rauscher et al., 2013; Rauscher and Ringler, 2014; Zarzycki et al., 2014) and AMIP and

fully-coupled simulations (Rhoades et al., 2016; Wu et al., 2017; Huang and Ullrich, 2017; Tang et al., 2019; Rhoades et al.,100

2020a; Tang et al., 2023). RRM is a powerful tool because it has the ability to replicate results in a region of interest when

compared to global simulations with uniform high resolution (Bogenschutz et al., 2022; Liu et al., 2023). The cost of RRM

is dominated by the high resolution region, meaning that a high resolution mesh that covers about 10% of the globe would

roughly be equal to about 10% of the cost of running the entire globe at this resolution. Thus, the substantial cost savings RRM

provides enables one to run longer duration simulations or to produce larger ensemble size compared to a GCPM.105

Given 1) the impact of climate change on California and the effects it has on the U.S economy and energy infrastructure, 2)

the requirements of California’s complex fine-scale heterogeneity for convection-permitting scale modeling, and 3) the purpose

of exploring climate change response in long duration integrations; this work proposes to develop a California convection-

permitting climate modeling framework. This framework is based on the Simple Cloud-Resolving E3SM Atmosphere Model

(SCREAM) developed under the United States (U.S) Department of Energy (DOE) Energy Exascale Earth System Model110

(E3SM) project (Caldwell et al., 2021) and RRM configuration (Tang et al., 2019, 2023). This is the first time that SCREAM

is being used for climate-length simulations. One of the main purposes of this paper is to document the modeling strategy used

to perform this ambitious SCREAM RRM simulation, with the idea that one could replicate these methods to be used in other

regions and/or time periods. In addition, by comparing our simulation results to that of a traditional GCM, we aim to highlight

the importance of high resolution to accurately simulate regional climate patterns and changes in California.115

This paper is organized as follows: Section 2 describes the methodology we used, including the California RRM framework,

future projection experiment design, and model evaluation strategy. Section 3 presents the results of SCREAMv0 California

RRM including a baseline comparison with observations and an analysis of the future projection. Finally, in section 4 we

conclude with a discussion on the implication of our results as well as a summary on the application of SCREAM RRM for

RCMs.120

2 Methods

In this section we will first focus on the modeling strategy used in this study, which can be used as guidance for future studies

aiming to use SCREAM RRM for different regions. It includes the descriptions of SCREAM, the regionally refined model

framework, nudging strategy, and future projection experiment. Then we will provide our methodologies for evaluation.
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2.1 Modeling Strategy125

2.1.1 SCREAM Description

The framework for the California convection-permitting RRM in this paper is developed using SCREAM version 0 (Caldwell

et al., 2021), developed under the U.S. Department of Energy (DOE) funded E3SM project (Golaz et al., 2019). SCREAM

has a global resolution of 3.25 km and thus does not parameterize deep convection. SCREAM uses the Simplified Higher

Order Closure (SHOC) (Bogenschutz and Krueger, 2013) to serve as a unified cloud macrophysics, turbulence, and shallow130

convective parameterization, the Predicted Particles Properties (P3) cloud microphysics scheme of (Morrison and Milbrandt,

2015), and the RTE + RRTMGP radiative transfer package to calculate gas optical properties and radiative fluxes (Pincus et al.,

2019). The average aerosol climatology is interpolated from an 1° E3SMv1 simulation (Zhang et al., 2013; Wang et al., 2020;

Zhang et al., 2022). Caldwell et al. (2021) shows that SCREAM has an excellent performance in the simulation of vertical

profile of tropical clouds and coastal stratocumulus, tropical/extratropical cyclones, ARs, and cold air outbreaks; making it135

well suited to serve as the model for the California RRM framework.

SCREAM’s dycore enables the numerical solution of the nonhydrostatic equations of motion (Taylor et al., 2020) using the

High Order Method Modeling Environment (HOMME). HOMME uses virtual potential temperature as the thermodynamic

variable with semi-Lagrangian tracer transport, which enables the use of much larger time steps while maintaining advective

stability compared to explicit Eulerian methods. The time discretization uses an IMplicit-EXplicit (IMEX) Runge Kutta method140

in which an implicit Butcher table for terms responsible for vertically propagating acoustic waves and an explicit Butcher table

used for most equations. The HOMME dycore consists of spectral elements, with each element containing 4 × 4 grid of Gauss-

Lobatto-Legendre (GLL) nodes, while the physics is handled by a uniformly spaced 2 × 2 grid (called “pg2” grid), which

substantially increases the model throughput (Hannah et al., 2021).

SCREAM contains 128 layers in the vertical, compared to the 72 vertical layers in E3SM, though the model top in SCREAM145

is lower (40 km vs. 60 km). Thus, the vertical resolution in SCREAM is nearly twice that of E3SM at most layers, with enhanced

vertical resolution in the lower troposphere. In particular, the improved vertical resolution of the lower troposphere was found

to be a factor that improved marine stratocumulus (Bogenschutz et al., 2021, 2022), which is important for representing the

California coastal climate.

E3SMv1 land model (ELM) Golaz et al. (2019) is placed on the same RRM mesh as the atmosphere model. The river150

routing model (Model for Scale Adaptive River Transport) uses a lat-lon grid with the spacing of 0.125° (Li et al., 2013). The

prescribed-ice mode from the Los Alamos sea ice model CICE4 Hunke et al. (2008) and the data ocean model are used in our

study.

2.1.2 RRM in California

The configuration of the California 3.25 km RRM (hereafter referred to as “CARRM") in this work consists of two main parts,155

the first of which deals with the design of the regionally refined grid and its associated model configuration files (e.g., domain
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files, topography, atmospheric initial condition, land surface, etc.). The second part handles the generation of the boundary

conditions from the low-resolution (1°) GCM and nudging settings (to be described in section 2.1.4).

The CARRM grid is progressively refined from the outer global resolution of ne32 (corresponding roughly to a resolution of

~100 km) to the convection-permitting scale for California (ne1024, 3.25 km), with a 8th order (28) refinement between them160

(Fig. 1). We created the CARRM grid using the offline software tool Spherical Quadrilateral Mesh Generator (SQuadGen;

https://github.com/ClimateGlobalChange/squadgen, last access: 21 January 2024). The choice of the finest domain may affect

the RRM simulation behavior, but there are no precise rules on how to choose the best domain. Our basic considerations

include: 1) suitablility for the science applications, 2) the need for the domain to cover the entire state of California, 3) avoiding

having the domain boundary reside near substantial topography, and 4) the desire to keep the domain as small as possible to165

avoid excessive computational expense and allow for long integrations. We note that atmospheric rivers originating from the

central/eastern Pacific are important to California precipitation, but 1° GCMs are sufficient to resolve the synoptic scale features

of these systems (Giorgi, 2019; Neumann et al., 2019). The sensitivity of the size of the refined mesh for the simulation of

atmospheric rivers was explored with CESM (Rhoades et al., 2020a).

The topography file was generated using the NCAR topography toolchain (Lauritzen et al., 2015), with tensor hyperviscosity170

enabled for the RRM grid. Figure 1 shows the topography used for 1° E3SMv1, the E3SMv2 North American 25 km RRM,

and the California 3.25 km RRM used in this study, respectively. Since the topography files are on the GLL node, we used

matplotlib’s “tricolor” function to represent the native spectral element data as accurately as possible, with each triangle’s color

taken from three GLL vertexes (https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.tripcolor.html, last access: 21 Jan-

uary 2024; note that the “tricolor” function doesn’t allow a manually specified color levels). As a reference, Fig. 1 displays the175

3.25 km topographic data from The United States Geological Survey (USGS) used to downsample to the destination resolution

of RRM. Note that 3.25 km is the nominal resolution, and that the effective resolution (fully resolved scale derived from kinetic

energy spectra compared to observations) of California is actually at about 6 times the nominal resolution (Neumann et al.,

2019; Caldwell et al., 2021). CARRM topography essentially captures the fine spatial patterns shown in the 3 km USGS data,

such as features of the Sierra Nevada, coastal ridges, and the Central Valley. This is not surprising, since CARRM’s topography180

was processed from USGS GTOPO 1 km data and then interpolated to 3 km cube sphere.

The atmosphere initial condition was generated with the HICCUP package (https://github.com/E3SM-Project/HICCUP, last

access: 21 January 2024), which has a built-in download of ERA5 pressure level data. HICCUP interpolates the ERA5 data

to the model’s vertical levels using NCO’s vertical interpolation algorithm (Zender, 2008) and to the horizontal resolution

using a TempestRemap horizontal interpolation algorithm (Ullrich and Taylor, 2015; Ullrich et al., 2016). We adopted the185

higher order algorithm here. The surface temperature and pressure are adjusted using a procedure described in Trenberth et al.

(1993) based on the topography elevation difference plus a dry hydrostatic atmosphere lapse rate. This procedure also avoids

extrapolating excessively high/low pressure values by resetting the surface temperature from extremely warm/cold terrain. The

CARRM mesh used in this work contains good grid properties (max Dinv-based element distortion is 3.021). The atmosphere

1It indicates a high quality RRM grid if the maximum Dinv-based element distortion is less than 4. See https://acme-climate.atlassian.net/wiki/spaces/

DOC/pages/872579110/Running+E3SM+on+New+Atmosphere+Grids, last access: 19 February 2024.
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Table 1. Column numbers and timesteps used in E3SMv1, E3SMv2 NARRM and SCREAMv0 CARRM.

Model Column no. Time steps (s)

Dynamics Physics
Dynamics

Physics
Dycore Dycore Remap Advection Hyperviscosity

E3SMv1 48,602 48,602 300 900 300 100 1800

NARRM 130,088 57,816 75 150 450 75 1800

CARRM 152,712 67,872 9.375 18.75 75 9.375 75

initial condition is in balance, which is possibly benefited from the surface adjustment (otherwise, instability would occur190

using this IC directly). As a result, we did not need to spin up the atmosphere and adjust the hyperviscosity incrementally. The

hyperviscosity timestep for dynamics are set to the default value used in SCREAM 3.25 km global simulations.

2.1.3 Timesteps and computational cost

CARRM has a total of 152,712 GLL columns (dycore) and 67,872 physical columns (pg2 grids). For reference, E3SMv1 has

48,602 physical columns (Golaz et al., 2019) and the E3SMv2 North American 25km RRM (NARRM) has 57,816 physical195

columns (Tang et al., 2023), representing a slightly higher storage demand for CARRM compared to NARRM (Table 1).

Table 1 provides the timesteps we used for CARRM simulations. Because the timesteps must be uniform globally based on

the finest region, our configuration follows the parameters used in the global convection-permitting simulation of SCREAMv0

(Caldwell et al., 2021).

All CARRM simulations were performed using the Livermore Computing (LC) Quartz machine with Intel(R) Xeon(R)200

CPU E5-2695 v4 @ 2.10GHz 36-core 120 nodes using only MPI processes. We used a 120-node configuration to balance

throughput and queue time. Although we did not systematically evaluate the performance of CARRM, we found that scaling

from 30 to 120 nodes was quite good in 1-month testing, with almost no loss of scaling performance. Jobs were resubmitted

once every simulated month and the total throughput (including I/O) was about 0.68 simulation years per day, or about 240

simulation days per day. For comparison, the global SCREAMv0 simulation Caldwell et al. (2021) run on the National Energy205

Research Supercomputing Center (NERSC) Cori Knights Landing (KNL) used 1536 nodes (68 physical cores per node) with

a throughput of 4-5 simulation days per day. The NARRM was run on Argonne National Laboratory Chrysalis which used 80

AMD Epyc 7532 64-core nodes with a throughput of about 10 simulated years per day (Tang et al., 2023).

In addition to occasional node failures, we encountered several instability failures during the simulation with “EOS bad

state: d(phi), dp3d or vtheta_dp < 0” or “negative layer thickness” model produced errors. While the specific cause of these210

errors is unclear, we note that all errors were produced between the months of November and April, thus could be a result of

topography-related baroclinic instability associated with winter storms. The error frequency is: 3 times for 2015-2020, 7 times
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for 2029-2034, 2 times for 2044-2049, and 3 times for 2094-2099. We got around these instability failures by temporarily

halving the model time steps uniformly. All instances have been properly documented to ensure reproducibility.

2.1.4 Nudging Strategy215

Since SCREAM does not have a deep convective parameterization, and hence lacks the ability to run with a 100 km resolution,

we cannot perform a completely free running integration using CARRM. We use the approach of RCMs, using lower and

lateral boundary conditions provided by future scenario simulations from low-resolution GCMs to provide coarse scale fields

that drive CARRM.

We reproduced the future projection scenario (to be described in further detail in section 2.1.4) described in Zheng et al.220

(2022) using the 1° fully coupled E3SMv1. We output the 3-hourly vertical distribution of winds, temperature, and specific

humidity. The consistency among the boundary conditions is important because the internal variability is fully dependent on

this unique realization. Sea surface temperature (SST) and ice cover were obtained from the same coupled simulation as lower

boundary conditions to drive Data Ocean and Prescribed CICE4 (the latest Los Alamos sea ice model) (Hunke et al., 2008).

The e3sm_to_cmip tool (https://github.com/E3SM-Project/e3sm_to_cmip, last access: 21 January 2024) was used to get 1°225

lat-lon timeseries which were further processed to meet the format of the Data Ocean streamfile (https://esmci.github.io/cime/

versions/ufs_release_v1.1/html/data_models/data-ocean.html, last access: 21 January 2024). We retrospectively noticed that

the step of replacing the missing value of SST to -1.8 °C in the streamfile generation procedure caused the model to regard

that the “-1.8 °C” value over land is valid. This caused some points along the coastline to inherit a spurious cold SST from the

1° streamfile. This spurious signature is directly reflected in the SST and surface fluxes from the RRM output with little direct230

effect on the variables not at the bottom level of the atmosphere.

The nudging capability that has been implemented into E3SM and used by RRM is described in Tang et al. (2019), which

allows for selected areas of the globe to be nudged while allowing other regions to be simulated freely. In this work we want

to nudge the coarse outer domain, but allow for the high resolution mesh over California to integrate freely. To allow this, a

nudging coefficient is set by a Heaviside window function from 1 (other global areas) to 0 (where California is fully covered,235

free run) in the lat-lon direction (Fig. 2). The nudging strength is consistent in the vertical direction.

The winds, temperature, and specific humidity profiles were interpolated vertically by NCO and horizontally by the Tem-

pestRemp higher order algorithm. Lateral boundary conditions were updated every 3 hours by linearly interpolating each pair

of nudging time slices (current timestep and the next 3 hours) onto the model’s physical time step with a relaxation timescale

of 2 days. The selection of a 2-day relaxation timescale was not the result of an exhaustive study to find an optimal time240

scale, as running CARRM is still relatively expensive thus making tuning fairly time-intensive. However, we did test relaxation

timescales of 1 h, 6 h, and 24 h. We found that the 2-day timescale gave the most consistent results between RRM and 1°

E3SMv1 global precipitation patterns and the smallest bias for California precipitation.

We found that when the nudging strength is very strong (timescale = 1 hour), a spurious circulation formed in California,

which may be due to the inconsistency between the temperature of the boundary forcing and that of the freely integrated spin-245

up temperature over California; when the two are coupled too frequently, the large gradient of temperature across the nudging
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boundary will force the wind shear to adjust by thermal wind balance. Therefore, a very short relaxation timescale is not

desirable. The 3-hourly evolution of instantaneous total (vertically integrated) vapor transport for 1° E3SMv1 and SCREAMv0

CARRM on 2097-12-21 are shown in Fig. 2 for an atmospheric river event as it makes landfall on the west coast. This is just

one example to show that the general meteorology and climate of the E3SMv1 simulation are well reproduced in the 100 km250

domain of SCREAM. Note that there are some differences between them, which is expected to be a natural effect of nudging,

especially since we used a weak relaxation timescale.
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(a) (b)

(d)(c)

(f)(e)

Figure 1. Regionally refined grid for CARRM (a-b), topography for (c) 1° E3SMv1, (d) US 25 km RRM, (e) CARRM, and (f) the United

States Geological Survey (USGS) topography. All topography data are zoomed to the western United States.
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E3SMv1

SCREAMv0 
CARRM

Total (vertically integrated) vapor transport (kg/m/s) 2097-12-21 12:00 to 12-23 06:00

(a) (b)

Figure 2. (a) Nudging coefficient map over California where nudging is not applied in red areas, (b) 6-hourly evolution of instantaneous total

vertically integrated vapor transport in 2097-12-21 for E3SMv1 and SCREAMv0 CARRM.

2.1.5 Future Projection Experimental Design

We choose the high-emission SSP5-8.5 scenario for our future climate projection, which is comparable to the radiative forcing

path of the highest representative concentration path (RCP8.5). We recognize that SSP5-8.5 is a “worst” case scenario that is255

unlikely to happen, due to policy interventions that promote carbon emission mitigation and sequestration, and thus represents

an upper bound case of the ScenarioMIP (Kriegler et al., 2017). However, the differences between the more plausible SSP3-7.0

and SSP5-8.5 before 2050 are relatively small (Masson-Delmotte et al., 2021; Tebaldi et al., 2021). Both of these scenarios
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predict similar development trends, including high GHG emissions, increased energy usage, and limited climate change miti-

gation measures before 2050 (O’Neill et al., 2016). The chief reason for our choice to run the SSP5-8.5 scenario is due to the260

fact that we had to re-run the publicly available version of E3SM (i.e., version 1) to produce the necessary nudging data for the

coarse grid region, and SSP5-8.5 is the only scientifically validated scenario for the publicly released v1 future projection.

Given the relatively high cost of CARRM, we choose to run four 5-yr segments rather than integrating the entire 85-yr

SSP5-8.5 simulation. Our goal is to pick segments which represent various points within the 85-yr future projection time

line. In addition, we consider the El Niño-Southern Oscillation (ENSO), which can explain hydrological events in California265

(Harrison and Larkin, 1998; Dettinger et al., 1998; Wise, 2012; Hoell et al., 2016; Patricola et al., 2020; Mahajan et al., 2022).

Since internal variability like ENSO is well inherited from the boundary forcing (Giorgi, 2019; Laprise et al., 2000), our

nudging strategy enables us to conduct RRM simulations by selecting the time periods containing a strong ENSO signal.

As an expediency, the spatial and temporal variability of the California climate may be better represented by selecting the

time periods with larger ENSO variability since we are only able to run one ensemble member. Our segment-simulation strategy270

also accelerates the validation process of CARRM framework, and in particular allows us to provide simulation outputs as soon

as possible to the downstream energy infrastructure experts, who are more interested in validating a certain time slice (e.g.,

mid-century) or specific extreme events (e.g., heat waves, floods, wildfires) rather than the entire time series. For the full period

2015-2100 of SSP5-8.5, we chose 2015-2020 (as baseline), 2029-2034 (which includes a strong El Niño year followed by a

strong La Niña event lasting three years), 2044-2049 (mid-century of interest to the infrastructure planners), and 2094-2099275

(the end of the century), for a total of 20 years (Fig. 3). Here all usage of the word “year” refers to “water year” (from October

to the next September). One can also cast the simulation segments as being run according to different global warming levels

of interest to the IPCC AR6 reports. From another perspective, the four simulation segments provide different levels of global

warming (about 0.9 °C, 1.7 °C, 2.8 °C, 7.6 °C) relative to the 1850-1869 baseline (Zheng et al., 2022).

In retrospect, when we examine the relationship between precipitation and ENSO across the four segments, the 5-yr mean280

precipitation barely reflects the ENSO signal. In addition, we do not see a significant modulation of the ENSO on monthly pre-

cipitation. Instead, the climate change signal seems to be more dominant, with heavy precipitation events occurring essentially

every year at the end of the century. Compared to CESMv1-LE, the ENSO variability in E3SMv1 piControl and historical

ensemble simulations is slightly closer to observations, while strongly shifted to a 3-yr period. The overall score for the spatial

pattern compared to observations is also higher, but still muted along the North American coast (Golaz et al., 2019). This may285

partially limit the ability of ENSO to modulate the climate in our simulations.

To provide well-established regional climate projections, a three-step approach is usually used (Giorgi, 2019): 1) drive a

high-resolution model with a reanalysis dataset to identify biases in the model dynamics/physics and nudging strategy, akin

to a hindcast as described in Ma et al. (2015), 2) drive the high-resolution model with historical GCM simulations to identify

climate change signals for given historical periods and identify the biases from low-resolution GCMs (baseline), and 3) perform290

regional future projections driven by the same GCM to assess climate change signals for future time slices by comparing with

the baseline. One reason for not performing the first step in this paper is that hindcast-style simulations are primarily useful in

short-term simulations to help select the physical schemes with optimal performance in the region of interest. However, unlike
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commonly employed regional climate downscaling approaches such as the Weather Research and Forecasting (WRF) model,

SCREAM does not have multiple physics options to choose from. We note that we have performed hindcasts of several AR295

events with CARRM, which will be described in future publication. In addition, we integrate steps 2 and 3 since we treat the

first 5 years of SSP5-8.5 as a baseline (2015-2020, akin to a historical run) in which we compare the simulated climatology to

observations.

Figure 3. Niño 3.4 index from E3SMv1 SSP5-8.5 projection. Shaded areas are labeled with the four segments of the CARRM simulations.

The global warming levels for the four simulation segments are about 0.9 °C, 1.7 °C, 2.8 °C, 7.6 °C relative to the 1850-1869 baseline.

2.2 Evaluation Strategy

2.2.1 Evaluation datasets300

To properly evaluate CARRM, it is important to compare against observational datasets of sufficient temporal and horizontal

resolution since one would expect typical added values from convection-permitting simulations most likely to occur at small

temporal and spatial scales. Moreover, it is desirable that the observational datasets cover a long record to account for the

possible range of natural variability.

In this study we use the 4 km PRISM (Parameter-elevation Regressions on Independent Slopes Model) observation-based305

gridded dataset of 30-yr normal to evaluate maximum, average, minimum temperature and precipitation (PRISM Climate

Group, Oregon State University, https://prism.oregonstate.edu, last access: 21 January 2024). PRISM adopts the primary as-

sumption that “elevation is the most important factor in the distribution of climate variables” for a localized region, and

calculates the local climate-elevation relationship by considering coastline, temperature inversion, cold pool, topographic fac-

tors, etc. to weigh the in-situ data. For example, PRISM calculates precipitation-elevation regression functions under each310

category based on slope orientation categories to distinguish precipitation on windward and leeward slopes. PRISM and other

observation-based gridded products has been known to underestimate extreme precipitation (particularly from ARs) (Lundquist

et al., 2019; Rhoades et al., 2023). Given this issue in PRISM and other gridded products and the potential to “falsely” attribute
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an over precipitation bias, we also use a probabilistic gridded product for daily extreme precipitation (Risser et al., 2019).

This probabilistic data provides 10- to 100-year return values for the largest seasonal daily precipitation. For CARRM, we315

compute the 10-year return values of the largest seasonal daily precipitation based on the 20 years of available outputs. The

location, shape, and scale parameters for the Generalized Extreme-Value (GEV) distribution were estimated using Maximum-

Likelihood Estimation in NCL. However, we only have 20 years of simulation in total, so we cannot reasonably estimate the

parameters for the GEV distribution for daily precipitation extremes. In addition to PRISM, we use the unsplit Livneh gridded

product, which does not underestimate the extreme precipitation as much when compared to the time-adjusted Livneh (Pierce320

et al., 2021). To evaluate the snow water equivalent (SWE) we use assimilated snow observations developed by the University

of Arizona (UA-SWE), and Western United States UCLA Daily Snow Reanalysis (WUS-SR) Version 1. The UA-SWE data

(Zeng et al., 2018; Broxton et al., 2019) were derived from in-situ measurements from Snow Telemetry network and Cooper-

ative Observer Program with assimilated temperature and precipitation from PRISM. This is a 40-yr dataset and has a spatial

resolution of 4 km. The WUS Snow Reanalysis (Fang et al., 2022a) has an ultra-high resolution of 500 m from water years325

1985 to 2021, which assimilated cloud-free Landsat observations (Fang et al., 2022b). For consistency in the analysis period,

all observation-based gridded products were analyzed for the water years 1984 to 2020, unless otherwise stated.

In addition to the observation-based gridded products, we use in-situ temperature and precipitation measurements from

Global Historical Climatology Network (GHCN) (Menne et al., 2012a, b), and SWE from Snow Telemetry (SNOTEL) network

(https://nwcc-apps.sc.egov.usda.gov/imap/, last access: 15 February 2024). Four representative sites are chosen for GHCN:330

Sacramento, San Francisco, Tahoe City, and Death Valley. The stations for SWE are Tahoe City, Adin Mtn, Truckee, and

Leavitt Lake so that they match the available SNOTEL sites. We choose those stations to represent the varying microclimate

across California and for their proximity to populated cities. Only values with an empty QFLAG field are kept in GHCN

records, meaning they pass all quality assurance checks. The temperatures of -60.3 F in SNOTEL records seem to be invalid

and are set to missing. We also obtained the timeseries of PRISM and UA-SWE for the same locations. The period for in-situ335

records is different among stations, dataset and variables. The 1989-2020 water years are used in all station analyses. In addition

to serving as the “truth” in the comparison to CARRM, the in-situ observations also provide an additional comparison to the

observation-based gridded products and highlight uncertainties from the gridding process/statistical co-variate assumptions

employed in these products.

To characterize unstructured grids and model/observation raw resolutions as directly as possible, all analyses in this paper are340

based on the model’s native grids (unless otherwise stated). Most output variables of SCREAMv0 reside on physical columns,

except for those output from the dycore (GLL columns). Each coordinate of the physical (pg2) grid corresponds to four vertices

and can be drawn directly by NCL’s CellFill method without interpolation, where each color block represents the cell average

of the physical column data. To match the pg2 grid of CARRM, we interpolated the GLL column output of E3SMv1 to the

physical column with the higher order (atmosphere output) or monotune (land output) algorithm via TempestRemap. For the345

calculation of California regional averages, a mask file was generated using a high-resolution California shapefile, then the

regional averages were obtained by NCO’s ncra calculator with mask and grid-area weights being applied. The statistics of a

single grid point are obtained directly by extracting the time series of that point.
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2.2.2 Atmospheric river tracking with TempestExtremes

The response of atmospheric river (AR) contributed precipitation with climate change in California is briefly analyzed in Sec-350

tion 3.3. We used TempestExtremes 2.2.1 (Ullrich and Zarzycki, 2017; Ullrich et al., 2021) to track the 6-hourly instantaneous

IVT (total vertically integrated vapor transport) with the key parameters including: 1) minimum laplacian of IVT = 20000

kg/m/s, 2) latitude of AR tagged grid point > 15°, and 3) blob area of IVT > 4× 105km2. We did not isolate single AR events

in TempestExtremes using StitchBlobs in order to compute the PDFs with as large a sample size as possible. Using StitchBlobs

would make the sample size of variables corresponding to individual AR events in each 5-year winter very small. As a result,355

we did not divide ARs into a category-based definition such as in Ralph et al. (2019) and Rhoades et al. (2020b). Therefore,

the terminology “AR” in the context of this paper is strictly AR-related IVT 6-hourly samples.

Note that the tracker must be applied to an orthogonal grid, and we interpolated the model output to the 1° lat-lon grid by

the TempestRemap higher order algorithm in advance. For simplicity, we did not stitch AR tracks and treat AR and California

precipitation as one-to-one samples every 6 hours. To explore the relationship between AR and California precipitation, we360

calculated the following statistics for each simulation period December-January-February (DJF):

– The percentage of California precipitation contributed by ARs. AR-contributed California precipitation was obtained by

interpolating the 1° AR mask back to the model’s native pg2 grid and then associating any precipitation as AR-produced

when AR masks exist over California.

– The highest latitude reached for each AR making landfall on California.365

– The “duration” of an “AR” after California landfall, obtained by counting the sample size of AR mask that makes landfall

in California and multiplying 6 hours. We recognize this is different from the concept of an event’s duration and does

not require the samples to be sequential.

– The maximum IVT (the intensity of AR snapshots) within each AR mask that makes landfall in California

– The average TMQ (total vertically integrated precipitable water) of each AR mask that makes landfall in California370

– The average 850 hPa zonal wind speed of each AR mask that makes landfall in California

3 Results

3.1 Baseline comparison with observations

To compare with observations, we use a baseline with the first five water years (2015.10-2020.09) of the SSP5-8.5 projection.

Since the simulation period is not corresponding to the “real world" (because our simulations are not hindcasts using realistic375

boundary conditions), the simulation can only be compared to observations in a statistical sense (e.g. long-term averages).

For air temperatures at 2 m height (hereafter referred to as “T2m”), Fig. 4 clearly shows much richer spatial patterns sim-

ulated in CARRM than the 1° E3SMv1. The 1° E3SMv1 largely fails to capture prominent temperature gradients associated
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with the coastline, Central Valley, Sierra Nevada, and Mojave/Colorado Desert. Compared to PRISM, CARRM produces a

very realistic spatial distribution of daily maximum, mean, and minimum T2m. Good representation of complex topography380

can form temperature gradients simply by lapse rate effect, and cooler/denser air masses at night tend to drive subsidence

warming in the valley. Note that the daily maximum T2m are slightly higher in CARRM than in PRISM in parts of the Central

Valley (up to 2°C), while the maximum T2m is underestimated by 2-4°C over the Colorado Desert and by 0-3°C in the Sierra

Nevada. Daily minimum T2m is overall warmer (up to 2-5 °C) in CARRM than in PRISM (also see Fig. 9), and the mean T2m

is fairly similar in RRM against PRISM. Caldwell et al. (2021) reported that SCREAMv0 does have an overall warm bias for385

T2m, especially at high latitudes, while we also see the cold bias in daily maximum T2m. A further comparison with GHCN

and PRISM at Tahoe City shows that the seasonal mean of maximum T2m in JJA is 1-2 °C colder than GHCN/PRISM (Fig.

8c), while the minimum T2m in SON is about 2 °C warmer than GHCN/PRISM ((Fig. 9c). Note that the simulations represent

only 5-year averages whereas PRISM represents 30-year averages. This is especially important given the large interannual

variability in the California climate, and might obscure “warm” or “cold” biases (and is relevant for the results to be presented390

for precipitation/snowpack).
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Figure 4. Baseline (2015-2020 water years) multi-year average daily maximum (left column), mean (middle column), and minimum (right

column) 2-meter temperatures (referred to as “T2m”, °C) from 1° E3SMv1 (top row), SCREAMv0 CARRM (middle row), and PRISM

observation-based gridded product (bottom row). The Statewide average is shown in the right-top corner.
17



The temporal and spatial variability of precipitation is more pronounced than that of temperature in the state of California.

Dettinger et al. (2011) highlights the large interannual variability of California precipitation, which warns of the potential issues

with comparing 5-year vs 30-year normals. Therefore, we also show the five wettest and driest water years during 1981-2020

for PRISM analysis and unsplit Livneh gridded product in addition to the 30-yr average to characterize the observed natural395

variability (Fig. A1a-f). The high mountains (i.e. the Sierra Nevada, the Cascade Range, and the Klamath Mountains) manifest

a significant topographic precipitation pattern with moist air coming from the northwest, and higher annual rainfall in the

north than in the south. In addition, the relatively smaller ranges, such as the Transverse and Peninsular ranges of southern

and central CA, also receive considerable annual-mean precipitation. The northern part of the Central Valley can receive a

substantial amount of precipitation, while the southeastern desert east of the Sierra Nevada highlands typically receives very400

little.

CARRM essentially captures the spatial distribution of precipitation in PRISM and provides much better details than 1°

E3SMv1, e.g., the local precipitation maxima in the Sierra Nevada and the Coast Ranges, and the relative dry area in the

Central Valley (Fig. 5). Despite this large internal variability, it is clear the CARRM precipitation is significantly higher than

observed, with the wettest year in 2015-2020 even exceeding the wettest years of PRISM/Livneh (Fig. A1g-i). One could argue,405

given the large interannual variability in California, that we need at least 15-20 years of baseline to determine if the CARRM’s

meteorology (temperature/precipitation/SWE) statistics are converged. Given that observation-based gridded products might

underestimate extreme precipitation (Lundquist et al., 2019; Rhoades et al., 2023), we also use a probabilistic gridded product

for daily extreme precipitation (Risser et al., 2019). The 10-year return values for the largest seasonal daily precipitation are

compared in Fig. B1. Again, the return levels are much higher in CARRM. Note that we only have 20 years of simulation to410

estimate the parameters of the GEV distribution, and we found the extreme values weakened quite a bit using 20 years of data

than using 10 years of data. Therefore, the return values of CARRM may not be robust.

We have formulated several hypotheses regarding the overestimated precipitation in CARRM. First, the wet bias is partially

inherited from the large-scale biases in 1° E3SMv1. Note the larger statewide-mean precipitation (2.9 mm/day) than that in

PRISM (1.7 mm/day) (Fig. 5). We also note a slightly stronger meridional moisture flux across the Coastline of California in415

E3SMv1 when compared to ERA5 reanalysis (Fig. E1), which may contribute to the overprediction of California precipitation.

Secondly, GCMs typically underestimate the strength and duration of high pressure blocking ridges that dominates the dry

years in California (Davini and D’Andrea, 2020; Schiemann et al., 2020); this can be seen in the comparison with ERA5

(Fig. F1). Additionally, SCREAM physics likely contain their own biases (e.g., cloud microphysics) that are currently not

well understood, which will be explored in future work by utilizing CARRM for atmospheric river hindcast experiments.420

Caldwell et al. (2009) suggested that the overestimated precipitation in California may be a common issue for physics of

RCMs as reanalysis-driven RCMs tend produce more precipitation and higher relative humidity than reanalysis. The 3 km

WRF hindcasts in Huang et al. (2020) did not show a wet bias, while 3 km RRM-E3SM in Rhoades et al. (2023) and 3

km / 800 m SCREAM CARRM hindcasts in Bogenschutz et al. (2024) found a wet bias especially in the Sierra Nevada.

Bogenschutz et al. (2024) serves as a direct comparison to this work because we use the same code base (SCREAM) and RRM425

configuration; the main difference is that our simulations are not hindcasts (i.e., our boundary conditions are prescribed from
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a GCM simulation). The wet bias found in Bogenschutz et al. (2024) is much weaker than our current work, suggesting that

most of the bias produced by CARRM climate runs is likely due to the large-scale forcing rather than biases in the physics.

Lastly, ~3 km is a convection-permitting scale, not a fully convection-resolving scale. Unresolved processes at convection-

permitting scales may spuriously accumulate energy on the effective resolution (the fully resolved scale derived from kinetic430

energy spectra compared to observations, ~20 km for CARRM), which can detrimentally affect the synoptic scales (Neumann

et al., 2019). The convergence of convection-permitting models is suggested to require the resolution of large eddy simulations

O(100 m) (Bryan et al., 2003; Petch, 2006; Langhans et al., 2012), and vertical mass fluxes at O(1-5 km) km may be too strong

(Chan et al., 2012). In idealized rising thermal bubble experiments, the 900 hPa vertical velocity in non-hydrostatic SCREAM

dycore at 3 hours were found to converge at 1.56 km (Liu et al., 2022). The wet bias in CARRM may reveal the insufficiency of435

convection-permitting resolution and suggest an even higher resolution requirement to represent convective mass fluxes more

realistically.

Snowpack is the most prominent quantity to demonstrate the added value of using CARRM (when compared to the poorly

resolved snowpack in the low-resolution simulations), which is represented by snow water equivalent (SWE, or water equiva-

lent snow depth, i.e., the amount of water that would be produced by the snowpack if it were instantaneously melted) (Fig. 5).440

SWE reflects the variability of snow density and snow melt. The statewide mean SWE is similar for UA-SWE and WUS-SR

reanalysis, as shown in the MAM and JDF averages from 1984 to 2020 water years (Fig. C1c-d, g-h), despite that WUS-SR

better resolves the fine structures in the Sierra Nevada due to its ultra-high resolution (Fig. D1). WUS-SR would be a great

reference for California SWE when the model resolution goes beyond 1 km in CP models. 1° E3SMv1 produces negligible

SWE (SWE < 0.1 m), while CARRM essentially captures the spatial distribution of SWE in the Sierra Nevada. Note that445

similar to precipitation, the SWE simulated by CARRM has a positive bias when compared to UA observations.
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Figure 5. Same as Fig. 4, but for precipitation (mm/day, left column) and snow water equivalent (referred to as “SWE”, m, right column). The

observation-based gridded products used for comparison is PRISM (e) and UA-SWE (f). The megaton (Mt) of multi-year mean statewide

SWE storage is 0.16 Mt, 10 Mt, 6.3 Mt for E3SMv1, CARRM, and UA-SWE, respectively.
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3.2 General characteristics of the future projection

This section will present climate statistics for four time periods (2015-2020, 2029-2034, 2044-2049, and 2094-2099 water

years). It will include spatial distributions of seasonal averages, statewide seasonal averages (time series), and daily intra-

seasonal statistics at selected locations. The spatial distributions will highlight the seasons in which a variable of interest450

exhibits the most distinct patterns.

3.2.1 2m air temperature

Figure 6 depicts the spatial distribution of daily maximum T2m during the summer seasons (June-July-August) for the SSP5-

8.5 scenario. This figure roughly indicates a general trend in the likelihood of heat waves. In the Central Valley, daily maximum

T2m are projected to rise from the current average of 36 °C to approximately 43.5 °C by the end of the century (also shown455

in the difference plots Fig. G1). Similarly, the Mojave/Colorado Desert is expected to experience temperatures exceeding

48 °C by the end of the century. Moreover, the Sierra Nevada is projected to undergo general warming of approximately

10 °C. The warming level of daily minimum T2m is even more prominent (not shown). For comparison, the warming level

from 1981–2000 to 2081–2100 is 6-8 °C in July using a hybrid dynamical–statistical downscaling (Walton et al., 2017). By

employing the definition of heat waves based on the current climate regime, e.g., three consecutive days with maximum T2m460

surpassing 37.8 °C, it is anticipated that nearly half of the Central Valley and California Desert will be subjected to continuous

heat waves by mid-century. Moreover, by the end of the century, most of California is expected to experience prolonged periods

of heat waves according to CARRM projections. The DJF daily maximum T2m in DJF is shown in Fig. H1 and Fig. I1. The

warming level over the Sierra Nevada is about 9 °C in DJF. This is expected to have a significant impact on snow.
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Figure 6. Multi-year summer average of daily maximum T2m in 2015-2020, 2029-2034, 2044-2049, 2094-2099 water years (from left to

right columns) simulated by 1° E3SMv1 (top row) and SCREAMv0 CARRM (bottom row). The statewide average is shown in the right-top

corner.

The statewide-average T2m is essentially inherited from 1° E3SMv1 (Fig. 7). The response of statewide-averaged T2m to465

GHGs is very clear. Across all seasons, there is a consistent and monotonic increase in daily maximum, mean, and minimum

T2m over time. Of particular note is that during the summer season, statewide-average daily maximum T2m can approach

nearly 40 °C, while daily mean T2m can rise to 20 °C from spring to autumn. This prominent warming is expected to have

severe implications for California’s agriculture. For example, given that the growth of wine grapes typically commences at

around 10 °C, such substantial warming could lead to a pronounced advancement in average grape ripening period and a470

decline in overall quality (Hayhoe et al., 2004). Even more importantly, extreme temperature and humidity associated with
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climate change has a great impact on human survivability, especially for older populations that work in agriculture (Vanos

et al., 2023).
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Figure 7. Five-year seasonal average and standard deviation of daily (a) maximum, (b) mean, and (c) minimum T2m during four simulation

segments). SCREAMv0 CARRM (1° E3SMv1) is denoted by dark (light) blue histograms. Each segment shows winter (December-January-

February, DJF), spring (March-April-May, MAM), summer (June-July- August, JJA), and autumn (September-October-November, SON)

in order. PRISM (yellow histograms) from 1984 to 2020 water years is shown in the leftmost column for a baseline comparison with the

2015-2020 simulation period.
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While CARRM may return essentially the same result in terms of statewide mean temperature statistics, the superior repre-

sentation of spatial distribution allows one to examine temperature trends at specific locations. As an example, we compared475

four representative locations for their daily statistics: Sacramento (a point in Central Valley), Death Valley (one of the hottest

points in Mojave Desert), Tahoe City (a city representative of the High Sierra), and San Francisco (a major city in the Bay

Area, typically subjected to the marine layer) (Fig. 8, 9). Box plots give the minimum, lower quartile, median, upper quartile

and maximum of daily samples for each segment per season, with a sample size of ~450 (5 year x 3 month x 30 day) sam-

ples per box. Overall, the distribution of daily maximum T2m in the CARRM baseline is very consistent with GHCN in-situ480

observation and PRISM gridded reanalysis, while CARRM shows a general warm bias in daily minimum T2m.

Though the overall warming trend is comparable between 1° E3SMv1 and CARRM, CARRM can better differentiate tem-

peratures across geographical locations. For example, the daily maximum T2m in Death Valley is 15-20 °C higher in CARRM

than in 1° E3SMv1, while the daily minimum T2m in Tahoe city is 5-10 °C lower in CARRM, representing a wide range

of temperature spatiotemporal variability across California landscapes in Death Valley and the Tahoe city, respectively. This485

discrepancy directly reflects the influence of topography and elevation differences. As 1° E3SMv1 cannot resolve such topo-

graphical details, the contrast in daily maximum T2m between Death Valley and Tahoe city is smoothed out (Fig. 1c).

The local variations of temperature are better captured by CARRM. For example, in CARRM, although the maximum daily

T2m in summer is similar between Sacramento and Death Valley (rising from 45 °C at present to nearly 60 °C by the end of the

century), the mean daily T2m is approximately 10° higher in Death Valley compared to Sacramento. It’s alarming that 60 °C490

would be substantially higher than the historical all-time record reached this past year (which is about 56.67 °C). Note that the

record of daily maximum T2m in the GHCN observational data in Fig. 8d is 54.4 °C during the 1989-2020 water years. This

indicates that the daily temperature variability in Death Valley is relatively small, implying a much warmer body temperature

one could feel in Death Valley.
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Figure 8. Daily maximum 2-meter temperature statistics for different seasons and different segments in (a) Sacramento (yellow), (b) San

Francisco (green), (c) Tahoe city (blue), and (d) Death Valley (red). Each box gives the minimum, lower quartile, median, upper quartile and

maximum, with a sample size of ~450 (5 year x 3 month x 30 day). The order of seasons in each segment is winter, spring, summer and

autumn. The light color of each pair of boxes indicates 1° E3SMv1 and the dark color indicates SCREAMv0 CARRM. The in-situ GHCN

observations (darker color) and the observation-based gridded product PRISM (lighter color) from 1989 to 2020 water years are shown in

the leftmost column for a baseline comparison with the 2015-2020 simulation period.
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Figure 9. Same as Fig. 8 but for daily minimum 2-meter temperatures.

3.2.2 Precipitation495

The spatial variability of winter precipitation (December-January-February) is shown in Fig. 10. As we found that CARRM

has a wet bias when compared to observations, the key takeaway from future projection simulations using CARRM lies in the

relative trends rather than absolute magnitudes. In our simulations, the signal of the forced response of precipitation to GHG in

California remains obscure during the first half of the century, but shows a significant increase towards the end of the century.

Note that the sign of precipitation change is the same in 1° E3SMv1 and CARRM, but the magnitude is amplified along terrain500

in CARRM.

27



Regarding the spatial distribution, the two segments before mid-century show contrasting changes across different regions

in CARRM: precipitation in the Sierra Nevada is weaker compared to the baseline period (particularly up to 3 mm/day less

during 2044-2094), while the western Northwest Coastal Range experiences an increase in precipitation (up to 2-3 mm/day). In

addition, the Transverse-Peninsular Ranges in southern California exhibit drier conditions than the baseline during 2029-2034,505

while they receive more rainfall than the baseline during 2044-2049. By the end of the century, under this scenario, the majority

of California may experience a significant increase in precipitation except for the southern Sierra Nevada and the southernmost

desert of California. Compared to the baseline period, annual total precipitation is projected to increase by 30% in the northern,

eastern, and southern Ranges (Fig. J1). Some areas in the Great Basin Desert are projected to received more than 50% of annual

total precipitation. The Central Valley is expected to increase by 0-24% of total annual precipitation. In contrast, the signals of510

Transverse-Peninsular Ranges, Great Basin Desert and Mojave Desert are very weak in 1° E3SMv1.

Note that the 5-yr average hardly reflects the ENSO signal. For example, the 2029-2034 segment contains an extremely

strong El Niño year followed by a strong 3-yr La Niña event and thus its overall impact on California precipitation may largely

cancel out. However, we did not see a significant modulation of the ENSO signal on precipitation even upon examining monthly

precipitation. Towards the end of the century, heavy precipitation events occur at least once per year (not shown). We note that515

the spatial pattern of ENSO in the E3SMv1 historical ensemble is not sufficient along the North American coast (Golaz et al.,

2019). In CESMv1-LE, a high correlation between ENSO and the Pacific–North American pattern/east Pacific pattern was

identified, but it was also noted that considerable variability remains within the midlatitude dynamics that cannot be attributed

to ENSO influences alone (O’Brien and Deser, 2023). This suggests a notable chance of failed hydroclimate responses in the

western U.S. to ENSO events in the fully coupled ensemble. As the prescribed SSTs in CARRM were derived from fully520

coupled E3SMv1 projections, some of the effects of air-sea interactions have been included, whereas the interactions at fine

scale is not represented here.

As the baseline five years of CARRM future projections are not hindcasts (i.e., the forcing data are not from reanaly-

sis/observations), they are not suitable for comparison with individual extreme events in observations as was done in Huang

et al. (2020) and Rhoades et al. (2023). Bogenschutz et al. (2024) simulated and evaluated representative AR events using525

SCREAMv0 CARRM under the hindcast framework. The model performance and sensitivities of the RRM configurations are

discussed in detail in that work.
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Figure 10. Same as Fig. 6 but for winter precipitation.

The response of statewide-averaged precipitation to GHGs is not as clear as T2m, which is not surprising (Fig. 11a). In

contrast to temperature, the parameterizations of precipitation processes involve a higher number of assumptions and exhibit

increased inter-model variability. Additionally, precipitation displays greater spatial inhomogeneity, even in the absence of530

topography. Note that we nudged temperature, humidity and horizontal winds in the coarse outer domain, so temperature is

directly constrained by the low-resolution simulations, but precipitation can still be significantly different with the constrained

atmospheric conditions.

Unlike temperature, the statewide-average precipitation is consistently higher in CARRM compared to 1° E3SMv1. This

discrepancy of precipitation (especially in winter) shows a non-stationary increase over time (Fig. 11a). This exemplifies the535

model differences, as well as the potential issues with the model physics, such as the wet bias seen in the comparison with

observations (Fig. 5). It is important to note that SON precipitation decreases with time. This is significant because despite the
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relatively modest contribution to annual precipitation, SON is historically the most active period for wildfires in CA, therefore

precipitation is crucial during this season to dampen the worst impacts (Swain, 2021). This is also consistent with recent

observational evidence and multi-model analysis. For example, Goss et al. (2020) showed that decreases in California SON540

precipitation over the past 40 years have led to increases in fire weather indices, while Luković et al. (2021) provided evidence

of a significant decrease in November precipitation in California, and CESM large ensemble, CMIP5 and NA-CORDEX all

found that “shoulder season” precipitation is likely to decrease by mid-century (Swain et al., 2018; Dong et al., 2019; Mahoney

et al., 2021).

Figure 11. Same as Fig. 7 but for (a) precipitation and (b) SWE. The observation-based gridded products used for comparison is PRISM (a)

and UA-SWE (b).

Despite not receiving as much attention as winter precipitation for California, summer precipitation (JJA) also appears to in-545

crease towards the end of the century. We noticed a few mesoscale convective system-like convective systems that can originate

locally or propagate into California from the east during the summer, especially at the end of the century (not shown). They are

characterized by prominent longwave radiative cooling which can rival the magnitude of mesoscale convective systems and

tropical cyclones. This pattern is partially depicted in the 5-yr averaged JJA precipitation, especially over the Sierra Nevada
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(Fig. 12). Unlike DJF, JJA precipitation at the end of the century does not exhibit a distinct topographic precipitation signature550

along the mountain range. Instead, it shows local extremes at a few specific locations. The small area and significant gradient

of these precipitation hot spots may indicate a series of highly intermittent but intense organized convective systems.

The primary source of summer precipitation in Southern Desert is the southwest monsoon (Adams and Comrie, 1997; Prein

et al., 2022). The monsoon contributes up to 45% of the annual precipitation in the southwest desert (Higgins et al., 1999) and

can trigger severe weather events such as lightning, thunderstorms, wildfires, and floods (Nauslar et al., 2018; Griffiths et al.,555

2009). By the end of the century, summer precipitation is generally projected to increase by 10-20% of annual precipitation over

most of the Southern Desert (Fig. K1). The notable increase in precipitation over the Southern Desert may be associated with

an amplified temperature gradient and increased moisture transport from the Gulf of California (Jana et al., 2018; Johnson and

Delworth, 2023). In addition, since the monsoon season is characterized by intense localized thunderstorm activity, accurate

monsoon simulations require models that capture the spatial heterogeneity of temperature and precipitation. Specifically, some560

thunderstorms are triggered by local temperature extremes near the surface in tandem with increased humidity in the Southern

Desert. The higher resolution provided by RCMs has been found to impact the quantification of various mechanisms of the

North American monsoon warming response (Meyer and Jin, 2016).

Given that precipitation in California is primarily influenced by large-scale processes such as atmospheric rivers and mid-

latitude cyclones, the diurnal cycle is not as significant a consideration as it is in the central Great Plains. However, as with other565

GCPMs, CARRM’s host model SCREAMv0 captures diurnal cycles that are generally consistent with observations (Caldwell

et al., 2021). Though, we do recognize that studying the diurnal cycle of precipitation in California during summertime mon-

soon events over the Sierra Nevada and southeastern portion of the state could warrant some investigation in the future.
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Figure 12. Same as Fig. 6 but for summer precipitation.

3.2.3 SWE

In the Sierra Nevada, SWE is typically thickest during the spring season (March-April-May) (Fig. 13). SWE serves as a570

compelling indicator that highlights the benefit of high resolution, as 1° E3SMv1 fails to represent SWE in the Sierra. This is

particularly evident in the California average SWE (Fig. 11). Furthermore, SWE is expected to be one of the variables most

significantly impacted by GHG forcing. California is projected to be essentially devoid of snow by the end of the century (Fig.

11), except for scattered areas in the central Sierra Nevada (Fig. 13). Note that unlike precipitation, which showed minimal

changes until the end of the century, SWE exhibits a clear decline by mid-century. A local warming of 6 °C can greatly affect575

the majority of SWE in the Sierra Nevada (Bales et al., 2015), so it is not surprising that such a pronounced decline in SWE

would occur due to temperature changes (Figs. 7, 9, 10). The response of snow sensitivity to warming in the Sierra Nevada is

consistent with recent works (Berg et al., 2016; Rhoades et al., 2017, 2018a; Sun et al., 2019; Siirila-Woodburn et al., 2021).
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They found that under the impacts of climate change, California and the western U.S. will experience significant reductions in

SWE, including reduced winter snowfall, and earlier spring snowmelt.580

Given that SWE contributes approximately 3/4 of the annual freshwater supply for the western United States (Palmer, 1988;

Cayan, 1996; Bales et al., 2011), the retreat of SWE by mid-century will have significant implications for water management

throughout California. Consequently, this will impact agriculture yields and energy supplies (Rhoades et al., 2017; Belmecheri

et al., 2015). Additionally, the shortening of the snow season and early snowmelt are closely linked to fire activity, as this would

lead to drier soils and vegetation, and thus will increase the wildfire frequency and extend the fire seasons (Westerling et al.,585

2006; Holden et al., 2018). Lastly, the complete recession of SWE is anticipated to have a substantial impact on California’s

ski industry. The start of a typical ski season requires snow depths above 2-4 ft (with a corresponding SWE threshold of ~0.2

m) (Hayhoe et al., 2004; Hill et al., 2019), despite that snow-to-liquid ratio can vary substantially from season to season and

across mountain regions, especially in maritime vs continental mountain ranges.
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Figure 13. Same as Fig. 6 but for spring SWE.

To further investigate the response of SWE at different latitudes in the Sierra Nevada and to demonstrate the added value590

of CARRM in simulating SWE, we selected four specific locations: Adin Mtn, Truckee, Tahoe City, and Leavitt Lake. The

elevations recorded in SNOTEL are 1886.7, 1983.9, 2071.7, 2927.3 m, respectively. We compare their climate statistics using

monthly-mean SWE (Fig. 14, a sample size of 15 (5 year x 3 month) per box), because we did not output daily SWE for

the re-run of E3SMv1. Figures 14a-d also show the monthly mean statistics for the in-situ SNOTEL observation and the

observation-based gridded product UA-SWE from 1989 to 2020 water years. In addition, Fig. 14e shows the daily mean595

annual cycle of SWE simulated by CARRM. The observed annual cycle of SWE, the associated daily maximum/minimum

T2m, and precipitation during water years 1989-2020 are shown in Fig. 15.

First, it is reconfirmed that 1° E3SMv1 has essentially no ability to simulate SWE, as depicted by the light blue box in

Fig. 14a-d, where SWE simulated by E3SMv1 is consistently close to zero. Second, CARRM has biases relative to the in-situ
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SNOTEL observation and the observation-based gridded product UA-SWE. Note that UA-SWE also has a dry bias (0-0.5 m)600

relative to SNOTEL (Fig. 14a-d, Fig. 15g,h). Interestingly, while the CARRM-simulated statewide mean SWE is significantly

higher than UA-SWE (Fig. 5d,f), SWE at Adin Mtn has a dry bias relative to UA-SWE (Fig. 14a). Compared to SNOTEL,

CARRM has a lower SWE for all stations except for Tahoe City, which has a higher SWE. The SWE bias in CARRM may be

related to temperature and precipitation biases. Finally, as expected, the distribution and variability of SWE is influenced by

elevation. Leavitt Lake, characterized by the highest elevation, has the largest observed SWE. CARRM predicts that Leavitt605

Lake will still have 0.5 m winter SWE and 0.7 m spring SWE by mid-century (Fig. 14d). The snowmelt response is fastest in the

spring, as shown in the observations (Fig. 15g,h) and the CARRM simulations (Fig. 14e). The rate of snowmelt is proportional

to the SWE of each station. Snowpack retreat by the end of the century is significant at all four sites examined in the CARRM

simulations.

We emphasize the substantial reduction in summer (June-July-August) SWE projected at all locations, and the complete610

absence in some cases. This would have significant implications for increased wildfire threats (i.e. more frequent wildfires and

a much longer wild fire season) (e.g., Westerling et al., 2006; Holden et al., 2018).
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Figure 14. Same as Fig. 8 but for monthly mean of SWE in (a) Adin Mtn, (b) Truckee, (c) Tahoe City, and (d) Leavitt Lake. (e) Daily mean

annual cycle at four stations. The shading shows the standard deviation of each segment.
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Figure 15. Comparison of in-situ SNOTEL observations (left column) and 4 km observation-based gridded products (right column). It shows

the daily mean annual cycle for (a)-(b) maximum T2m, (c)-(d) minimum T2m, (e)-(f) 7-day running average precipitation, and (g)-(h) SWE

at Adin Mtn (yellow), Truckee (green), Tahoe City (purple), and Leavitt Lake (dark red). In the right column, PRISM is used for T2m and

precipitation, and UA-SWE is used for SWE. 37



3.2.4 Marine Stratocumulus

Along the west coast of California fog plays a crucial role in maintaining the redwood ecosystem, helps to moderate hot summer

temperature influenced by the coastal Mediterranean climate, and increases humidity to help curb wildfire ignitions (Lewis,615

2003; Johnstone and Dawson, 2010). A major mechanism for the formation of coastal fog is strong large-scale subsidence

near the coast pushes low-level inversions near the surface acting to lower the base of marine stratocumulus clouds (O’Brien

et al., 2012; Koračin et al., 2001). Note that while coastal fog lies within the 3.25 km mesh, the California stratocumulus found

upstream over the ocean falls within the transition region. Nevertheless, SCREAM’s turbulence scheme (SHOC) is scale aware

and should be able to properly parameterize the maritime low clouds across resolutions (Bogenschutz et al., 2023).620

The lack of marine stratocumulus is a common issue in low-resolution GCMs, adding to the uncertainty of shortwave cloud

feedback. The improved marine stratocumulus is a great achievement of the SCREAM global 3.25 km simulations (Caldwell

et al., 2021), which is partially due to higher horizontal and vertical resolution (Lee et al., 2022; Bogenschutz et al., 2022). In our

CARRM baseline (2015-2020), the shortwave cloud radiative forcing (SWCF= FSNTOA−FSNTOAC, where FSNTOA is

net solar flux at TOA, FSNTOAC is clear-sky net solar flux at TOA) is greatly improved over inland areas (Fig. L1). However,625

it is also worth noting that near the western edge of the RRM domain (~100 km), the SWCF of the RRM simulation is stronger

when compared to the CERES-EBAF observation.

Given the unaffordable cost of GCPMs, CARRM provides an excellent opportunity to explore the response of marine

stratocumulus near California to GHGs under a convection-permitting scale (Fig. 16). The climate change signal of SWCF

simulated by 1° E3SMv1 is weak. However, the SWCF simulated by CARRM is much stronger (more negative) and manifests630

a significant weakening over time, which indicates a decrease in stratocumulus and strong positive shortwave cloud feedback

along the west coast of California. This suggests that under warming, boundary layer turbulence becomes more effective at

entraining dry air from above the cloud tops. Note that the Data Ocean in CARRM uses 1° lat-lon SSTs which cannot resolve

the cold coastal upwelling, which partially hampers the ability to properly capture the marine stratocumulus and coastal fog.
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Figure 16. Same as Fig. 6 but for summer shortwave cloud radiative forcing.

3.3 Atmospheric River trends over California635

ARkStorm is considered as a rare atmospheric river (AR) phenomenon transpiring once every 500 to 1000 years (Porter et al.,

2011; Wing et al., 2016). ARkStorm is a hypothetical scenario that refers to a near continuous series of strong AR events

capable of causing a massive flooding event similar to the Great Flood of 1862 (Engstrom, 1996; Porter et al., 2011). This

storm series is estimated to have dumped 3000 mm of water in California in the 43 days from 1861.12-1862.01, triggering

devastating floods that wreaked havoc across the state. A modern ARkStorm could cause $725 billion to $1 trillion in damage.640

Since ARs have been identified as a critical contributor to wintertime precipitation in California but can also be quite hazardous
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(Ralph et al., 2006; Swain et al., 2018; Huang and Swain, 2022; Dettinger et al., 2011; Rhoades et al., 2021), we are curious

about assessing the changes of ARkStorm possibility in CARRM with warming. Here, we examine the statewide 30-day

precipitation and AR activity. As introduced in Methods, ARs were tracked using TempestExtremes (Ullrich and Zarzycki,

2017; Ullrich et al., 2021).645

A more refined definition of the ARkStorm event in previous studies consists of two key aspects. First, it is defined based on

extreme events by calculating the return period that depends on model performance rather than an absolute threshold (Swain

et al., 2018). Second, considering the spatial heterogeneity across local sites, the focus is placed more on the spatial distribution

rather than a statewide average (Huang and Swain, 2022). Unfortunately, we are unable to follow the first step because the

calculation of return period for such an extreme event requires a large sample size, while we only have a sample of 20 years.650

For example, more than 1000 years of PI-control simulations and 40 multi-year ensemble numbers of future projections are

typically needed. Instead, we adopted a simple approach in this work: the 30-day mean for the statewide precipitation is

used to assess the possibility of ARkStorm events. The ARkStorm event is indicated by an estimated threshold (14 mm/d

statewide precipitation) based on most ARkStorm studies. Since ARkStorm is too rare to capture in a small sample size, one

might suggest looking at 1-20 year events instead. However, the CARRM simulations are also inadequate to answer 1-20 year655

events, as samples up to 20 years do not yield reliable GEV parameter estimates. On the other hand, hindcasts are useful to

investigate whether CARRM has the ability to capture extreme AR events by an apple-to-apple comparison with observations,

as demonstrated in Bogenschutz et al. (2024).

The statewide 30-day average or cumulative precipitation effectively diminishes the heavy-tailed distribution observed in

daily or sub-daily precipitation over single sites. However, a noticeable increase in the median and upper quartile of statewide660

30-day precipitation is projected at the end of the century (Fig. 17). Considering the wet bias of CARRM as shown in Fig.

17 and Fig. 5, the 14 mm/d statewide precipitation may underestimate the intensity of ARkStorm events. Nevertheless, it is

evident that the possibility of end-of-century ARkStorm events is significantly increased in the realization inherited from 1°

E3SMv1. More importantly, although it is not currently practical to perform multidecadal and multi-ensemble simulations

directly with CARRM, Fig. 5 illustrates that CARRM provides a significantly different change in probability over time for any665

given extreme event reference than the low-resolution model.

40



Figure 17. Same as Fig. 8 but for 30-day mean statewide precipitation. The observation-based gridded products used for comparison is

PRISM (grey). The red line indicates the threshold corresponding to the ARkStorm event.

Consistent with the significant increase of statewide precipitation projected at the end of the century (more than 30% in

winter and more than 70% in summer, Fig. 17), we also see evidence of increased AR contribution to California precipitation

(about 50% in DJF, Fig. 18a). This is consistent with the increase in AR strength represented by the shift of the PDF of

maximum IVT values over California toward the tail (Fig. 18b), which is also evident in the spatial distribution of IVT (Fig.670

M1). However, there is no clear shift in the PDFs of AR-related maximum IVT location or in the number of AR-related IVT

samples making landfall in California (not shown). The low-level winds that shape AR latitudinal variability are quite similar

across the four segments (Fig. M1).

As the climate warms, the PDF of the precipitable water (increased by 36%) shifts towards its tail, consistent with higher

extreme IVT under warming (Fig. 18c). The overall PDF of 850 hPa zonal wind is projected to experience a small leftward675

shift with minimal change in shape (Fig. 18d). Precipitable water is controlled by the Clausius-Clapeyron relation, which

imposes that a warmer atmosphere can contain more water vapor. The slight leftward shift in the 850 hPa zonal wind in the

PDF indicates an overall weakening of the westerlies, which may slightly reduce the frequency of AR hitting California. The
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differences between 1° E3SMv1 and CARRM are noted. CARRM produces larger AR contribution to California precipitation,

stronger AR intensity, and weaker westerlies.680

In our simulations, the large increase in total precipitation in California by the end of the century is primarily due to larger

amounts of precipitation falling from stronger rather than more frequent moisture surges hitting California, which is dominated

by larger precipitable water under the significant warming scenario.

Figure 18. Statewide atmospheric river (referred to as “AR”) related statistics. (a) Seasonal mean AR contribution to California for each

season in four segments. SCREAMv0 CARRM (1° E3SMv1) is denoted by dark (light) blue histograms. Each segment shows winter (DJF),

spring (MAM), summer (JJA), and autumn (SON) in order. PDFs of AR-related (b) maximum integrated vapor transport, (c) total precipitable

water, and (d) 850 hPa zonal wind in DJF. The range of PDF values for each variable is shown in bold.
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4 Discussion and Conclusions

This work marks the first time SCREAM has been used for climate length simulations, which was only made possible by685

leveraging RRM. Our RRM is centered on California and includes parts of the West Coast at a resolution of 3.25 km and

1° resolution covering the remainder of the globe. We evaluated California’s future projections under the highest emission

scenario by selecting four 5-yr time periods.

To produce CARRM simulations in this study, we first established a California-specific RRM framework. This involved

designing the new RRM grid and generating the necessary model configurations. Thanks to the development efforts and docu-690

mentation provided by the E3SM RRM community, the tool chains and workflows for generating new RRM grids are relatively

mature. Then, we nudged CARRM to 1° E3SMv1 SSP5-8.5 scenario and generated future projections for California.

Unlike our work, which was nudged from an E3SMv1 simulation, one may argue that it would be desirable to run RRM

freely with an active deep convection scheme. This would indeed avoid the necessary step of having to rerun the E3SM model

to generate the forcing at the time scales needed. An advantage of RRM over regional climate models lies in its seamless695

transition from typical GCM resolution to the finest resolution. However, running RRM freely requires a scale-aware deep

cumulus parameterization, which is currently lacking in SCREAM for a proper handling of the transition from 100 km to 3.25

km. Hence, we adopted a nudging strategy to force RRM with a low-resolution GCM.

There are several advantages by adopting nudging in our work. By utilizing known boundary conditions (atmospheric state,

SST, sea ice), we can pre-select years with extreme phasing of climate modes of variability (e.g., ENSO) as simulation seg-700

ments, thereby expanding the range of sampling. Furthermore, instead of strictly following a chronological order, we can

simulate several segments simultaneously by nudging to the target state. This greatly reduces simulation time as well as wall-

clock time (i.e. the ability to run seperate periods in parallel) and expedites data delivery and model validation. Finally, since

we are nudging from an E3SMv1 scientifically validated simulation, we are not subjected to time consuming and tedious tuning

efforts that would be required in a free-running simulation to ensure top-of-atmosphere radiation balance and potential issues705

with a drifting climate.

CARRM represents a very efficient configuration compared to the global 3.25 km SCREAM (249 simulated days per day

compared to 4 to 5 simulation days per day, respectively, with approximately one third of the computational cores used)

and serves as a powerful tool for studying climate change and resilience in California. With its complex topography and

coastline, California is a microclimate-rich region, characterized by significant spatial heterogeneity. Therefore, high-resolution710

modeling becomes essential to capture the complexities associated with California climate. The convection-permitting scale

has manifested great values in accurately representing the highly volatile storm-induced precipitation in winter. The Sierra

Nevada snowpack, which holds the lifeblood of California’s water resources, relies heavily on high-resolution representation

in climate models. Thus, California provides an excellent test bed for SCREAM-RRM climate framework.

By comparing to 4 km observation-based gridded products and in-situ observations, the baseline climate of CARRM demon-715

strates the significant added value of the 3.25 km resolution for California. In particular, it accurately captures high temperatures

in the Central Valley, and realistically depicts the spatial distribution of rainfall and snowpack in the Sierra Nevada. In contrast,
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1° E3SM essentially fails to represent these fine-scale features which are closely related to topography. The response of marine

stratocumulus along the west coast can also be explored in CARRM as improvements in resolution have been found to be

important for marine stratocumulus clouds (Bogenschutz et al., 2022; Lee et al., 2022). In our simulations coastal stratocu-720

mulus decrease significantly with warming towards the end of the century, and the positive magnitude of the shortwave cloud

feedback is likely moderately high when compared to the CMIP6 spectrum.

Under the SSP5-8.5 scenario, our CARRM simulations indicate that daily maximum temperatures in the Central Valley may

increase from 36 °C in the current climate to 43.5 °C by the end of century. A widespread warming of 6-10 °C is anticipated

across most of California. By the end of the century, statewide 30-day average winter-spring precipitation in California is725

projected to increase by 38% compared to the present day. This increase is primarily due to larger amounts of precipitation

falling from stronger rather than more frequent moisture surges hitting California. This aligns with the thermodynamic reaction

to warming, resulting in an increased amount of precipitable water. On the other hand, our results suggest there could be a

notable decrease in precipitation during the fall, which has consequences for fire season. In our simulation, California’s SWE

was cut in half by the 2050s and almost completely absent by the end of the century. This is consistent with the significant730

reductions in snowpack found in the recent downscaling studies over California and the western U.S. (Berg et al., 2016;

Rhoades et al., 2017, 2018a; Sun et al., 2019; Siirila-Woodburn et al., 2021). These projections hold critical implications for

California’s future water resources, agriculture, energy, natural disasters (floods, droughts, wildfires), public health, etc.

Due to the nudging strategy, CARRM’s mean temperature is basically inherited from 1° E3SM. However, the statewide-

average precipitation shows significant differences between CARRM and 1° E3SM that increase over time (i.e., non-stationarity735

issue as discussed in Maraun et al. (2010)). Specifically, CARRM demonstrates superior proficiency compared to 1° E3SM

in accurately representing snowpack. This is evident as the 1° E3SM model essentially fails to capture snowfall in the Sierra

Nevada region. This suggests that 100 km may be sufficient if one is only concerned with the warming response in a statewide-

average context, but in terms of understanding changes at the regional level, the high resolution provided by CARRM is

essential; in the latter case, it is a challenge to make valid projections based on coarse-resolution models alone.740

The observation-based gridded products and in-situ observations reveal a small warm bias of daily minimum temperatures,

a cold bias of daily maximum temperatures in mountain regions in CARRM. As a comparison, Rhoades et al. (2018b) found

a systemic mountain cold bias from 55 to 7 km variable-resolution CESM simulations. Moreover, a significant wet bias is

found in CARRM. In particular, CARRM amplifies the wet bias which is already present in the 1° E3SM, which may suggest

problems with the physical parameterization of SCREAM and the inadequacy of 3.25 km to fully resolve precipitation systems.745

For comparison, 3 km WRF hindcasts in Huang et al. (2020) did not show a wet bias, while 3 km RRM-E3SM in Rhoades et al.

(2023) and 3 km / 800 m SCREAM CARRM hindcasts in Bogenschutz et al. (2024) found a wet bias especially in the Sierra

Nevada. Using the hindcast strategy based on the same SCREAM-CARRM framework, the wet bias found in Bogenschutz

et al. (2024) is much weaker than what we found here, suggesting that most of the bias produced by CARRM climate runs is

likely due to the large-scale forcing rather than biases in the physics. A further increase in grid resolution could help clarify750

the resolution issue, as computational resources allow. It is also an open question whether a deep convection scheme can still
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play a role in helping to better represent the fraction of convection that is not fully resolved, i.e., mitigating the overprediction

of mass fluxes.

Our endeavor demonstrates the engineering feasibility and scientific validity of SCREAM-RRM for conducting decades-

long climate simulations in regions of interest. SCREAM-RRM represents an excellent bridge to global convection-permitting755

simulations. The initial set of CARRM simulations has been employed to investigate the climate resilience of California’s

energy infrastructure. We anticipate further opportunities for application and iterative enhancements, including refining reso-

lution and model physics. Given the significant benefits of high resolution, this work provides guidance and encourages the

replication of SCREAM-RRM in other parts of the globe.

Code and data availability. The SCREAM California Convection-Permitting Regionally Refined Model 0.0 version code, in addition to the760

model output, can be found at https://doi.org/10.5281/zenodo.8303184. The SCREAM CARRM source code is also available on GitHub at

https://github.com/E3SM-Project/scream/compare/bogensch/CA_32xRRM (last access: 30 Aug 2023), and a maintenance branch (CARRM-

v0.0; https://github.com/jsbamboo/scream/releases/tag/CARRM-v0.0, last access: 30 Aug 2023). The code we used to generate the Califor-

nia RRM configurations for SCREAMv0 is documented in our technical note (https://acme-climate.atlassian.net/wiki/spaces/DOC/pages/

3804299340/SCREAM+California+RRM+v0+Technical+Note). Specifically, the code used to generate the boundary conditions can be765

found at Section 5.
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Appendix A

Figure A1. Multi-year precipitation of climatological mean (left column), wettest 5-yr mean (middle column), and driest 5-yr mean (right

column) for PRISM (top row), unsplit Livneh (middle row) observation-based gridded products, and CARRM (bottom row). The statewide

average is shown in the right-top corner. The analysis period of climatological mean is 1984-2020 for PRISM, 1915-2017 for Livneh, and

2015-2020 for CARRM.
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Figure B1. Comparison of 10-year return values for DJF daily precipitation extremes in (a) 1° E3SMv1, (b) SCREAMv0 CARRM, and (c)

a probabilistic gridded product (LULNUQ). All 20 years of simulations are used in the generalized extreme value distribution parameter

estimates for E3SMv1 and CARRM. The 10-year return values for DJF in 2015 are shown for LULNUQ.
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Figure C1. Observation-based gridded products for baseline (2015-2020 water years) multi-year average maximum T2m from PRISM in (a)

DJF, (e) JJA, precipitation from PRISM in (b) DJF, (f) JJA, SWE from UA-SWE in (c) DJF, (g) MAM, SWE from WUS-SR in (d) DJF, (h)

MAM.
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Figure D1. Comparison of SWE from (a) UA-SWE and (b) WUS-SR.
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Figure E1. Baseline (2015-2020 water years) 1° multi-year total vertically integrated zonal (left column) and meridional (right column)

water flux from E3SMv1 (top row), SCREAMv0 CARRM (middle row), and ERA5 observations (bottom row).
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Figure F1. Baseline (2015-2020 water years) 1° multi-year 500 hPa geopotential height from E3SMv1 (top row), SCREAMv0 CARRM

(middle row), and ERA5 observations (bottom row).
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Figure G1. Similar to Fig. 6 but showing the differences in summer mean daily maximum T2m (°C) in (b), (f) 2029-2034, (c), (g) 2044-2049,

(d), (h) 2094-2099 water years compared to the (a), (e) baseline in 1° E3SMv1 (top row) and SCREAMv0 CARRM (bottom row).

53



Figure H1. Same as Fig. 6 but for winter daily maximum T2m.
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Figure I1. Same as Fig. G1 but for winter daily maximum T2m.
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Figure J1. Similar to Fig. G1 but for winter precipitation (mm/day) for the top and middle rows. In addition, the difference translated to %

of annual total precipitation is shown in the bottom row.
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Figure K1. Same as Fig. J1 but for summer precipitation.
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Figure L1. Baseline (2015-2020 water years) 1° multi-year shortwave cloud radiative forcing (SWCF) from E3SMv1 (top), SCREAMv0

CARRM (middle), and CERES-EBAF observations (bottom).

58



Figure M1. Similar to Fig. 6 but for total vertically integrated vapor transport (referred to as “IVT”) with 850 hPa horizontal wind vectors.
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