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Abstract. The rapidly expanding Himalayan road network connects rural mountainous regions. However, the fragility of the 

landscape and poor road construction practices lead to frequent mass movements along-side roads. In this study, we 

investigate fully or partially road-blocking landslides along the National Highway (NH-7) in Uttarakhand, India, between 15 

Rishikesh and Joshimath. Based on an inventory of >300 landslides along the ~250 km long corridor following exceptionally 

high rainfall during September and October, 2022, we identify the main controls on the spatial occurrence of mass-

movement events. Our analysis and modeling approach conceptualizes landslides as a network-attached spatial point pattern. 

We evaluate different gridded rainfall products and infer the controls on landslide occurrence using Bayesian analysis of an 

inhomogeneous Poisson process model. Our results reveal that slope, rainfall amounts, lithology and road widening are the 20 

main controls on landslide occurrence. The individual effects of aggregated lithozones are consistent with previous 

assessments of landslide susceptibilities of rock types in the Himalayas. Our model spatially predicts landslide occurrences 

and can be adapted for other rainfall scenarios, and thus has potential applications for efficiently allocating efforts for road 

maintenance. To this end, our results highlight the vulnerability of the Himalayan road network to landslides. Climate 

change and increasing exposure along this pilgrimage route will likely exacerbate landslide risk along the NH-7 in the future.  25 
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1 Introduction 

Roads weave across the Earth’s surface, with their number and extent continually expanding. Compared to 2010, the total 

length of roads globally is expected to enhance by 60% until 2050 (Laurance et al. 2014), increasingly dissecting and 
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fragmenting ecosystems. In mountainous regions, road construction leads to profound changes in the stress distribution of 

adjacent hillslopes, redistribution of rock and soil, and alterations of drainage patterns. If poorly implemented, road 35 

construction, inapt slope protection and insufficient drainage thus enhance slope instability and the frequency of landslides, 

with substantial economic damages and increasing number of fatalities  (Bíl et al., 2014, Laimer 2017, McAdoo et al., 2018, 

Muenchow et al., 2012, Ozturk et al., 2022). A worldwide surge in the proposals for new roads thus warrants the 

investigation of the link between road network expansion and landslide risk (Laurance et al., 2014).  

 40 

Roads are at the heart of the Himalayan transport infrastructure. They are vital for national and international trade and 

passenger movement and strategically important in border areas. India has improved and expanded its road network in 

mountainous states, e.g. under the national Bharatmala Pariyojana (“Road to Prosperity”) initiative, established in 2015. Key 

objectives of this highway development program are to improve the efficiency and connectivity of the transport 

infrastructure and to provide road access to remote border regions and rural areas (Boora & Karakunnel, 2024). Yet, in 45 

mountainous environments, roads are exposed to various degrading processes. Among these processes, mass movements 

particularly inflict severe structural damage and heavily degrade road serviceability (Meyer et al., 2015). Traffic disruptions 

due to mass movements can have severe consequences, if they impede accessibility and compromise rescue operations 

during extreme events such as cloudbursts, floods and earthquakes (Sharma et al., 2014). Ensuring accessibility and 

connectivity during such events is thus of live-saving importance, yet requiring considerable maintenance efforts (Uniyal, 50 

2021). 

 

According to the National Crime Records Bureau (2022), 160 people died due to landsliding in Uttarakhand in the preceding 

four years. These figures exclude other extreme events like heavy rainfalls, floods or the 2021 Chamoli rock and ice 

avalanche with over 200 fatalities (Shugar et al., 2021). Several studies have addressed mass movements and their relation to 55 

transport infrastructure in the Indian and Nepal Himalayas. The studies range from purely phenomenological descriptions 

(e.g., Bartarya & Valdiya, 1989; Sarkar & Kanungo, 2006), to statistical (Das et al., 2012; Devkota et al., 2013; Sur et al., 

2020) and physically based modeling approaches (e.g., Kanungo et al., 2013; Prasad & Siddique, 2020). In fact, the space 

limitation in steep terrain often requires road construction to undercut slopes beyond their angle of repose, reducing slope 

stability and increasing landslide susceptibility (e.g., Barnard et al., 2001; Haigh & Rawat, 2011; Li et al., 2020). The 60 

increase in mass wasting due to road construction itself may be similar to the impact of a large earthquake (Tanyas et al. 

2022). Therefore, particular attention has focused on detailed stability assessments of road cut slopes (e.g., Kundu et al., 

2016; Siddique et al., 2017; Siddique & Pradhan, 2018; Singh et al., 2014) and the development of appropriate remedial 

measures (e.g., Adhikari et al., 2020; Asthana & Khare, 2022; Koushik et al., 2016; Rawat et al., 2016), but fewer studies 

have attempted to predict the spatial occurrence of mass movements along roads (Huat & Jamaludin, 2005; Ching et al., 65 

2011). Knowledge about where and when landslides preferably detach is important for early warning but also for efficiently 

allocating efforts of road maintenance and slope enforcement (Haigh, 1984). Using data on occurrences of landslides, 

susceptibility studies aim to quantify the spatial propensity of hillslopes to fail and to determine the controlling factors such 

as terrain attributes e.g., slope angle and aspect, and geo-environmental variables e.g., rainfall intensity and lithology. 

 70 

In this study we carry out an analysis of road exposure to landsliding for a ~250 km long stretch of the National Highway 7 

(NH-7) that connects the cities of Rishikesh and Joshimath, Uttarakhand, India (Fig.1). We conducted a detailed survey of 

partially or fully road-blocking landslides along the road, following the monsoon season (May – Aug) and a period of intense 

rainfalls during 5 - 12 October 2022. Limiting the inventory to road blocking landslides was required to cope with the 

overwhelming number of landslides and to ensure that we account for the landslides that detached most recently. In addition, 75 

construction works for road widening often stripped away the vegetation so that differentiating between actual, non-blocking 
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landslides and excavated slopes was not straightforward. In contrast to previous studies, which focused on the prediction of 

landslides in two spatial dimensions (e.g., Das et al., 2012; Devkota et al., 2013), our analysis and modeling approach 

conceptualizes landslides as a network-attached spatial point pattern (Baddeley et al., 2021).  

 80 

Landslide susceptibility analysis commonly relies on discretizing the study region into pixels, where each pixel indicates 

either the presence or absence of landslides. Subsequently, techniques such as logistic regression are used to predict the 

probability of a landslide as a function of a number of predictor variables. A pixel-based logistic regression analysis is 

approximately equivalent to a Poisson point process model if the landslides are originally stored as point features (Baddeley 

et al. 2010). We take this approach to modeling landslide susceptibility using point process models a step further by 85 

conceptualizing landslides as point features that are located on or along-side the road network (Okabe and Sugihara 2012). 

This means that we do not analyze road-attached landslides as events that occur on a continuous and unbounded plane, but 

rather as events that are along-side of roads. The term “along-side” indicates a somewhat broad spatial relation, but “implies 

that the physical unit of the event [...] has an access point on a network” (Okabe and Sugihara 2012, page 7). In our case, this 

means that a landslide intersects with the road and blocks it. These intersections are, at the scale of our analysis, represented 90 

by point features, i.e. points on a network. Our approach relies on the analysis of the spatial arrangement of the points (the 

point pattern) along the line, and we hope to reveal important features (e.g. trends in point density) with respect to geo-

environmental variables. An additional objective of this study is to test, whether such an approach would be particularly 

feasible to determine the inter-relationship between linear infrastructure and landslides. One of the critical covariates in our 

modeling approach is the spatial distribution of accumulated rainfall amounts. We thus evaluate different rainfall products. 95 

Finally, we infer the controls on landslide occurrence using Bayesian analysis of multivariate loglinear models.  

2 Study area 

The NH-7 ascends from 400 m at Rishikesh to approximately 2000 m at Joshimath, crossing steep terrain with soil mantled 

slopes. Mean annual rainfall (1970–2019) varies from 1500–2000 mm around Rishikesh to 1000–1200 mm in Joshimath 

with 80–86 % and 60–70 % delivered by the Indian summer monsoon (June to September), respectively (Pai et al., 2014; 100 

Swarnkar et al., 2021). Air temperature in Rishikesh is always above freezing and ranges between 4 and 40 °C, whereas the 

temperature in Joshimath varies between -10 and 20 °C. This climatic gradient is evident in the gradual transition of 

vegetation. In the lower lying subtropical region, dense deciduous forests dominate. As elevation increases, these forests give 

way to temperate broadleaf mixed forests and temperate shrub and grassland communities. 

 105 

The geological framework of the study area is largely determined by the ongoing Indo–Asian collision that causes crustal 

thickening and exhumation along large-scale detachment zones and thrust faults. Most of the study area lies within the 

Lesser Himalaya, between the Main Boundary Thrust in the south and the Main Central Thrust (MCT) in the north, which 

are both splays of the root detachment, the Main Himalayan Thrust (Fig. 1). As the present-day India–Eurasia convergence is 

on the order of 36–40 mm yr
-1

 (e.g., Wang et al., 2001) and approximately half of this is accommodated within the 110 

Himalayas (e.g., Lavé & Avouac, 2000), the region is seismically active and bears the potential for large earthquakes (e.g., 

Kayal et al., 2003; Bollinger et al., 2014; Rajendran et al., 2017). 

 

The highway runs perpendicular to the strike of the orogen and crosses rocks of the Lesser Himalayan Sequence (LHS) and 

the High Himalayan Crystalline (HHC). These units represent the ancient passive Indian margin and are separated by the 115 

MCT. The LHS is mainly composed of sedimentary and low-grade metasedimentary rocks; quartzite, shale, phyllites and 

slate with occasional limestone and dolomite, whereas the HHC is characterized by high-grade schist, gneiss and quartzite. 
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These rocks feature a high density of discontinuities like faults, fractures and joints that are important seepage pathways. In 

locations, where the road cuts through weathered rocks and intersects with major faults, the hillslopes are particularly fragile 

(Prasad & Siddique, 2020). 120 

 

During the week preceding our survey, large parts of North India experienced a period of strong rainfall. The state of 

Uttarakhand registered a departure of 1040 % from the long-term (1961 – 2010) average. The districts of Tehri Garhwal, 

Pauri Garhwal, Rudraprayag and Chamoli, through which the NH-7 runs, recorded a weekly surplus of 419 %, 679 %, 218 

% and 1855 %, respectively (supplementary table 2). Given that the average rainfall amount in October is around 35 mm, 125 

approximately three times the monthly average rainfall occurred in only one week, which is close to the rate that prevails 

during the monsoon. 

 

The NH-7 is a lifeline for socioeconomic development, which is mainly based on agriculture, trade, tourism, mining and 

hydropower. Furthermore, the highway is vital for the Indian military to transport personnel and equipment to their outposts 130 

along the Indian/Chinese-Tibetan border. Between May and October, more than one million pilgrims travel the highway to 

visit the holy shrines of Badrinath and Kedarnath. Moreover, the highway follows the course of the Ganges and its tributary 

Alaknanda and thus passes the river confluences known as the five Prayags, namely Devprayag, Rudraprayag, Karnaprayag, 

Nandaprayag and Vishnuprayag (Fig. 1). In Hinduism, these confluences are considered sacred, attracting pilgrims who 

bathe in the waters before worshiping the rivers. Finally, there are ten hydroelectric power plants within 20 km distance to 135 

the road and more projects are planned or under construction, highlighting the road’s significance for energy security and 

economic value.  

 

3 Data and Methods 

Traveling to fieldwork in the Chamoli area (Uttarakhand) on Oct 15, 2022, we recognized numerous, partially road-blocking 140 

landslides along the road and decided to investigate their occurrence using the following approach.  

First, we started to record these landslides using hand-held GPS devices as road workers already began to clean the road 

from the debris, thus rapidly removing evidence of smaller landslides that had detached in close vicinity to the road. We 

registered landslides along the road both on our way from Rishikesh to Joshimath (Fig. 1) on Oct 15 and 16, as well as on 

our way back on Oct 18, 2022. We only recorded landslides with runouts affecting the road, thus partially or fully blocking it 145 

(Fig. 2). We classified the landslides as partially-blocking if the emplaced deposits either substantially narrowed the road, or 

if debris ran over marginal road markings. Very small landslides with an area of less than ~10 m
2
 were not considered. 

Secondly, we cross-checked each recorded landslide using Google Earth using most recent and historic high-resolution 

imagery. The images enabled us to identify the landslides that occurred between January and October 2022, encompassing 

the entire, annual monsoon season as well as the heavy rainfall period at the beginning of October 2022. We initially tried to 150 

attribute the landslides to the latter period by matching our data with acquisition dates of the images, but the temporal 

resolution for many road sections was insufficient. Moreover, historic imagery has become unavailable for India 

(https://www.thehindu.com/news/national/google-historical-satellite-imagery-disappears-for-india/article66834033.ece, last 

access: 25 June 2024). We also identified reactivated landslides, where a slip surface and a scar were visible in the imagery 

prior to Jan 2022. This was not always straight-forward since landslide scars cannot always be clearly distinguished from 155 

bare, engineered slopes and road widening. Landslides confidently determined to have occurred before January 2022, as well 

as those obscured by shadows in Google Earth images, were omitted from the analysis. 

 

https://www.thehindu.com/news/national/google-historical-satellite-imagery-disappears-for-india/article66834033.ece
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Thirdly, we analyzed landslides along the road as a network-attached spatial point process. A spatial point process is a 

stochastic mechanism, which controls the spatial distribution of events or occurrences (Baddeley et al., 2015). As our 160 

mapped landslides are events that occur along the road – and only these have been mapped – these events are constrained to 

lie on a network of lines (Baddeley et al. 2021, Okabe et al. 2006). In our case, the network is rather simple as it consists of 

only one polyline, but the approach can be equally applied to more complicated network topologies.   

 

We used the open-source MATLAB extension TopoToolbox (Schwanghart and Scherler, 2014) and its numerical object PPS 165 

(Schwanghart et al., 2021) to analyze, visualize, and model the density of landslides along the road. PPS means “Point 

patterns on stream networks”, but it can be used with any type of dendritic, undirected network. The numerical approach 

consists of a fine-pixel approximation which is controlled by the geometry of the digital elevation model (DEM), from which 

the data is retrieved. This means that the vector shape of the road is pixelated with the same geometry as the DEM 

(Schwanghart et al., 2021). We model landslide densities with an inhomogeneous Poisson process model, which is defined 170 

by the intensity function 𝜆(𝑢) with 𝑢 being the horizontal distance along the road. A common parametric model of the 

intensity is the loglinear model:  

𝜆(𝑢) = 𝑒𝑥𝑝(𝛽0 + 𝛽𝑋(𝑢)),           (1) 

where 𝑋 is a matrix of predictor variables (covariates) that vary along the road, 𝛽0 is an intercept and 𝛽 is a vector of model 

parameters. Our approach uses a spatial logistic regression, where the relation between presence probabilities p and 175 

explanatory variables X are controlled by the form of the logistic link function (logit p = ln(p/(1-p)). As pixel size tends to 

zero, we have p → 0 and ln(p/(1-p)) → ln(p). The limiting Poisson intensity is thus a loglinear function of the covariates 

(Baddeley et al. 2010). A key property of the model is that the events are independent from each other, i.e. the probability of 

a landslide to occur is independent from landslides nearby. Spatial dependence of events can occur in different ways leading 

to clustering, i.e., points tend to occur close to other points, or inhibition, i.e., there is a characteristic distance or regularity in 180 

the spacing between the points. Spatial clustering of landslide events has previously been addressed by Lombardo et al. 

(2018, 2019) using a Cox Process model to emulate the latent spatial effects of unobserved variables, whereas inhibition can 

be observed, for example, in data where areal non-overlapping phenomena are represented as points (Evans, 2012; 

Schwanghart et al., 2021). At this stage, we will not include these potential second-order effects on the density of landslides 

in our model, but we will investigate their possibility using the inhomogeneous K-function defined by Ang et al., (2012) 185 

once we have modeled first-order effects.  

 

We used the following candidate predictor variables in the loglinear model introduced above. First, we hypothesized that 

steep hillslopes gradients next to the road are more susceptible to mass wasting events. Therefore, we calculated surface 

gradients, based on the Copernicus 30-m DEM (European Space Agency, 2021). We identified areas that lie right or left to 190 

the road, and which are higher than the road itself within a buffer zone of ~210 m (or 7 pixels). We then selected the nearest 

DEM pixels and mapped the mean slopes of these nearest pixels to the road network. We chose 210 m (7 x spatial resolution 

of the DEM) to have sufficient pixels to obtain robust estimates of the slope. These values still vary greatly over short 

distances along the road and thus we smoothed them using the algorithms (with smoothness penalty parameter K = 4) 

described by Schwanghart and Scherler (2017).  195 

 

Rainfall patterns exert a strong influence on the spatial occurrence of landslides (e.g. Ching et al., 2011; Joshi & Kumar, 

2006; Gariano & Guzzetti, 2016, Ozturk et al., 2021). Thus, we chose five rainfall/precipitation products (see Table 1) to 

characterize spatial patterns of accumulated rainfall between January 1 and October 10, 2022. Among the five 

rainfall/precipitation products, IMD1 solely relies on the interpolation of gauge-based measurements from a network of 200 
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stations provided by the Indian Meteorological Department (Pai et al., 2014). In addition to gauge measurements, IMD2 is 

enhanced with estimates from the Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG) 

(Mitra et al., 2009). MSWEP v2 is another merged product that incorporates reanalysis-based, gauge, and satellite-derived 

rainfall estimates (Beck et al., 2017). CHIRPS v2 provides a high-resolution record by combining gauge and satellite data 

from NOAA (National Oceanic and Atmospheric Administration) (Funk et al., 2015) and the IMERG late run provides 205 

gridded multi-satellite precipitation estimates with quasi-Lagrangian time interpolation from NASA (National Aeronautics 

and Space Administration) (Huffman et al., 2014). We projected the geographic coordinates of the rainfall/precipitation grids 

to UTM zone 44N and bilinearly resampled the data to the resolution of the DEM before extracting the values of each road 

pixel.  

 210 

Next, we incorporated information about road widening by creating a logical mask that identifies the widened segments of 

the highway. Due to the absence of more detailed data, we rely on the map by Sati et al. (2011), which shows the locations of 

road widening completed before the 2010 monsoon season. Our envisioned strategy of compiling a more recent database of 

road widening using historic imagery from Google Earth was rendered impossible after most of the historic images were 

removed from the public archive in April 2023. 215 

 

Finally, we obtained a digitized version of the lithological map of Uttarakhand (map scale 1:2.000.000) from the Geological 

Survey of India (2022). The data contains both stratigraphic as well as lithological information. Accordingly, the NH-7 

crosses 34 different lithologies between Rishikesh and Joshimath. To reduce the number of categories, we summarized and 

aggregated the lithological information into lithozones with lesser focus on the stratigraphic context. This aggragation 220 

resulted in five lithozones that are dominated by carbonate rocks (1), phyllite and shale (2), quartzite (3), quartzite and 

igneous rocks (4) and crystalline high grade metamorphic rocks (5). The reclassification is shown in Table 2. Again, we 

gridded this data and assigned corresponding lithozones to each road pixel. 

 

We adopt a Bayesian strategy to infer and identify predictor variables using the function bayesloglinear of the PPS numerical 225 

class (Schwanghart et al., 2021). The function provides an interface to bayesreg (Makalic and Schmidt, 2016), a MATLAB 

toolbox that enables efficient Bayesian modeling and regularization of high-dimensional data. We use a Bayesian lasso 

estimator with Laplace prior distributions for the regression coefficients (Park & Casella, 2008). This prior results in 

posterior mode estimates that are similar to estimates obtained with the lasso penalty (van Erp et al., 2019). Before 

calculating 1000 samples of the posterior parameter distributions, we calculated 1000 burnin samples. These are calculated 230 

to ensure that the Gibbs sampler converges to the target distribution. In addition, we used a level of thinning of five samples. 

This means that only every fifth sample was retained in the generated sequence to reduce autocorrelation between the 

samples and to obtain a more independent and representative Bayesian posterior distributions. To this end, we find that 1000 

samples are sufficient to characterize the posterior distributions.   

 235 

Finally, we evaluate the model based on the Receiver-Operating Characteristics (ROC) Area under the Curve (AUC) 

approach (e.g., Hanley and McNeil, 1982). We visualize the predictions and inspect and analyze spatial densities obtained 

from random realizations of the fitted inhomogeneous Poisson process model. Moreover, we evaluate the predictive 

performance of the model using a 5-fold cross-validation. In this approach, we subdivide the road into 15 km segments, 

which are then randomly partitioned into 5 groups. The first group is used as test data while the remaining groups are used to 240 

train the model. This step is then repeated for each group and the performance summarized with the AUC. In addition, we 

test whether additional covariates provide opportunities for further improving the model. The selected attributes include 

terrain roughness and total curvature as well as land cover derived from the Copernicus Global Land Operations (CGLOPS-
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1, Moderate dynamic land cover 100 m, version 3) (Buchhorn et al., 2020), which we reclassify according to Table 3. We 

investigate these models using a frequentist modeling approach (see PPS-function fitloglinear) and compare models with 245 

additional covariates with the Akaike Information Criterion (AIC, Akaike, 1974). 

4 Results 

We recorded 309 fully or partially road-blocking landslides along the 247 km long road between Rishikesh and Joshimath, 

which amounts to an average landslide density of 1.25 landslides per km. A two-sample Kolmogorov-Smirnoff test between 

the road distance (uniform distribution between start and end of the surveyed road), and the road distances measured at the 250 

landslides rejects the null hypothesis with p ≈ 0 that landslide locations follow a completely spatial random distribution. 

Visually inspecting the landslide locations using Google Earth reveals that 80 % of the recorded landslides with road 

blockages occurred after Jan 2022 (Fig. 1). Of these 250 landslides, 30 % were most likely reactivated because they could 

not be identified to be road-blocking before the rainy season (Fig. 2e,f).  

 255 

The spatial distribution and amounts of accumulated rainfall between January 1 and October 10 differ between the rainfall 

products (Fig. 3). Since independent measurements based on rain gauges are unavailable, we investigate the performance of 

the rainfall products to explain the spatial distribution of landslides. The approach uses the AIC to iteratively evaluate 

models including one of the rainfall products at a time, as well as hillslope gradient, lithozones, and road widening. AIC 

values vary between 1876 and 1913 with CHIRPS v2 having the lowest AIC. CHIRPS v2 correlates positively with landslide 260 

density, whereas all other rainfall products show negative or no significant correlation (see supplementary table 1 and 

supplementary figures 1-5). We thus use CHIRPS v2 in the development of the subsequent models. We emphasize that 

including different rainfall products in the model has no strong effect on the remaining model parameters that determine the 

influence of slope and lithozones and road widening (see supplementary table 1). In other words, while determining the 

overall performance the choice of rainfall product does not affect our results and conclusions about the topographic and 265 

lithologic controls on landslide occurrence. 

 

Bayesian loglinear modeling of the landslide density (Fig. 4, Fig. 5a, b) reveals a credible influence of the covariates rainfall 

(Fig. 5c), slope (Fig. 5d), lithozones (Fig. 5e) and road widening (Fig. 5f) (see Fig. 4 for posterior means and 95 % highest 

density intervals and Fig. 6 for individual effects). A Bayesian feature rank algorithm based on the absolute magnitude of the 270 

parameters in each posterior sample (Makalic and Schmidt, 2011), ranks slope as the top covariate in terms of explanatory 

power together with rainfall, followed by road widening and lithozones (Table 4). Among the lithozones, zones 2 and 4 stand 

out as categories improving the explanatory power of the model. The individual effects of the covariates reveal a positive 

influence of rainfall and slope on landslides (Fig. 6a, b). Predictions of landslide densities in lithozone 4 are credibly lower 

than in lithozone 2 (Fig. 6c). Also, our model suggests that road widening affects the density of landslides. Corrected for the 275 

influence of other parameters, average densities are twice as high in widened road sections (Fig. 6d). The spatial pattern of 

predicted landslide density (Fig. 5g) is consistent with observed spatial density variations, but the high small-scale variability 

reflects the importance of slope as a predictor variable. 

 

The AUC is an aggregated metric for a point pattern model across thresholds and ranges between 0.5 and 1, with values 280 

close to 1 indicating high performance of a model. Our loglinear model has an AUC value of 0.79 (Fig. 7a). The 

inhomogeneous K-function shown in Fig. 7b quantifies the expected number of points as a function of distance from each 

point, adjusted for the modeled inhomogeneous intensity of the point pattern. Distances between individual landslides are 

calculated as the shortest-path distance along the road rather than the direct Euclidean distance. Acceptance intervals around 
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the theoretical K-function were derived from repeated simulations of the inhomogeneous Bayesian loglinear model. The 285 

actual point pattern’s K-function is within these acceptance intervals, suggesting that the landslide locations do not exhibit 

clustering. A comparison of 100 randomly simulated and actual point densities (Fig. 7c) shows that the modeled and 

observed spatial landslide densities are consistent although the second, smaller peak of landslide densities close to Joshimath 

are not well captured by the model. Moreover, 5-fold cross-validation based on 15-km long road segments reveals AUC-

values between 0.77 and 0.78. 290 

 

Can the model be improved by incorporating more explanatory covariates? Our impression in the field was that landslides 

detach independently of planform hillslope geometry as they occurred both on spurs and convex hollows. Nevertheless, we 

calculated total curvature and topographic roughness as potential predictor candidates. In addition, we used landcover (Table 

3) and distance to faults (Fig. 1) as they are commonly used in susceptibility studies (e.g., Stanley and Kirschbaum 2017, Li 295 

et al., 2020, Ozturk et al., 2021) and potentially control the density of road-side slope failures. Yet, including these metrics in 

the model barely contributes to improving the model fit and their incorporation in the model would, according to the 

constancy of the AIC, lead to overfitting (Fig. 8). 

5 Discussion 

We recorded more than one landslide per road kilometer along the NH-7 between Rishikesh and Joshimath. The fact that this 300 

road is strongly affected by landslides has been previously described and attributed to the region’s fragile slopes, intense 

rainfall and frequent seismicity (Sati et al., 2011). In addition to the environmental conditions, road construction and 

widening have contributed to the occurrence of new landslides, which are often shallow and small, but nevertheless lead to 

fatalities, inflict severe damages to infrastructure and cause traffic disruption (Sati et al., 2011). We conducted a systematic 

survey of road-side landslides and derived a statistical model that quantifies landslide susceptibility along the NH-7 at a high 305 

spatial resolution.  

 

Our analysis relied on a GPS-based survey of landslides while traveling from Rishikesh to Joshimath shortly after a period of 

anomalously high rainfall. Using this approach, we mapped landslides irrespective of cloud cover and without acquiring 

high-resolution satellite imagery, which is usually needed to reliably detect small landslides. A drawback, however, is that 310 

we may have missed landslides where debris had already been removed by road works. Also, detailed mapping of the areal 

extent of the landslides was not possible during drive-by so that we did not quantify the size of landslides. Thus, our analysis 

treats all landslides the same, irrespective of their areal extent and volume. To this end, however, this enables us to adopt a 

modeling approach, which conceptualizes landslides as an unmarked, network-attached point pattern (Baddeley et al., 2021; 

Okabe and Sugihara, 2012). Representing landslides as network-attached points and not as areal features entails advantages 315 

and disadvantages. Constraining landslide locations to lie on roads demands that all predictor variables also need to be 

mapped to the road network, which entails some generalization and additional degrees of freedom about the choice and 

aggregation of 2D variables. For landslide susceptibility analysis, for example, this means that spatial variables 

characterizing the source area (e.g., hillslope gradient) are projected onto the road.  At the same time, model development 

and fitting benefits from smaller sample sizes as data amounts are moderate and computational demands during Bayesian 320 

posterior sampling remain manageable. 

 

We detected a profound difference between rainfall products, for which a detailed analysis is outside the scope of this study. 

Several studies along the Himalayan orographic front have previously detected these differences. They have been attributed 

to the sparse network of rain gauges, or, in cases where rainfall estimates are based on remote sensing data, to irregular 325 
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acquisition times, which can result in missing individual rainfall events (Andermann et al., 2011, Hu et al., 2016). To this 

end, these uncertainties are detrimental to accurately capturing the spatial patterns of landslides (Ozturk et al., 2021). We 

found that CHIRPS v2 performed best in predicting the spatial landslide patterns along NH-7 but the employed search 

strategy must be viewed critically as the reverse conclusion, that landslides are controlled by these patterns is not necessarily 

true. Indeed, studies come to different conclusions about the performance of CHIRPS v2 and other gridded rainfall products.  330 

For example, Kumar et al. (2021) studied different gridded rainfall products in the Eastern Himalayas and found that 

CHIRPS-v2 overestimated the monsoon but underestimated annual precipitation. Based on the analysis of 18 extreme 

precipitation events during 2014–16 in the northwest Himalaya (including our study site), however, Jena et al. (2020) 

concluded that CHIRPS v2 provides the most reliable precipitation estimates. Indeed, the two-peaked rainfall pattern of 

CHIRPS v2 is most consistent with long-term rainfall patterns obtained from the interpolation of 44 rainfall gauge records 335 

averaging over the period from 1901 to 1950, which show highest values along the Himalayan Front and the physiographic 

transition to the High Himalaya (Basistha et al., 2008; Bookhagen, 2010). 

 

Lithozones derived from a geological map contributed to the explanatory power of the model, thus highlighting the role of 

rock properties in modulating landslide susceptibility. As we did not measure the actual geotechnical and -mechanical 340 

properties or e.g., bedding and foliation along our route, we can only provide a first order reasoning of the prediction 

capacity of the lithozones. The high landslide density in lithozone 2 is likely related to the pronounced fissility and cleavage 

of the dominating shales and phyllites. Moreover, material softening, percolation and weathering cause a general decrease in 

rock strength. Tectonic activity adds to a general decrease in rock strength by creating shear surfaces with low friction angles 

(Stead, 2016). In addition, road segments, where the adjoining hillslopes parallel bedding, joints or foliation planes are 345 

particularly vulnerable (e.g., Bartarya and Valdiya, 1989). Conversely, lithozone 4 is characterized by quartzite and igneous 

rocks. These have undergone low- to high-grade metamorphism and are generally harder and have a more irregular fabric 

that restrains the formation of planar slide surfaces. Moreover, these rocks tend to develop more stable regolith mantles 

(Gerrard, 1994), and are thus less susceptible to landsliding. Our model shows that under the same topographic conditions 

and rainfall amounts, the rock types of lithozone 2 are 2–6 times more susceptible to landslides than those in lithozone 4 350 

(Fig. 6c). The remaining lithozones are not credibly different from each other. In part, the lack of differences can be 

attributed to the low number of samples as only a small fraction of the road traverses these lithozones (Table 2). 

Notwithstanding, a general trend towards lower landslide susceptibility from lithozone 1–5 are consistent with a previous 

review study about lithological controls on the occurrence of mass movements in the Himalaya (Gerrard, 1994).  

 355 

Previous studies indicate that human activities have played a crucial role in predisposing slopes to failure (Li et al., 2020; 

van Westen et al., 2008; Tanyas et al., 2022). Our analysis underscores these findings and quantifies the occurrence of 

landslides to be twice as high along widened sections of NH-7, if other predictor variables are held constant. The process of 

cutting into mountain sides to create wider pathways often creates unstable slopes that are prone to failure (Barnard et al., 

2001; Haigh & Rawat, 2011; Sati et al., 2011; Li et al., 2020). Clearing trees and vegetation for road widening eliminates 360 

their stabilizing influence on slopes, thereby increasing landslide hazard (e.g., Guthrie, 2002). Additionally, widened roads 

can lead to increased surface runoff during heavy rainfall or snowmelt, saturating the soil and making it more susceptible to 

landslides (e.g., Wadhawan et al., 2020). Rock blasting required during the road widening process can lead to the fracturing 

and weakening of rock masses, creating potential landslide-prone zones along the road corridors (Sati et al., 2011). 

Moreover, road widening alters natural drainage patterns, and potentially redirects water flow to adjacent slopes, thus 365 

causing water saturation, erosion and instability. In fact, these disturbances have previously led to frequent landslides along 

the NH-7 as Sati et al. (2011) also report about ~300 landslides occurring along the road more than 10 years ago. Our data 

indicates that 30 % of the recorded landslides are reactivated slope failures which highlights that slopes are recurrently 
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unstable during periods with intense rainfall (Joshi and Kumar, 2006). During mapping, we also noticed that some slopes 

were engineered during the last years with retaining walls, yet many of which also failed.  370 

 

Clearly, our model may miss important predictor variables that control the occurrence of landslides. We included variables 

that characterize environmental conditions and found that slope, rainfall, road widening and lithology largely explain the 

variability in landslide density. Variables such as landuse or topographic derivatives do not improve the performance of the 

model as measured by the AIC, at least at the spatial scale at which these variables were available. However, small-scale 375 

topographic changes due to construction or land use changes (e.g. abandonment and degradation of agricultural fields and 

terrace systems) may exacerbate road-side slope failures (Jacquet et al., 2015; Mauri et al., 2022). A more up-to-date DEM 

with higher resolution may indeed help to improve the spatial prediction of landslide, although higher DTM resolutions were 

shown to not necessarily improve model performance, in particular along roads (Penna et al., 2014). Moreover, the 

propensity of landsliding along widened segments of the road may change over time. Road widening and slope undercutting 380 

can be viewed as a perturbation, to which slopes will adjust. Timescales of this adjustment may vary and depend on several 

factors. Likewise, remedial measures such as slope enforcement, artificial drainage and retention walls will affect slope 

stability. Including these activities of landslide mitigation was not possible in our study, but could support planning of 

structural measures. 

  385 

Our model hindcasts the spatial pattern of road-blocking landslides and we posit that it can be used as a time-predictive 

model as well. Rainfall is one of the main covariates in the model and is also the one with the largest uncertainties as shown 

by the discrepancies of gridded rainfall products. A denser network of rain gauges and a better availability of this data would 

likely contribute, together with weather forecasting, to more accurate estimates of landslide occurrences, which ultimately 

would facilitate a more efficient allocation of resources for road maintenance. Also, recurrent slope failures should be 390 

monitored more closely to direct efforts for slope reinforcements. The land cover data, which we included in the model, is 

too coarse to capture the widespread lack of vegetation along the road. As many of the landslides were shallow, revegetating 

slopes may contribute to their stabilization (Vergani et al., 2017).   

 

The NH-7 is a key arterial road and landslides make transport of goods and people difficult, thus causing serious economic 395 

disruption. Moreover, slope failures along the road have led to fatalities in parts where roads were widened, and recent heavy 

rainfalls in July 2023 have caused several severe landslides
 
(https://www.hindustantimes.com/india-news/landslide-on-char-

dham-road-leaves-pilgrims-stranded-heavy-rains-cause-damage-and-blockages-in-uttarakhand-101690225215947.html, last 

access: 26 June 2024). Such damages and commensurate fatalities may become even more frequent in the future. The entire 

Upper Ganga basin is susceptible to extreme rainfall events (Joshi and Kumar, 2006), and climate change projections – 400 

although subject to high uncertainties – indicate a trend towards more frequent extreme events due to elevation-dependent 

warming and a likely increase of summer monsoon precipitation by 4–25 % (Krishnan et al., 2019). In addition, exposure to 

landslides is likely to increase in Uttarakhand as the Char Dham National Highway project gets implemented (Chouhan et 

al., 2022). Road construction and increased traffic volumes attract more people, who will strive for new economic 

opportunities associated with sites along roads (Fort et al., 2010; Chouhan et al., 2022). These sites are often more 405 

susceptible to landslides as construction often implies vegetation removal and slope destabilization (Petley et al., 2007, Li et 

al., 2020). A reduction of traffic may disrupt the cycle of increasing hazard and exposure. The commissioning of the 

currently constructed 125 km long broad-gauge railway between Rishikesh and Karnprayag (Azad et al., 2022) might be a 

major step towards this goal. 

https://www.hindustantimes.com/india-news/landslide-on-char-dham-road-leaves-pilgrims-stranded-heavy-rains-cause-damage-and-blockages-in-uttarakhand-101690225215947.html
https://www.hindustantimes.com/india-news/landslide-on-char-dham-road-leaves-pilgrims-stranded-heavy-rains-cause-damage-and-blockages-in-uttarakhand-101690225215947.html


11 

 

6 Conclusions 410 

Road construction is soaring in the Himalayas. During the last five years, ~11,000 km of roads were built in the Indian 

Himalayan states (The Tribune, 2022). Yet, the fragility of the Himalayan landscape as well as slope undercutting and poor 

construction practices make maintenance of these roads challenging. Our study of landslides along the NH-7 demonstrates 

the scale of this challenge as we detect more than one partially or fully road-blocking landslide per road kilometer between 

Rishikesh and Joshimath. We contribute to a better understanding and prediction of these landslides by creating a landslide 415 

inventory of road-side landslides and the adoption of a novel approach to landslide exposure analysis, which treats the 

landslides as unmarked network-attached spatial point phenomena. Together with inhomogeneous Poisson process models, 

this inventory enables us to identify the main controlling variables, i.e., slope angle, rainfall amount, road widening and 

lithology. Our model shows that, if corrected for all other influences, road widening leads to a doubling of road-blocking 

landslides. This finding quantitatively underpins previous claims that improper construction practices of road widening 420 

increase, rather than decrease landslide hazards along roads (Sati et al., 2011). The Himalaya’s fragile geology and exposure  

to torrential rains demand proper geological assessments and mitigation measures, such as constructing retaining walls, 

installing drainage systems, and stabilizing slopes, to minimize the impact of road widening on landslide occurrence. 

Thorough environmental impact assessments before road widening projects and consideration of alternative routes or 

transportation solutions can help strike a balance between development and preserving the delicate mountain ecosystem 425 

while reducing landslide risks. 
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Figures 665 

 

Figure 1: Map of the study site. Landslides, lithozones and major faults along NH-7 from Rishikesh to Joshimath. 

Lithozones were defined according to their dominant lithology: (1) carbonate rocks; (2) phyllite and shale; (3) quartzite; (4) 

quartzite and igneous rocks; (5) crystalline high grade metamorphic rocks (Table 2). Note that lithozones 0 and 6 are not 

crossed by the road and are therefore omitted from the description. We subdivided the landslides into new ones and 670 

reactivated ones. White stippled lines indicate the road segments that have undergone widening (Sati et al., 2011). 

Lithozones and faults were modified from digital maps provided by the Geological Survey of India (2022). Stars indicate 

locations of the 1999 Mw 6.6 Chamoli earthquake (Kayal et al., 2003; USGS, 2022) and the 2021 Chamoli rock and ice 

avalanche (Shugar et al., 2021). MBT: Main Boundary Thrust, BIT: Bijni Thrust, NAT: North Almora Thrust, BT: Baijnat 

Thrust, MCT: Main Central Thrust, VT: Vaikrita Thrust. 675 

https://doi.org/10.1126/science.1063647
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Figure 2: Examples of partially road-blocking landslides along the highway NH-7. Panels a) and c) show locations, where hillslopes 

parallel the foliation/bedding. Panels (e) and (f) show a landslide that was reactivated in the observation period (Google, ©2024 Airbus). 

 

Figure 3: Accumulated rainfall/precipitation amounts from different gridded products between Jan 1 and Oct 10, 2023. The black 680 
line indicates the road between Rishikesh and Joshimath (see Fig. 1). 
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Figure 4: Posterior parameter samples of the loglinear model of landslide occurrence along the NH-7. CHIRPS v2 is the gridded 

rainfall product, gradient determines the slope within 210 m to the road and lithozones were aggregated from a geological map. Note that 685 
Lithozone 1 is missing since the parameter is encapsulated in the intercept. 
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Figure 5: Predictor and response variables used in the model. a) shows the occurrences of the fully and partially road-blocking 

landslides together with the elevation profile of the road. b) Landslide density along the road measured using histogram binning (bin width 690 
is 9.8 km). c) Accumulated rainfall between January 1 and October 10, 2022 from CHIRPS v2. d) Mean upslope gradient within a distance 

of 210 m of the road. e) Lithozones along the road (see also Fig. 1). f) Widened road segments. g) Predicted landslide density using a 

model involving rainfall, slope, road widening and lithozones as covariates.   
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 695 

Figure 6: Main effects of predictors in the loglinear model of road-blocking landslides along the NH-7. a) Effect of accumulated 

rainfall amount between January 1 and October 10, 2022, on the occurrence of landslides, averaging out the effects of the other predictors. 

The orange lines indicate the occurrences of landslides. b) Effect of hillslope gradient, c) of lithozone, and d) road widening. 

 

 700 

Figure 7: Evaluation of the loglinear model including rainfall, slope, lithozones and road widening. a) Receiver-operating-

characteristics (ROC) curve. The area-under-the-curve (AUC) metric is 0.79 (0.76/0.82 95% bootstrap confidence intervals). b) The 

inhomogeneous K-function corrects for the influence of an inhomogeneous Poisson point process model and tests for second order effects 

(e.g., spatial clustering). Acceptance intervals of a theoretical model with independent point independence are shown in gray and were 

computed from 100 bootstrap samples. The red line is the empirical inhomogeneous K-function. As the curve remains within the 705 
bootstrapped acceptance intervals, we retain the null hypothesis of inter-point independence. c) Comparison of observed landslide 

densities (black line) with densities obtained from 100 random realizations (gray lines) from the model.  
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Figure 8: Forward stepwise selection of additional explanatory covariates in the loglinear model of road-blocking landslides. 710 

 

Tables 

Table 1. Overview of the rainfall products.   

Product Product name Spatial 

resolution 
Link to source Reference 

IMD1 Indian Meteorological 

Department 1 

0.25° x 0.25° https://doi.org/10.54302/m

ausam.v65i1.851 

Pai et al., 2014 

IMD2 Indian Meteorological 

Department 2 

0.25° x 0.25° https://doi.org/10.2151/jms

j.87A.265 
Mitra et al., 

2009 

MSWEP v2 Multi-Source Weighted-

Ensemble Precipitation 

0.1° x 0.1° https://doi.org/10.5194/hes

s-21-6201-2017 
Beck et al., 

2017 

CHIRPS v2 Climate Hazards group 

Infrared Precipitation 

with Stations 

0.05° x 0.05° https://doi.org/10.1038/sda

ta.2015.66 
Funk et al., 

2015 

IMERG late 

run 

Integrated Multi-satellitE 

Retrievals for GPM 

0.1° x 0.1° https://doi.org/10.5067/GP

M/IMERGDL/DAY/06 
Huffman et al., 

2019 

 

  715 
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Table 2. Definition of lithozones. 

Lithozone Aggregated lithologies Id 
Percentage of 

road 

1 

limestone, dolomitic limestone with shale 2072 

17 % 

shale with lenticles of limestone 2073 

argillaceous limestone and clay 2074 

limestone, dolomite, shale, carb. phyllite/slate 2480 

limestone 2457 

dolomite 2456 

2 

shale, quartzite, limestone and conglomerate 2109 

33 % 

phyllite, qtz, shale, dolomite, tuff with dolerite 2108 

splintery shale with nodular limestone 746 

massive sandy limestone 1799 

limestone, dolomite, shale and cherty quartzite 2482 

quartzite, slate, lensoidal limestone and tuff 2486 

3 

quartzite, limestone and occasional conglomerate 1943 

6 % 
quartzite, siltstone, chert and phosphatic shale 1944 

diamictite, quartzite, slate and boulder bed 2081 

carbonaceous shale, slate, greywacke 2078 

4 

quartzite and slate with basic metavolcanics 2464 

30 % 
basic meta-volcanics 2458 

basic / intermediate intrusive 2453 

porphyritic nonfoliated granite 2452 

5 

sericite quartz schist, chlorite schist 2463 

14 % 

chlorite schist, hornblende-albite-zoisite schist 2461 

phyllite with chloritic, graphitic & carbonaceous 2462 

schist, augen gneiss, quartzite & amphibolite 3702 

quartz-sericite-chlorite schist & limestone 3701 

schist, gneiss, marble and basic intrusives 3747 

gneiss, kyanite schist, quartzite, calc-silicate 3752 

quartzite and quartz mica schist 3744 

calc silicate, quartzite, schist, marble band 3743 

a
Id refers to the UID given in the original data (Geological Survey of India, 2022)  
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 720 

Table 3. Aggregation of land cover classes derived from the Copernicus Global Land Service version 3 Globe 2015-2019. Remaining map 

codes in the original data were not concerned along the NH-7. 

Aggregated land cover class Map codes 

Closed forest 111-116 

Open forest 121-126 

Shrubland 20, 30 

Cropland 40 

Built-up 50 

 

 

Table 4. Summary of posterior distributions of parameters fitted by the Bayesian loglinear point process model. Ranks in the model were 725 

calculated according to Makalic and Schmidt (2011). 

  

Parameter Mean 

(coefficient) 

Standard deviation 

(coefficient) 

95% credible interval t-Statistics Rank 

Rainfall (CHIRPS 

v2) 

0.00356 0.00055 0.00251 / 0.00461 6.502 1 

Hillslope gradient 0.04961 0.00531 0.03842 / 0.05925 9.314 1 

Lithology (2) 0.57462 0.16180 0.26311 /  0.88471 3.557 3 

(3) 0.04115 0.24679 -0.42837 /  0.52715 0.158 6 

(4) -0.55397 0.26906 -1.06779 / -0.02107 -2-057 4 

(5) -0.11745 0.26646 -0.69276 /  0.38223 -0.524 6 

Road widening 0.39155 0.17249 0.07137 /  0.73991 2.314 4 

Intercept -9.66776 0.71529 -11.12997 / -8.39594 - - 

 

 


