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Abstract. We have used the variational inversion drivers of the recent Community Inversion

Framework (CIF), coupled to a European configuration of the CHIMERE regional chemistry

transport model and its adjoint to derive carbon monixide (CO) emissions from the MOPITT

TIR-NIR observations, for a period of over 10 years from 2011 to 2021. The analysis of the inver-

sion results reveals the challenges associated with the inversion of CO emissions at the regional5

scale over Europe. Annual budgets of the national emissions are decreased by about 1-11% over

the decade and across Europe. These decreases are mainly due to negative corrections during

autumn and winter. The posterior CO emissions follow a decreasing trend over the European

Union + United Kingdom area with a trend of about -2.2 %/year, slightly lower than in the prior

emissions. The assimilation of the MOPITT observation in the inversions indeed attenuates the10

decreasing trend of the CO emissions in the TNO inventory over areas benefiting from the high-

est number of MOPITT super-observations (particularly over Italy and over the Balkans), and

particularly in autumn and winter. The small corrections of the CO emissions at national scales

by the inversion can be attributed, first, to the general consistency between the TNO-GHGco-v3

inventory and the satellite data. Analysis of specific patterns such as the impact of the covid-1915

crisis reveal that it can also be seen as a lack of observation constraint to adjust the prior estimate
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of the emissions. The large errors associated to the observations in our inversion framework,

and the lack of data over large parts of Europe are sources of limitation on the observational con-

straint. Emission hot spots generate a relatively strong local signal, which is much better caught

and exploited by the inversions than the larger scale signals, despite the moderate spatial resolu-20

tion of the MOPITT data. This is why the corrections of these hot spot emissions are stronger and

more convincing than the corrections of the national and continental scale emissions. Accurate

monitoring of the CO national anthropogenic emissions may thus require modeling and inversion

systems at spatial resolution finer than those used here, as well as satellite images at high spatial

resolution. The CO data of the TROPOMI instrument onboard the Sentinel-5P mission should be25

well suited for such a perspective.

Plain Language Summary

1 Introduction

Carbon monoxide (CO) is an air pollutant and a greenhouse gas, mainly emitted by anthropogenic

activities, and impacting both the air quality and climate change. It has a major role in atmo-30

spheric chemistry, as a key component of the methane (CH4) oxidation chain with formalde-

hyde (HCHO), ozone (O3), and carbon dioxide (CO2). Through chemical interactions with hy-

droxyl radical (OH), CO i) influences concentrations of CH4 and non-methane volatile organic

compounds (NMVOCs), ii) affects the self-cleaning or oxidation capacity of the atmosphere

(Lelieveld et al., 2016) and iii) leads to the chemical production of air pollutants and/or green-35

house gases such as tropospheric O3 and CO2. In this context, there is a need for an accurate

mapping/monitoring of the CO surface emissions.

CO emissions estimated by bottom-up (BU) inventories, based on statistical and economic data

and relying on emission factors per activity type, suffer from relatively large uncertainties. For

example, at the national and annual scales, these uncertainties range from 20-60% to 50-200%40

depending on the sectors in the European Monitoring and Evaluation Programme (EMEP) inven-

tory (Kuenen and Dore, 2019). Complementary to BU inventories, atmospheric CO concentration

data, such as those observed from satellite observations, can be used to derive estimates of the CO

fluxes, based on atmospheric transport inverse modeling techniques (Rayner et al., 2019). Over

the last two decades, the space-borne Measurement of Pollution in the Troposphere (MOPITT,45
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(Drummond et al., 1996; Deeter et al., 2003), the Atmospheric Infrared Sounder (AIRS, (Au-

mann et al., 2003; McMillan et al., 2005), Tropospheric Emissions Spectrometer (TES, (Beer,

2006) and Interféromètre Atmosphérique de Sondage dans l’Infrarouge (IASI, (Clerbaux et al.,

2009)) have revolutionized our ability to map CO concentrations and to understand the trends

and the spatio-temporal variability of its concentrations and emissions (Arellano et al., 2006;50

Chevallier et al., 2009; Jones et al., 2009; Kopacz et al., 2010; Jiang et al., 2011; Fortems-

Cheiney et al., 2011a; Hooghiemstra et al., 2012; Miyazaki et al., 2015; George et al., 2015;

Yin et al., 2015; Jiang et al., 2017; Zheng et al., 2018; Buchholz et al., 2021; Gaubert et al.,

2023). However, the potential of satellite data to inform about CO emissions has been mainly

explored at the global scale, with emission estimates corresponding to large regions. Today, the55

scientific and societal issues require an up-to-date quantification of pollutant emissions at a higher

spatial resolution, targeting national estimates. This currently requires the use of regional scale

inversion systems (Fortems-Cheiney et al., 2021).

However, although these systems are suited to reactive species, they have hardly been used to

quantify emissions of pollutants such as CO. In the past decade, CO regional scale inversions60

based on the MOPITT data covered the CO emissions in North America (Jiang et al., 2015)

and East Asia (Qu et al., 2022). To our knowledge, there has been only few studies cov-

ering the European CO emissions based on satellite observations (Konovalov et al., 2016;

Fortems-Cheiney et al., 2021), this continent being more challenging for regional scale in-

versions of the CO anthropogenic emissions owing to a weaker CO signal (Konovalov et al.,65

2016). Konovalov et al. (2016) estimated CO European emissions from the IASI thermal-infrared

(TIR) satellite measurements over Europe but pointed out the low sensitivity of the correspond-

ing CO total columns to anthropogenic CO emissions. Deeter et al. (2013) have shown that the

sensitivity of total columns to CO emissions in the lower troposphere - where the regional signal

from CO regional anthropogenic emissions above the large scale and highly mixed CO back-70

ground is the largest - should be significantly greater for retrievals exploiting simultaneous TIR

and near-infrared (NIR) measurements than for retrievals based on either spectral region alone.

Fortems-Cheiney et al. (2021) have performed regional inversions using MOPITT TIR-NIR satel-

lite observations over Europe to illustrate the behavior of the variational atmospheric inversion

system PYVAR-CHIMERE, but only over a short temporal window of seven days. The ability of75

3



regional inverse systems to quantify CO budgets at the national and monthly to annual scales in

Europe from the MOPITT TIR-NIR satellite observations has not been assessed yet.

The objective of this work is therefore to carry out a long-term regional inversion for Europe us-

ing these observations. We estimate CO emissions from the MOPITT TIR-NIR observations, for

more than 10 years from January 2011 to November 2021. The analysis over the period 2011-202180

makes it possible to evaluate the strong trends indicated by the BU inventories over the decade,

and major inter-annual anomalies, in particular the expected reduction of emissions in 2020 due

to the measures taken in response to the COVID-19 pandemia. For this objective, we have used

the variational inversion drivers of the recent Community Inversion Framework (CIF, (Berchet

et al., 2021)), which inherits the developments made for the regional assimilation of satellite data85

on gaseous species by Fortems-Cheiney et al. (2021). We also use a European configuration of the

CHIMERE regional chemistry transport model (CTM) (Menut et al., 2013; Mailler et al., 2017)

and of its adjoint (Fortems-Cheiney et al., 2021), driven by the CIF. The data and methods used

in this study are described in Section 2. The results are described in Section 3.

2 Data and Methods90

2.1 Configuration of the CHIMERE CTM for the simulation of CO concentrations in

Europe

The configuration of the atmospheric CTM CHIMERE for Europe is described in Table 1. CHIMERE

is run over a 0.5° × 0.5° regular horizontal grid and 17 vertical layers, from the surface to 200hPa,

with 8 layers within the first two kilometers. The domain covers Europe (15.25°W-35.75°E;95

31.75°N-74.25°N) and includes 101 (longitude) x 85 (latitude) grid-cells. The reanalyzes ERA-

Interim – the only ones available at the beginning of this study - remain at the rather low horizontal

resolution of 79 km compared to the forecast fields. Consequently, as a trade-off between accu-

racy of large-scale meteorological fields and resolution at finer resolution, CHIMERE is driven

here by the European Centre for Medium-Range Weather Forecasts (ECMWF) operational mete-100

orological forecast (Owens and Hewson, 2018), with a spatial resolution of 0.25°. The chemical

scheme used in CHIMERE is MELCHIOR-2, with more than 100 reactions (CHIMERE, 2017),

including the secondary production of CO through the oxidation and photolysis of hydrocarbons

and its sink with OH.
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Initial and boundary conditions for several key gaseous species responsible for the oxidation105

capacity of the lower atmosphere (e.g., CO, NO, NO2, O3,H2O2, HCHO, etc) were specified

using monthly climatological data from LMDz-INCA global model (Szopa, 2008).

Domain Europe (15.25°W-35.75°E; 31.75°N-74.25°N)

Horizontal resolution 0.5°×0.5° regular grid

Vertical resolution 17 layers, from the surface to 200hPa

Meteorological fields ECMWF operational meteorological forecast (Owens

and Hewson, 2018)

Initial and boundary conditions Climatological values from the LMDZ-INCA global

model (Szopa, 2008)

Anthropogenic emissions TNO-GHGco-v3 inventory (Super et al., 2020)

Biogenic emissions MEGAN (Guenther et al., 2006)
Table 1. Main characteristics of the European CHIMERE configuration used in this work.

CO emissions from fires, that count for about 2% of the European total COemissions (San-

Miguel-Ayanz and Steinbrecher, 2019), are not taken into account in this study. CO biogenic

emissions are assumed to be negligible and are not taken into account. Contrarily to Fortems-110

Cheiney et al. (2021) using the TNO-GHGco-v1, the prior estimate of CO anthropogenic emis-

sions is derived from the recent TNO-GHGco-v3 gridded inventory for the period 2011-2018. The

TNO-GHGco version is an update of the TNO inventory (Super et al., 2020; Denier van der Gon

et al., 2021; Kuenen et al., 2022) based on EMEP/CEIP official country reporting for air pollu-

tants. This inventory has been delivered with an extrapolation of the emissions for the year 2019,115

based on an in-sample approach (Super et al., 2020). We use this combination of products for the

years 2011-2019. Our prior estimates of the emissions for 2020 and 2021 are set at the values for

2019. The horizontal resolution of the TNO-GHGco-v3 inventory is 6x6 km2. The TNO-GHGco

inventory combines emissions from area sources, set at the surface, and from point sources.

Emissions from point sources, mainly from the energy production and the industrial sector,120

are distributed on the vertical model layers depending on typical the injection height pro-

vided in the TNO inventory, based on Bieser et al. (2011). The annual and national budgets

from EMEP/CEIP are disaggregated in space based on proxies of the different sectors of activity

(Kuenen et al., 2022). The temporal disaggregation is based on temporal profiles provided per
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Figure 1. Estimates of the monthly budgets of CO for EU-27+UK from the TNO-GHGco-v3 inventory (solid

light grey line) and its extension to 2020-2021 (dashed light grey line), and from the regional inversions

(solid orange line), from January 2011 to December 2021.

GNFR sector code with typical month to month, weekday to week-end and diurnal (at 1-hour125

scale) variations. The TNO-GHGco-v3 inventory is aggregated at the 0.5°x0.5° horizontal resolu-

tion of the CHIMERE grid. The resulting prior anthropogenic CO emissions from 2011 to 2021

for the European Union + United Kingdom (EU-27+UK) area are illustrated in Figure 1 and

the resulting map of prior anthropogenic CO emissions is shown in Figure 2a for January

2015. CO emissions are high over large cities and over industrial areas (e.g. over the Benelux, the130

Po Valley in Italy, northwestern Germany, southern Poland).

In addition to CO, the chemical scheme MELCHIOR-2 needs emissions from other species,

such as NMVOCs or nitrogen oxides (NOx=NO+NO2). Anthropogenic NOx emissions are from

the TNO-GHGco-v3 inventory while NMVOC anthropogenic emissions are from the EMEP in-

ventory (Vestreng et al., 2005). Biogenic NOx and NMVOC emissions, in particular emissions of135

isoprene and some other hydrocarbons from vegetation, are obtained from the Model of Emissions

of Gases and Aerosols from Nature (MEGAN) model (Guenther et al., 2006).
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Figure 2. a) Monthly CO emissions in ktCO, and b) monthly mean relative increments to the TNO-GHGco-

v3 inventory of CO anthropogenic emissions from the inversion in %, in January 2015, at the 0.5°×0.5°

model resolution.

The resulting monthly mean volume mixing ratio between the surface and 900 hPa are

illustrated in Figure 3a in January 2015. The sensitivity of CO simulated concentrations to CO

emissions is evaluated by running a sensitivity test with European CO anthropogenic emissions140

set to zero: the simulated concentrations are illustrated in Figure 4.

2.2 MOPITT satellite observations

CO inversions assimilate CO observations from the MOPITT retrieval product version 8 (Deeter

et al., 2019). MOPITT flies onboard the NASA EOS-Terra satellite, on a low sun-synchronous

orbit that crosses the Equator at 10:30 and 22:30 local solar time (LST). The spatial resolution145

of its observations is about 22×22 km2 at nadir. It has been operated nearly continuously since

March 2000. MOPITT CO products are available in three variants: thermal-infrared TIR only,

near-infrared NIR only and the multispectral TIR-NIR product, all containing total columns and

retrieved profiles (given on a 10-level grid from the surface to 100 hPa). Among the different

MOPITTv8 products, we choose to work with the multispectral MOPITTv8-NIR-TIR one (also150

called MOPITT-v8J), as the sensitivity to CO in the lower troposphere should be significantly

greater for retrievals exploiting simultaneous TIR and NIR measurements than for retrievals based

on either spectral region alone (Worden et al., 2010; Deeter et al., 2013; Buchholz et al., 2017).

In addition, it provides the highest number of data.
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Figure 3. Averages of the CO concentrations between the surface and 900 hPa, a) simulated by CHIMERE

using the prior TNO-GHGco-v3 anthropogenic emission estimate without applying the MOPITT AK and

prior profiles, b) corresponding to the MOPITT surface super observations in the CHIMERE grid, c) simu-

lated by CHIMERE using the prior TNO-GHGco-v3 anthropogenic emission estimate applying the MOPITT

AK and prior profiles, in ppbv. d) Ratios of the posterior and prior biases between monthly mean surface

concentrations from CHIMERE and the MOPITT super-observations, at the 0.5°x0.5° grid-cell resolution,

in January 2015. All ratios lower than 1, in blue, demonstrate that posterior emission estimates improve the

simulation compared to the prior ones.
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Figure 4. a) Absolute differences in ppbv and b) relative differences in % between averages of CO con-

centrations simulated using the prior TNO-GHGco-v3 anthropogenic emission estimate and simulated

with null CO emissions, in January 2015.

We choose to assimilate the MOPITT V8J surface product, derived as the mean volume mix-155

ing ratio between the surface and 900 hPa, as the surface level multispectral retrievals have

greater sensitivity to CO near the surface and reduced sensitivity in the free troposphere

(Jiang et al., 2015; Qu et al., 2022). Long-term trends of surface CO concentrations for

2001–2015 are well consistent between the « MOPITT lower profile » and World Data Cen-

ter for Greenhouse Gases (WDCGG) sites (Jiang et al., 2017). The retrieval bias drift is also160

low at the surface level for v8 TIR–NIR products, as compared to National Oceanic and

Atmospehric Administration (NOAA) flask measurements (Deeter et al., 2019). Finally, the

surface level of the V8 TIR–NIR products gives the lowest bias when compared to in situ

data from NOAA aircraft validation sites (Deeter et al., 2019).

To make accurate comparisons between simulations and satellite observations, the aver-165

aging kernels (AKs) and the MOPITT prior profiles are applied to the simulated field so

that the simulated concentrations exhibit the same degree of smoothing and a priori depen-

dence as the MOPITT product (Deeter et al., 2013, 2019). Following the recommendations

of Deeter (2018), the formula is applied :

cm=xa + AK(cm◦ - xa)(Eq1)

where:170

– cm is the modeled column,
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– AK contains the averaging kernels -which are an indication of the vertical resolution

of the measurements- provided in the form of a matrix,

– xa is the prior profile derived from a model climatology and vary seasonally and geo-

graphically (Deeter et al., 2019)175

– and cm◦ is the vertical distribution of the original model partial columns interpolated

to the pressure grid of the AKs.

In order to associate the super-observations to a real AK, the super-observations have been

taken as the individual observation corresponding to the value of the median of the MOPITT

concentrations within the 0.5◦×0.5◦ grid-cell of the CTM and within the CTM physical time180

steps (about 5-10 min). The AKs and the uncertainty associated to this individual super-

observation are then used to define the AK and uncertainty for the "super-observation".

In principle, the observation error associated to such a median value should be smaller

than the error associated to individual observation, but, here, we keep the error for the

individual observation used to define the super-observation as a conservative estimate of the185

super-observation error. The super-observations therefore do not have a smaller error than

the individual observations.

The resulting monthly means of the MOPITT super-observations and their simulated

equivalents for CO average surface concentrations in January 2015 are respectively illus-

trated in Figure 3b and in Figure 3c. The spatial patterns of the CO concentrations are very190

different if the MOPITT AK and prior profiles are applied (Figure 3a) or not (Figure 3b),

particularly in Central, Eastern and Northern Europe. It bears evidence that the MOPITT

AK and prior profiles have a strong impact on the CO concentrations over these regions.

It is important to note that the potential of MOPITT to provide information can be strongly

hampered by the cloud coverage in autumn and in winter, as illustrated in Figure 3b with blanks195

for a large part of Central Europe in January 2015. Generally, because of the cloud cover, the num-

ber of MOPITT super-observations is higher in the south of Europe than in Central or Northern

Europe (Figure 5a). The potential of MOPITT to provide information can also be hampered

by the errors associated to the MOPITT super-observations (Figure 5b, see Section 2.2).
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Figure 5. a) Number of CO MOPITT super-observations and b) Averages of the errors associated with the

CO MOPITT super observations, in %, in January 2015.

2.3 Variational inversion of CO anthropogenic emissions200

The inversion of CO emissions consists in correcting the "prior" estimate of these emissions and

of the model initial and/or boundary conditions to improve the fit between the simulated concen-

trations and the satellite CO data. The parameters of the variational inversions here closely follow

the configuration of Fortems-Cheiney et al. (2021), which provides details on on the principle

and configuration for such inversions. The optimal ("posterior") estimate of the emissions in a

statistical sense is found by iteratively minimizing the following cost function J(x):

J(x) =
1

2
(x− xb)T B−1(x− xb)+

1

2
(H(x)− y)T R−1(H(x)− y)

where x, H, y, B, R are respectively the control vector, the observation operator, the observa-

tions, and covariance matrices as detailed in the following paragraphs.

As a trade-off between computational resources and relevance of our inversions with a

moderate impact of the initial conditions on our 1-month CO simulation, series of indepen-

dent 1-month inversion windows are run. We therefore do not account for the potential update205

of the concentrations during a previous 1-month window due to the inversions. Due to the

relatively long lifetime of CO -i.e., few weeks to 2 months (Prather, 1996)- compared to the size

of the studied domain, we account for the CO lateral boundary conditions at the borders of the

domain and for their uncertainties.

Therefore, the control vector x contains:210
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– CO anthropogenic emissions at a 1-day temporal resolution, at a 0.5°×0.5° resolution and

over the first 8 vertical levels of CHIMERE, i.e., for a one-month inversion, for each of the

corresponding (28 to 31 days)×101×85×8 grid cells. The 8 levels are needed to represent

the range of injection heights for the largest point sources, (e.g., mainly for the energy

production and industrial sector) provided in the TNO emission inventory,215

– CO lateral boundary conditions at a 1-day temporal resolution, at a 0.5°×0.5° resolution

and over the 17 vertical levels of CHIMERE, i.e. for each of the corresponding (28 to 31

days)×372×17 grid cells,

– CO 3D initial conditions at 00:00 UTC the first day of the month, at a 0.5°×0.5° resolution

and over the 17 vertical levels of CHIMERE, i.e. for each of the corresponding 101×85×17220

grid cells.

It should be noted that the VOCs emissions are fixed and not controlled here by the inversion.

Nevertheless, the chemical production of CO by VOCs could be changed due to the correction of

CO boundary conditions and fluxes through chemistry.

H is the observation operator, which links the control variables to the observed concentrations;225

it includes the CTM, space and time sampling and other operations (e.g averaging) required to

compute the simulated equivalent of the assimilated data. The uncertainties in the observations y

together with that in the observation operatorH, and the uncertainties in the prior estimate of the

control vector xb are assumed to have a Gaussian distribution and are thus characterized by their

covariance matrices R and B, respectively. The assumptions and practical way to define these230

matrices have been detailed by Fortems-Cheiney et al. (2021). The ratios between the prior error

standard deviations in B and the prior estimates are assigned to 100% for the CO emissions. This

value of 100% has already been chosen in the literature (Pétron et al., 2002; Kopacz et al.,

2010; Yumimoto and Uno, 2006; Fortems-Cheiney et al., 2011b, 2012, 2021). Even though

annual CO emissions in western Europe may be well known, with uncertainties of 6% ac-235

cording to Super et al. (2020), larger uncertainties could affect eastern Europe. Moreover,

large uncertainties still affect bottom-up emission inventories at the 0.5° resolution: spatial

disaggregation of the national-scale estimates to provide gridded estimates causes a signifi-

cant increase in the uncertainty for CO (Super et al., 2020).

12



Contrarily to Fortems-Cheiney et al. (2021) where they are set to 15%, the ratios between240

the prior error standard deviations in B and the prior estimates are set at 50% for the CO lateral

conditions. Spatial correlations are built with exponentially decaying functions with an e-folding

length of 50 km on land and on sea. Here, the covariance matrix R only takes into account the es-

timates of measurement errors reported in the MOPITT data sets. Indeed, the errors associated to

the observation operators (in particular those associated to the chemistry-transport modelling with245

the CHIMERE configuration for Europe) are ignored since they are assumed to be much smaller

than those associated to the MOPITT data. The minimum of the cost function J is searched

for with the iterative limited-memory quasi-Newton minimization algorithm M1QN3 algorithm

(Gilbert and Lemaréchal, 1989). At each iteration, the computation of the gradient of J relies

on the adjoint of the observation operator, and in particular on the adjoint of CHIMERE. In the250

results presented in Section 3, the norm of the gradient of the cost function J is reduced by more

than 90%, which indicates robust mathematic behaviour of the system.

The calculation of the uncertainty in the estimate of emissions from the inversion, known as

“posterior uncertainty”, is challenging when using a variational inverse system (Rayner et al.,

2019): it is not done here.255

3 Results

3.1 Comparison between simulated and assimilated CO concentrations

The MOPITT data and their prior simulated equivalents present similar spatial patterns for CO

concentrations, with lowest values over Spain (i.e., with about 125 ppbv) and values higher than

200 pbbv over Central Europe (over the Benelux, the Po Valley in Italy, northwestern Germany,260

southern Poland, Figure 3). However, the prior simulation overestimates CO concentrations com-

pared to the MOPITT super-observations, in particular over urban and industrial areas in central

Europe, where the anthropogenic emissions are large (Figure 2a).

It is interesting to note that global models have struggled with a low bias in CO in the

Northern Hemisphere, particularly in winter, compared to the MOPITT observations (Fortems-265

Cheiney et al., 2011a; Stein et al., 2014). However, compared to these previous studies, we

have used more recent MOPITT observations and validation results for version 8 MOPITT

CO products indicate reduced long-term bias drift, weaker bias geographical variability
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and smaller biases overall compared to version 7 (Deeter et al., 2018). We have also used a

more recent prior estimation of the CO emissions from the TNO-GHGco-v3 inventory, as270

it is based on recent EMEP/CEIP official country reporting for air pollutants. As model er-

rors in long-range transport, diffusion, chemistry linked to the radical hydroxil OH and to

NMVOCs (Strode et al., 2015; Gaubert et al., 2020) and coarse resolution (Valin et al., 2011)

can all impact the inverse modeling of CO (Arellano et al., 2006; Fortems-Cheiney et al.,

2011a; Jiang et al., 2017; Zheng et al., 2019), we also used a chemical scheme describing275

the CO chemistry (including its secondary production through the oxidation and photoly-

sis of hydrocarbons and its sink with OH, Section 2.1) and we have increased the spatial

resolution of the transport model with a regional CTM. These different aspects can explain

that our regional inversion do not highlight a low bias in the inventories, unlike past global

inversions studies.280

By design, the inversions bring the simulated CO concentrations closer to the MOPITT “sur-

face” super-observations (Figure 3d). The mean bias over the entire domain between the sim-

ulation and the MOPITT super-observations is reduced by about 2%. Nevertheless, the cor-

rections made to the prior TNO-GHGco-v3 inventory are particularly large in areas where both

CO emissions and the sensitivity of CO concentrations to the emissions are high (Figure 2a,285

Figure 4). For example, the posterior emissions reduce the mean bias between simulated concen-

trations and MOPITT data by about 26% over the Po Valley in Italy and over Benelux in January

2015 (Figure 3d).

Nevertheless, it is worth stressing that the posterior simulation still presents positive biases

compared to the observations (Figure 3d). This can be explained by i) large errors in the MOPITT290

super-observations that could reach 40% (Figure 5b) and ii) by the relatively weak sensitivity of

the simulated concentrations to the local/regional emissions, as illustrated in Figure 4.

3.2 Posterior CO emissions

This section focuses on the emissions from the 11-year CO inversion for the period 2011 to

2021. As the prior simulation overestimates CO concentrations compared to the MOPITT super-295

observations, the inversion applies negative increments to the prior emission estimates (Fig-

ure 2b). These negative increments mainly occur in fall and winter, even though there is a lower

number of observations during these seasons compared to the spring and summer. The highest in-
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crements are found over large cities and over industrial areas (Figure 2b), where CO emissions

are high (Figure 2a). This shows the potential of MOPITT data to provide some information300

over areas with strong anthropogenic CO emissions

The differences between the prior and posterior CO annual budgets for 30 European countries

are shown in Table 2 for the year 2015. Annual budgets of the national emissions are decreased

by about 1-11% (Table 2). Similarly, the national and annual increments from 2011 to 2021

range between -1%-11%. Overall, the posterior emission estimates are about 6.3% lower than305

the prior emissions for the European Union + United Kingdom (EU-27+UK) area in 2015. This

indicates that the European CO emissions could be slightly overestimated in the TNO-GHGco-v3

inventory.

The 2011-2021 inversion makes it possible to evaluate the trends and compare them to the ones

indicated by the inventories over the decade. As our prior estimates of the emissions for 2020 and310

2021 are set at the values for 2019 (see Section 2), trends of CO emissions are only computed

from 2011 to 2019. This restriction avoids including the COVID-19 pandemic years.

The TNO-GHGco-v3 CO emissions show a decreasing trend over EU-27+UK area from 2011

to 2019 (Figure 1), of about -2.5%/year (p=9.5x10−4). These decreasing trends are mainly driven

by the transport sector (Zheng et al., 2019) with progressive pollution control on vehicles that315

has cut down CO European emissions (Crippa et al., 2016). Interestingly, the trends from 2011

to 2019 in the TNO inventory, based on the EMEP official reporting, exhibit some disparities

depending on the countries with for example, a stronger decreasing trend over France than over

Germany.

The posterior CO emissions display a very similar decreasing trend than the prior emissions320

over the EU-27+UK area (Figure 1) of about -2.2 %/year (p=2.2x10−3). The main differences

between the prior and posterior trends are found for the autumn and winter months, with a pos-

terior trend of about -1.9%/year compared to the prior trend of about -2.4%/year. Spatially, the

differences are larger in Italy, in Czech Republic and in the Balkans than in the rest of Europe

(Figure 6). While the TNO-GHGco-v3 inventory shows significant decreasing trends in these re-325

gions, the posterior emissions appear to be stagnating, with even non significative increasing

trend over parts of Italy. These areas benefit from the best MOPITT coverage, with the highest

number of MOPITT super-observations (Figure 5a). Consequently, the assimilation of MOPITT
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Figure 6. Trends of CO emissions from 2011 to 2019 (a) in the TNO-GHGco-v3 inventory and b) in the

posterior emissions, in %/yr. Crosses show pixels with insignificant trend (p-value higher than 0.05).

observations in the inversions attenuates the strong decreasing trend of the CO emissions in the

TNO-GHGco-v3 inventory, particularly during autumn and winter.330

Finally, there is no significant inter-annual variability from 2011 to 2019, neither in the prior

nor in the posterior CO emissions. A particular attention has consequently been put on the pos-

sible detection of an inter-annual anomaly linked to the policies implemented in response to the

COVID-19 in 2020.

3.3 Impact of COVID-19335

Following a usual diagnostic in the literature to assess the change in air pollutants concentrations

due to the COVID-19 policies, we characterize the impact of the COVID-19 policies in terms

of change of emissions budgets from April 2019 to April 2020. Most of the European countries

implemented lock-down policies in April, after a progressive implementation of the national lock-

downs from 9 March 2020 (Italy) to 23 March 2020 (United Kingdom, UK). The change from340

April 2019 to April 2020 potentially includes variations associated to drivers of the usual emission

processes (e.g. changes of temperature from 2019 to 2020) but as indicated above, the typical

inter-annual variations in both the prior and posterior estimates are relatively small. Since the
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prior estimates for 2020 and 2019 are identical (see Section 2), we actually analyze the impact of

the COVID-19 policies in terms of differences of increments provided by the inversions to these345

prior estimates between April 2019 and April 2020. Overall a much smaller lock-down-driven

impact is expected for CO than for NO2, particularly because of smaller contributions from lock-

down-affected sources (Clark et al., 2021).

At the European scale, the CO posterior emission estimates derived from the MOPITT data

decrease by about -1.3% in April 2020 compared to April 2019 (Table 3). This decrease is lower350

than the estimates of about -4.7%, -6.4%, -7.6% and -8.2% of, respectively, Guevara et al. (2023),

Doumbia et al. (2021), Forster et al. (2021) and from the officially reported emissions from

EMEP/CEIP (CEIP, 2022).

Nevertheless, as shown in Figure 7, the inversions lead to a higher decrease of CO emissions

over the areas where the anthropogenic emissions are usually large, and particularly over indus-355

trial basins such as over the Benelux/Rhine-Rhur Valley where the decrease reaches -8% and over

the Po Valley where it reaches -10% in April 2020 compared to April 2019 (Figure 7c).

4 Discussion and Conclusion

The CIF, coupled to the regional chemistry-transport model CHIMERE and its adjoint, and the

satellite CO MOPITT data have been used to estimate 11 years from 2011 to 2021 of European CO360

emissions. The analysis of the inversion results reveal the challenges associated with the inversion

of CO emissions at the regional scale over Europe. Annual budgets of the national emissions are

decreased by about 1-11% over the decade and over Europe. These decreases are mainly due to

negative corrections during autumn and winter.

The posterior CO emissions display a very similar decreasing trend than the prior emissions365

over the EU-27+UK area with a trend of about -2.2 %/year, showing a general consistency with

reported anthropogenic emissions. This trend is slightly lower than in the prior emissions. The

assimilation of the MOPITT observation in the inversions indeed attenuate the decreasing trend

of the CO emissions in the TNO inventory over areas benefiting from the highest number of

MOPITT super-observations (particularly over Italy and over the Balkans), and particularly in370

autumn and winter.

The posterior simulation still presents positive biases compared to the observations. The mini-

mization algorithm of the inversion appears to converge correctly with the constraints used
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Figure 7. a) Emissions estimated by the TNO inventory in April 2019, in ktCO/month. Increment provided

by the inversions in b) April 2019 and c) April 2020, in %.

in practice. Therefore, these residual positive biases can mainly be explained for a large part

by the large errors associated to the observations in our inversion framework. As discussed375

in Section 2.2, our derivation of the error associated with each super-observation is conser-

vative. Other indices support this assumption. In particular, the χ2 diagnostic (Ménard and

Chang, 2000) is significantly lower than 1. This indicates that the B and R matrices used

here to characterize the prior and observation errors likely overestimate the amplitude of

these errors (Ménard and Chang, 2000). However, even if assuming that the observation er-380

rors would only consist in random noise uncorrelated in space and setting the error on the

super-observation as that of the average of the number of observations nbobs in the model

grid cells, i.e. of the order of 1√
(nbobs)

times the observation error for individual observa-

tions, the impact would be moderate since nbobs is generally equal to 2 to 3. Actually, the
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set-up of the B matrix is also rather conservative, and the balance between the two errors385

in the set-up of the B and R matrices may be relatively good. Therefore, the lack of fit to

the observations in these inversions could be associated to the large retrieval error corre-

sponding to the MOPITT product. The robustness of the inversions would still benefit from

a refinement of our configuration of the R matrix which would lead to a better fit to the

observations. First, we should probably investigate the components of the retrieval errors390

which are distributed along with the MOPITT product. Gaubert et al. (2023) indicate that

when applying the averaging kernel, the smoothing error could be ignored and that the

weight of this component is significant. The revision of our conservative assignment of the

observation errors to the super-observation would be more challenging. It would require a

good knowledge of the respective weight of the random noise (without spatial correlation)395

and of the systematic errors (with spatial correlations) in the total retrieval errors, as well

as a good knowledge of the typical correlation length scales of the systematic errors, while

we lack of insights regarding this. The use of notional assumptions (as for the characteriza-

tion of the model error) may still represent a sensible trade-off and allow for an improved

assimilation of the observations. Finally, a refinement of the inversion strategy may also sup-400

port a better fit to the observations. In particular, under the assumptions that uncertainties in the

control variables have a Gaussian distribution, the control of the logarithm of the emissions rather

than of scaling factor for these emissions may better correspond to our CO inversion problem,

in which CO emissions are necessarily positive, but in which these emissions could have to be

strongly decreased. Opposed to the Gaussian characterization and to the spatial correlation of the405

uncertainties in the emissions, the Gaussian characterization and the spatial correlation of the un-

certainties in logarithm of the emissions could increase the flexibility for large local corrections

of the emissions. The current characterization of the uncertainties in the CO emissions using a

Gaussian distribution may actually contribute to the limitation of the fit to the observations.

The small corrections of the CO emissions at national scales by the inversion can be attributed,410

first, to the general consistency between the TNO-GHGco-v3 inventory and the satellite data.

However, analysis of specific patterns such as the impact of the covid-19 crisis reveal that it can

also be seen as a lack of observation constraint to adjust the prior estimate of the emissions. The

large errors associated to the observations in our inversion framework, and the lack of data

over large parts of Europe are definitely some sources of limitation on the observational constraint.415
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However, in a more general way, this questions the ability to exploit large scale variations in the

CO satellite data to constrain regional and national to continental scale budgets of the emissions.

Emission hot spots generate a relatively strong local signal, which is much better caught and

exploited by the inversions than the larger scale signals, despite the moderate spatial resolution of

the MOPITT data. This is why the corrections of these hot spot emissions are stronger and more420

convincing than the corrections of the national and continental scale emissions, as shown by the

analysis of the impact of covid-19 policies. Accurate monitoring of the national anthropogenic

CO emissions will likely rely more on the aggregation of local emission monitoring data rather

than on the processing of large scale variations in the CO fields. The former requires modeling and

inversion systems at spatial resolution finer than those used here, as well satellite images at high425

spatial resolution. The CO images of the TROPOMI instrument onboard the Sentinel-5P mission

with a 5.5km x7 km resolution since August 2019 should be well suited for such a perspective.

The large increase in the number of observations with this mission is expected to increase the

capabilities to monitor CO emissions and to address air-quality-related emissions at the national

to subnational scales.430

5 Open Research

MOPITT version 8 products are freely available through NASA’s EarthData portal at https://earthdata.nasa.gov/,

(Deeter et al., 2019). The TNO-GHGco-v3 inventory (Super et al., 2020) is available upon request

from TNO (contact: Hugo Denier van der Gon, hugo.deniervandergon@tno.nl).The CHIMERE

code is available here: www.lmd.polytechnique.fr/chimere/, (Menut et al., 2013; Mailler et al.,435

2017). The CIF inversion system (Berchet et al., 2021) is available at : http://community-inversion.eu/

Acknowledgements. We acknowledge the NCAR MOPITT group for the production of the CO retrievals.

A large part of the development and analysis were conducted in the frame of the H2020 VERIFY

and COCO2 projects, funded by the European Commission Horizon 2020 research and innovation

programme, respectively under agreement number 776810 and 958927. We wish to thank all the persons440

involved in the preparation, coordination and management of these projects. This study has also received

funding from the French ANR project ARGONAUT under grant agreement No ANR-19-CE01-0007 and

from the French PRIMEQUAL project LOCKAIR under grant agreement No 2162D0010. This work was

20



supported by the CNES (Centre National d’Etudes Spatiales), in the frame of the TOSCA ARGOS project.

This work was granted access to the HPC resources of TGCC under the allocations A0100102201 and445

A0110102201 made by GENCI. Finally, we wish to thank J. Bruna (LSCE) and his team for computer

support.

The authors declare that they have no conflict of interest.

21



Country Code Difference between CO anthro-

pogenic emissions estimates

from the inversions and TNO-

GHGco-v3 in %

ALB -5.9

AUT -8.0

BEL -6.2

BLR -0.6

CHE -8.4

DEU -7.6

DNK -1.2

ESP -4.1

FIN -0.5

FRA -5.3

GBR -3.3

IRL -0.8

ITA -11.4

LUX -6.3

NLD -6.8

NOR -1.0

PRT -3.0

SWE -0.4

BGR -4.0

CZE -10.6

EST -0.3

HRV 8.94

HUN -7.1

LTU -0.7

LVA -0.4

POL -6.7

ROU -5.6

SVN -9.1

SVK -7.8

UKR -3.4

EU-27+UK -6.3
Table 2. Difference between the CO annual emissions from the TNO-GHGco-v3 inventory used as prior in

this study and from the inversions, by country, in %, in 2015.
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Country Code Difference between CO pos-

terior emissions estimates in

April 2020 and in April 2019 in

%

BEL -5.6

CHE -3.5

DEU -7.3

FRA -1.2

GBR -0.4

ITA -3.5

LUX -5.4

NLD -7.7

EU-27+UK -1.3
Table 3. Difference between the CO posterior emissions in April 2020 and in April 2019, by country, in %.
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