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Abstract 

Effective wildfire management and prevention strategies depend on accurate forecasts of fire occurrence and propagation. Fuel 

load and fuel moisture content are essential variables for forecasting fire occurrence and whilst existing operational systems 10 

incorporate dead fuel moisture content, both live fuel moisture content and fuel load are either approximated or neglected. We 

propose a mid-complexity model combining data driven and analytical methods to predict fuel characteristics. The model can 

be integrated into Earth-System models to provide real-time forecasts and climate records taking advantage of meteorological 

variables, land surface modelling and satellite observations. Fuel load and moisture is partitioned into live and dead fuels, 

including both wood and foliage components. As an example, we have generated a 10-year dataset which is well correlated 15 

with independent data and largely explains observed fire activity globally. While dead fuel moisture correlates highest with 

fire activity, live fuel moisture and load are shown to potentially enhance prediction skill. The use of observation data to inform 

a dynamical model is a crucial first step toward disentangling the contributing factors of fuel and weather to understand fire 

evolution globally. This dataset, with high spatiotemporal resolution (~9km, daily), is the first of its kind and will be regularly 

updated. 20 

1 Introduction 

Landscape fires have wide-ranging consequences for local ecosystems, meteorology, regional air quality, and global 

atmospheric composition. They occur across various environments, including forests, croplands, and savannahs, where both 

living and dead vegetation act as fuel sources. Fire behaviour, duration, emissions, and impact on the landscape can vary based 

on fuel characteristics. Ground fires, fuelled by organic-rich soil such as peat, are associated with below-ground burning 25 

(Turetsky et al., 2015). Surface, ladder, and crown fires, fuelled by vegetation at different levels (floor-level, mid-level, and 

canopy-level, respectively), represent above-ground burning. The intensity of these fires is influenced by the availability of 

fuel and its curing state. Consequently, these characteristics have implications for emissions and the injection height of aerosols 

and trace gases into the atmosphere. In addition, they modify the fire impact on the landscape, affecting the albedo as well as 

surface heat and moisture fluxes, which results in atmospheric feedbacks. For example, given sufficient fire intensity and 30 

suitable atmospheric conditions, pyroconvective clouds may form, a process which is, in part, subject to fuel characteristics 

(Badlan et al., 2021). The examination and quantification of wildfire impacts is relevant for Earth system models (ESMs). 
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Integrating vegetation fires in ESMs presents numerous challenges relating to the complexity of modelling the temporal 

evolution of fire spread and the spatial representation of fuel characteristics at a fine scale (< 10 km). Such resolutions are not 

currently resolved by ESMs, either used for weather forecasting (~10 km) or climate simulations (~100 km). 35 

 

To comprehensively model vegetation impact on wildfires several variables must be considered. One such variable is fuel 

load, which is the total mass of vegetation per unit area and provides the baseline of biomass available. Fuel load can be further 

partitioned between wood and foliage, both alive and dead. Fuel moisture content of both live (LFMC) and dead (DFMC) 

vegetation is another key variable, which modulates flammability (Yebra et al., 2013). Both fuel load and moisture content 40 

directly influence fire occurrence, intensity, and rate of spread. Fuel moisture content is expressed as the proportion of water 

relative to the total dry mass of vegetation. LFMC is controlled by various ecophysiological traits and environmental factors 

affecting transpiration, such as soil moisture and humidity (Castro et al., 2003). DFMC is independent of transpiration and is 

determined by meteorological factors, including precipitation, solar radiation, as well as fuel composition and structure. 

 45 

The global monitoring of fuel load and moisture content presents several challenges. Globally, peat fire fuel is difficult to 

estimate and model in near-real time (NRT) given the measurement and process uncertainty (Spawn et al., 2020). Remote 

sensing techniques can be utilized to estimate the fuel load for above ground fires (Xiao et al., 2019), although they are limited 

to sensor coverage in both time and space. Alternatively, fuel can be estimated using land surface models with dynamic 

vegetation (Thonicke et al., 2010), although similar limitations apply as they are simulated at coarse resolution. Concerning 50 

fuel moisture content, recent studies have shown the potential of satellite-based observations in generating high-resolution 

global LFMC products (Quan et al., 2021; Zhu et al., 2021). Whilst these results are promising, sparse daily coverage limits 

global NRT estimates required to fully characterise fuel evolution. Satellite-based passive microwave Vegetation Optical 

Depth (VOD) retrievals can be used to estimate LFMC content with NRT global coverage (Forkel et al., 2023); however, these 

are provided at a coarse spatial resolution (~0.25°) and are likely to be subject to noise from soil moisture and vegetation type. 55 

Additionally, VOD provides an estimate of total moisture content, which itself is dependent on total fuel load, further 

entangling the signal. Modelling efforts to introduce LFMC estimates based on variables such as soil moisture are in 

development across the community (Rabin et al., 2017). 

 

This paper presents a novel modelling framework that combines satellite observations and numerical weather prediction 60 

simulations to infer fuel load and fuel moisture content. The framework is integrated into the operational system of the 

European Centre for Medium-Range Weather Forecasts (ECMWF) and aims to provide real-time estimations of fuel 

characteristics, enabling the assessment of landscape flammability daily, or even sub-daily (Figure 1). The model represents 

an initial step in categorising above-ground fuel load and moisture, providing a foundation for diagnosing landscape fire 

disturbance in an operational weather forecasting system and to generate a long-term record of these essential climate variables. 65 

The framework includes foliage and wood fuel load, including both alive and dead components, as well as LFMC and DFMC. 
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The output provides information on fuel evolution and fire danger, acting as the first step toward developing a global mid-

complexity fire rate-of-spread model. Additionally, the model output could be used for modelling other land surface processes, 

such as trace gas fluxes or biochemical soil properties, with the future aim of achieving full dynamical coupling of fires between 

the land surface and atmosphere. 70 

 

To assess the operational capability of the model and evaluate performance in simulating fuel characteristics relative to 

observed fire activities globally, the model was retrospectively run for the period from 2010 to 2019. The resulting dataset, 

available daily at a global scale with a horizontal resolution of ~9 km can be used for research throughout the fire community 

and beyond. The second and third sections of the paper detail the calculation and categorization of fuel load and moisture, 75 

followed by independent validation of each component. The final two sections establish relationships between the dataset and 

active fire observations, while defining thresholds for active fire conditions. 

2 Fuel Load 

2.1 Fuel Load Model 

Various methods can be employed to estimate Above Ground Biomass (AGB), which represents the above-ground component 80 

of the total fuel load. Dynamic Global Vegetation Models (DGVMs) offer the advantage of providing AGB estimates with 

high temporal resolution using atmospheric forcing and surface variables. However, these models often lack consensus at fine 

spatial resolutions and fail to account for the impact of human-induced disturbances on the landscape (Yang et al., 2020). 

Satellite-based and even in-situ AGB estimates could provide AGB information for fire forecasting. However, existing datasets 

typically suffer from limited coverage, and those that do provide global coverage are not readily available in near-real-time 85 

(NRT) or lack the high temporal resolution necessary for accurate fire forecasting (e.g., Santoro and Cartus 2021). 

 

In this study, we have integrated satellite-derived Above Ground Biomass (AGB) data with modelled Net Ecosystem Exchange 

(NEE) to estimate daily above-ground fuel load at a horizontal resolution of approximately 9km for the period from 2010 to 

2019. The initial AGB estimate for 2010 was obtained from the ESA Biomass Climate Change Initiative (ESA-CCI) version 90 

3 dataset (Santoro and Cartus, 2021). Their dataset combines synthetic aperture radar (SAR) backscatter observations from 

Envisat ASAR and ALOS-1 PALSAR-1 satellites. Using the BIOMASAR algorithm, the dataset relates forest backscatter to 

canopy density and height, which were then used to infer live AGB globally for 2010 at 100m horizontal resolution as a static 

map (Santoro et al., 2021). 

 95 

To update AGB over time, we incorporated NEE data generated by the ECLand land surface model (Boussetta et al., 2021) 

forced by ERA-5 meteorology (Hersbach et al., 2020). ECLand represents the surface component of the operational Integrated 

Forecasting System (IFS) model employed by ECMWF. The model simulations ran from 2010 to 2019, producing daily NEE 
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output at a horizontal resolution of Tco2559 (approximately 4.4 km). Model NEE was derived using the A-gs scheme, which 

depends on meteorological and land surface variables (e.g., temperature, soil moisture), as well as plant -specific physiological 100 

traits (Boussetta et al., 2013). 

 

As model NEE is prone to biases, the operational Copernicus Atmosphere Monitoring Service, which provides atmospheric 

CO2 forecasts (Agustí-Panareda et al., 2019), employs an online bias correction scheme. This approach involves applying 

scaling factors to model NEE values based on a climatology of optimized fluxes derived from atmospheric inversions 105 

(Chevallier et al., 2010; Agustí-Panareda et al., 2016).  Here instead we bias corrected the NEE based on differences between 

the 2018 and 2010 ESA-CCI product following the recommended guidelines (Santoro et al., 2021). This resulted in our average 

AGB values for 2010 and 2018 being equivalent to the ESA-CCI product but with the inclusion of daily variability. Moreover, 

this correction accounts for the additional non-carbon component of biomass variability, which is absent in the ECLand model. 

 110 

The modelled AGB, representing the fuel load, was further subdivided into foliage and wood mass, considering both alive and 

dead components as these are considered relevant for fire modelling methodologies. To accomplish this, we initially obtained 

a static estimation of the live-to-dead mass ratio for each of the 20 vegetation types defined in the ECLand model. These ratios 

were based on literature estimates (Supplementary Table 1). Each ~9 km grid cell consisted of low and high vegetation 

fractions, which were used to derive the grid cell specific ratio. The dead fraction was subsequently divided between foliage 115 

and wood based on a fixed percentage (𝐷𝐹𝑃) per vegetation type (Supplementary Table 1), which remained constant over 

time. 

 

The allocation of live mass to foliage (𝑇𝐹𝑙𝑖𝑣𝑒) varied temporally and was determined using vegetation-specific leaf mass per 

unit area (LMA) and observed Leaf Area Index (LAI) following the methodology described by Harper et al. (2016). We 120 

updated this approach to suit the vegetation types used in the ECLand model. Our definition of live foliage includes leaf mass 

only, while dead foliage includes small branches for the purpose of the fuel moisture model. LAI observations, aggregated to 

the model horizontal resolution, were taken from the CONFESS dataset, which provides 1 km monthly global LAI (Boussetta 

and Balsamo, 2021). 

 125 

The temporal variability in live wood mass (𝑇𝑊𝑙𝑖𝑣𝑒), which is a representation of seasonal short-lived wood mass (e.g. twigs), 

was determined as being proportional to LAI using the power law relationship proposed by Enquist et al. (1998) and 

vegetation-specific coefficients provided by equation 4 in Harper et al. (2018). The remaining component of live wood 

(𝑆𝑊𝑙𝑖𝑣𝑒 ), which is a representation of long-lived wood mass which remains regardless of LAI state (e.g. trunk), was assumed 

to be constant over time, preserving the live-to-dead fuel load ratio (L: D) when averaged over the entire time series (equation 130 

1). Consequently, for any given time, the fuel load of live foliage and wood can be calculated, while the dead foliage (𝑇𝐹𝑑𝑒𝑎𝑑) 

and wood (𝑇𝑊𝑑𝑒𝑎𝑑) are obtained as the residuals based on equations 2 and 3, respectively. 
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𝑆𝑊𝑙𝑖𝑣𝑒 = L: D AGB̅̅ ̅̅ ̅̅ − (𝑇𝑊𝑙𝑖𝑣𝑒
̅̅ ̅̅ ̅̅ ̅̅ + 𝑇𝐹𝑙𝑖𝑣𝑒

̅̅ ̅̅ ̅̅ ̅) (Equation 1) 

𝑇𝐹𝑑𝑒𝑎𝑑 =
𝐷𝐹𝑃

100
(AGB − (𝑇𝑊𝑙𝑖𝑣𝑒 + 𝑇𝐹𝑙𝑖𝑣𝑒 + 𝑆𝑊𝑙𝑖𝑣𝑒 )) (Equation 2) 135 

𝑇𝑊𝑑𝑒𝑎𝑑 = (1 −
𝐷𝐹𝑃

100
) (AGB − (𝑇𝑊𝑙𝑖𝑣𝑒 + 𝑇𝐹𝑙𝑖𝑣𝑒 + 𝑆𝑊𝑙𝑖𝑣𝑒 )) (Equation 3) 

 

The majority of total fuel load was allocated to 𝑆𝑊𝑙𝑖𝑣𝑒  with relatively little seasonal variability in live wood mass, 𝑇𝑊𝑙𝑖𝑣𝑒 , 

particularly in low latitude regions. The LAI dependence resulted in an increased fraction of live mass during the growing 

season, with relative increases largest in foliage but absolute increases largest in wood (Figure 2). 140 

 

The allocation of fuel load based on region and fuel type (see Figure 3 and Table 1) demonstrated the anticipated seasonal 

shifts between live and dead fuel load in the boreal region. During winter months, up to 50% of the fuel load consisted of dead 

fuel, decreasing to approximately 10% during the summer months. A similar yet narrower range in the dead fuel fraction was 

observed in temperate regions (17-41%), while in tropical regions, the dead fraction constituted only 11-17% of the total fuel 145 

load. On average, globally, dead fuel accounted for 22% of the total fuel load, with an approximately equal distribution between 

foliage and wood. The remaining mass comprises of 2% living leaf matter and 76% living wood. These findings agree with a 

recent study by van Wees et al. (2022); which estimated litter made up approximately 21% of the above ground fuel load. 

Furthermore, they also found an approximately equal split between foliage and wood. 

 150 

Tropical regions contain the largest proportion of the total fuel load, accounting for 414±11 Pg or 63%, aligning with previous 

findings (e.g., Pan et al., 2011; Erb et al., 2017). In comparison, the temperate (120±7 Pg or 18%) and boreal (126±10 Pg or 

19%) regions exhibit similar fuel loads, with a higher proportion attributed to dead mass. 

 

Analysis reveals a positive 10-year trend in fuel load (2010-2019), with an overall increase of +4.5 Pg yr-1. The tropics (+3.1 155 

Pg yr-1) and boreal (+2.6 Pg yr-1) regions contributes significantly to this trend. A small negative trend is found in the northern 

(-0.2 Pg yr-1) and southern (-0.9 Pg yr-1) temperate regions. The southern temperate region exhibits a relatively large negative 

trend of -3% yr-1. These findings, specifically the negative trend in southern temperate AGB align with the spatial distribution 

of the trend observed previously (Zhu et al. 2021). 

 160 

Whilst fuel load data presented here is at ~9km daily resolution, ECland permits finer spatiotemporal resolution. Given the 

coarse resolution forcing data and the variability in vegetation mass, this is not considered here. It should be noted that LAI is 

updated monthly, resulting in a step change in fuel load allocation, whilst variability in total fuel load within a given month is 

driven by the model. 
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2.2 Validation of Fuel Load 165 

Model fuel load was validated against various regional datasets that were independent of our calibration data, although some 

techniques and observations used to estimate above ground biomass (AGB) were similar (Figure 4 and Supplementary Table 

2). Mauro et al. (2021) used random forest models which utilised observations including airborne laser scanning data between 

2008 and 2016 to estimate above ground live forest biomass in Oregon, USA at 30m resolution as a static map. When 

combining the live wood and foliage estimates from our study for the same region and averaging over the 2010 to 2016 period, 170 

a comparative analysis reveals reasonably consistent results in terms of total living above ground biomass. Specifically, Mauro 

et al. (2021) reported a value of 2.14 Pg, while our study found a slightly lower estimate of 1.88±0.05 Pg. 

 

Matasci et al. (2018) employed a combination of lidar and Landsat observation data, along with a random forest-based distance 

metric, to generate forest biomass estimates for Canada at a resolution of 30m, spanning the period from 1985 to 2011. 175 

Although their focus was primarily on the estimation of biomass in living forested regions, the methodology utilized is sensitive 

to some extent to dead material. The living fuel load presented here for 2010-2011 (24. 5 Pg) shows an expected slight 

underestimate when compared with their findings (27.5 Pg). However, it is important to note that our total estimated fuel load 

(38.0 Pg) is significantly higher, as it encompasses all above ground dead fuel in addition to the living fuel load. 

 180 

For further validation, we utilized two separate estimates of African biomass: one from 2010 by Soto-Navarro et al. (2020) 

and another from 2017 by Rodriguez Veiga & Balzter (2021). Soto-Navarro et al. (2020) employed the same ESA-CCI product 

for 2010 as used in this study. However, their dataset includes a savannah and woodland biomass product specific to Africa, 

derived from an L-band PALSAR mosaic dataset provided by JAXA at a resolution of 25m (Bouvet et al., 2018). They also 

incorporated below ground biomass information and their study reports aboveground carbon biomass rather than total fuel 185 

load, which they approximate to be half the total dry mass. Consequently, comparing the two products may not be entirely 

appropriate as they estimate different quantities. Their value for above- and below-ground carbon biomass (77.1 Pg) for Africa 

for 2010 is slightly lower than the above ground live total fuel load found here (81.8 Pg), but the spatial distributions agree. 

 

Rodriguez Veiga & Balzter (2021) employed a comprehensive approach, integrating lidar, Synthetic Aperture Radar (SAR), 190 

and optical-based data to estimate aboveground biomass across Africa for 2017. Their estimation (117.5 Pg), provided at a 

resolution of 100 m, is comparable to our combined live and dead fuel load (115.9 Pg) for 2017, although our live fraction is 

noticeably lower (89.0 Pg). Overall, the model agreement across the 4 independent datasets evaluated suggests the model 

produces an accurate estimation of fuel load. 

 195 

The dead fuel load and the ratio of live-to-dead fuel is difficult to validate given the lack of global observations. We performed 

site specific evaluation of our estimated dead fuel and ratios using field measurements compiled by van Wees et al. (2022). 
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The observation database includes estimates of total. leaf, grass, stem, dead wood and dead fine fuel load. By subsampling the 

dataset where all or some of these variables were available, we evaluated our modelled data against 202 data points between 

2010 and 2019 (Supplementary Figure 1). Given the observations are site specific and model resolution is at a relatively coarse 200 

~9km resolution, the representation error caused by the failure of the model to capture sub-grid heterogeneity was expected to 

be large. Furthermore, modelled values were expected to be larger than observations as the estimated quantities differ, the 

observations represent the total carbon per unit area, whilst the model estimate the total fuel load. Despite these differences 

the model provides reasonable agreement with observed total fuel load (R: 0.43) with the expected positive bias. For live load 

and dead fuel load specifically, there is also some agreement (R: 0.39 for both). The ratio of live-to-dead fuel load provides an 205 

R value of 0.53. Whilst these values show the model does not provide perfect agreement with observations, we consider the 

results to be encouraging considering the expected considerable representation error. 

 

3 Fuel Moisture Content 

Fuel state, in addition to quantity, is a key component for modelling fire danger and risk. This includes amongst other things, 210 

fuel arrangement, structure, and moisture content. Here we focus on a model derived moisture content for both live and dead 

fuel, with DFMC further subdivided between foliage and wood. An estimation for LFMC is possible from satellite sensors 

(Quan et al., 2021; Zhu et al., 2021), however data are not available in NRT and often have gaps. Vegetation Optical Depth 

from passive microwave satellite retrievals can provide an estimation of absolute LFMC (Forkel et al., 2023). However, to 

derive the relative LFMC the signal must be separated from the vegetation mass. For example, a high VOD value could indicate 215 

either a high fuel load with moderate moisture content or a moderate fuel load with a high moisture content. Alternatively, 

more accurate in-situ measurements are available (e.g. Yebra et al., 2019), however these represent local values typically 

obtained using destructive sampling and as such are not suitable at the global scale. 

3.1 Live Fuel Moisture Content (LFMC) Model 

To estimate daily LFMC from 2010 to 2019 at ~9 km we used a semi-empirical model based on key variables determined 220 

using a random forest regression (Supplementary Figure 12). A semi-empirical approach was opted for as it provided a physical 

constraint on the modelled LFMC, which was required as the modelled LFMC range was not fully represented by the training 

data. Furthermore, the evaluation of the optimised models against independent LFMC observations showed only a minor 

improvement when using a random forest approach. 

 225 

The model was trained on Globe-LFMC data based on in-situ destructive sampling measurements (Yebra et al., 2019). The 

data was taken from 1,383 sampling sites in 11 countries and represents a range of vegetation types. Measurements typically 

involve weighing the vegetation, drying the vegetation and then re-weighing to determine the moisture fraction. To avoid 
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sampling noise generated from the considerable variability in observed LFMC we averaged observations for specific sites into 

monthly bins between 2010 and 2018, resulting in 25,410 samples. The spatial representation error was expected to be 230 

considerable as observations are point specific for an induvial plant, whereas the model is sampled at 9 km horizontal 

resolution, thus limiting the success of the model. 

 

Subsampling of Globe-LFMC data permitted 7 vegetation-specific parameter optimisations to be performed. The ECLand 

equivalent of these are crops, short grass, evergreen needleleaf trees, deciduous broadleaf trees, mixed crops/grassland, 235 

deciduous shrubs, and broadleaf savannah, whilst the remaining vegetation types used the coefficients of their most closely 

associated type from those 7. LAI values, previously described, from the CONFESS dataset at 9 km monthly resolution, were 

used in the optimisation as well as monthly 9 km 4-layer soil moisture taken from ERA5-Land (Muñoz-Sabater et al., 2021). 

Vegetation-specific layer-weighted soil moisture (SM) values were then calculated based on the fractional root distribution 

per layer, taken from ECLand approximations (Boussetta et al., 2021). 240 

 

Model parameters were optimised using the Trust Region Reflective algorithm based on the assumption LFMC varies with 

soil moisture and LAI following an asymptotic regression (equation 4). By which, we assume as soil moisture and LAI increase 

so too does LFMC at a decreasing rate from a minimum LFMC, 𝐿𝐹𝑀𝐶𝑚𝑎𝑥 − 𝐴, up to a maximum LFMC, 𝐿𝐹𝑀𝐶𝑚𝑎𝑥. We 

consider the independent contribution from soil moisture and LAI as well as their combined influence on LFMC. In a 245 

generalised approach we consider the dormant stages of vegetation to be represented by the coefficient 𝛼, the vegetation 

resistance to draught conditions by 𝛽, and the growth phase by 𝛾. The resulting vegetation-specific model coefficients for 

LFMC is presented in Supplementary Table 32. As vegetation cover in ECLand is given as low or high, we provide the values 

of both components and the combined values in the dataset. 

 250 

𝐿𝐹𝑀𝐶 = 𝐿𝐹𝑀𝐶𝑚𝑎𝑥 − 𝐴 𝑒−(𝛼 𝑆𝑀+𝛽 𝐿𝐴𝐼+𝛾 𝑆𝑀 𝐿𝐴𝐼)  equation 4 

 

The optimised parameters provide reasonable agreement with Globe-LFMC for most vegetation types, R = 0.36-0.72, except 

for crops, R = 0.24 (Supplementary Figure 32). This is expected given irrigation is not considered by ECLand resulting in 

inaccurate crop soil moisture. The dependency on LAI and soil moisture varies between vegetation type, with soil moisture 255 

values between 0.1 and 0.2 typically representing a noticeable drop-off in LFMC toward a fire prone state (Figure 5). All 

vegetation types are sensitive to soil moisture changes, whilst only some are sensitive to a combination of LAI and soil moisture 

(short grass, evergreen needleleaf, deciduous broadleaf and deciduous shrubs). The maximum LFMC in forested areas is lower 

than grasslands and shrublands, which is expected given a large fraction of biomass is allocated to the relatively dry wood in 

forested regions. 260 
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3.2 Live Fuel Moisture Content Validation 

Model LFMC was validated against estimates obtained by combining retrievals from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) with radiative transfer model (RTM) inversion techniques (Quan et al., 2021). Their method to 

estimate daily LFMC at 500 m resolution involved generating look-up tables based on RTM simulations considering 3 land 

cover classes, forest, grassland and shrubland. They provide data at 8-day intervals including all dates relevant to this study 265 

(2010-2019). Given the spatiotemporal resolution of both datasets for comparison they were averaged to monthly 9 km 

resolution. 

 

There is generally a good spatial agreement between the two products, with well-known fire prone regions, such as the western 

USA, African savannahs or Australian shrubland, showing relatively low LFMC values in both datasets (Figure 6). Tropical 270 

forests are drier in the MODIS dataset, whilst boreal regions are moister, relative to our dataset. Differences in land cover 

classification between datasets could explain some of these differences. The most noticeable difference is the range in values, 

when considering values above 30%, which we assume as a threshold for live fuel, the MODIS derived mean (134±70 %) is 

considerably larger than our findings (112±20 %), with a larger variability. Our average value and variability compare well 

with the LFMC-globe dataset (108±36%), although that dataset is not necessarily representative of a global value. 275 

There is generally a good agreement between the two datasets when considering all points for all years between 2010 and 2019 

(Figure 7). Agreement between MODIS and our dataset is also vegetation type dependent. By using the ECLand vegetation 

cover maps we separate the correlation by type. The resulting correlation with herbaceous vegetation types is relatively high 

with R values of 0.65 (short grass), 0.62 (deciduous shrubs) and 0.50 (broadleaf savannah). Forested regions show poorer 

correlation, with evergreen needleleaf forests negatively correlated (R = -0.23) and deciduous broadleaf forests only weakly 280 

correlated (R = 0.33). This is expected given the complexity involved in estimating forest LFMC, which are highly 

heterogeneous. Satellite observations are typically representative to the top of canopy moisture and not the entire forest 

structure (Quan et al., 2021). Comparatively, the model presented here provides an improved correlation in forested areas 

when evaluated against the Globe-LFMC training data for both evergreen needleleaf (R = 0.36) and deciduous broadleaf (R = 

0.42) forests. 285 

 

The spread in values is bias low in our model relative to Quan et al. (2021), with both extreme low (<40%) and high (>150%) 

values typically not represented in our estimates. This is the result of the asymptotic regression approach where anomalously 

high values are unlikely to ever occur given they tend toward a theoretical maximum LFMC. Given our focus is to establish 

the fire prone state of the vegetation any values over 150% can be considered non-flammable and their exact values are not 290 

essential for fire modelling. 
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3.3 Dead Fuel Moisture Content (DFMC) Model 

Current operational fire forecasting systems and Fire Weather Indices (FWI) typically depend on an estimation of DFMC as a 

proxy for flammability (Van Wagner, 1974; Vitolo et al., 2020). Whilst observations of DFMC can be made at a local scale 

(e.g. Matthews, 2014), there is no global observation-based product which could be implemented as an alternative to modelling. 295 

 

An estimation of daily DFMC from 2010 to 2019 at ~9 km was made by generalising the ‘Nelson model’, which is a physically 

based model for moisture content of a 10-h fuel (Nelson, 2000). The model was developed using hourly air temperature, 

humidity, radiation and precipitation as inputs to derive heat and moisture transfer both internally and at the surface. Here, as 

in Carlson et al. (2007), we extended the model to include 1-h, 10-h, 100-h and 1000-h fuels. The 4 classifications are based 300 

on the response time of the fuel to changes in moisture and are commonly associated with the fuel diameter. Given the fuel 

model produces dead foliage and wood, we further grouped the DFMC fuel types. 1-h and 10-h fuel moisture were used for 

foliage, including small branches, whereas 100-h and 1000-h fuel moisture provided DFMC for wood. The weighting between 

the two fuels for both is dependent on the vegetation type (Supplementary Table 34), based upon the National Fire Danger 

Rating System (Deeming et al., 1978). 305 

 

We simplify the Nelson model by considering only the surface exchange of moisture between the atmosphere and fuel surface 

due to precipitation and vapour pressure differences, as given by equations 12 and 15 of Nelson (2000). We expand the model 

to 1-h, 10-h, 100-h and 1000-h fuels by modifying various coefficients and stick radius to 0.2, 0.64, 2.0 and 6.4 cm, 

respectively, based on Carlson et al. (2007). 310 

 

Model timestep is important for the stability of the model and the treatment of precipitation as an input can alter the output 

noticeably. For example, intense precipitation, 𝑅, over a short period might result in a small change in DFMC, 𝑑𝑀𝑅, however 

the same total 𝑅 spread over a longer a period will result in larger 𝑑𝑀𝑅. To account for the impact of timestep duration we 

adjust the precipitation coefficients given by Nelson (2000). For this study we apply daily timesteps, 𝑑𝑡, for DFMC; however, 315 

in the future when the model is integrated within ECland the timestep will decrease significantly to less than 1 hour and the 

coefficients will be adjusted further. The resulting updates to equation 12 of Nelson (2000) can then be applied to each fuel 

type as given by equations 5-8. Maximum 𝑑𝑀𝑅 values are taken from Carlson et al. (2007), which may not be fully compatible 

with our system, given their model uses 1-hour timesteps. 

 320 

𝑑𝑀𝑅,1−ℎ = max {0.85, 0.96(1 − 𝑒−0.6𝑅) 𝑑𝑡}  equation 5 

𝑑𝑀𝑅,10−ℎ = max {0.6, 0.32(1 − 𝑒−0.6𝑅) 𝑑𝑡}  equation 6 

𝑑𝑀𝑅,100−ℎ = max {0.4, 0.11(1 − 𝑒−0.6𝑅) 𝑑𝑡} equation 7 

𝑑𝑀𝑅,1000−ℎ = max {0.32, 0.04(1 − 𝑒−0.6𝑅) 𝑑𝑡} equation 8 
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 325 

The impact of the vapour pressure effect on DFMC, 𝑑𝑀𝑉, is also considered based on equation 15 of Nelson (2000) and using 

the same constants where applicable. As with precipitation, this is updated following stick radius and density recommendations 

from Carlson et al. (2007) to account for all fuel types. The vapour pressure at the fuel surface, calculated following equation 

20 of Nelson (2000), is dependent on humidity, surface pressure, skin temperature and air temperature which were taken from 

ERA5-Land (Muñoz-Sabater et al., 2021), although operationally they can be taken from the atmospheric component of the 330 

IFS model. The resulting DFMC evolves through time and is updated by adding 𝑑𝑀𝑅 and 𝑑𝑀𝑉 at each timestep. 

3.4 Case Study Validation 

Derived DFMC and LFMC were first validated using extreme wildfire case studies. Fire occurrence was spatially correlated 

with both moisture variables averaged over the entire month in which the wildfire events occur, although often the wildfires 

occurred on timescales of either less than or more than a month. We overlayed a fuel load mask, considering regions where 335 

either dead or live fuel was above 1 kg m-2 or 2 kg m-2, for DFMC and LFMC respectively. Fire observations were taken 

from the MODIS Collection 6 and Collection 6.1 Active Fire Dataset (Giglio et al., 2021). In which, active fires were detected 

using a contextual algorithm (Giglio et al., 2016) based on retrievals in the mid-infrared. Specifically, we used the MCD14ML 

product, which provides geographic coordinates of active fires at a monthly resolution. Observations were aggregated onto the 

fuel moisture dataset resolution (~9 km). For comparison the spatial maps were compared with the average moisture content 340 

for the specific month taken from the 9 remaining years of the dataset (2010-2019). Cases studies were evaluated representing 

four distinct wildfire events, tropical forest, boreal forest, temperate forest and mixed shrubland. It is important to note that 

LFMC is dependent on both phenology and meteorological conditions, as a result it may not always provide a suitable direct 

correlation with the fire susceptibility of vegetation. 

3.4.1 Bolivia, August 2010 345 

The Bolivian wildfires in 2010 were mainly concentrated in the department of Santa Cruz in the east of the country, burning a 

total area of 38,000 km2 (Bustillo Sánchez et al., 2021). This diverse region contains a mixture of tropical dry and wet forests 

as well as savannahs, making the fuel characteristics difficult to model using a single vegetation type. The Chiquitanía 

seasonally dry tropical forest, located between the Amazon and Gran Chaco dry forest, was the most effected region. The fires 

were concentrated toward the end of the dry season in August and were the result of human activities, above average winds 350 

and a La Niña event causing drought (Singh et al., 2022). Within the ECLand classification the fires mainly occurred in 

evergreen broadleaf forest. 

 

Evaluation of both DFMC and LFMC, relative to the 2011-2019 average, showed a noticeable reduction in moisture content 

over the entire Eastern Bolivian region in August 2010 (Figure 8). Fire detected cells within the mapped domain, 62°W, 21°S 355 

to 56°W, 15°S and where live fuel load is above 2 kg m-2, had an August average LFMC for 2011-2019 of 107±11 %; whereas 
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for 2010 this reduced to just 91±16 %. Average DFMC, where dead fuel load is above 1 kg m-2, for August 2011-2019, 27±10 

%, is also higher than for 2010, 16±12 %. It should be noted that the DFMC values reported are a mass weighted average of 

the foliage and wood DFMC combined. This suggests that based on fuel moisture alone, the elevated fire risk for 2010 is 

detected by the dataset. The exact thresholds for likely ignition for both LFMC and DFMC are vegetation dependent and to 360 

establish fire danger from the values derived here needs to be explored in more detail. It should also be noted that the August 

average climatology for 2011-2019 will contain instances of fire occurrence. For comparison, LFMC for cells with no fire 

detection are closer in value for the 2011-2019 August average, 108±11 %, when compared with 2010, 99±15 %. Average 

DFMC of those same cells, with no fire detection, were 27±9 % for 2011-2019, compared with 15±11 % for 2010, a similar 

difference as seen in fire detected cells. Given the noticeable difference in LFMC, our findings suggest that forest fires in this 365 

region, for this period, were dependent on LFMC values rather than DFMC, although dead fuel burning likely contributed to 

the fire activity. Importantly, no fire detection does not mean no occurrence as both overpass time and, atmospheric and land 

surface conditions may result in no detection. Furthermore, high fuel load and low moisture content produces favourable 

conditions for fire occurrence but still requires an ignition event. Finally, fuel load is not updated following a burn event, as a 

result our estimates for fuel load are likely to be overestimated following a fire. 370 

 

Most of the Bolivian fires in August 2010 occurred in the second half of the month, when both DFMC and LFMC of the fire 

detected cells was lowest (Figure 8). For August 2010 daily variability in the average DFMC (±2.4 %) is larger than LFMC 

(±0.8 %). This suggests the onset of fire risk from low DFMC is likely to occur more rapidly than for LFMC. This is expected 

as LFMC is more resilient to drought conditions given the dependency on soil moisture and not surface moisture. 375 

3.4.2 Canada, July 2014 

The 2014 summer wildfire season in the Northwest Territories, Canada was the worst in recorded history in the region, resulting 

in a burnt area of 34,000 km2 (Kochtubajda et al., 2019). The fire effected region, predominantly to the west and north of Great 

Slave Lake, is relatively homogenous, covered in evergreen needleleaf forests. We focus our analysis on July, when fire 

occurrence was highest. The diagnosed moisture content is only reflective of fuel flammability and not directly increased fire 380 

occurrence. For 2014, increased fire occurrence was, in part, attributed to changes in lightning-induced ignitions (Veraverbeke 

et al., 2017). 

 

The region south of Great Slave Lake, which was not subject to significant wildfire activity in 2014 has the same average 

LFMC in July, 121± 8%, as the 2011-2019 climatology, 121±8 % (Figure 9). Whereas fire detected cells, within the mapped 385 

domain (119°W, 59°N to 108°W, 65°N ) with live fuel load above 2 kg m-2, exhibited a lower average LFMC in 2014, 107±9 

%, relative to 2010-2019, 112±8 %. Most of these cells are concentrated to the west and north of Great Slave Lake and northeast 

of Lac La Martre. Similarly, for DFMC, where dead fuel load is above 1 kg m-2, fire detected cells provide a lower average 

value for 2014, 27±21 %, relative to 2010-2019, 37±16 %. The relative change in moisture content between the fire event 
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years and the climatology is smaller than for the Bolivia fires. Given the difference in vegetation type between the two events 390 

this would suggest evergreen forests require only a small change in moisture content to noticeably increase fire risk. As 

previously mentioned, an anomalously high number of lighting-induced ignitions in July 2014, contributed to the severity of 

the wildfire seasons. However, our derived moisture content values would suggest that in addition to this, the fuel 

characteristics were favourable for an above average fire season. 

 395 

The fire season in the Northwest Territories spanned the months before and after July, this is reflected in the low DFMC and 

LFMC both at the start and end of July, relative to the climatology. The variability in DFMC (±5.4 %) is once again larger 

than for LFMC (±0.6 %) and as with the Bolivian fires both LFMC and DFMC are typically beyond the spread of the 

climatology. 

3.4.3 Portugal, June 2017 400 

In June 2017, following an intense heatwave, wildfires in Portugal resulted in 5,000 km2 of land being burnt (Turco et al., 

2019). The most destructive single event occurred on the 17th of June in the Pedrógão Grande municipality in central Portugal 

and resulted in 66 fatalities and 450 km2 of burnt land (Ribeiro et al., 2020). Boer et al. (2017) found that current methods 

based on simplified assumptions of fuel state failed to predict the fire danger of the Pedrógão Grande event, as a result it seems 

a fitting case study for our LFMC and DFMC. The land cover in the region is mainly evergreen needleleaf forests with a 405 

smaller mixture of broadleaf trees and shrubs (Pinto et al., 2022). The fires often spread to the wildland urban interface resulting 

in complex evolution beyond the simple correlation between moisture content and fire occurrence. 

 

Relative to the previous two case studies the Pedrógão Grande wildfires covered a smaller area and were concentrated in 

specific events which were relatively isolated (Figure 10). Given the relatively dense urbanisation in the area it is unlikely 410 

these events were able to spread in the same way as the more rural Bolvian and Canadian wildfires. Additionally, the area is 

subject to a lower fuel load density as indicated by the relatively limited number of grid cells with live fuel load above 2 kg m-

2 or dead fuel load above 1 kg m-2. In such heterogenous environments ignitions events become more relevant as individual 

fires tend to cover a smaller area. Fire detected cells above the fuel threshold were found to have a lower LFMC on average in 

June 2017, 111±5 %, relative to the 2010-2019 average excluding 2017, 117±6 %. The average DFMC for June 2017, 4±2 %, 415 

was three times lower than the 2010-2019 average, 12±3 %. As with the Canadian wildfires, also in evergreen needleleaf 

forest, and unlike with the Bolivian fires, in evergreen broadleaf forest, the relative difference between LFMC between the fire 

year and the climatology is small. This further supports the idea that fire risk in needleleaf forests noticeably increases with 

only a slight decrease in LFMC. 

 420 

Unlike the previous two case studies, the Portuguese wildfires in June 2017 were isolated to only a few events and as such fuel 

characteristics at specific dates can be investigated. The Pedrógão Grande event on the 17th of June coincides with low DFMC 
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values in the region, 4 %, following a week of consistently low DFMC values, 0.8±0.3 %. These are higher relative to 

climatology values of, 8 %, for the 17th and 14±4 %, for the preceding week. Initial LFMC values at the start of the month 

were within the average spread, however as the month progressed the average values drifted lower to 105 % on the 17th, 425 

compared with a climatology average of 114%. As the vegetation type for these fires is the same as the Canadian wildfires in 

2014, this would suggest evergreen needleleaf forest have a model LFMC fire danger threshold around 110 %. 

3.4.4 Australia, December 2019 

The Australian wildfire season in late 2019 and early 2020 resulted in the largest burnt area and fire severity in the region in 

recorded history (Deb et al., 2020). This followed the nations warmest and driest year on record (Filkov et al., 2020). The fires 430 

resulted in a burnt area of 100,000 km2 (Davey and Sarre, 2020). The fires centred around the southeast of the country in the 

state of New South Wales. The fire resulted in major environmental damage, at least 33 human deaths, agricultural damage, 

loss of over 3,000 houses and large-scale emissions of both short-live atmospheric pollutants, causing poor air quality, and 

long-live greenhouse gases. The major fires occurred in December 2019, and January 2020. Here, given the timeseries of the 

data we analysed fuel characteristics for December. Much of central Australia is covered by areas with sparse vegetation, 435 

meaning that although moisture content is low, there is insufficient fuel for largescale wildfires. Both the urbanised and forested 

regions are found in more coastal areas where the fuel moisture content is higher. Large scale wildfires typically occur at the 

forest-shrubland interface where, in the right conditions, there is both sufficient fuel and low moisture content. 

 

Deb et al. (2020) found there were incidents of wildfire occurrence in Australia during the 2019/2020 season where DFMC 440 

was low, below a fire threshold, and LFMC was high, above a threshold; however, there were also incidents where the opposite 

occurred. This suggests that both or either threshold was met from which ignition events resulted in fire spread. The fire 

effected areas were typically evergreen broadleaf forests; however, given the heterogenous nature of the landscape, several 

different vegetation classifications, defined in ECLand, were burnt. The forest-shrubland interface is clearly denoted by the 

boundary of the live fuel threshold, which is applied as a mask to the fuel data for all points below 2 kg m-2 (Figure 11). Fire 445 

detected cells above this threshold were found to have a lower LFMC in December 2019, 108±15 %, relative to the 2010-2018 

average, 124±8 %. This supports a fire risk threshold of between the two values. The average DFMC for December 2019, 

25±17 %, was lower than the 2010-2019 average, 34±13 %. 

 

The wildfire season in 2019 occurred for multiple months either side of December, as a result no significant trend in DFMC 450 

or LFMC is identified throughout the month. Both DFMC and LFMC values fall below the spread of the climatology for all 

days of the month. As with the previous case studies, DFMC exhibits a higher variability throughout the month, ±2.4 %, 

relative to LFMC, ±0.8%. 
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4 Validation with Fire Activity 

Various fire indices are used to define fire risk, included in these is the Fire Severity Index, FSI (Van Wagner, 1987), like the 455 

FWI this is based on meteorological inputs and neglects land surface variables. The FSI is currently used operationally at 

ECMWF within the fire danger system (Di Giuseppe et al., 2016). We compared our area averaged daily fuel load and moisture 

with the FSI over several fire prone regions over the 10-year period for which the dataset is available. These were then 

evaluated against active fire counts from MODIS over the region at a daily frequency. As previously mentioned, the phenology 

influences LFMC, as a simple approach to correct for this we have used the monthly anomaly of LFMC to illustrate fire danger. 460 

 

The results show that FSI is typically well correlated with fire activities in the selected domains (Figure 12), it should be noted 

that high FSI values are also found in regions with little or no fire activity, for example hot deserts, which are not shown. This 

is because little or no vegetation cover can still result in high FSI values, as this index only accounts for weather conditions. 

The regions and time selected include several significant wildfire events but the intention here is to also evaluate the interannual 465 

and seasonal variability of the fire prone regions and evaluate how well the different variables correlate with fire activity. 

 

The Alberta, Canada, domain is also dominated by evergreen needleleaf forests. During the timeseries two significant fires 

events occurred in the region, the Richardson Fire between May and July of 2011 which resulted in a burnt area of evergreen 

needleleaf forest of 5,800 km2 (Pinno et al., 2013) and the entire 2019 wildfire season. Both the 2012 and 2015 fire season 470 

also saw significant fire activity. For ease of analysis, we considered the inverse of both LFMC and DFMC as the correlation 

variable. Seasonal fire activity is reasonably well captured by both FSI (R = 0.58) and DFMC (R = 0.38), whilst the LFMC 

anomaly (R = 0.18) is less well correlated due to the relationship between phenology and LFMC. Given that DFMC, FSI and 

LFMC are not the only contributors to fire activity, a larger correlation value was not necessarily expected. The skill of the 

FSI is unsurprising given the index was developed using similar evergreen needleleaf forests. Both DFMC and FSI values 475 

suggested an active fire season in 2018, which was not reflected by fire counts, possibly owing to a lack of ignitions. Although 

the LFMC anomaly generally correlated weakly with fire activity, the second lowest LFMC anomaly in the dataset coincided 

with the active fire season in 2019. As expected, the low interannual and seasonal variability in fuel load is not found to be a 

contributing factor to fire activity. 

 480 

In the California, USA, domain seasonal fires are common, the largest within the period was the Thomas Fire in December 

2017 resulting in a burned area of 1,100 km2 (Nauslar et al., 2018). The fuel load in the region is dominated by evergreen 

needleleaf forest in our model, but the Thomas fire specifically involved the burning of various vegetation types. As with the 

Alberta domain, the FSI (R = 0.84) was developed for such environments and so performs well at representing active fire 

seasons, as does DFMC (R = 0.90). LFMC anomaly showed a weaker correlation with fire activity (R = 0.35). The interannual 485 

variability in fire activity is not well reflected in either DFMC or FSI, as these values represent the fire risk only in the event 
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of an ignition. As an example, the lowest regional DFMC and highest FSI occurred in 2012 and 2014, respectively, and neither 

year saw significant fire activity. The Thomas fire occurred when the fire risk forecast, given by FSI, was low, as was the 

regional DFMC. There was however an anomalously low LFMC during that period (third lowest in the 10-year record), 

suggesting had LFMC been considered in fire risk a more accurate forecast may have been provided. Seasonal variability in 490 

fuel load is small and not thought to be a contributing factor in fire activity, however fuel type, dead/alive and leaf/wood may 

influence the likelihood of fire in the region and requires further investigation. 

 

The Sub-Saharan northern hemisphere region of Africa, including the Sahel, encompasses large fire prone savannah areas. The 

region contributes approximately one third of the total burnt area globally for a given year (Humber et al., 2019). Agricultural 495 

burns are common in the region, which are, in part, independent of the metrics used in this study. The difference in vegetation 

makes the nature of savannah wildfires noticeably different to the previously evaluated forest fires. Unlike the two previous 

case studies fires in the region are often fuel limited with fast turnover savannah grasses returning in the growing season. 

Although fire counts correlated well with both DFMC (R = 0.86) and FSI (R = 0.84), both variables tend to peak in the last 

week of January toward the end of the dry season. In contrast to this, fire counts, and fuel load typically peak in the last week 500 

of December, this is caused by a reduction in available fuel later in the dry season. Given a relatively small interannual 

variability in fire season the anomaly in LFMC is not a useful variable for interannual prediction. 

 

The Southern Africa domain encompasses deciduous and evergreen broadleaf forests in the north and broadleaf savannah and 

deciduous shrubland in the south. As with the northern hemisphere Sub-Sahara African domain, agricultural burns in the area 505 

are common resulting in fire counts unrelated to fuel characteristics. Both the DFMC (R = 0.94) and FSI (R = 0.86) correlated 

well with fire counts; however, they suggest prolonged fire season with a seasonal peak at the start and end of September 

respectively. This contrasts with the fire count data, which shows a relatively short fire season, peaking in August whilst the 

fuel load is still high. This once again highlights the importance of considering fuel load in forecasting fire activity. LFMC is 

only weakly correlated with fire count (R = 0.15), however 3 of the 4 most active fire seasons, 2010, 2011 and 2013 coincide 510 

with the 3 years with the lowest LFMC anomalies. 

 

These results provide examples of fire thresholds, as described by Kelly et al. (2019). These thresholds for fire activity can 

controlled by either fuel load availability, fuel moisture content, ignition frequency, suppression capacity or a combination of 

all of these. It should be noted that the fire risk thresholds specific to the vegetation type described in the previous section are 515 

not included in this evaluation. 
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5 Vegetation Specific Fire Danger 

A global comparison with MODIS active fire and our modelled fuel moisture was performed to evaluate potential thresholds 

for fire activity. The comparison was made by first selecting only locations where active fires were detected at least 5 times in 

the 10-year period. For simplicity, for this analysis we ignore potential limitations of fuel load. For both DFMC and LFMC 520 

thresholds were expected to be vegetation type dependent, as a result we categorised each grid cell globally by the dominant 

type in the ECLand model. We defined threshold values for fire risk based on the ratio of fire detected to non-fire detected 

values, for both DFMC and LFMC (Figure 13). If the percentage of fire detections relative to non-fire detections for a given 

moisture content exceeds 6.0 % the fire risk is considered extreme. Additional risk values are applied based on the percentage 

of fire detections relative to non-fire detections for very high risk (4.5 %), high risk (3 %), moderate risk (2 %), low risk (1.5 525 

%) and very low risk (1 %). These thresholds are intended as a simplified measure of fire risk and would need to be further 

refined based on fuel load and atmospheric conditions to generate a fire risk forecast. 

 

The results show the fuel moisture is negatively correlated with fire activity for all vegetation types, more so for DFMC, 

suggesting our values are suitable as a proxy for fire danger. For LFMC the relationship is complicated by vegetation typically 530 

up taking more moisture in the growing season and drying in the dormant season. The fire risk associated with LFMC should 

therefore consider plant phenology, which requires further investigation. The probability of fire occurrence differs between 

vegetation type as expected, which emphasises the importance of categorising fuel. Globally, fires most often occur over short 

grass, for which we estimate a moderate fire risk for DFMC below 51 % or a low fire risk for LFMC below 145 % or DFMC 

between 51 and 68 %. These relatively low risks are expected given short grass has the largest global coverage of the vegetation 535 

types. Relative to the number of grid cells considered for each vegetation type, fires most often occur in broadleaf savannah 

regions, with active fires detected in fire prone regions 2.5 % of the time, followed by deciduous broadleaf, 1.8 %. When the 

LFMC drops below 104 % in both these regions the fire risk increases to very high, whilst for DFMC this occurs when values 

drop below 65 % for broadleaf savannah and 58 % for deciduous broadleaf. The fire risk in broadleaf savannah becomes 

extreme for DFMC values below 17 %. We only report on fire risk for the 6 vegetation types which have the highest fire 540 

occurrence, however fire risks are generated for all vegetation types in ECLand. 

6 Discussion 

This study provides the methodology for modelling fuel characteristics relevant for wildfires suitable for an operational 

forecasting system. More specifically we outline a framework for estimating fuel load and moisture into 4 distinct categories: 

live foliage, live wood, dead foliage, and dead wood. To complement the methodology, we have compiled a 10-year daily 545 

global data set at 9 km horizontal resolution based on a combination of modelling and earth observation data. The framework 

permits for characterisation at a higher spatiotemporal resolution, with plans to introduce this in the IFS infrastructure hosted 

by ECMWF. 
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We found approximately 78% of global above ground fuel is made up of living matter, 2 % is leaf and 76 % is wood, although 550 

this figure varies considerably between regions and time of the year. Spatially, 63% of the total fuel is found in tropical regions 

with the rest split between boreal, 19%, and temperate, 18%, regions, in agreement with previous studies (Pan et al., 2011; Erb 

et al., 2017). The fuel type, not just load, is important for assessing not just fire danger by even fire type (ground, crown etc.). 

At any given time, most fuel is not suitable for burning owing to a high fuel moisture content. The consideration of fuel type 

and load is currently missing from operational fire danger models and such an approach affords the opportunity to easily 555 

improve the ability to predict wildfire risk. 

 

The derived fuel load was found to be in good agreement with previous studies (Matasci et al., 2018; Soto-Navarro et al., 2020; 

Mauro et al., 2021; Rodriguez Veiga & Balzter 2021); although the seasonality of the fuel load and type requires further 

validation when future observation-based products become available. The 2010-2019 dataset presented here is constrained by 560 

available observation based AGB estimates, which are required to bias correct model NEE. However, in an operational context 

it may be possible to utilise a bias correction scheme based on atmospheric CO2 inversions (Agustí-Panareda et al., 2019). 

This may be favourable as the scheme is used operationally and has been extensively validated using observations. Land use 

change, which is not modelled, limits the accuracy of the derived fuel load in some regions where the vegetation type is likely 

to change. The fuel load reported here does not include the reduction in load in response to fire activity, such changes require 565 

a fully integrated fire model. 

 

As with fuel load, fuel moisture was derived for both live and dead vegetation. Live fuel moisture was computed based on a 

vegetation-dependent asymptotic regression of LAI and 4 layers of soil moisture, which was trained from observed fuel 

moisture content (Yebra et al., 2019). We generally found good spatiotemporal agreement with moisture derived from satellite 570 

observations (Quan et al., 2021). However, our estimated range in moisture content is lower than their estimates and the overall 

average LFMC is 20% lower. Whilst there is general agreement when considering herbaceous vegetation types, there is a poor 

correlation over forested areas. The reasons for this are unclear, they could relate to the difficulty in estimating below canopy 

moisture content from MODIS. 

 575 

Dead fuel moisture was estimated by expanding the Nelson model for moisture to 1-h, 10-h, 100-h and 1000-h fuels (Nelson, 

2000). This was derived using ERA-5 meteorology and ECLand vegetation types for both dead foliage, including small 

branches, and for slow drying dead wood. Several assumptions are made about the structure of dead fuel and the vegetation-

specific fuel allocation for different drying times. As globally derived DFMC is not available we validated the estimated 

DFMC, alongside LFMC, by comparing values with several significant fire episodes in different biomes. The results showed 580 

that fire occurrence increased as both LFMC and DFMC decreased for all case studies. DFMC most closely represents 



19 
 

operational fire risk products relating to FWI and evaluation against one such product, FSI, showed general agreement between 

the two variables. 

 

Vegetation-specific fire risk based on both live and dead moisture content was derived by comparing active fire detection and 585 

no detection from MODIS. These thresholds highlight the importance of considering vegetation type when evaluating fire risk. 

For example, broadleaf savanna exhibits an extremely high fire risk at low DFMC values (<17 %), however high and very 

high risk exists for a broad range of DFMC values up to 65 %. Whereas only a small change in LFMC in evergreen broadleaf 

forests can result in a switch from very low (>131 %) to high risk (<124 %). These fire risks need to be refined further in future 

work and should factor other components such as ignition sources, fuel, and meteorological conditions. 590 

 

As a final validation we evaluated our fuel characteristics against an operational fire danger index, FSI, using observed fire 

counts over several fire prone regions. We found that whilst FSI typically correlates well with fire activity, it overestimates 

fire activity in fuel limited regions and neglects increased fire risk from low LFMC values. For one such incident, the Thomas 

Fire in California, neither DFMC nor FSI accurately capture the expected fire behaviour; however, an anomalously low LFMC 595 

may have created the conditions by which the fire was able to spread effectively. In fuel limited savanna and shrubland regions 

FSI estimates a prolonged fire season, whereas the fire counts are considerably higher in the first part of the dry season when 

there is available fuel. This analysis highlights the importance of not just deriving fuel characteristics as a limiting factor in 

fire activity, but also of allocating both fuel load and moisture content appropriately into sub-categories using available model 

information, such as vegetation type or LAI. Neither LFMC nor fuel load strongly correlate directly with fire activity; however, 600 

they should be considered when formulating both fire danger and fire spread as they are shown to influence fire activity 

depending on the domain of interest. 

 

This study provides a framework by which coupled land-atmosphere models can estimate key fuel characteristics relevant for 

predicting fire activity in near-real time. The dataset provided is intended for use by the wider community to investigate fire 605 

activity amongst other things. Of the variables included, DFMC most accurately represents existing fire danger indices, like 

FWI. The use of fuel load, type, and LFMC for fire risk requires further model development, although they already compare 

well with fire activity and are shown to be limiting or contributing factors to fire activity in certain regimes. The further 

development of a full fire risk and fire spread model requires consideration of ignition and spread based on meteorology and 

orography. Future modelling applications could use the framework outlined here to not only provide the risk of fire occurrence 610 

but also the risk of fire spread and intensity based on fuel characteristics and meteorology. The diagnosed fuel load and type 

can complement existing fire radiative power products to better estimate trace gas and aerosol emissions from wildfires. It 

should be noted our estimates of fuel load currently neglect soil carbon, which can significantly contribute to ground fires and 

biomass burning emissions (Walker et al., 2020), this will be incorporated in future versions of the fuel model. 

 615 
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The skill of our model is limited by potential drift in fuel load when unconstrained by observations, either through inverse 

trace gas analysis or direct AGB estimates. As a result, the framework would need to be further adapted for future climate 

scenarios but would be suitable for past climates where estimates of AGB are available. 
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▪ Table 1. Area summed categorised and total fuel loads for four regions and globally averaged between 2010 and 

2019 in Pg with the standard deviation across all times. Also included is the average yearly trend for each region 

and globally in Pg yr-1. 815 

Region Total Fuel 

Load  

(Pg)  

Live 

Foliage 

(Pg)  

Live 

Wood 

(Pg) 

Dead 

Foliage 

(Pg) 

Dead 

Wood 

(Pg) 

2010-2019 

Trend  

(Pg yr-1) 

Northern Boreal 

(50oN – 90oN) 

126±10 2.9±2.0 76±19 27±9 21±6 +2.6 
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Northern Temperate 

(23.5oN – 50oN) 

93±7 2.6±1.5 61±15 19±6 10±3 -0.2 

Tropics  

(23.5oS – 23.5oN) 

414±11 9.0±0.2 347±7 25±2 34±6 +3.1 

Southern Temperate 

(50oS – 23.5oS) 

27±3 0.9±0.2 18±2 3.7±0.8 4.5±0.7 -0.9 

Global 661±20 15±3 502±32 75±14 69±11 +4.5 

 

 

Figure 1. A schematic of the fuel characteristic model showing the required input data and the dependencies for the output variables. 
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Figure 2. Global fuel load in kg m-2 for June, July and August (JJA, left column) and December, January and February (DJF, right 820 
column) averaged between 2010 and 2019. The fuel is categorised into live foliage (top row) and wood (second row), and dead foliage 

(third row) and wood (bottom row). 
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Figure 3. Daily timeseries of area summed fuel total load between 2010 and 2019 for the Boreal (top left), Northern Temperate (top 

right), Tropical (bottom left) and Southern Temperate (bottom right) regions (black line). Also shown are the live leaf (green), live 825 
wood (orange), dead foliage (purple) and dead wood (blue) components of fuel load. 
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Figure 4. Comparison of observation derived and modelled above ground biomass for Oregon, USA (top left), Canada (top right) 

and Africa (bottom left and right), including ~9 km spatial distribution maps and standard deviation error bars. The values are 

computed as yearly or multi-year averages and the live component of model biomass is also shown. 830 
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Figure 5. Modelled live fuel moisture content as a function of soil moisture and LAI for 7 different vegetation types. 
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Figure 6. Average live fuel moisture content (%) maps between 2010 and 2019 at ~9km spatial resolution derived from model 835 
estimates (top) and MODIS-based estimates (bottom). 



35 
 

 

Figure 7. A density heat map showing the correlation of modelled and MODIS-derived live fuel moisture content for 7 vegetation 

types and for all vegetation types (bottom right) globally between 2010 and 2019. The R-value is given for each type. 



36 
 

840 



37 
 

 

Figure 8. Spatial distribution of August 2010 active fire detections from MODIS over Bolivia, where red indicates positive detection 

(top left). The August 2010 (solid line) and August 2011-2019 (dashed line) regional average live fuel moisture content (black) and 

dead fuel moisture content (blue) for the same domain (top right). Also shown is a spatial representation at ~9km of the average 

August 2010 (left) and August 2011-2019 (right) dead (middle row) and live (bottom row) fuel moisture content. 845 
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Figure 9. Spatial distribution of July 2014 active fire detections from MODIS over Northwest Territories, Canada where red 

indicates positive detection (top left). The July 2014 (solid line) and July 2010-2019 excluding 2014 (dashed line) regional average 

live fuel moisture content (black) and dead fuel moisture content (blue) for the same domain (top right). Also shown is a spatial 850 
representation at ~9km of the average July 2014 (left) and July 2010-2019 excluding 2014 (right) dead (middle row) and live (bottom 

row) fuel moisture content. 



40 
 



41 
 

 

Figure 10. Spatial distribution of June 2017 active fire detections from MODIS over central Portugal where red indicates positive 855 
detection (top left). The June 2017 (solid line) and June 2010-2019 excluding 2017 (dashed line) regional average live fuel moisture 

content (black) and dead fuel moisture content (blue) for the same domain (top right). Also shown is a spatial representation at ~9km 

of the average June 2017 (left) and June 2010-2019 excluding 2017 (right) dead (middle row) and live (bottom row) fuel moisture 

content. 
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Figure 11. Spatial distribution of December 2019 active fire detections from MODIS over Southeast, Australia, where red indicates 

positive detection (top left). The December 2019 (solid line) and December 2010-2018 (dashed line) regional average live fuel moisture 

content (black) and dead fuel moisture content (blue) for the same domain (top right). Also shown is a spatial representation at ~9km 

of the average December 2019 (left) and December 2010-2018 (right) dead (middle row) and live (bottom row) fuel moisture content. 865 
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Figure 12. Timeseries between 2010 and 2019 of fire counts (black), fuel load (yellow), FSI (blue), negative LFMC anomaly (green), 

DFMC-1 (red) for Albert, Canada (top), California, USA (second panel), Northern Sub-Sahara (third panel) and Southern Africa 

(bottom) using a 30-day average. Shaded regions denote active fire seasons. 870 



46 
 



47 
 

 

Figure 13. A kernel density estimation, KDE, (1st and 3rd column) and cumulative distribution function, CDF, (2nd and 4th column) 

for both live (1st and 2nd column) and dead (3rd and 4th column) fuel moisture content for the 6 vegetation types where fires most 

frequently occur. The KDE plots are divided between values where active fire detection occurred (red curve) and where no detection 875 
occurred (blue curve), with the total number of values this is applicable to in the legend. Similarly, the CDF is split between active 

fire detection values (red line) and no detection (blue line). The shaded regions below the red CDF curve indicate the moisture 

content thresholds for very low (green), low (yellow), moderate (orange), high (orange-red), very high (red) and extreme (black) fire 

risk. 
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